MITSUBISHI MICROCOMPUTERS

M3811x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

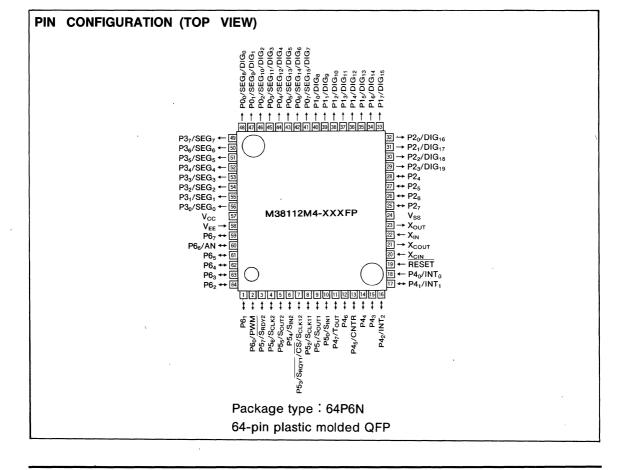
DESCRIPTION

The M3811x group is made up of 8-bit microcomputers based on the MELPS 740 core.

The M3811x group is designed mainly for VCR timer/function control, and include four 8-bit timers, a fluorescent display automatic display circuit, a PWM function, and a comparator.

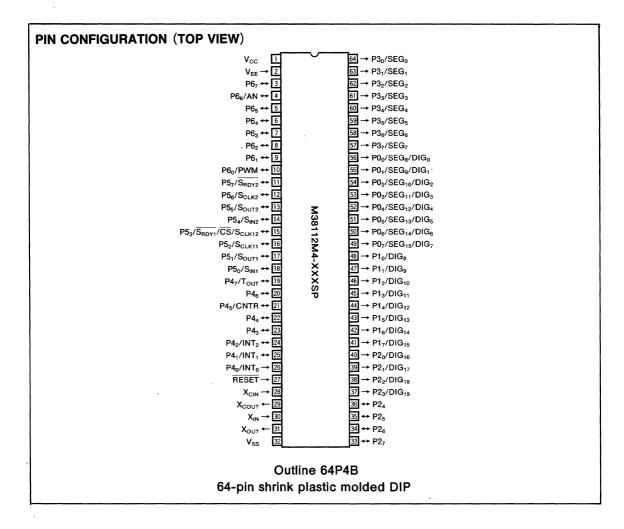
The various microcomputers in the M3811x group include variations of internal memory size and packaging. For details, see the section on part numbering.

For details on availability of microcomputers in the M3811x group, see the section on group expansion.

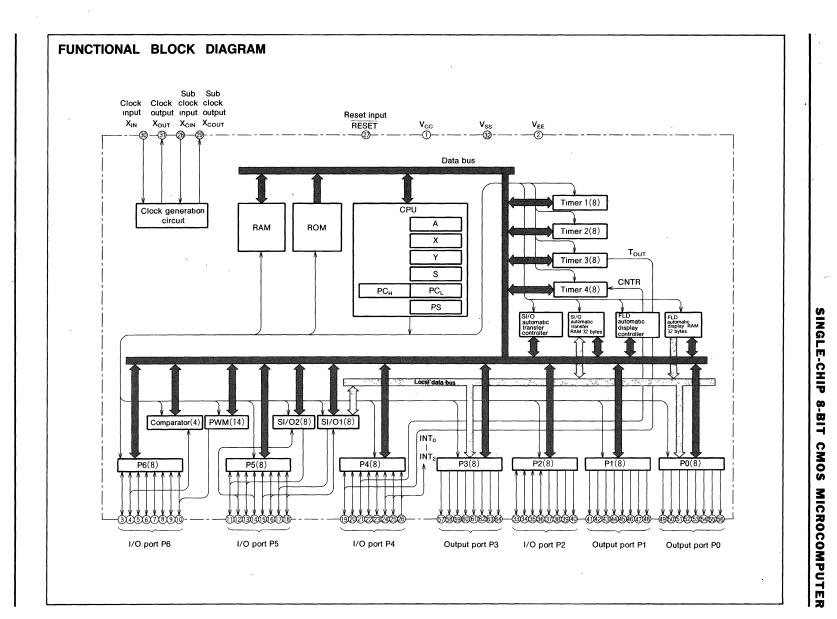

FEATURES

- Instruction execution time.....0.95µs (shortest instruction at 4.19MHz oscillation frequency)
- Memory size ROM 4K to 32K bytes RAM 192 to 1024 bytes
 Programmable input/output ports 27
- High-breakdown-voltage output ports 28

Timers ······ 8-bit×4 Serial I/O Clock-synchronized 8-bit×2 (Serial I/O1 has an automatic data transfer function) Comparator ······ 4-bit×1 Fluorescent display function Segments ······8 to 16 2 Clock generation circuit Clock (X_{IN}-X_{OUT}) ·······Internal feedback amplifier Sub clock $(X_{CIN}\text{-}X_{COUT})$ …… Internal amplifier without feedback Low power dissipation (at 4.19MHz oscillation frequency) In low-speed operation 300µW (at 32kHz oscillation frequency) Operating temperature range ······ −10 to 85°C


APPLICATIONS

VCRs, tuners, musical instruments, office automation, etc.



