SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DISCRIPTION

The M37120M6-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in an 80-pin plastic molded QFP. This single-chip microcomputer is useful for appliance controllers.

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES

•	Number of basic instructions 71
•	Memory size
	ROM12288 bytes
	RAM······256 bytes
٠	Instruction execution time
•	Single power supply
	f(X _{IN})=4MHz5V±10%
•	Power dissipation
	normal operation mode
	(at 4MHz frequency) ······75mW
•	Subroutine nesting
•	Interrupt
•	8-bit timer ····································
•	Programmable I/O ports
•	(Ports P0 P1 P2 P3 P4)
•	Input ports (Ports P6, P7)
-	Sorial I/O (8 bit)
-	A D converter (8 hit recolution)
-	A-D converter (8-bit resolution)
•	D-A converter (8-bit resolution) bcnannels
•	Watchdog timer
•	72-character on screen display function
	Number of character 24 characters ×3 lines
	Kinds of character 126
•	Two clock generating circuits
	(One is for main clock, the other is for clock function)

APPLICATION

TV, VCR

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MITSUBISHI MICROCOMPUTERS

M37120M6-XXXFP

μ

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37120M6-XXXFP

	Parameter		Functions	
Number of basic instructions	3		71	
Instruction execution time			1µs (minimum instructions, at 4MHz frequency).	
Clock frequency			4MHz	
Momony size	ROM		12288bytes	
Memory size	RAM		256bytes	
	P0, P1, P2, P3	1/0	8-bit×4	
	P4	1/0	8-bit×1	
	P6	Input	8-bit×1	
Input/Output port	P7	Input	4-bit×1	
	I, B, G, R, OUT1	Output	1-bit×5 (for CRT display function)	
	V _{SYNC} , H _{SYNC}	Input	1-bit×2 (for CRT display function)	
	D-Aouto-D-Aouto	Output	1-bit×6	
Serial I/O			8-bit×2	
Timers			8-bit timer×4	
Subroutine nesting			128 (maximum)	
Interrupt			Four external interrupts, nine internal interrupts, one software interrupt	
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)	
Supply voltage			5V±10%	
Operating temperature range			-10 to 70°C	
Device structure			CMOS silicon gate	
Package			80-pin plastic molded QFP	
CPT display function	Number of character		24 characters×3lines	
CRT display function	Kinds of character		126 (12×16 dots)	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	input/ Output	Functions			
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V $\pm10\%$ to V_{CCr} and 0V to V_{SS}			
AV _{CC} , AV _{SS}	Analog power supply		Power supply input for A-D and D-A converters.			
CNV _{ss}	CNV _{SS}		This is connect to V _{SS} .			
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 2μ s (under normal V _{cc} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be main-tained for the required time			
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an			
Х _{оит}	Clock output	Output	clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pins should be left open			
φ	Timing output	Output	The function of this pin can be selected either timing output or resetout output			
X _{CIN}	Clock input for clock function	Input	This is the I/O pins of the clock generating circuit for the clock function. To control generating frequency, an external ceramic or quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins. If an external clock is used, the clock source should be connected to the X_{CIN} pin and the X_{COUT} pins should be left one.			
Х _{соит}	Clock output for clock function	Output	This clock can be used as a program controlled the system clock			
D-А _{ОИТ0} —D-А _{ОИТ5}	D-A output	Output	Analog signal from D-A converter is output			
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D and D-A converters			
P00-P07	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output At reset, this port is set to input mode. The output structure is CMOS output			
P10-P17	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0			
P20-P27	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0			
P30-P37	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 Port P3 $_0$ is in common with CRT input pin and P3 $_4$ is in common with counter input pin			
P40-P47	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same function as port P0, but the output structure is N-channel open drain.			
P60-P67	Input port P6	Input	Port P6 is an 8-bit input port $P6_0 - P6_3$ are in common with interrupt input pins and $P6_4 - P6_7$ are in common with analog input pins			
P70-P73	Input port P7	Input	Port P7 is a 4-bit input port and in common with analog input pins			
OSC1, OSC2	Clock input for CRT display Clock output for CRT display	Input Output	This is the I/O pins of the clock generating circuit for the CRT display To control generating frequency, external condensers and registers are connected			
H _{SYNC}	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display.			
V _{SYNC}	V _{SYNC} input	Input	This is the vertical synchronizing signal input for CRT display			
I, B, G, R, OUT1	CRT output	Output	This is a 5-bit output pin for CRT display			

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37120 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Programming Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are provided.

The WIT instruction can be used.

The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address $00FB_{16}$. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

Fig. 1 Structure of CPU mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers. • RAM

RAM is used for data storage as well as a stack area. • ROM

ROM is used for storing user programs as well as the interrupt vector area.

• RAM for display

RAM for display is used for specifing the character codes and colors to display.

· ROM for display

ROM for display is used for storing character data.

Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated. • Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Fig. 2 Memory map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

00C0 ₁₆	Port P0
00C1 ₁₆	Port PU directional register
00C2 ₁₆	Port P1
00C3 ₁₆	Port P1 directional register
00C4 ₁₆	Port P2
00C5 ₁₆	Port P2 directional register
00C6 ₁₆	Port P3
00C7 ₁₆	Port P3 directional register
0C8 ₁₆	Port P4
00C9 ₁₆	Port P4 directional register
00CA ₁₆	Port P6
00CB ₁₆	Port P7
00CC ₁₆	
00CD ₁₆	
00CE ₁₆	
00CF ₁₆	
00D0 ₁₆	
00D1 ₁₆	
00D2 ₁₆	
00D3 ₁₆	A-D control register
00D4 ₁₆	INT edge selection register
00D5 ₁₆	A-D conversion result register
00D6 ₁₆	D-A conversion register 5
00D7 ₁₆	D-A conversion register 4
00D816	D-A conversion register 3
00D9 ₁₆	D-A conversion register 2
00DA ₁₆	D-A conversion register 1
00DB ₁₆	D-A conversion register 0
00DC16	Serial I/O1 mode register
00DD16	Serial I/O1 register
00DE16	Serial I/O2 mode register
00DF16	Serial I/O2 register

00E0 ₁₆	Horizontal position register
00E1 ₁₆	Vertical position register of block 1
00E2 ₁₆	Vertical position register of block 2
00E3 ₁₆	Vertical position register of block 3
00E4 ₁₆	Character size register
00E5 ₁₆	Border selection register
00E6 ₁₆	Color register 0
00E7 ₁₆	Color register 1
00E8 ₁₆	Color register 2
00E9 ₁₆	Color register 3
00EA ₁₆	CRT control register
00EB ₁₆	Display block counter
00EC ₁₆	CRT port control register
00ED ₁₆	
00EE ₁₆	
00EF16	Watchdog timer
00F0 ₁₆	Timer 1
00F1 ₁₆	Timer 2
00F2 ₁₆	Timer 3
00F3 ₁₆	Timer 4
00F4 ₁₆	
00F5 ₁₆	
00F6 ₁₆	
00F7 ₁₆	
00F8 ₁₆	Timer 12 mode register
00F9 ₁₆	Timer 34 mode register
00FA ₁₆	
00FB ₁₆	CPU mode register
00FC ₁₆	Interrupt request register 1
00FD ₁₆	Interrupt request register 2
00FE ₁₆	Interrupt control register 1
00FF ₁₆	Interrupt control register 2

Fig. 3 SFR (Special function register) memory map

.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

Interrupts can be caused by 14 different events consisting of four external, nine internal, and one software events.

Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set. All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 3 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be clear with a program, but not set. The interrupt enable bit can be set and clear with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Event Priority Vector addresses		Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
V _{SYNC} interrupt	2	FFFD ₁₆ , FFFC ₁₆	By V _{SYNC} signal of OSD
CRT interrupt	3	FFFB ₁₆ , FFFA ₁₆	By display completion of character block
INT ₀ interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	External interrupt (polarity programmable)
INT ₁ interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	External interrupt (polarity programmable)
INT ₂ interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	External interrupt (polarity programmable)
INT ₃ interrupt	7	FFF3 ₁₆ , FFF2 ₁₆	External interrupt (polarity programmable)
Timer 1 interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	
Timer 2 interrupt	9	FFEF ₁₆ , FFEE ₁₆	
Timer 3 interrupt	10	FFED ₁₆ , FFEC ₁₆	
Timer 4 interrupt	11	FFEB ₁₆ , FFEA ₁₆	
Serial I/O 1 interrupt	12	FFE9 ₁₆ , FFE8 ₁₆	
Serial I/O 2 interrupt	13	FFE7 ₁₆ , FFE6 ₁₆	
A-D conversion completion interrupt	14	FFE5 ₁₆ , FFE4 ₁₆	×
Disable to use.		FFE3 ₁₆ , FFE2 ₁₆	v.
Disable to use.		FFE1 ₁₆ , FFE0 ₁₆	
BRK instruction interrupt	15	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 4 Structure of registers related with interrupt

Fig. 5 Interrupt control

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMER

The M37120M6-XXXFP has four timers; timer 1, timer 2, timer 3 and timer 4.

A block diagram of timer 1 through 4 is shown in Figure 6.

The count source for timer 1 through 4 can be selected by using bit 0, 1, 4 of the timer 12 mode register (address $00F8_{16}$) and bit 0, 1 of the timer 34 mode register (address $00F9_{16}$), as shown in Figure 7.

All of the timers are down count timers and have 8-bit latches. When a timer reaches "0" and the next count pulse is input to a timer, the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n + 1), where n is the contents of timer latch.

Also all of the timers have interrupt generating functions. The timer interrupt request bit is set at the next count pulse after the timer reaches "0" (see interrupt section).

The starting and stopping of timers are controlled by bit 2, 3 of the timer 12 mode register and the timer 34 mode register. If the corresponding bit is "0", the timer starts counting, and the corresponding bit is "1", the timer stops.

At a reset or stop mode, FF_{16} is automatically set in timer 3 and 07_{16} in timer 4. And timer 4, timer 3 and the clock (ϕ divided by 8) are connected in series. Reset or stop mode is cleared by timer 4 overflow.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SERIAL I/O

M37120 has two serial I/Os which can operate in clock synchronous (Serial I/O 1, Serial I/O 2). Serial I/O 1 and 2 have the same funciton.

The block diagram of serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal $(\overline{S_{\text{RDY}}})$, synchronous input/output clock (S_{CLK}) , and the serial I/O $(S_{\text{OUT}}, S_{\text{IN}})$, pins are used as port P4.

