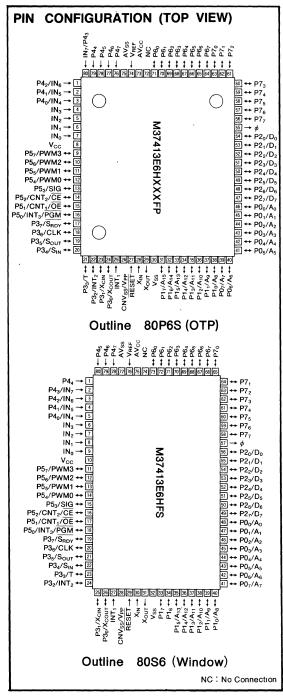
MITSUBISHI MICROCOMPUTERS M37413E6HXXXFP M37413E6HFS PROM VERSION of M37413M6HXXXFP

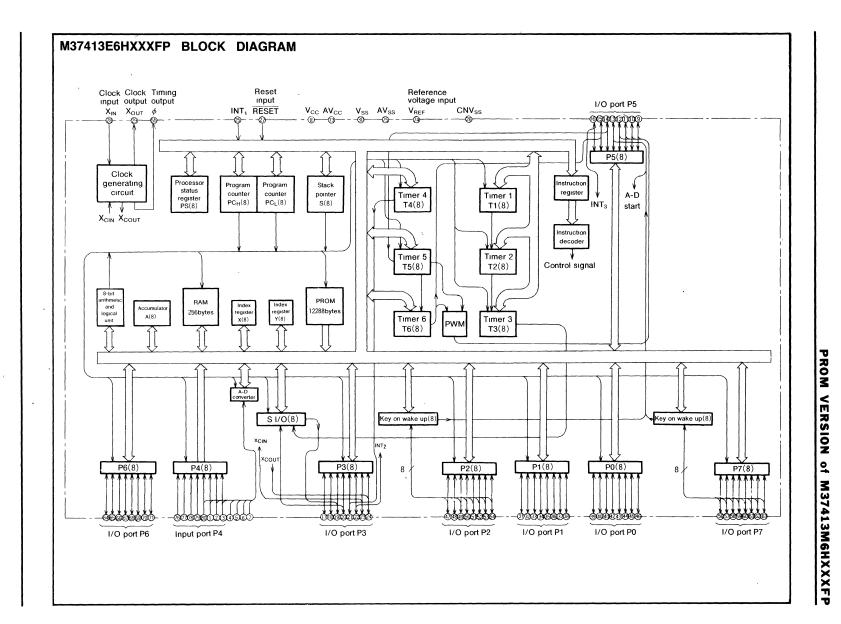
DESCRIPTION


The M37413E6HFS, M37413E6HXXXFP are single-chip microcomputers designed with CMOS silicon gate technology. M37413E6HXXXFP is housed in a 80-pin shrink plastic molded QFP. M37413E6HFS is housed in a 80-pin ceramic QFP. The features of this chip are similar to those of the M37413M4HXXXFP except that this chip has a 12288 bytes PROM built in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.

In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.

The M37413E6HFS is the window type. The differences between the M37413E6HXXXFP and the M37413E6HFS are the package outline and the power dissipation ability (absolute maximum ratings).

FEATURES


• Nt	umber of ba	sic instructions······ 69
	emory size	
		RAM 256 bytes
• In:	struction ex	ecution time
	(minimum i	nstructions at 4MHz frequency)
	at high-spe	ed mode
	at low-spee	d mode
• Si	ngle power	supply
	M37413E6H	IXXXFP 2.5~5.5V
	M37413E6F	IFS
• Po	wer dissipa	ition
	normal ope	ration mode (at 4MHz frequency)
	•••••	·······15mW (V _{cc} =5V, Typ.)
		operation mode (at 32kHz frequency for
	clock functi	on) $\cdots 54\mu W(V_{CC}=3V, Typ.)$
• R/		n voltage (stop mode)
		sting ······96 levels (Max.)
		10 types, 5 vectors
• 8-	bit timer …	······4 (3 when used as serial I/O)
• 16	6-bit timer ··	••••••1
• Pr	ogrammabl	
	(Ports P0	, P1, P2, P3, P5, P6, P7)56
• In	put port (Po	rt P4) ·····8
		bit)1
• A-	D converte	······ 8-bit, 8-channel
		conversion speed (49.5 μ s)
• Tv	•	nerating circuits
		main clock, the other is for clock function)
		alent to the M5L27128)
	program vo	ltage 21V