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

2-114

MITSUBISHI MICROCOMPUTERS M3811x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

.

Pin	Name	Function	······································		
			Alternate Function		
V _{CC} , V _{SS}	Power supply	Power supply inputs 4.0 to 5.5V to $V_{CC},$ and 0V to $V_{SS}.$			
V _{EE}	Pull-down power input	Applies voltage supplied to pull-down resistors of ports P0,	P1, P2 ₀ -P2 ₃ and P3.		
RESET	Reset input		L" level for more than $2\mu s$ under high-speed operating connot released until the $X_{\text{CIN}}\text{-}X_{\text{COUT}}$ clock has had time to stand		
X _{IN}	Clock input		circuit. It consist of internal feedback amplifier. Connect a $\ensuremath{u_T}$ pins to set the oscillation frequency. If an external clock is		
X _{OUT}	Clock output	used, connect the clock source to the $X_{\mbox{\scriptsize IN}}$ pin and leave the	X _{OUT} pin open This clock is used as system clock		
X _{CIN}	Sub clock input	Connect a ceramic resonator or quartz crystal and external	tion circuit. It consist of internal amplifier without feedback feedback resistor between the X_{CIN} and X_{COUT} pins. If an ex-		
X _{COUT}	Sub clock output	ternal clock is used, connect the clock source to the X_{CIN} used as the system clock.	pin and leave the X_{COUT} pin open This clock can also be		
P0 ₀ /SEG ₈ / DIG ₀ - P0 ₇ /SEG ₁₅ / DIG ₇	Output port P0	An 8-bit output port The output structure is high- breakdown-voltage P-channel open drain with internal pull-down resistors connected between the output and the V_{EE} pin Are "L" at reset.	FLD automatic display pins		
P1 ₀ /DIG ₈ - P1 ₇ /DIG ₁₅	Output port P1	An 8-bit output port with the same function as port P0.	FLD automatic display pins		
P2 ₀ /DIG ₁₆ - P2 ₃ /DIG ₁₉	Output port	A 4-bit output port with the same function as port P0	FLD automatic display pins		
P2₄-P2 ₇	I/O port P2	A 4-bit CMOS I/O port An I/O direction register allows each pin to be individually programmed as either input or out- put. At reset this port is set to input mode. The input levels are TTL compatible			
P3₀/SEG₀- P3⁊/SEG7	Output port P3	An 8-bit output port with the same function as port P0	FLD automatic display pins		
P4 ₀ /INT ₀	Input port P4 ₀	A 1-bit CMOS input pin	External interrupt input pin		
P4 ₁ /INT ₁ , P4 ₂ /INT ₂	I/O port P4	A 7-bit CMOS I/O port with the same function as port P2 ₄ - P2 ₇ , with CMOS compatible input levels	External interrupt input pins		
P43, P44, P46			L		
P45/CNTR			Event count input pin		
P4 ₇ /T _{OUT}			Timer output pin		
P5 ₀ /S _{IN1} , P5 ₁ /S _{OUT1} , P5 ₂ /S _{CLK11} , P5 ₃ /S _{RDY1} / CS/S _{CLK12}	I/O port P5	An 8-bit I/O port with the same function as port $P2_4$ - $P2_7$ The output structure of this port is N-channel open drain, and the input levels are CMOS compatible Keep the input voltage of this port between 0V and V_{CC} .	Serial I/O1 I/O pins		
P5 ₄ /S _{IN2} , P5 ₅ /S _{OUT2} , P5 ₆ /S _{CLK2} , P5 ₇ /S _{RDY2}			Serial I/O2 I/O pins		

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

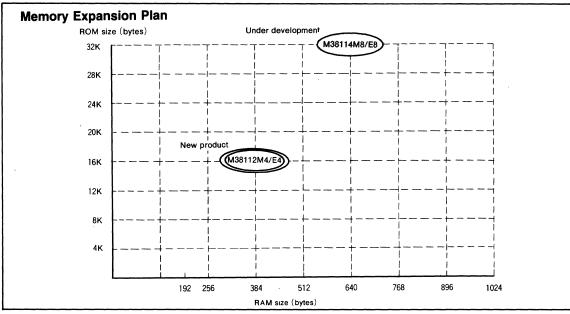
PIN DESCRIPTION

Pin	Pin Name	Function	
		Function	Alternate Function
P6 ₀ /PWM	I/O port P6	An 8-bit CMOS I/O port with the same function as port	14-bit PWM output pins
P61-P65, P67		P2 ₄ -P2 ₇ , with CMOS compatible input levels.	
P6 ₆ /AN			Comparator input pin

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PART NUMBERING

Product name M3811 0 M X - XXX SP	
	Package type
	SP : 64P4B package
	FP: 64P6N package
	SS : 64S1B package
	FS:64D0 package
	ROM number
	Omitted in some types
	ROM/PROM size
	1 : 4096 bytes
	2 : 8192 bytes
	3 : 12288 bytes
	4 : 16384 bytes
	5 : 20480 bytes
	6 : 24576 bytes
	7:28672 bytes
	8:32768 bytes
	The first 128 bytes and the last two bytes of ROM are reserved areas; they cannot be used
	Memory type
	M : Mask ROM version
	E : EPROM or one-time programmable version
	RAM size
	0.192 bytes
	1 : 256 bytes
	2 · 384 bytes
	3 512 bytes
	4 : 640 bytes
	5 768 bytes
	6.896 bytes
	7 1024 bytes
	,


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

Mitsubishi plans to expand the M3817x group as follows:

- (1) Support for mask ROM, one-time programmable, and EPROM versions
- (3) Packages 64P4B ······Shrink plastic molded DIP 64P6N ·····Plastic molded QFP 64S1B ······Window type shrink ceramic DIP

80D0 ······ Window type ceramic LCC

The development schedule and other details of products under development may be revised without notice.