The serial I/O mode register 1 and 2 (addresses $00DC_{16}$ and $00DE_{16}$) are 8-bit registers. But the bits 7 and 6 are not used. Bit 0, 1, 2 of these registers are used to select a syn-

chronous clock source. Bits 3 and 4 decide whether P4 will be used as a serial I/O or not. When bit 3 is "1", P4₂, P4₆ become I/O pins of the synchronous clock. When an internal syncronous clock is selected, the clock is output from P4₂, P4₆. If the external synchronous clock is selected, the clock is input to P4₂, P4₆. And P4₁, P4₅ will be a serial output, and P4₀, P4₄ will be a serial input. To use P4₀, P4₄ as serial input, set the directional register bit which correspond to P4₀, P4₄, to "0". For more information on the directional register, refer to the I/O pin section.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

To use the serial I/O, bit 3 of serial I/O mode register 1 and 2 needs to be set to "1", if it is "0" P4₂, P4₆ will function as a normal I/O. Bit 4 determines if P4₃, P4₇ are used as output pins for the receive data ready signal (bit 4="1", $\overline{S_{RDY}}$) or used as a normal I/O pin (bit 4="0"). Bit 5 is transfer direction selection bit. M37120 can be changed transfer direction by using this bit.

The function of serial I/O differs depending on the clock source; external clock or internal clock.

Internal clock- The $\overline{S_{RDY}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O register. After the falling edge of write signal, the $\overline{S_{RDY}}$ signal becomes low signaling that the M37120M6-XXXFP is ready to receive the external serial data. The $\overline{S_{RDY}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O

register. At each falling edge of the transfer clock, serial data is output to $P4_1$, $P4_5$. During the rising edge of this clock, data can be input from $P4_0$, $P4_4$ and the data in the serial I/O register will be shifted 1 bit. After the transfer clock has counted 8 times, the serial I/O counter will be "0" and the transfer clock will remain at a high level. At this time the interrupt request bit will be set.

External Clock- If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 500kHz at a duty cycle of 50%.

Timing diagrams are shown in Figure 9.

Fig. 9 Serial I/O timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 10 Structure of serial I/O mode registers

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

A-D CONVERTER

The A-D converter circuit is shown in Figure 12. The analog input ports of the A-D converter (AN_0-AN_7) are in common with in port P6₄-P6₇, P7₀-P7₃.

The A-D control register is located at address $00D3_{16}$. One of the eight analog inputs is selected by bits 0, 1 and 2 of this register. The AN pins, not to use as analog input, uses as normal I/O ports.

Bit 0, 1 and 2, and corresponding to analog input pin is shown in Figure 11. A-D conversion is accomplished by first selecting bit 0, 1 and 2 of the A-D control register for the analog input pin.

A-D conversion starts by setting "0" to bit 3 of the A-D control register. When A-D conversion is finished, an interrupt is generated. After A-D interrupt is accepted, the result of A-D conversion can be read from the A-D register.

Fig. 11 Structure of A-D control register

Fig. 12 A-D converter circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

D-A CONVERTER

Six 8-bit resolution D-A converter channels are provided. Figure 13 shows a block diagram of the D-A converter. D-A conversion is performed by setting a value in the D-A conversion register (addresses $00D6_{16}$ to $00DB_{16}$). The result of D-A conversion is output from the D-A output pin. The output analog voltage V_{DA} is determined by the value n (decimal) set in the D-A conversion register as follows: $V_{DA}=V_{REF} \times n/256$ (n=0 to 255)

Fig. 13 D-A converter block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 2 outlines the CRT display functions. The M37120M6-XXXFP incorporates a 24 columns \times 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 126 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12×16 dot configuration to obtain smooth character patterns. (See Figure 14)

The following shows the procedure how to display characters on the CRT screen.

- ① Set the character to be displayed in display RAM.
- ② Set the display color by using the color register.
- ③ Specify the color register in which the display color is set by using the display RAM.
- ④ Specify the vertical position and character size by using the vertical position register and the character size register.
- Specify the horizontal position by using the horizontal position register.
- (6) Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 3 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 15 shows a block diagram of the CRT display control circuit. Figure 16 shows the structure of the CRT control register.

Table 2. Outline of CRT display functions

Parameter		Functions	
Number of display character		24characters× 3 lines	
Chara	cter configuration	12×16 dots (See Figure 14)	
Kinds of character		126	
character size		4 size selectable	
Calar	Kinds of color	15(maximum)	
	Coloring unit	Character	
Display expansion		Possible (multiple lines)	

Fig. 14 CRT display character configuration

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 16 Structure of CRT control register

·, · , ».,

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 24 characters can be displayed in one block. (See (4) Display Memory.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc =oscillation cycle for display).

The display position in the vertical direction is selected from 128-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 17), a block of the smaller block No. (1 to 3) is displayed.

If when one block is displaying, some other block is displayed at the same display position ((c) in Figure 17), the former block is overridden and the latter is displayed.

Horizontal position register (Address 00E016) The horizontal display start position 64-step positions

logical sum of bit 4 of RAM for display and color register control bit

0 : I output mode 1 : Selection signal mode

(00₁₆ to 3F₁₆)

R, G, B control bit 0 Controled by the color register 1 : Controled by the

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

The vertical position can be specified from 128-step positions (four scanning lines per step) for each block by setting values 00₁₆ to 7F₁₆ to bits 0 to 6 in the vertical position register (addresses 00E116 to 00E316). Figure 18 shows the structure of the vertical position register.

The horizontal direction is common to all blocks, and can be specified from 64-step display positions (4Tc per step (Tc=oscillation cycle for display)) by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the horizontal position register (address 00E016). Figure 19 shows the structure of the horizontal position register.

Fig. 18 Structure of vertical position registers

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the character size register (address $00E4_{16}$) to set a character size.

The character size in block 1 can be specified by using bits 0 and 1 in the character size register; the character size in block 2 can be specified by using bits 2 and 3; the character size in block 3 can be specified by using bits 4 and 5. Figure 20 shows the structure of the character size register.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of display oscillation (=Tc) in the width (horizontal) direction.