APPLICATION

Audio-visual equipment, VCR, Tuner, Office automation equipment, Camera

MITSUBISHI MICROCOMPUTERS

M37

413E

413E6HXXXFP M37413E6HFS

MITSUBISHI LELECTRIC

ω -449

PROM VERSION of M37413M6HXXXFP

FUNCTIONS OF M37413E6HXXXFP

	Parameters		Functions		
Number of basic instruc	tions		69		
Instruction execution tim	nstruction execution time		2μs (minimum instructions, at 4MHz of frequency)		
Clock frequency			4MHz		
Momony size	PROM		12288bytes		
Memory size	RAM		256bytes		
	P0, P2, P7 I/O		8-bit×3 (CMOS output)		
Input/Output port	P1, P3, P5, P6	1/0	8-bit×4 (N-channel open drain output)		
	P4	Input	8-bit×1		
Serial I/O			8-bit×1		
Timere			8-bit timer×4		
Timers			16-bit timer×1		
Subrotine nesting			96(max)		
Interrupt			Three external Interrupts, three timer interrupts (or two timer, one serial I/O)		
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)		
Operating temperature	range		-10~70°C		
Device structure			CMOS silicon gate		
Package			80-pin plastic molded QFP		

PROM VERSION of M37413M6HXXXFP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Single-chip /EPROM	Power supply		Supply 5V±5% to V_{cc} and 0V to V_{SS}
CNV _{ss} /	Single-chip	CNV _{SS}		Connect to V _{SS} .
V _{PP}	EPROM	V _{PP} input	Input	Connect to $V_{\mbox{\scriptsize PP}}$ when programming or verifing
RESET	Single-chip	Reset input	Input	To reset, keep this input terminal low for more than 16 μ s (min) under normal V _{Ct} conditions If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.
	EPROM			Connect to 0V.
X _{IN}	Single-chip	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control
Х _{оит}	/EPROM	Clock output	Output	- generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open
INT ₁	Single-chip	Interrupt input	Input	This is the highest order interrupt input pin
	EPROM			Connect to 0V
P0₀~P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be indi- vidually programmed as input or output At reset, this port is set to input mode. The output structure is CMOS output
	EPROM	Address input A ₀ ~A ₇	Input	P0 works as the lower 8 bit address input $(A_0{\sim}A_7)$
P1 ₀ ~P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The output structure is N-channel open drain
	EPROM	Address input A ₈ ~A ₁₃	Input	$P1_0{\sim}P1_5$ works as the higher 6 bit address inputs $(A_8{\sim}A_{13})$ Connect $P1_6{\sim}P1_7$ to V_{SS}
P2₀~P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as port P0 Also all bits are for key on wake up input pins.
	EPROM	Data input∕ output D₀~D ₇	1/0	Port P2 works as an 8 bit data bus $(D_0{\thicksim}D_7)$
₽3 ₀ ∼₽3 ₇	Single-chip	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 When serial I/O is used, P37, P36, P35 and P34 work as $\overline{S_{\text{RDY}}}$, CLK, S_{OUT} , and S_{II} pins, respectively Also P33, P32, P31, and P30 work as timer 4 overflow signal divided by 2 output pin (T), INT2 pin, X _{CIN} and X _{COUT} pins, respectively
	EPROM	Input port P3	Input	Connect to 0V
P4 ₀ ~P4 ₇	Single-chip	Input port P4	Input	Port P4 is an 8-bit input port. $P4_0{\sim}P4_3$ work as analog input pin $IN_4{\sim}IN_7$
	EPROM			Connect to V _{SS}
IN ₀ ~IN ₇	Single-chip	Input port IN	Input	These are analog input pin
	EPROM			Connect to V _{SS}
P5₀~P5 ₇	Single-chip	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as P1 $P5_0$, $P5_1$, $P5_3$ and $P5_3$ are in common with INT ₃ , timer3 input, timer5 input and A-D trigger input respectively.
	EPROM	Select mode	Input	Connect to V _{SS}

PROM VERSION of M37413M6HXXXFP

Pin	Mode	Name	Input/ Output	Functions
P60~P67	Single-chip	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P1
	EPROM	Input port P6	Input	Connect to V _{SS}
₽7 ₀ ~₽7 ₇	Single-chip	I/O port P7	1/0	Port P7 is an 8-bit I/O port and has basically the same functions as port P2
	EPROM	Input port P7	Inpuť	Connect to V _{SS}
AV _{cc}	Single-chip	Analog voltage input	Input	Analog voltage input pin for A-D converter
	EPROM			Connect to V _{SS} .
AV _{SS}	Single-chip /EPROM	Analog voltage input	Input	Connect to V _{ss} .
V _{REF}	Single-chip	Reference voltage input	Input	Reference input pin for A-D converter.
	EPROM			Connect to V _{cc} .

