MITSUBISHI MICROCOMPUTERS

PIGGYBACK for M37450M2-XXXSP,M37450M4-XXXSP,M37450M8-XXXSP

DESCRIPTION

The M37450PSS is an EPROM mounted-type microcomputer employing a silicon gate CMOS process and was designed for developing programs for single-chip, 8-bit microcomputers M37450M2-XXXSP, M37450M4-XXXSP and M37450M8-XXXSP. The M37450PSS, being housed in a piggyback-type 64-pin shrink DIP, is compatible with the M37450M2-XXXSP, M37450M4-XXXSP and M37450M8-XXXSP.

There is a 28-pin socket on the upper surface so that the M5M27C256K-12 or the M5M27C256K-15 EPROM may be used.

The M37450PSS simplifies the development of programs for the M37450M2-XXXSP, M37450M4-XXXSP and M37450 M8-XXXSP and is excellent for making prototypes.

FEATURES

- (1) ROMIess, EPROM is attached externally.
- (2) Suitable EPROM is M5M27C256K-12, M5M27C256K -15.

APPLICATION

Development of programs for the following systems;

- Slave controller for PPCs, facsimiles, and page printers
- HDD, optical disk, inverter, and industrial motor controllers
- Industrial robots and machines

Differences with the M37450M2-XXXSP, M37450M4-XXXSP and M37450M8-XXXSP are:

MITSUBISHI MICROCOMPUTERS M37450PSS

PIGGYBACK for M37450M2-XXXSP,M37450M4-XXXSP,M37450M8-XXXSP

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% to V _{cc} and 0V to V _{ss}
CNV _{SS}	CNV _{SS}		Controls the processor mode of the chip Normally connected to V_{SS} or V_{CC}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 8 clock cycles (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabillize, this "L" condition should be maintained for the required time
XIN	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an
Х _{оит}	Clock output	Output	external ceramic or a quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins. If an external clock is used, the clock source should be connected to the X_{IN} pin and the X_{OUT} pin should be left open
φ	Timing output	Output	Outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output "H" during operation code fetch and is used to control single stepping of programs
R/W	Read/Write status output	Output	This signal determines the direction of the data bus. It is "H" during read and "L" during write
P0 ₀ -P0 ₇	I/O port P0	I/O	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programed as input or output. The output structure is CMOS output. The low-order bits of the address are output except in single-chip mode.
P1 ₀ -P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same function as port P0. The high-order bits of the address are output except in single-chip mode
P20-P27	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as P0. Used as data bus except in single- chip mode
P30-P37	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same function as P0 Serial I/O, PWM output, or even I/O function can be selected with a program
P40-P42	Input port P4	Input	Analog input pin for the A-D converter They may also be used as digital input pins
P5 ₀ -P5 ₇	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as P0. This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program.
P6 ₀ -P6 ₇	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same function as P0. Pins P6 ₃ to P6 ₇ change to control bus for the master CPU when slave mode is selected with a program Pins P6 ₀ to P6 ₂ may be programed as external interrupt input pins
D-A ₁ , D-A ₂	D-A output	Output	Analog signal from D-A converter is output
V _{REF}	Refference voltage	Input	Reference voltage input pin for A-D and D-A converter
AV _{SS}	Analog power supply		Ground level input pin for A-D and D-A converter
A ₀ -A ₁₄	Output port A	Output	Port A outputs the adresses to the EPROM mounted on the top of the package
D ₀ -D ₇	Input port D	Input	Port D takes the input data from the EPROM mounted on the top of the package

PIGGYBACK for M37450M2-XXXSP,M37450M4-XXXSP,M37450M8-XXXSP

EXPLANATION OF FUNCTION BLOCK OPERATION

The differences between the M37450PSS and the M37450M2 -XXXSP, M37450M4-XXXSP and M37450M8-XXXSP are explained below. As all other points are the same, only the differences are explained.