The small size consists of (one scanning line) \times (1 Tc); the medium size consists of (two scanning lines) \times (2 Tc); the large size consists of (three scanning lines) \times (3 Tc); the extra large size consists of (four scanning lines) \times (4 Tc).

Table 3 shows the relationship between the set values in the character size register and the character sizes.

Fig. 21 Display start position of each character size (horizontal direction)

Fig. 20 Structure of character size register

Table 3.	The relationship	between the s	set values in the	character size	register and the	character sizes

Set values in the c	haracter size register	Character	Width (horizontal)	Height (vertical)
CSn ₁	CSn _o	size	direction	direction
0	0	Small	1 T _c	1
0	1	Medium	2 T _C	2
1	0	Large	3 T _C	3
1	1	Extra large	4 T _c	4

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block (See Figure 21)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(4) Display Memory

There are two types of display memory : ROM for CRT display (addresses 3000_{16} to $3FFF_{16}$) used to store character dot data (masked) and RAM fof CRT display (addresses 2000_{16} to $20D7_{16}$) used to specify the colors of characters to be displayed. The following describes each type of display memory.

① ROM for CRT display (addresses 3000₁₆ to 3FFF₁₆)

The CRT display ROM containns dot pattern data for characters to be displayed. For characters stored in this ROM to be actually displayed, it is necessary to specify them by writing the character code inherent to each character (code determined based on the addresses in the CRT display ROM) into the CRT display RAM.

The CRT display ROM has a capacity of 4K bytes. Because 32 bytes are required for one character data, the ROM can contain up to 128 kinds of characters. Actually, however, because two characters are required for test pattern use, the ROM can contain up to 126 kinds of characters for display use.

The CRT display ROM space is broadly divided into two areas. The (vertical 16 dots) X (horizontal (left side) 8 dots) data of display characters are stored in addresses 3000₁₆ to 37FF₁₆; the (vertical 16 dots) \times (horizontal (right side) 4 dots) data of display characters are stored in addresses 3800₁₆ to 3FFF₁₆. (See Figure 22) Note however that the four upper bits in the data to be written to addresses 3800₁₆ to 3FFF₁₆ must be set to "1" (by writing data $F0_{16}$ to FF_{16}).

The character code used to specify a character to be displayed is determined based on the address in the CRT display ROM in which that character is stored.

Assume that data for one character is stored at 3XX016 to $3XXF_{16}$ (XX denotes 00_{16} to $7F_{16}$) and $3YY0_{16}$ to $3YYF_{16}$ (YY denotes 80_{16} to FF_{16}), then the character code for it is "XX₁₆."

In other words, character code for any given character is configured with two middle digits of the four-digit (hex- notated) addresses (3000₁₆ to 37FF₁₆) where data for that character is stored.

Table 4 lists the character codes.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Choraster code	Contained up addr	ress of character data
Character code	Left 8 dots lines	Right 4 dots lines
	300016	3800 ₁₆
0016	to	to
	300F ₁₆	380F ₁₆
	3010 ₁₆	3810 ₁₆
01 ₁₆	to	to
	301F ₁₆	
	302016	382016
0216	to	to
	302F ₁₆	
	303016	3830 ₁₆
0316	to	to
	303F ₁₆	383F ₁₆
		:
	3100 ₁₆	3900 ₁₆
10 ₁₆	, to	to
	310F ₁₆	390F ₁₆
	3110 ₁₆	3910 ₁₆
11 ₁₆	to	to
	311F ₁₆	391F ₁₆
:	:	:
	34F0 ₁₆	3CF0 ₁₆
4F ₁₆	to	to
	34FF ₁₆	3CFF ₁₆
	3500 ₁₆	3D00 ₁₆
50 ₁₆	to	to
	350F ₁₆	3D0F ₁₆
:	:	:
	37D0 ₁₆	3FD0 ₁₆
7D ₁₆	to	to
	37DF ₁₆	3FDF ₁₆
	37E0 ₁₆	3FE0 ₁₆
7E ₁₆ (Note)	to	to
	37EF ₁₆	3FEF ₁₆
	37F0 ₁₆	3FF0 ₁₆
7F ₁₆ (Note)	to	to
	37FF16	3FFF1e

Table 4. List of the character code

Note : The test patterns are contained up in addresses 37E0₁₆ to 37FF₁₆ and 3FE0₁₆ to 3FFF₁₆

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

② RAM for CRT display (addresses 2000₁₆ to 20D7₁₆)

The CRT display RAM is allocated at addresses 2000_{16} to $20D7_{16}$, and is divided into a display character code specifying part and display color specifying part for each block. Table 5 shows the contents of the CRT display RAM.

When a character is to be display at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the seven low-order

bits (bits 0 to 6) in address 2000_{16} and the color register No. to the two low-order bits (bits 0 and 1) in address 2080_{16} . The color register No. to be written here is one of the four registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 23. Write the character patterns at Table 6 and 7, when M37120M6-XXXFP is mask-ordered.