PIN DESCRIPTION (Continued)

÷

PROM VERSION of M37413M6HXXXFP

EPROM MODE

The M37413E6HXXXFP, M37413E6HFS feature an EPROM mode in addition to its normal modes. When the RESET signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1, Figure 2 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P5₀ ~ P5₂, and CNV_{SS} are used for the PROM (equivalent to the M5L27128). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27128. The oscillator should be connected to the X_{IN} and X_{OUT} pins, or external clock should be connected to the X_{IN} pin.

Table 1. Pin function in EPROM mode

	M37413E6HXXXFP, M37413E6HFS	M5L27128
V _{cc}	V _{cc}	V _{cc}
VPP	CNV _{SS} /V _{PP}	V _{PP}
V _{ss}	V _{ss}	V _{ss}
Address input	Ports P0, P1₀~P1₅	A ₀ ~A ₁₃
Data I/O	Port P2	D ₀ ~D ₇
CE	P5 ₂ /CE	CE
ŌĒ	P5₁/OE	ŌĒ
PGM	P50/PGM	PGM

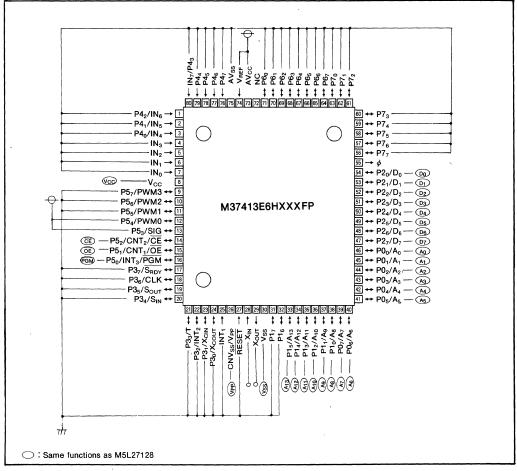
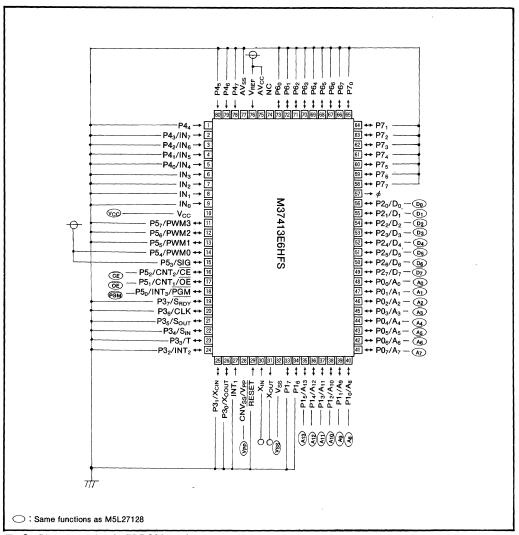
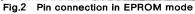




Fig.1 Pin connection in EPROM mode

PROM VERSION of M37413M6HXXXFP

PROM VERSION of M37413M6HXXXFP

PROM READING, WRITING AND ERASING Reading

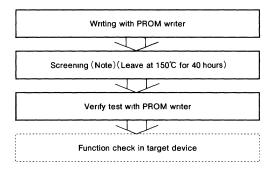
To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level, and the \overline{PGM} pin to a "H" level. Input the address of the data ($A_0 \sim A_{13}$) to be read and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

To write to the PROM, set the \overline{CE} pin to a "L" level and the \overline{OE} pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins A₀~A₁₃, and the data to be written is input to pins D₀~D₇. Set the \overline{PGM} pin to a "L" level to begin writing.

Erasing

Data can only erased on the M37413E6HFS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15W \cdot s/cm^2$.


Functional differences from M37413M4HXXXFP

(excluding characteristic differences).

	M37413M4HXXXFP	M37413E6HXXXFP
Port P0 pull-up resistor	Option	Not provided
Port P1 pull-up resistor	Option	Not provided
Port P2 pull-up resistor	Option	Not provided
Port P3 pull-up resistor	Option	Not provided
Port P4 pull-up resistor	Option	Not provided
Port P5 pull-up resistor	Option	Not provided
Port P6 pull-up resistor	Option	Not provided
Port P7 pull-up resistor	Option	Not provided
Port P2 key on wake up	Option	Provided (all bits)
Port P7 key on wake up	Option	Provided (all bits)

NOTES ON HANDLING

- (1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.
- (2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
- (3) Since a high voltage (21V) is used to write data, care should be taken when turning on the PROM writer's power.
- (4) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note : Since the screening temperature is higher than storage temperature, never expose to 150°C exceeding 100 hours.