MEMORY

Instead of an internal ROM, an EPROM is mounted. The addresses of EPROM are 8000_{16} to FFFF₁₆, having 32K bytes. Internal RAMs are provided from 0000_{16} to $00BF_{16}$ (192 bytes) and from 0100_{16} to $01FF_{16}$ (256 bytes) for a total of 448 bytes. However, the 64-byte area from $01C0_{16}$ to $01FF_{16}$ cannot be used when creating masked ROM. The rest of the functions are equivalent to the M37450M2-XXXSP, M37450M4-XXXSP and M37450M8-XXXSP

Fig. 1 Memory map

MITSUBISHI MICROCOMPUTERS M37450PSS

PIGGYBACK for M37450M2-XXXSP,M37450M4-XXXSP,M37450M8-XXXSP

00D0 ₁₆	Port P0 register
00D1 ₁₆	Port P0 directional register
00D2 ₁₆	Port P1 register
00D3 ₁₆	Port P1 directional register
00D4 ₁₆	Port P2 register
00D5 ₁₆	Port P2 directional register
00D6 ₁₆	Port P3 register
00D7 ₁₆	Port P3 directional register
00D8 ₁₆	Port P4
00D9 ₁₆	Reserved
00DA ₁₆	Port P5 register
00DB16	Port P5 directional register
00DC ₁₆	Port P6 register
00DD ₁₆	Port P6 directional register
00DE ₁₆	MISRG1
00DF ₁₆	MISRG2
00E0 ₁₆	D-A1 register
00E1 ₁₆	D-A2 register
00E2 ₁₆	A-D register
00E3 ₁₆	A-D control register
00E4 ₁₆	Data bus buffer register
00E5 ₁₆	Data bus buffer status register
00E6 ₁₆	Receive/transfer buffer register
00E7 ₁₆	Serial I/O status register

00E8 ₁₆	Serial I/O control register
00E9 ₁₆	UART control register
00EA ₁₆	Baud rate generator
00EB ₁₆	PWM register (lower-byte)
00EC ₁₆	PWM register (higher-byte)
00ED ₁₆	Timer 1 control register
00EE ₁₆	Timer 2 control register
00EF ₁₆	Timer 3 control register
00F0 ₁₆	Timer 1 register (lower-byte)
00F1 ₁₆	Timer 1 register (higher-byte)
00F2 ₁₆	Timer 1 latch (lower-byte)
00F3 ₁₆	Timer 1 latch (higher-byte)
00F4 ₁₆	Timer 2 register (lower-byte)
00F5 ₁₆	Timer 2 register (higher-byte)
00F6 ₁₆	Timer 2 latch (lower-byte)
00F7 ₁₆	Timer 2 latch (higher-byte)
00F8 ₁₆	Timer 3 register (lower-byte)
00F9 ₁₆	Timer 3 register (higher-byte)
00FA ₁₆	Timer 3 latch (lower-byte)
00FB ₁₆	Timer 3 latch (higher-byte)
00FC ₁₆	Interrupt request register 1
00FD ₁₆	Interrupt request register 2
00FE ₁₆	Interrupt control register 1
00FF ₁₆	Interrupt control register 2

Fig. 2 SFR (Special Function Register) memory map

PROCESSOR MODE

External memory area differs from the M37450M2-XXXSP, M37450M4-XXXSP and M37450M8-XXXSP.

Figure 3 shows the external memory area when the M37450PSS is in the memory expanding mode and Fig. 4 shows the external memory area when the M37450PSS is in the microprocessor mode.

Fig. 3 Memory map in memory expanding mode

Fig. 4 Memory map in memory expanding mode

PRECAUTION FOR USE

(1) Program area

When developing programs on the M37450PSS, the ROM and RAM sizes of the M37450M2-XXXSP, M37450M4-XXXSP, and M37450M8-XXXSP must be considered.

For the M37450M2-XXXSP, use the M37450PSS ROM program area from $F000_{16}$ to $FFFF_{16}$. (Write the program from 7000_{16} to $7FFF_{16}$ on the EPROM.)

Also, when creating masked ROMs, note that the RAM area for the M37450M2-XXXSP is 128 bytes from 0000_{16} to $007F_{16}$.

For the M37450M4-XXXSP, use the M37450PSS ROM program area from $E000_{16}$ to FFFF₁₆. (Write the program from 6000_{16} to 7FFF₁₆ on the EPROM.)