Block	Display position (from left)	Character code specification	Color specification
	1st column	2000 ₁₆	2080 ₁₆
	2nd column	2001 ₁₆	2081 ₁₆
	3rd column	2002 ₁₆	2082 ₁₆
Block 1	:	, :	:
	22th column	2015 ₁₆	2095 ₁₆
	23th column	2016 ₁₆	2096 ₁₆
	24th column	2017 ₁₆	2097 ₁₆
		2018 ₁₆	2098 ₁₆
	Not used	:	:
		201F ₁₆	209F ₁₆
	1st column	2020 ₁₆	20A0 ₁₆
	2nd column	2021 ₁₆	20A1 ₁₆
	3rd column	2022 ₁₆	20A2 ₁₆
Block 2	:	:	:
	22th column	2035 ₁₆	20B5 ₁₆
	23th column	2036 ₁₆	20B6 ₁₆
	24th column	2037 ₁₆	20B7 ₁₆
	,	2038 ₁₆	20B8 ₁₆
	Not used	:	:
		203F ₁₆	20BF ₁₆
	1st column	2040 ₁₆	20C0 ₁₆
	2nd column	2041 ₁₆	20C1 ₁₆
	3rd column	2042 ₁₆	20C2 ₁₆
Block 3	:	:	:
	22th column	2055 ₁₆	20D5 ₁₆
	23th column	2056 ₁₆	20D6 ₁₆
	24th column	2057 ₁₆	20D7 ₁₆
1		2058 ₁₆	
	Not used	: ,	
		207F ₁₆	

Table 5. The contents of RAM for CRT display

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Address	Data	Data Address	
37E0 ₁₆	40 ₁₆	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	0416	3FE116	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	20 ₁₆	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	00 ₁₆	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	10 ₁₆	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	0116	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	40 ₁₆	3FEB ₁₆	F0 ₁₆
37EC ₁₆	0416	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	20 ₁₆	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF ₁₆	F0 ₁₆

Table 6. Test character pattern 1

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0 to CO3: addresses $00E6_{16}$ to $00E9_{16}$) and then specifying that color register with the CRT display RAM.

There are four color outputs : R, G, B, and I. By using a combination of these outputs, it is possible to set 2^{4} -1 (when no output) = 15 colors. However, because only four

Table 7. Test character pattern 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	00 ₁₆	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 24 shows the structure of the color registers.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(6) Half Character Width Color Select Mode

By setting "1" to bit 4 in the CRT control register (address $00EA_{16}$) it is possible to specify colors in units of a half character size (vertical 16 dots×horizontal 6 dots) for characters in block 1 only.

In the half character width color select mode, colors of display characters in block 1 are specified as follows:

- ① The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080_{16} to 2097_{16}).
- ② The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).

Color of the c specified by address 2080	olor register bits 0 and 1 of 16 ´	Color of the c specified by b of address 20	olor register its 0 and 1 81 ₁₆	Block 1
(a) Display in the norma Color of the color register specified by bits 0 and 1 of address 2080 ₁₆	Color of the color register specified by bits 2 and 3 of address 2080 ₁₆	Color of the color register specified by bits 0 and 1 of address 2081 ₁₆	Color of the color register specified by bits 2 and 3 of address 2081 ₁₆	Block 1
(b) Display in the half ch	aracter width color select r	node		

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(7) Multiline Display

The M37120M6-XXXFP can normally display three lines on the CRT screen by displaying three blocks at different horizontal positions.

In addition, it allows up to 16 lines to be displayed by using a CRT interrupt and display block counter.

The CRT interrupt works in such a way that when display of one block is terminated, an interrupt request is generated. In other words, character display for a certain block is initiated when the scanning line reaches the display position for that block (specified with vertical and horizontal position registers) and when the range of that block is exceeded, an interrupt is applied.

The display block counter is used to count the number of blocks that have just been displayed. Each time the display of one block is terminated, the contents of the counter are incremented by one.

For multiline display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit (= bit 4 at address 00FE₁₆) to "1"), then execute the following processing in the CRT interrupt handling routine.

- \bigcirc Read the value of the display block counter.
- 2 The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- 3 Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and display position (contents of vertical position and horizontal position registers) to be displayed next.

Figure 26 shows the structure of the display block counter.

Fig. 26 Structure of display block counter

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 27 Timing of CRT interrupt and count value of display block counter

(8) Character Border Function

A border of a one clock (one dot) equivalent size can be added to a character to be displayed in both horizontal and vertical directions.

The border is output from the OUT1, OUT2 pins. In this case, bits 4 and 5 in the color registers (contents output from the OUT pins) are nullified, and the border is output from the OUT pins instead.

Border can be specified in units of block by using the border selection register (address $00E5_{16}$). Table 8 shows the relationship between the values set in the border selection register and the character border function. Figure 29 shows the structure of the border selection register.

Fig. 28 Example of border

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Border selection register		Functions	Example of extent		
MDn1	MDn0	Functions			
	0	Namal	R, G, B, I output		
	0	Normai	OUT1, OUT2 output		
0	0 1	1 Border-including character	R, G, B, I output		
0			OUT1, OUT2 output		
1			R, G, B, I output		
	I	Border not including character	OUT1, OUT2 output		

Table 8. The relationship between the values set in the border selection register and the character border function

X: An X indicates either "0" or "1"

Fig. 29 Structure of border selection register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(9) CRT Output Pin Control

CRT output pins R, G, B, I, and OUT1 become output enable by setting bit 6 of CRT port control register. OUT2 is in common with port $P3_0$. This pin become output enable when bit 7 of CRT port control register is set after setting bit 0 of port P3 directional register.

The polarities of CRT outputs (R, G, B, I, and OUT1, as well as H_{SYNC} and V_{SYNC}) can be specified by using the CRT port control register (address 00EC₁₆).

Use bits 0 to 4 in the CRT port control register to set the output polarities of H_{SYNC} , V_{SYNC} , R/G/B, I, and OUT1. When these bits are cleared to "0", a positive polarity is selected; when the bits are set to "1", a negative polarity is selected.

Figure 30 shows the structure of the CRT port control register.

(10) OUT2 Control

Because function selection (such as character or blank output control, border selection, etc.) of OUT1 is the same as that of OUT2, OUT2 outputs the same data of OUT1.

