MITSUBISHI MICROCOMPUTERS

M37424E8-XXXSP M37524E4-XXXSP

PRELIMINARY

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

DESCRIPTION

The M37424E8-XXXSP, M37524E4-XXXSP are single-chip microcomputers designed with CMOS silicon gate technology. They are housed in a 64-pin shrink plastic molded DIP. The features of these chips are similar to those of the M37424M8-XXXSP, M37524M4-XXXSP except that these chips have a 16384 bytes PROM built in. These single-chip microcomputers are useful for home electrical appliances and consumer appliance controllers.

In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, these chips are suitable for small quantity production runs.

The differences between the M37424E8-XXXSP and the M37524E4-XXXSP are noted below. The following explanations apply to the M37424E8-XXXSP.

Specification variations for other chips are noted accordingly.

Type name	Port P1 output structure	
M37424E8-XXXSP	CMOS	
M37524E4-XXXSP	N-channel open drain	

FEATURES

- Number of basic instructions
 70 68 MELPS 740 basic instructions + 2 multiply/divide instructions
- Memory size PROM 16384 bytes
 RAM 256 bytes

- Interrupt 16 types, 16 vectors
- Serial I/O (8-bit or 16-bit)
- PWM output (14-bit)1
- A-D converter (8-bit resolution) -------8-channel
- D-A converter (5-bit resolution) ------2
- D-A converter (8-bit resolution) ------2
- Watchdog timer
- External trigger output (1-bit) ······ 1
- V pulse Y pulse generator
- Program voltage 12.5V

PIN CONFIGURATION (TOP VIEW)

APPLICATION

Office automation equipment VCR equipment

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

33

 $\overline{\omega} \overline{\omega}$

ノノ

ά Ď

24E8-

XX

SP

MITSUBISHI MICROCOMPUTERS

MITSUBISHI MICROCOMPUTERS M37424E8-XXXSP

M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

Parameter Functions 70 (68 MELPS 740 basic instructions+2) Number of basic instructions Instruction execution time 1µs (minimum instructions, at 4MHz frequency) Clock frequency 4MHz PROM 16384 bytes Memory size RAM 256 bytes Input/Output ports P0, P1, P2, P3, P4, P5, P6 1/0 8-bit×7 Serial I/O 8-bit or 16-bit×1 Timers 8-bit×4, 16-bit×1 8-bit×1 (8 channels) A-D conversion 5-bit×2, 8-bit×2 **D-A** conversion Pulse width modulator 14-bitX1 Watchdog timer 15-bitX1 Subroutine nesting 96 levels (max) 16 (external 8, Internal 8) Interrupt Clock generating circuit Built-in (ceramic or quartz crystal oscillator) Supply voltage 5V±10% 30mW (at 4MHz frequency) Power dissipation -10 to 70℃ Operating temperature range Device structure CMOS silicon gate Package 64-pin shrink plastic molded DIP

FUNCTIONS OF M37424E8-XXXSP

PIN DESCRIPTION

Pin	Mode	Name .	Input/ Output	Functions	
V _{CC} , V _{SS}	Single-chip /EPROM	supply voltage		Power supply inputs 5V $\pm10\%$ to V $_{\rm CC}$ and 0V to V $_{\rm SS}$	
CNV _{ss}	Single-chip	CNV _{SS}		This is usually connected to $V_{\mbox{\scriptsize SS}}$	
	EPROM	V _{PP} input	Input	Connect to V _{PP} when programming or verifing	
V _{REF}	Single-chip	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter	
	EPROM	Reference voltage input	Input	Connected to V _{SS}	
RESET	Single-chip	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 4μ s (under normal V _{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
	EPROM	Reset input	Input	Connected to V _{SS} .	
X _{IN}	Single-chip /EPROM	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the $X_{\rm IN}$ and	
X _{OUT}		Clock output	Output	X_{OUT} pins. If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open	
ø	Single-chip /EPROM	Timing output	Output	This is the timing output pin	
P0 ₀ -P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be indi- vidually programmed as input or output At reset, this port is set to input mode. The output structure is CMOS output	
	EPROM	Address input A ₀ -A ₇	Input	P0 works as the lower 8-bit address input	