Currently supported products are listed below.

As of March 1992

Product name	(P) ROM size (bytes)	RAM size (bytes)	Package	Remarks
M38112M4-XXXSP				Mask ROM version
M38112E4-XXXSP		6 382	64P4B	One-time programmable version
M38112E4SP				One-time programmable version (blank)
M38112E4SS			64S1B	EPROM version
M38112M4-XXXFP	- 16K		64P6N	Mask ROM version
M38112E4-XXXFP				One-time programmable version
M38112E4FP	1			One-time programmable version (blank)
M38112E4FS	1		64D0	EPROM version

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)

Microcomputers of the M3811x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions or the MELPS 740 Software Manual for details on the instruction set.

Machine-resident MELPS 740 instructions are as follows: The FST and SLW instructions are not available for use. The STP, WIT, MUL, and DIV instructions can be used.

CPU MODE REGISTER

The CPU mode register is allocated to address $003B_{16}$. Bits 0 and 1 of this register are processor mode bits and should always be set to "0".

The CPU mode register contains the stack page selection bit.

For details of the X_{COUT} drivability selection bit, main clock stop bit, and internal system clock selection bit, see the section on the clock generation circuit.

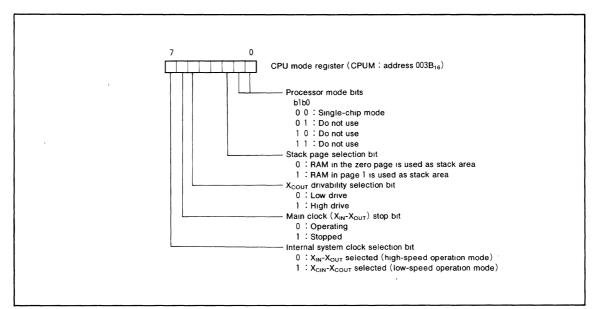


Fig. 1 Structure of CPU mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MEMORY

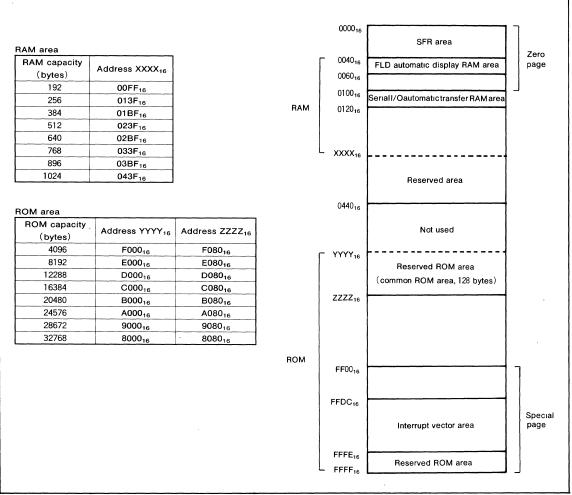
• Special Function Register (SFR) Area

The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

- RAM
 - RAM is used for data storage as well for stack area.
- ROM

The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area


The interrupt vector area contains reset and interrupt vectors.

· Zero Page

The 256 bytes from addresses 0000_{16} to $00FF_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

Special Page

The 256 bytes from addresses $FF00_{16}$ to $FFFF_{16}$ are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.

Fig. 2 Memory map diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

0000 ₁₆	Port P0 (P0)
0001 ₁₆	
0002 ₁₆	Port P1 (P1)
0003 ₁₆	
0004 ₁₆	Port P2 (P2)
0005 ₁₆	Port P2 direction register (P2D)
0006 ₁₆	Port P3 (P3)
0007 ₁₆	
0008 ₁₆	Port P4 (P4)
0009 ₁₆	Port P4 direction register (P4D)
	Port P5 (P5)
000B ₁₆	Port P5 direction register (P5D)
000C ₁₆	Port P6 (P6)
000D ₁₆	Port P6 direction register (P6D)
000E ₁₆	
000F ₁₆	
0010 ₁₆	
0011 ₁₆	
0012 ₁₆	Port P0 segment/digit switching register (P0SDR)
0013 ₁₆	
0014 ₁₆	Port P2 digit/port switching register (P2DPR)
0015 ₁₆	Key-scan blanking register (KSCN)
0016 ₁₆	FLDC mode register (FLDM)
001716	FLD data pointer (FLDDP)
0018 ₁₆	Serial I/O automatic transfer data pointer (SIODP)
0019 ₁₆	Serial I/O1 control register (SIO1CON)
001A ₁₆	Serial I/O automatic transfer control register (SIOAC)
001B ₁₆	Serial I/O1 register (SIO1)
001C ₁₆	Serial I/O automatic transfer interval register (SIOAI)
001D ₁₆	Serial I/O2 control register (SIO2CON)
001E ₁₆	
001F ₁₆	Serial I/O2 register (SIO2)

Fig. 3 Memory map of special function register (SFR)

I/O PORTS

• Direction Registers

The M3811x group microprocessors have 27 programmable I/O pins arranged in four I/O ports (ports $P2_4$ - $P2_7$, $P4_1$ - $P4_7$, P5 and P6). The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output.