OUT2 can output characters in specified character area by specifying bit 4 of RAM for display. This function is no use when blank output is setting by color register.

Fig. 30 Structure of CRT port control register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

WATCHDOG TIMER

The watchdog timer provides a method of returning to reset status if a runaway or other cause prevents a program from running a loop normally.

The watchdog timer is a 15-bit counter consisting of a lower seven bits and an upper eight bits (address $00EF_{16}$). At reset or after the watchdog timer is written to, $7FFF_{16}$ is set in this timer and it starts to count.

When the MSB reaches "0", an internal reset is generated. Therefore programs should normally be written to ensure that the watchdog timer is written to before this bit reaches "0". If address $00EF_{16}$ is read, the value in the upper eight bits of the counter is read. Directly after a reset, the watch-dog timer is stopped.

The count source of the lower seven bits is a signal that is the system clock ϕ divided by eight. The count source of the upper eight bits can be selected as either the overflow signal from the 7-bit counter or a signal that is the system clock ϕ divided by eight, depending on the value of bit 3 of the CPU mode register (address 00FB₁₆).

Fig. 31 Block diagram of runaway detection function

Fig. 32 Timing diagram of internal reset signal

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

The M37120M6-XXXFP is reset according to the sequence shown in Figure 34. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the RESET pin is held at "L" level for no less than 2μ s while the power voltage is between 4 and 5.5V and the crystal oscillator oscillation is stable and then returned to "H" level.

Address (1) Port P0 directional register (D0)(C1₁₆) 0016 (2) Port P1 directional register (D1)(C3₁₆) 0016 (3) Port P 2 directional register 0016 $(D2)(C5_{16})$ (4) Port P3 directional register (D3)(C7₁₆) 0016 (5) Port P4 directional register (D4)(C9₁₆) 0 0 16 (6) A-D control register (D3₁₆) 01000 (7) INT edge selection register (D4₁₆) 0000 (8) D-A conversion register 5 (D6₁₆) 0016 (9) D-A conversion register 4 (D7₁₆) 0 0 16 (10) D-A conversion register 3 (D 8 16) 0016 (11) D-A conversion register 2 0 0 16 (D9₁₆) (12) D-A conversion register 1 (DA₁₆) 0.0 16 (13) D-A conversion register 0 (DB₁₆) 0016 (14) Serial I/O 1 mode register (SM1) (DC16) 000000 (15) Serial I/O 2 mode register (SM2) (DE16) 000000 (16) CRT port control register (EC₁₆) 0016 (17) Display block counter 0000 (EB₁₆) (18) CRT control register (EA16) 0 0 16 (19) Color register 3 (E9₁₆) 000000 (20) Color register 2 (E 8 16) 000000 (21) Color register 1 (E7₁₆) 000000 (22) Color register 0 (E6₁₆) 000000 (23) Horizontal position register (E0₁₆) 0016 (24) Watchdog timer (EF₁₆) F F 16 (25) Timer 12 mode register 000000 (T12M)(F 8 16) (26) Timer 34 modu register (T34M)(F 9 16) 0000 (27) CPU mode register (CM)(FB₁₆) 1 1 1 1 1 1 0 0 (28) Interrupt request register 1 (FC16) 0016 (29) Interrupt request register 2 00000 (FD₁₆) (30) Interrupt control register 1 (FE₁₆) 0016 (31) Interrupt control register 2 00000 (FF₁₆) (32) Processor status register 1 FFFF16 (33) Program counter (PC_H) Contents of address (PCL) Note : Since the contents of both registers other than those listed above (including timers and the serial I/O register) and the RAM are undefined at reset, it is necessary to set initial values.

Fig. 33 Internal state of microcomputer at reset

The internal initializations following reset are shown in Figure 33.

Immediately after reset, the count of X_{IN} is stopped and X_{CIN} divided by 2 is selected as an internal clock. FF₁₆ is set timer 3 and 07₁₆ is set to timer 4 and timer 3 and timer 4 are connected. Also X_{CIN} divided by 16 is selected as the timer 3 count source. Reset is cleared by timer 4 overflow.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 34 Timing diagram at reset

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS outputs and pull-up transistor options available. As shown in Figure 3, P0 can be accessed as memory through zero page address 00C016. Port P0's directional register allows each bit to be programmed individually as input or output. The directional register (zero page address 00C1₁₆) can be programmed as input with "0", or as output with "1". When in the output mode, the data to be output is latched to the port register and output. When data is read from the output port, the otuput pin level is not read, only the latched data of the port register is read. Therefore, a previously output value can be read correctly even though the output voltage level has been shifted up or down. Port pins set as input are in the high impedance state so the signal level can be read. When data is written into the input port, the data is latched only to the output register and the pin still remains in the high impedance state.

(2) Port P1

Port P1 has the same function as P0.

(3) Port P2

Port P2 has the same function as P0.

(4) Port P3

Port P3 has the same functions P0 except that part of P3 is common with the CRT output pin and counter input pin.

(5) Port P4

Port P4 has the same function as P0. The output structure is N-channel open drain.

(6) Port P6

Port P6 has the same functions as P0. The lower 4-bit of this port are in common with interrupt input pins and the higher 4-bit of this port are in common with analog input pins.

(7) Port P7

Port P7 is a 4-bit input port This port is in common with analog input pins.