MITSUBISHI MICROCOMPUTERS

M37424E8-XXXSP M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

Pin	Mode	Name	Input∕ Output	Functions	
P1 ₀ -P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The put structure of M37424M8-XXXSP is CMOS output and that of M37524M4-XXXS N-channel open drain output	
	EPROM	Address input A ₈ -A ₁₄	Input	P1_0 to P1_6 works as the higer 8-bit address input Connect V_{CC} to P1_7	
P20-P27	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 The out- put structure is CMOS output	
	EPROM	Data input/output $D_0 \sim D_7$	I/O	P2 works as an 8-bit data bus	
P3 ₀ -P3 ₇	Single-chip	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 When serial I/O is used, P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively Also P3 ₄ works as T_{OUT} pin The output structure is N-channel open drain	
	EPROM	Select mode	Input	P3 ₃ and P3 ₄ works as \overline{CE} and \overline{OE} inputs respectively Connect V _{CC} to P3 ₀ -P3 ₂ . Connect V _{SS} to P3 ₅ -P3 ₇	
P4 ₀ -P4 ₇	Single-chip	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0 P40 to P47 work as analog input port AN0 to AN7	
	EPROM	Input port P4	Input	Connected to V _{SS}	
P5 ₀ -P5 ₇	Single-chip	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same functions as port P0 P5 ₇ , P5 ₆ , P5 ₅ , P5 ₄ and P5 ₃ to P5 ₀ are in common with the YPLS output, VPLS output, Q output, PWM output and interrupt input respectively	
	EPROM	Input port P5	Input	Connected to V _{SS}	
P6 ₀ -P6 ₇	Single-chip	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P0 $P6_7$ P6 ₄ , P6 ₃ , P6 ₂ , and P6 ₁ , P6 ₀ are in common with the D-A output, CNTR output and terrupt input respectively	
	EPROM	Input port P6	Input	Connected to V _{SS}	

PIN DESCRIPTION (Continue)

MITSUBISHI MICROCOMPUTERS M37424E8-XXXSP M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

EPROM MODE

The M37424E8-XXXSP features an EPROM mode in addition to its normal modes. When the RESET signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 gives the pin connection in the EPROM mode. When in the EPROM mode, ports P0 to P2, P3₃, P3₄, CNV_{SS} are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27256. The oscillator should be connected to the X_{IN} and X_{OUT} pins, or external clock should be connected to the X_{IN} pin.

Table 1. Pin function in EPROM mode

	M37424E8-XXXSP	M5L27256	
V _{cc}	V _{cc}	V _{cc}	
V _{PP}	CNV _{ss}	V _{PP}	
V _{ss}	V _{SS}	V _{SS}	
Address input	Ports P0, P1 ₀ -P1 ₆	A ₀ -A ₁₄	
Data I/O	Port P2	D ₀ -D ₇	
CE	P33	CE	
OE	P34	OE	

MITSUBISHI MICROCOMPUTERS M37424E8-XXXSP M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

PROM READING AND WRITING Reading

To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level. Input the address of the data (A₀-A₁₄) to be read and the data will be output to the I/O pins D₀-D₇. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pin is in the "H" state.

Writing

To write to the PROM, set the \overline{OE} pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins A₀-A₁₄, and the data to be written is input to pins D₀-D₇. Set the \overline{CE} pin to a "L" level to begin writing.

Notes on Writing

When using an PROM writer, the address range should be between 4000_{16} and $7FF_{16}$. When data is written between addresses 0000_{16} and $7FFF_{16}$, fill addresses 0000_{16} to $3FFF_{16}$ with FF_{16} .

NOTES ON HANDLING

- Since a high voltage (12.5V) is used to write data, care should be taken when turning on the PROM writer's power.
- (2) The PROM of the blank or the one-time programmable version is not tested and screened after assembly. To ensure proper operation after writing, we recommend that the procedure shown below is used to verify programming.

Note: The screening temperature is far higher than the storage temperature. Do not leave the microcomputer at 150°C for longer than 100 hours.

Pin Mode	CE(61)	0E(60)	V _{PP} (27)	V _{CC} (1)	Data I/O (33 to 40)
Read-out	VIL	VIL	Vcc	V _{cc}	Output
Output disable	VIL	VIH	Vcc	V _{cc}	Floating
Programming	VIL	VIH	V _{PP}	V _{cc}	Input
Programming verify	ViH	VIL	V _{PP}	V _{cc}	Output
Program disable	V _{IH}	VIH	V _{PP}	V _{cc}	Floating

Table 2. I/O signal in each mode

Note $1 \stackrel{.}{\cdot} V_{IL}$ and V_{IH} indicate a "L" and "H" input voltage, respectively