When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

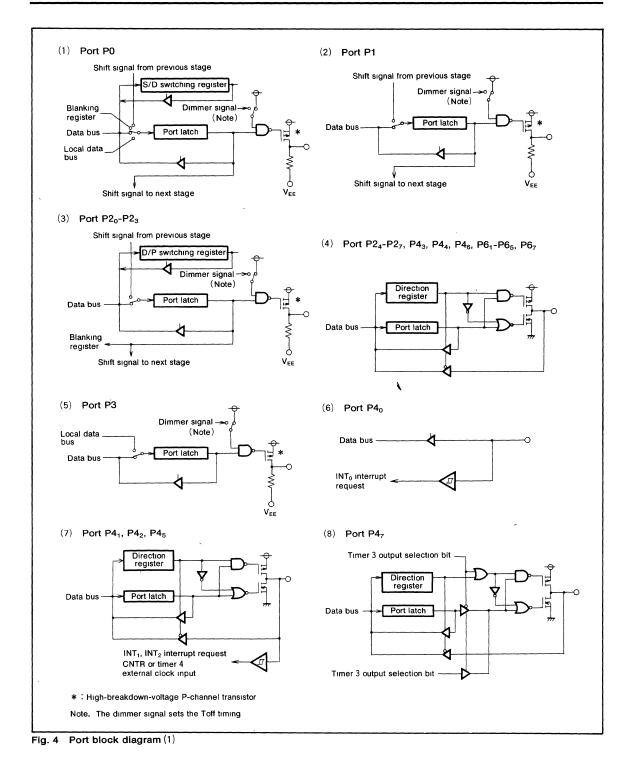
002016		
0021 ₁₆		
0022 ₁₆		
0023 ₁₆		
0024 ₁₆	Timer 1 (T1)	
0025 ₁₆	Timer 2 (T2)	
0026 ₁₆	Timer 3 (T3)	
0027 ₁₆	Timer 4 (T4)	
0028 ₁₆	Timer 12 mode register (T12M)	
0029 ₁₆	Timer 34 mode register (T34M)	
002A ₁₆	1	
002B ₁₆	PWM control register (PWMCON)	
002C ₁₆	PWM register (upper)(PWMH)	
002D ₁₆	PWM register (lower)(PWML)	
002E ₁₆		
002F ₁₆		
0030 ₁₆	Comparator register (CMP)	
0031 ₁₆		
0032 ₁₆		
0033 ₁₆		
0034 ₁₆		
0035 ₁₆		
0036 ₁₆		
0037 ₁₆		
0038 ₁₆	High-breakdown-voltage port control register (HVPC)	
0039 ₁₆		
003A ₁₆	Interrupt edge selection register (INTEDGE)	
003B ₁₆	CPU mode register (CUPM)	
003C ₁₆	Interrupt request register 1 (IREQ1)	l
003D ₁₆	Interrupt request register 2 (IREQ2)	
003E ₁₆	Interrupt control register 1 (ICON1)	
003F ₁₆	Interrupt control register 2 (ICON2)	

High-Breakdown-Voltage Output Ports

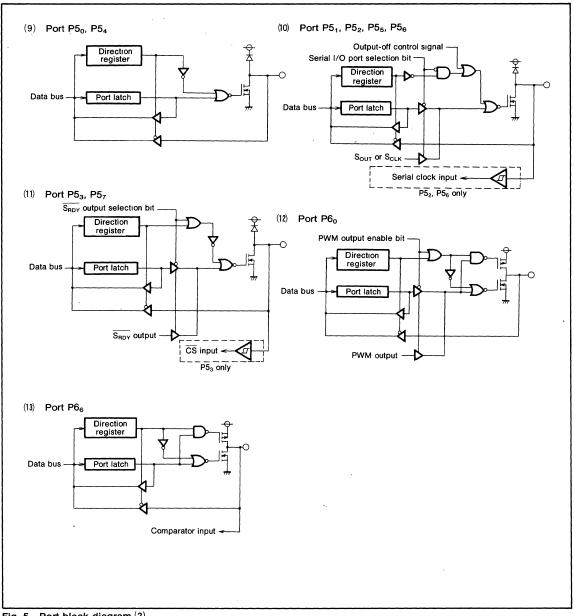
The M3811x group microprocessors have four ports with high-breakdown-voltage pins(ports P0, P1, P2₀-P2₃, P3). The high-breakdown-voltage ports have P-channel open drain output with a breakdown voltage of V_{CC} -40V. Each pin in Ports P0, P1, P2₀-P2₃ and P3 has an internal pull-down resistor connected to V_{EE} . At reset, the P-channel output transistor of each port latch is turned off, so it is forced to the level of V_{EE} by the pull-down resistor.

Writing "1" to bit 0 of the high-breakdown-voltage port control register(address 0038_{16})slows the transition of the output transistors to reduce transient noise. At reset, bit 0 of the high-breakdown-voltage port control register is set to "0" (strong drive).