Table 2. I/O signal in each mode

Pin Mode	CE (14)	0E(15)	PGM(16)	V _{PP} (26)	V _{CC} (8)	Data I/O (33~54)
Read-out	Vı∟	Vi∟	V _{IH}	Vcc	V _{cc}	Output
Programming	VIL	VIH	Pulse(V _{IH} →V _{IL})	V _{PP}	V _{cc}	Input
Programming verify	VIL	VIL	V _{IH}	V _{PP}	V _{cc}	Output
Program disable	VIH	X	X	V _{PP}	V _{cc}	Floating

Note $1 : V_{IL}$ and V_{IH} indicate a "L" and "H" input voltage, respectively.

2 : An X indicates either VIL or VIH

PROM VERSION of M37413M6HXXXFP

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~7	V
AV _{cc}	Analog supply voltage	V _{CC} =AV _{CC}	-0.3~7	V
Vi	Input voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₇ , P7 ₀ ~P7 ₇ , IN ₀ ~IN ₇ , V _{REF} , X _{IN}		$-0.3 \sim V_{\rm cc} + 0.3$	v
V ₁	Input voltage CNV _{SS} , (Note 1)		-0.3~7	v
Vı	Input voltage INT ₁ , RESET, P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇		-0.3~10	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P7 ₀ ~P7 ₇ , X _{OUT}		$-0.3 \sim V_{\rm cc} + 0.3$	v
Vo	Output voltage P10~P17, P32~P37, P50~P57, P60~P67	,	-0.3~10	V
Pd	Power dissipation	$T_a = 25^{\circ}C$	300	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		-40~125	°C

ABSOLUTE MAXIMUM RATINGS

Note 1 : In PROM programming mode, CNV_{SS} is 21.0V

RECOMMENDED OPERATING CONDITIONS ($v_{cc} = 5 V \pm 5 \%$, $T_a = -10 \sim 70 \degree$, unless otherwise noted)

Symbol	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур	Max	
		f(X _{IN})=4MHz High-speed mode	4.5		5.5	
v_{cc}	Supply voltage (Note 1)	$f(X_{IN})=4MHz$ Normal mode or $f(X_{IN})=2MHz$ High-speed mode (Note 2)	2.5 (Note 3)		5.5	v
V _{ss}	Supply voltage	(X _{IN})—2MHZ High-speed mode (Note 2)	(NOLE 3)	0	-	v
VIH	"H" input voltage P0 ₀ ~P0 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₇ , X _{IN} , CNV _{SS} (Note 4)	· ·	0.7V _{cc}		V _{cc}	v
VIH	"H" input voltage P20~P27, P70~P77		0.8V _{CC}		V _{cc}	v
VIH	"H" input voltage P10~P17, P51~P57, P60~P67, SIN		0.7V _{cc}		10	v
VIH	"H" input voltage P5 ₀ , INT ₁ , INT ₂ , INT ₃ , P3 ₂ ~P3 ₇ , CNT ₁ , CNT ₂ , SIG, CLK		0.8V _{CC}		10	v
VIH	"H" input voltage RESET, X _{CIN}		0.85V _{CC}		10	v
VIL	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₁ ~P5 ₇ , P6 ₀ ~P6 ₇ , S _{IN}		0		0. 3V _{CC}	v
VIL	"L" input voltage P2 ₀ ~P2 ₇ , P5 ₀ , P7 ₀ ~P7 ₇ , INT ₁ , INT ₂ , INT ₃ , CNT ₁ , CNT ₂ , SIG, CLK		0		0.2V _{CC}	v
VIL	"L" input voltage RESET, XIN, XCIN		0		0.15V _{cc}	v
I _{он}	"H" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P7 ₀ ~P7 ₇ , X _{OUT} (Note 5)				-1	mA
lol	"L" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , X _{OUT} , PWM0~PWM3, T, S _{OUT} , CLK, S _{R0Y} , SIG (Note 6)				1	mA
IOL	"L" output current P1 ₀ ~P1 ₇ (Note 7)	V _{cc} =5V			10	mA
f(X _{IN})	Clock oscillating frequency		0.2		4	MHz
f(X _{CIN})	Clock oscillating frequency for clock function		30		50	kHz

Note 1 : When only maintaining the RAM data, minimum value of V_{CC} is 2V

2: We say the high-speed mode, when the system clock is chosen $X_{IN}/4$, and the normal mode, when the system clock is chosen $X_{IN}/16$

3 : In case M37413E6HFS, 4.5V

4 : When P3 is X_{CIN} mode, the limits of V_{IH} of P3₁ is $0.85V_{CC} \le V_{IH} \le V_{CC}$, $0 \le V_{IL} \le 0.15V_{CC}$

5 : Total of $I_{OH(peak)}$ of ports P0, P2, P7 and X_{OUT} is less than 35mA.