Also, when creating masked ROMs, note that the RAM area for the M37450M4-XXXSP is 192 bytes from 0000_{16} to $00BF_{16}$ and 64 bytes from 0100_{16} to $013F_{16}$ for a total of 256 bytes.

For the M37450M8-XXXSP, use the M37450PSS ROM program area from $C000_{16}$ to FFFF₁₆. (Write the program from 4000_{16} to 7FFF₁₆ on the EPROM.)

Also, when creating masked ROMs, note that the RAM area for the M37450M8-XXXSP is 192 bytes from 0000_{16} to $00BF_{16}$ and 192 bytes from 0100_{16} to $01BF_{16}$ for a total of 384 bytes.

The 64 byte area from $01C0_{16}$ to $01FF_{16}$ can also be used as internal RAM. However, it cannot be used when creating masked ROMs because there is no corresponding device

(2) External memory

When developing programs, note that the external memory area of the M37450PSS is as described in the previous section.

PIGGYBACK for M37450M2-XXXSP,M37450M4-XXXSP,M37450M8-XXXSP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3 to 7	V
V ₁	Input voltage RESET, X _{IN}		-0.3 to 7	v
V,	Input voltage, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , P5 ₀ -P5 ₇ , With respect to Vec	-0.3 to V _{cc} +0.3	V J	
	P60-P67, V _{RFF}	Output transistore are at "OEE" state		
Vi	Input voltage CNV _{SS}		-0.3 to 13	V
v _o	Output voltage, P0₀-P07, P1₀-P17, P2₀-P27, P3₀-P37, P5₀-P57, P6₀-P67, X _{OUT} , Ø, R/W, SYNC		-0.3 to V _{cc} +0.3	v
Pd	Power dissipation	T _a =25℃	1000	mW
Topr	Operating temperature		—10 to 70	°C
Tstg	Storage temperature		-40 to 125	Ĉ

RECOMMENDED OPERATING CONDITIONS ($v_{cc} = 5v \pm 10\%$, $T_a = -10$ to 70°C, unless otherwise noted)

0	De server et e s	Limits			Linut
Symbol	Parameter	Min	Тур	Max	Unit
V _{cc}	Supply voltage	4.5	5	5.5	V
V _{ss}	Supply voltage		0		v
VIH	"H" input voltage RESET, X _{IN} , CNV _{SS} (Note1)	0.8V _{CC}		V _{cc}	v
	"H" input voltage P00-P07, P10-P17, P20-P27,				
VIH	P30-P37, P40-P47, P50-P57,	2.0		v_{cc}	v
	P60-P67 (except Note1)				V _{CC} V 1.8 V 2V _{CC} V 5V _{CC} V
VIL	"L" input voltage CNV _{SS} (Note1)	0		0.2V _{CC}	v
	"L" input voltage P00-P07, P10-P17, P20-P27,				
VIL	P30-P37, P40-P47, P50-P57,	0		0.8	v
	P60-P67 (except Note1)				
VIL	"L" input voltage RESET			0.12V _{cc}	v
VIL	"L" input voltage X _{IN}	0		0.16V _{CC}	v
	"L" peak output current P00-P07, P10-P17, P20-P27,			10	
lol(beak)	P30-P37, P50-P57, P60-P67			10	MA
	"L" average output current P00-P07, P10-P17,				
loL(avg)	P20-P27, P30-P37,			5	mA
-	P50-P57, P60-P67 (Note2)				
	"H" peak output current P00-P07, P10-P17, P20-P27,			10	
Iон(peak)	P30-P37, P50-P57, P60-P67			-10	mA
	"H" average output current P00-P07, P10-P17,				
IOH(avg)	P20-P27, P30-P37,			-5	mA
Ũ	P5 ₀ -P5 ₇ , P6 ₀ -P6 ₇ (Note2)				
f(X _{IN})	Clock oscillating frequency	1		10	MHz

 Note 1 : Ports operate as INT₁-INT₃(P6₀-P6₂), EV₁-EV₃(P3₀-P3₂), R_xD(P3₄) and S_{CLK}(P3₆)
2 : The average output current I_{OH(avg)} and I_{OL(avg)} are the average value during a 100ms
3 : The total of "L" output I_{OL(peak}) of port P0, P1 and P2 is 40mA max The total of "L" output I_{OL(peak}) of port P3, P5, P6, R/W, SYNC and φ is 40mA max The total of "H" output I_{OH(peak)} of port P3, P5, P6, R/ \overline{W} , SYNC and ϕ is 40mA max