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER


Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagran No.
P0 ₀ /SEG ₈ / DIG ₀ - P0 ₇ /SEG ₁₅ / DIG ₇	Port P0	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register Segment/digit switching register High-breakdown- voltage port control register	(1)
P1₀/DIG ₈ - P1 ₇ /DIG ₁₅	Port P1	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register High-breakdown- voltage port control register	(2)
P2₀/DIG ₁₆ - P2₃/DIG ₁₉	Port P2	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register Digit/port switching register High-breakdown- voltage port control register	(3)
P2₄-P2 ₇		Input/output, individual bits	TTL level input CMOS 3-state output			(4)
P3₀/SEG₀- P3 ₇ /SEG ₇	Port P3	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register High-breakdown- voltage port control register	(5)
P4 ₀ /INT ₀		Input	CMOS level input	External interrupt	Interrupt edge selection register	(6)
P4 ₁ /INT ₁ , P4 ₂ /INT ₂	Port P4	Input/output,	CMOS level input	External interrupt input	Interrupt edge selection register	(7)
P4 ₃ , P4 ₄ , P4 ₆		individual bits	• • •			(4)
P4 ₅ /CNTR			•	Event count input	Timer 34 mode register	(7)
P4 ₇ /T _{OUT}				Timer 3 output	Timer 34 mode register	(8)
Р5 ₀ /S _{IN1} , Р5 ₁ /S _{OUT1} , Р5 ₂ /S _{CLK1} ,				Serial I/O1 function	Serial I/O1 control register Serial I/O automatic	(9)
$P5_3/\overline{S_{RDY1}}/\overline{CS}/S_{CLK12}$	Port P5	Input/output	CMOS level input N-channel	1/0	transfer control register	(11)
P5 ₄ /S _{IN2} ,		individual bits	open-drain output			(9)
Р5₅/S _{OUT2} , Р5 ₆ /S _{CLK2} ,				Serial I/O2 function	Serial I/O2 control register	(10)
P57/SRDY2						(11)
P6 ₀ /PWM	Port P6	Input/output,	CMOS level input	14-bit PWM output	PWM mode register PWML register PWMH register	(12)
P61-P65, P67	i ort i o	individual bits	CMOS 3-state output			(4)
P6 ₆ /AN				Comparator input	Comparator register	(13)

Note. Make sure that the input level at each pin is either 0V or V_{CC} during execution of the STP instruction If an input level is at an intermediate potential, a current will flow in the input-stage gate


•

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

A total of 14 source can generate interrupts: 4 external, 9 internal, and 1 software.

Interrupt Control

Each interrupt is controlled by its interrupt request bit, its interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0".

Interrupt enable bits can be set or cleared by software.

Interrupt request bits can be cleared by software, but cannot be set by software.

The I flag disables all interrupts except for the BRK instruction interrupt.

Interrupt Operation

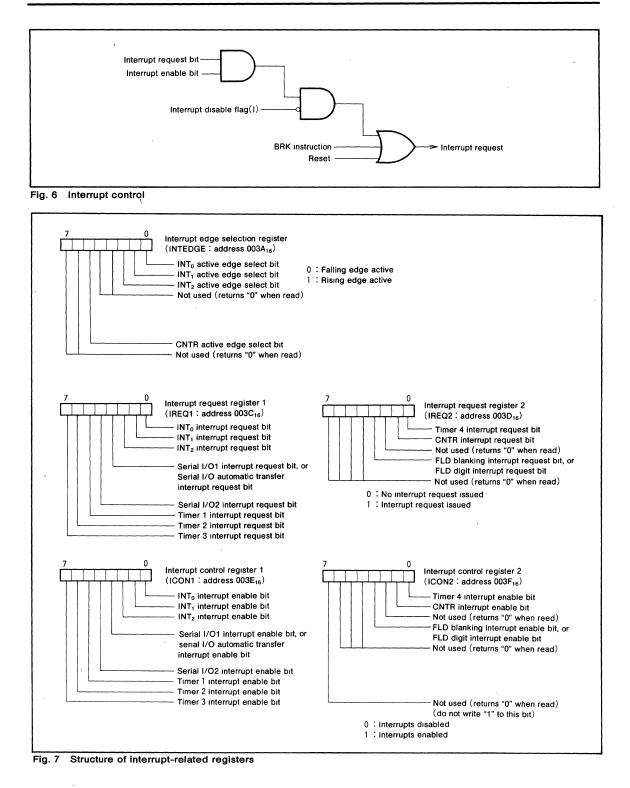
When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

Notes on Use

If you will change interrupt edge selection from rising edge to falling edge, interrupt request bit will be set to "1" automatically. Therefore, please make following process;

- (1) Disable INT which is selected.
- (2) Change INT edge selection.
- (3) Clear interrupt request which is selected.
- (4) Enable INT which is selected.