6 : Total of I_{OL(peak)} of ports P0, P2, P3, P5, P6 and P7 is less than 32mA

7 : Total of I_{OL}(peak) of port P1 is less than 80mA

Total of IoL(avg) of port P1 is less than 40mA.

PROM VERSION of M37413M6HXXXFP

Symbol	Param	neter Test conditions	Limits			Unit	
Symbol	Parar	neter		Min	Тур	Max	
V _{OH}	"H" output voltage P00~P07,	P20~P27, P70~P77	$V_{CC}=5V$, $I_{OH}=-0.5mA$	4			V
V _{OH}	"H" output voltage X _{OUT}		V _{CC} =5V, I _{OH} =-0.3mA	4			V
V _{ol}	"L" output voltage P0 ₀ ~P0 ₇ , P5 ₀ ~P5 ₇ , Τ, S _{OUT} , C SIG, PWM	P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , LK, S _{RDY} ,	V _{CC} =5V, I _{OL} =1mA			1	v
VOL	"L" output voltage P10~P17		$V_{CC}=5V$, $I_{OL}=20mA$			2	V
VOL	"L" output voltage X _{OUT}		$V_{CC}=5V$, $I_{OL}=0.3mA$			1	V
$V_{\tau+}-V_{\tau-}$, , , , , , , , , , , , , , , , , , , ,	, INT₃, CLK, CNT₁, CNT₂, 22₀~P2⁊, P7₀~P7⁊, X _{CIN}	V _{CC} =5V		0.7		v
$V_{T+} - V_{T-}$	Hysteresis RESET		V _{CC} =5V		2		V
$V_{\tau+} - V_{\tau-}$	Hysteresis X _{IN}		V _{CC} =5V		0.5		V
t _{iL}	P6₀~P6₀, Without pull	P4 ₀ ~P4 ₃ , P5 ₀ ~P5 ₇ ,	$v_{cc}=5v$ $v_{i}=0v$			—5	μA
I _{IH}	"H" input current P0 ₀ ~P0 ₇ , P P4 ₀ ~P4 ₇ , P X _{IN} , X _{CIN} , C	7 ₀ ∼P7 ₇ , IN ₀ ∼IN ₇ ,	$v_{cc}=5v$ $v_i=5v$			5	μA
Ļн	6 H.	Without pull-up T _r INT ₃ , CNT ₁ , CNT ₂ ,	v _i =10v			10	μA
			f(X _{IN})=4MHz High-speed mode V _{CC} =5V		3	8	mA
	at operation		$f(X_{CIN})=32kHz, V_{CC}=3V$		30	60	
I _{CC}	Supply current	at wait state	$f(X_{CIN})=32kHz, V_{CC}=5V$		15	30	μA
	at stop state		V _{CC} =5V, all clock stop T _a =25°C		0.1	1.0	1
VRAM	RAM retention voltage			2		5.5	V

ELECTRICAL CHARACTERISTICS ($T_a = -10 \sim 70^{\circ}C$, $V_{ss} = 0V$, unless otherwise noted)

Note 1 : Also the same as when each pin is used as INT2, INT3, CNT1, CNT2, SIG, SIN and XIN, respectively

A-D CONVERTER CHARACTERISTICS ($v_{cc}=Av_{cc}=5v$, $v_{ss}=Av_{ss}=0v$, $T_a=25^\circ$, $f(X_{IN})=4$ MHz, unless otherwise noted)

Sumbol	Bt		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
	Resolution				8	bits
	Non-linearity error	V _{CC} =V _{REF} =5.12V			±2	LSB
	Differential non-linearity	V _{CC} =V _{REF} =5.12V			±0.9	LSB
Vot	Zero transition error	V _{CC} =V _{REF} =5.12V			2	LSB
V _{FST}	Full-scale transition error	V _{CC} =V _{REF} =5.12V			8	LSB
т _с	Conversion time	V _{CC} =5V High-speed mode		25		μs
IREF	Reference input current	V _{REF} =5V		1.0	2.5	mA
IIN	Analog port input current	V _{IN} =0~V _{CC}		1	10	μA
V _{IN}	Analog input voltage	V _{cc} =5V	AV _{SS}		Vcc	v
VREF	Reference input voltage		2.5		V _{cc}	v