MITSUBISHI MICROCOMPUTERS M37450PSS

PIGGYBACK for M37450M2-XXXSP,M37450M4-XXXSP,M37450M8-XXXSP

Sumbol	Parameter	Test conditions	Limits			
Symbol			Min	Тур	Max	Unit
V _{он}	"H" output R/₩, SYNC, ¢	I _{OH} =-2mA	$V_{cc}-1$			v
V _{он}	"H" output voltage P00-P07, P10-P17, P20-P27,	1 - 5-1				
	P30-P37, P50-P57, P60-P67	I _{OH} ————————————————————————————————————	V _{cc} -1			v
	"L" output voltage P00-P07, P10-P17, P20-P27,					
VoL	P30-P37, P50-P57, P60-P67,	I _{OL} =2mA		0.45	v	
	R/₩, SYNC, ¢					
. v	"L" output voltage P00-P07, P10-P17, P20-P27,	1			-	
VOL	P30-P37, P50-P57, P60-P67				I	v
	Hysterisis INT1-INT3(P60-P62), EV1-EV3(P30-P32),	Europhica and lowel	0.0		1	v
V _{T+} -V _{T-}	R _x D(P3 ₄), S _{CLK} (P3 ₆)	Function input level	0.3			
$V_{T+}-V_{T-}$	Hysterisis RESET				0.7	v
$V_{T+}-V_{T-}$	Hysterisis X _{IN}		0.1		0.5	v
	"L" Input current P00-P07, P10-P17, P20-P27,					
l _{iL}	P30-P37, P40-P47, P50-P57,	V ₁ =V _{SS}	-5		5	μA
	P60-P67, RESET, XIN					
	"H" Input current P00-P07, P10-P17, P20-P27,					
Iш	P30-P37, P40-P47, P50-P57,	VI=VCC	-5		5	μA
	P60-P67, RESET, XIN		[
VRAM	RAM retention voltage	At stop mode	2			v
	Supply aurrent	At system operation		6	10	mA
lcc	Supply current	$f(X_{IN}) = 10 MHz(Note 1)$				

ELECTRICAL CHARACTERISTICS ($v_{cc} = 5v \pm 10\%$, $v_{ss} = 0V$, $T_a = -10$ to 70°C, $f(X_{IN}) = 10$ MHz, unless otherwise noted)

Note 1: Only for M37450PSS (not contact in EPROM dissipation current)

A-D CONVERTER CHARACTERISTICS ($v_{cc} = 5V$, $v_{ss} = Av_{ss} = 0V$, $\tau_a = 25$ °C, $f(X_{IN}) = 10$ MHz, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			11-14
			Min	Тур	Max.	Onit
—.	Resolution				8	Bits
	Absolute accuracy	$V_{CC} = V_{REF} = 5.12V$		±1.5	±3	LSB
t _{CONV}	Conversion time				49	$t_{\rm C}(\phi)$
VIA	Analog input voltage		AV _{SS}		AVcc	V
VVREF	Reference analog input voltage		2		V _{cc}	V
RLADDER	Ladder resistance value	V _{REF} =5V	2	7.5	10	kΩ
IIVREF	Reference analog input current	V _{REF} =5V	0.5	0.7	2.5	mA
VAVSS	Analog power input			0	•	V

D-A CONVERTER CHARACTERISTICS ($V_{cc} = 5V$, $V_{ss} = AV_{ss} = 0V$, $T_a = 25$ °C, $f(X_{IN}) = 10$ MHz, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Olint
-	Resolution				8	Bits
	Absolute accuracy	V _{CC} =V _{REF} =5.12V			1.0	%
t _{su}	Setup time				3	μs
Ro	Output resistance		1	2	4	kΩ
VAVSS	Analog power input			0		v
VVREF	Analog power input		4		V _{cc}	v
	Reference power input current (Each pin)		0	2.5	5	mA