Interrupt Cause	Priority	Vector Addr	ess (Note 1)	Interrupt Request	Remarks	
interrupt Cause	Flionty	High Low		Generation Conditions	nemarks	
Reset (Note 2)	1	FFFD ₁₆	FFFC ₁₆	At reset	Non-maskable	
INTo	2	FFFB ₁₆	FFFA ₁₆	At detection of either rising or falling edge of INT_0 input	External interrupt (active edge selectable)	
INT ₁	3	FFF9 ₁₆	FFF8 ₁₆	At detection of either rising or falling edge of INT ₁ input	External interrupt (active edge selectable)	
INT ₂	4	FFF7 ₁₆	FFF6 ₁₆	At detection of either rising or falling edge of INT ₂ input	External interrupt (active edge selectable)	
Serial I/O1	-			At end of data transfer	Valid when serial I/O normal mode is selected	
Serial I/O automa- tic transfer	5	FFF5 ₁₆	FFF4 ₁₆	At end of final data transfer	Valid when serial I/O automa- tic transfer mode is selected	
Serial I/O2	6	FFF3 ₁₆	FFF2 ₁₆	At end of data transfer		
Timer 1	7	FFF1 ₁₆	FFF0 ₁₆	At timer 1 overflow		
Timer 2	8	FFEF ₁₆	FFEE ₁₆	At timer 2 overflow	STP release timer overflow	
Timer 3	9	FFED ₁₆	FFEC ₁₆	At timer 3 overflow		
Timer 4	10	FFEB ₁₆	FFEA ₁₆	At timer 4 overflow		
CNTR	11	FFE9 ₁₆	FFE8 ₁₆	At detection of either rising or falling edge of CNTR input	External interrupt (active edge selectable)	
FLD blanking	10			At fall of final digit	Valid when FLD blanking inter- rupt is selected	
FLD digit	12	FFE5 ₁₆	FFE4 ₁₆	At rise of each digit	Valid when FLD digit interrupt is selected	
BRK instruction	13	FFDD ₁₆	FFDC ₁₆	At BRK instruction execution	Non-maskable software interrupt	


Table 1. Interrupt vector addresses and priorities

Note 1. Vector addresses contain interrupt jump destination addresses.

2. Reset function in the same way as an interrupt with the highest priority.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMERS

Microcomputers of the M3811x group have four built-in timers. The timers count down. Once a timer reaches 00_{16} , the next count pulse loads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1. Each timer also has a stop bit that stops the count of that timer when it is set to "1".

Note that the system clock ϕ can be set to either high-speed mode or low-speed mode by the CPU mode register.

• Timer 1 and Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register.

When the chip is reset or the STP instruction is executed, all bits of the timer 12 mode register are cleared, timer 1 is set to FF_{16} , and timer 2 is set to 01_{16} .

Timer 3 and Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register.

Timer 3 can also output a rectangular waveform from the $P4_7/T_{OUT}$ pin. The waveform changes polarity each time timer 3 overflows.

When Timer 4 is assigned to external event count mode, rising edge is active.

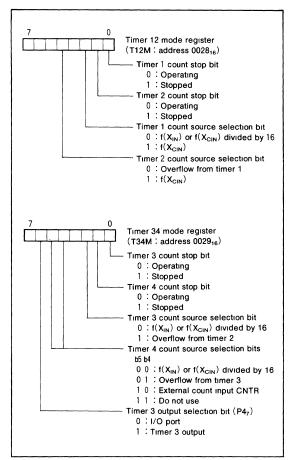
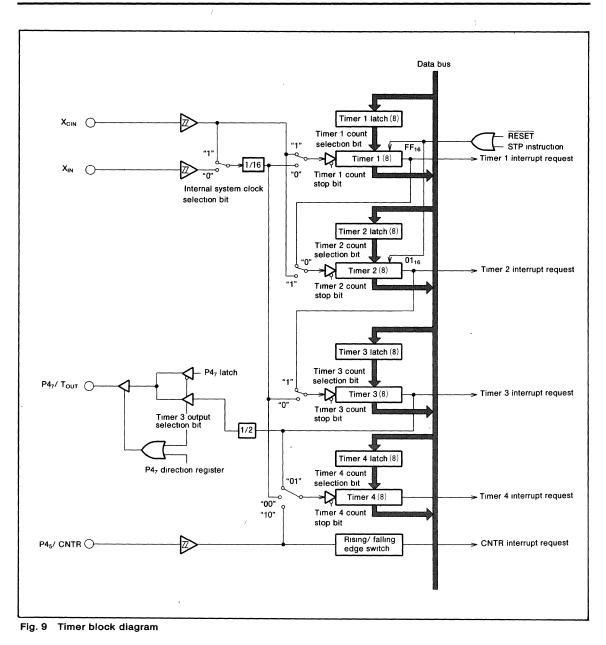



Fig. 8 Structure of timer-related registers

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SERIAL 1/0

Microcomputers of the M3811x group have two built-in 8-bit clock synchronized serial I/O channels (serial I/O1 and serial I/O2).

Serial I/O1 has a built-in automatic transfer function.Normal serial operation can be set via the serial I/O automatic transfer control register (address $001A_{16}$).

Serial I/O2 can only be used in normal operation mode. The I/O pins of the serial I/O function also operate as I/O port P5, and their operation is selected by the serial I/O control registers (addresses 0019_{16} and $001D_{16}$).