(8) I/O pins for CRT display function

H_{SYNC}, V_{SYNC} are input pins for deciding the display location. R, G, B, I, OUT1 and OUT2 are output the pattern of CRT display.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

t.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

The M37120M6-XXXFP has two internal clock generating circuits. Figure 40 shows a block diagram of the clock generating circuits. Normally, the frequency applied to the clock input pin X_{IN} divided by two is used as the internal clock (timing output) ϕ . Bit 7 of CPU mode register can be used to switch the internal clock ϕ to 1/2 the frequency applied to the clock input pin X_{CIN}.

Figure 37 shows a circuit example using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which will differ depending on each oscillator. When using an external clock signal, input from the X_{IN} (X_{CIN}) pin and leave the X_{OUT} (X_{COUT}) pin open. A circuit example is shown in Figure 38. An external clock signal cannot be supplied to the X_{CIN} pin

open.

The M37120M6-XXXFP has two low power dissipation modes; stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both X_{IN} clock and X_{CIN} clock) stops with the internal clock ϕ held at "H" level. In this case timer 3 and timer 4 are forcibly connected and $\phi/8$ is selected as timer 3 input. When restarting oscillation, FF₁₆ is automatically set in timer 3 and 07₁₆ in timer 4 in order to enable the oscillator to stabilize. Before executing the STP instruction, the timer 3 count stop bit and timer 4 count stop bit must be set to supply ("0"), timer 3 interrupt enable bit and timer 4 interrupt enable bit must be set to disable ("0").

Oscillation is restarted (release the stop mode) when INT, or serial I/O interrupt is received. The interrupt enable bit of the interrupt used to release the stop mode must be set to "1". When restarting oscillation with an interrupt or reset, the internal clock ϕ is held "H" until timer 4 overflows and is not supplied to the CPU.

The microcomputer enters an wait mode when the WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode release) when the microcomputer is reset or when it receives an interrupt.

Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

Low power dissipation operation is also achieved when the X_{IN} clock is stopped and the internal clock ϕ is generated from the X_{CIN} clock (36 μ A or less at f(X_{CIN})=32kHz, V_{CC} = 3V). X_{IN} clock oscillation is stopped when the bit 6 of CPU mode register (address 00FB₁₆) is set and restarted when it is cleared. However, the wait time until the oscillation stabilizes must be generated with a program when restarting. Figure 41 shows the transition of states for the system clock.

Example ceramic resonator circuit Fig. 37

Fia. 38 Example clock input circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMER OSCILLATION CIRCUIT

Power is supplied to the timer clock oscillation circuit via a step-down regulator circuit to reduce the power consumption when the M37120M6-XXXFP is operating in timer mode. Since this step-down regulator circuit reduces the voltage applied to the V_{CC} pin to 1.4V (standard), the user can design a low-power timer mode. Bit 5 (CM₅) of the CPU mode register can be used to provide two-stage setting for the oscillation circuit: low-power mode when CM₅= 0 and high-power mode when CM₅= 1. Note that high-power mode is set after a reset, so the program must switch to low-power mode to enable low-power-consumption mode, after allowing time for the oscillation to stabilize.

Fig. 39 Block diagram of the timer clock oscillation circuit

MITSUBISHI MICROCOMPUTERS

M37120M6-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) An NOP instruction must be used after the exection of a PLP instruction.
- (5) When the interrupt is processed, confirm the interrupt enable bit is enable state after into the interrupt routine. If so, check the request flag after that.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mask specification form
- (3) ROM data EPROM 3 sets

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Ratings Conditions Unit Symbol Parameter -0.3 to 7.0 V Supply voltage v_{cc} Input voltage RESET -0.3 to 7.0 v V Input voltage P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P60-P67, -0.3 to V_{cc}+0.3v V, P70-P73, XIN, XCIN, With respect to V_{SS} VREF, VSYNC, HSYNC Output transistors are -0.3 to 2.5V (at high power mode) at "off" state Output voltage X_{COUT} v Vo -0.3 to 1.5V (at low power mode) Output voltage P00-P07, P10-P17, P20-P27, Vo P30-P37, P40-P47, R, G, B, I, OUT1, -0.3 to $V_{\rm cc}{+}0.3$ v X_{OUT}, ϕ , D-A_{OUT0} to D-A_{OUT5}

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

 $(V_{cc}=AV_{cc}=5V\pm10\%, T_a=-10 \text{ to } 70^{\circ}C \text{ unless otherwise noted})$

Ourse had	Decemptor			11-14			
Symbol	Parameter		Min	Тур	Max	Unit	
	Supply voltage	f(X _{IN})=4MHz (Note 1)	4.0	5.0	5.5	V	
Vcc	Supply voltage	f(X _{CIN})=32kHz (Note 2)	2.5	5.0	5.5	v	
V _{SS}	Supply voltage		0	0	0	v	
	"H" input voltage P00-P07, P10-P1	I ₇ , P2 ₀ —P2 ₇ ,					
V	P30-P37, P40-P4	4 ₇ , P6 ₀ —P6 ₇ ,	0.81/		Vee	v	
▼ін	P70-P73, XIN, OSC1,		0.00000		v cc	v	
	RESET, H _{SYNC} , V _S	YNC					
	" input voltage P00-P07, P10-P17, P20-P27		,				
VIL	P30-P37, P40-P47, P60-P67,				0.2V _{CC}	V	
	P70-P73, XIN, OSC1, HSYNC, VSYNC						
VIL	"L" input voltage RESET		0		0.15V _{CC}	v	
V _{REF}	Reference voltage input V _{REF}		4.0		Vcc	V	
VIA	Analog input voltage AN0-AN7		0		VREF	V	
	"H" average output current P00-P0)7, P10-P17,			·		
IOH(avg)	(Note 3) P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ ,				1	mA	
_	R, G, B,	R, G, B, I, OUT1					
	"L" average output current P00-P0	7, P10-P17,					
loL(avg)	(Note 4) P20-P2	7, P30-P37,			2	mA	
	P4 ₀ —P4	7, R, G, B, I, OUT1					
f(X _{IN})	Clock oscillating frequency for main clock (Note 5)				4.2	MHz	
$f(X_{CIN})$	Clock oscillating frequency for clock function (Note 5)				32.768	kHz	
f(OSC1)	Clock oscillating frequency for OSD) ,	6.0	7.0	8.0	MHz	

Note 1 : At OSD operating, maximum value is 4.5V

2: It is only at clock operation mode

Any other operation mode, maximum value is 4.0V

3 : The total of input current from IC should be 20mA max.