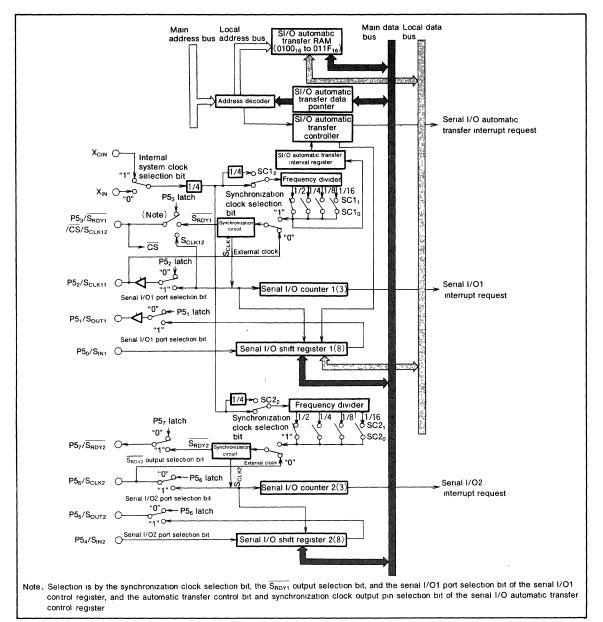
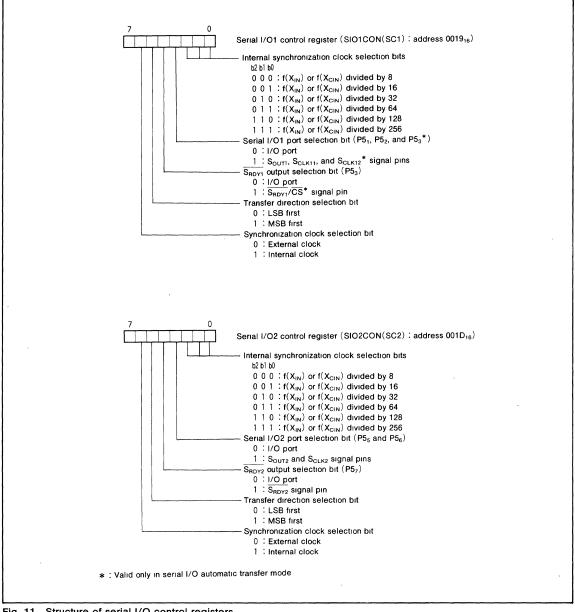



Fig. 10 Serial I/O block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(Serial I/O Control Registers) SIO1CON, SIO2CON Each of the serial I/O control registers (addresses 001916 and $001D_{16}$) contains seven bits that select various control parameters of the serial I/O function.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(1) Operation in Normal Serial I/O Mode

Either an internal clock or an external clock can be selected as the synchronization clock for serial I/O transfer. A dedicated divider is built-in as the internal clock, giving a choice of six clocks.

If internal clock is selected, transfer start is activated by a write signal to a serial I/O register (address $001B_{16}$ or $001F_{16}$). After eight bits have been transferred, the S_{OUT} pin goes to high impedance.

If external clock is selected, the clock must be controlled externally because the contents of the serial I/O register continue to shift while the transfer clock is input. In this case, note that the S_{OUT} pin does not go to high impedance at the completion of data transfer. The interrupt request bit is set at the end of the transfer of eight bits, regardless of whether the internal or external clock is selected.

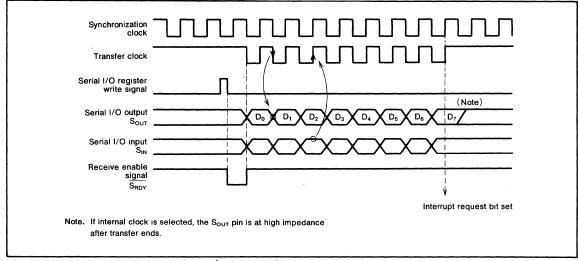


Fig. 12 Serial I/O timing in normal mode (for LSB first)

(2) Serial I/O Automatic Transfer Mode

The serial I/O1 function has an automatic transfer function. For automatic transfer, switch to the automatic transfer mode by setting the serial I/O automatic transfer control register (address $001A_{16}$).

The following memory spaces are added to the circuits used for the serial I/O1 function in ordinary mode, to enable automatic transfer mode:

- 32 bytes of serial I/O automatic transfer RAM
- A serial I/O automatic transfer control register
- A serial I/O automatic transfer interval register
- A serial I/O automatic transfer data pointer

When using serial I/O automatic transfer, set the serial I/O control register (address 0019_{16}) in the same way as for ordinary mode. However, note that if external clock is selected and bit 4 (the $\overline{S_{RDY1}}$ output selection bit) of the serial I/O1 control register is set to "1", port P5₃ becomes the \overline{CS} input pin.

(Serial I/O Automatic Transfer Control Register) SIOAC

The serial I/O automatic transfer control register (address $001A_{16}$) contains four bits that select various control parameters for automatic transfer.

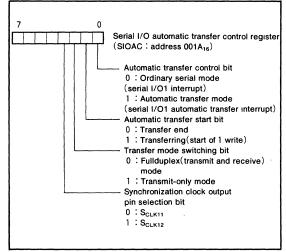


Fig. 13 Structure of serial I/O automatic transfer control register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(Serial I/O Automatic Transfer Data Pointer) SIODP

The serial I/O automatic transfer data pointer (address 0018_{16}) contains five bits that indicate addresses in serial I/O automatic transfer RAM (each address in memory is actually the value in the serial I/O automatic transfer data pointer plus 0100_{16}).