4: The total of input current from IC should be 30mA max.

5 : Oscillation frequency is at 50% duty cycle.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Parameter		Min	Тур	Max.	
V _{он}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , <i>φ</i> , R, G, B, I, OUT1	$V_{CC} = 4.5V$ $I_{OH} = -0.5mA$	2.4			v
V _{OL}	"L" output voltage P0,-P07, P1,-P17, P2,-P27, P3,-P37, P4,-P47, ¢, R, G, B, I, OUT1	V _{cc} =4.5V I _{cL} =0.5mA			0.4	v
$v_{\tau+}-v_{\tau-}$	Hysteresis H _{SYNC} , V _{SYNC} , P60-P63, P40, P42, P44, P46, P34 (Note 1)	V _{CC} =5.0V		0.5		v
$v_{\tau +} - v_{\tau -}$	Hysteresis RESET	V _{CC} =5.0V		0.5		V
ابر	"L" input current $P0_0-P0_7$, $P1_0-P1_7$, $P2_0-P2_7$, $P3_0-P3_7$, $P4_0-P4_7$, $P6_0-P6_7$, $P7_0-P7_3$, H_{SYNC} , V_{SYNC} , \overline{RESET}	$V_{cc} = 5.5V$ $V_i = 0V$			5	μA
hн	"H" input current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ , P7 ₀ -P7 ₃ , H _{SYNC} , V _{SYNC} , RESET	$V_{cc}=5.5V$ $V_{i}=5.5V$			5	μА
VRAM	RAM retention voltage	At stop mode	2.0		5.5	V
		At system operation, X_{IN} =4MHz, X_{CIN} =32kHz, f(OSC1)=7MHz, Output transistors are at "off" state		13	24	mA
I _{cc}	Supply current	At system operation, V_{CC} =3 0V, X _{IN} =stop, X _{CIN} =32kHz, Output transistors are at "off" state		18	36	
		At low-speed operation mode, V_{CC} =3 0V, X_{IN} =stop, X_{CIN} =32kHz, At wait mode (CM ₅ =0), Output transistors are at "off" state		2	8	μA
		At stop mode, $X_{IN}=X_{CIN}=$ stop, Output transistors are at "off" state		1	10	
ACC	Analog power supply			0.5	1.0	mA

$\label{eq:constraint} \textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} ~ (v_{cc} = Av_{cc} = 5v \pm 10\%, ~ T_a = -10 ~ to ~ 70\% ~ unless ~ otherwise ~ noted)$

Note 1 : $P4_0$, $P4_2$, $P4_4$, $P4_6$ have the hysteresis only when these are used for serial I/O pins $P3_4$ has the hysteresis only when this is used for a timer input pin

A-D CONVERTER CHARACTERISTICS

$(V_{CC}=AV_{CC}=5V, V_{SS}=AV_{SS}=0V, T_a=25^{\circ}C, f(X_{IN})=4 MHz$ unless otherwise noted)

Symbol	Parameter	Test and dama	Limits			
		lest conditions	Min	Тур	Max	Unit
	Resolution -				8	Bits
-	Absolute accuracy	$V_{CC} = AV_{CC} = V_{REF} = 5.0V$		±1.5	±3.0	LSB
T _{CONV}	Conversion time				24.5	μs
VIA	Analog input voltage		AV _{SS}		VREF	v
VREF	Reference input voltage		4.0		V _{cc}	v
RLADDER	Ladder resistance value	V _{REF} =5.0V		40		kΩ
IVREF(AD)	Reference input current (Note 1)	V _{REF} =5.0V			0.3	mA
VAVCC	Analog power supply input voltage			V _{cc}		V
VAVSS	Analog power supply input voltage			0		v

Note 1 : The total of I_{VREF} is the sum of $I_{\text{VREF}(\text{AD})}$ and $I_{\text{VREF}(\text{DA})}.$

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

D-A CONVERTER CHARACTERISTICS

 $(V_{CC}=AV_{CC}=5V, V_{SS}=AV_{SS}=0V, T_a=25$ °C, f $(X_{IN})=4$ MHz unless otherwise noted)

Symbol	Parameter	Test and diese		Limits		
		Test conditions	Min	Тур.	Max	Unit
_	Resolution				8	Bits
	Full scale deviation	$V_{CC} = AV_{CC} = V_{REF} = 5.0V$			1.0	%
T _{su}	Set time				3	μs
VREF	Reference input voltage		4		V _{cc}	V
Rout	Output resistance		1	2	4	kΩ
VAVSS	Analog power supply input voltage			0		v
IVREF(DA)	Reference power input current (Note 1)		0	2.5	5.0	mÀ

Note 1 : The total of I_{VREF} is the sum of $I_{VREF(AD)}$ and $I_{VREF(DA)}.$

IvREF(DA) is the reference power input current flowing when channel 1 of the DA converter is operating. (The other five DA converter register values are 00₁₆)