Set the serial I/O automatic transfer data pointer to (the number of transfer data-1), to specify the storage position of the start of data.

Serial I/O Automatic Transfer RAM

The serial I/O automatic transfer RAM is the 32 bytes from address 0100_{16} to address $011F_{16}$.

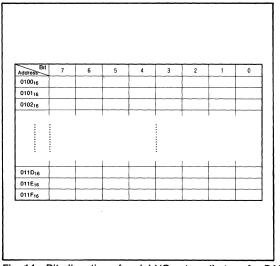


Fig. 14 Bit allocation of serial I/O automatic transfer RAM

• Setting of Serial I/O Automatic Transfer Data When data is stored in the serial I/O automatic transfer RAM, it is stored with the start of the data at the address set by the serial I/O automatic transfer data pointer and the end of the data at address 0100₁₆.

(Serial I/O Automatic Transfer Interval Register) SIOAL

The serial I/O automatic transfer interval register (address $001C_{16}$) consists of a 5-bit counter that determines the transfer interval Ti during automatic transfer.

If a value n is written to the serial I/O automatic transfer interval register, a value of $Ti = (n+2) \times Tc$ is generated, where Tc is the length of one bit of the transfer clock. However, note that this transfer interval setting is only valid when internal clock has been selected as the clock source.

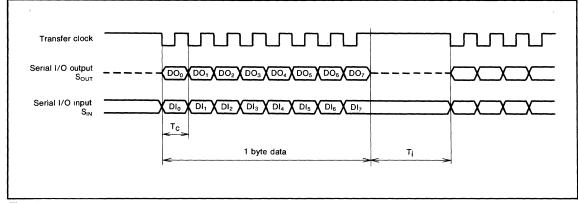


Fig. 15 Serial I/O automatic transfer interval timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Setting of Serial I/O Automatic Transfer Timing

Use the serial I/O1 control register (address 0019_{16}) and the serial I/O automatic transfer interval register (address $001C_{16}$) to set the timing of serial I/O automatic transfer.

The serial I/O1 control register sets the transfer clock speed, and the serial I/O automatic transfer interval register sets the serial I/O automatic transfer interval.

This setting of transfer interval is valid only when internal clock is selected as the clock source.

Start of Serial I/O Automatic Transfer

Automatic transfer mode is set by writing "1" to bit 0 of the serial I/O automatic transfer control register (address $001A_{16}$), then automatic transfer starts when "1" is written to that bit. Bit 1 of the serial I/O automatic transfer control register is always "1" during automatic transfer; writing "0" to it is one way to end automatic transfer.

Operation in Serial I/O Automatic Transfer Modes

There are two modes for serial I/O automatic transfer: full duplex mode and transmit-only mode. Either internal or external clock can be selected for each of these modes.

(2.1) Operation in Full Duplex Mode

In full duplex mode, data can be transmitted and received at the same time. Data in the automatic transfer RAM is sent in sequence and simultaneously receive data is written to the automatic transfer RAM, in accordance with the serial I/O automatic transfer data pointer.

The transfer timing of each bit is the same as in ordinary operation mode, and the transfer clock stops at "H" after eight transfer clocks are counted. If internal clock is selected, the transfer clock remains at "H" for the time set by the serial I/O automatic transfer interval register, then the data at the next address indicated by the serial I/O automatic transferred. If external clock is selected, the setting of the automatic transfer interval register is invalid, so the user must ensure that the transfer clock is controlled externally.

Data transfer ends when the contents of the serial I/O automatic transfer pointer reach " 00_{16} ". At that point, the serial I/O automatic transfer interrupt request bit is set to "1" and bit 1 of the serial I/O automatic transfer control register is cleared to "0" to complete the serial I/O automatic transfer.

(2.2) Operation in Transmit-Only Mode

The operation in transmit-only mode is the same as that in full duplex mode, except that data is not transferred from the serial I/O1 register to the serial I/O automatic transfer RAM.

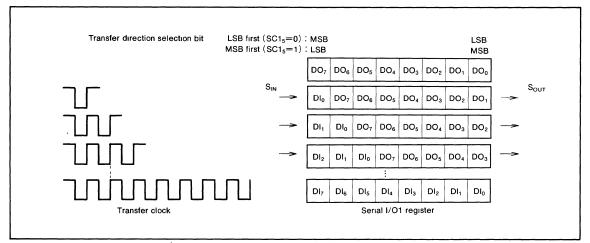


Fig. 16 Serial I/O1 register in full duplex mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(2.3) If Internal Clock is Selected

If internal clock is selected, the P5₃/ $\overline{S_{\text{RDY1}}}/\overline{CS}/S_{\text{CLK12}}$ pin can be used as the $\overline{S_{\text{RDY1}}}$ pin by setting the SC1₄ bit to "1". If internal clock is selected, the P5₃ pin can be used as the synchronization clock output pin S_{CLK12} by setting the SIOAC₃ bit to "1". In this case, the S_{CLK11} pin is at high impedance.

Select the function of the $P5_3/\overline{S_{RDY1}}/\overline{CS}/S_{CLK12}$ and $P5_2/S_{CLK11}$ pins by setting bit 3 (SC1₃), bit 4 (SC1₄), and bit 6 (SC1₆) of the serial I/O1 control register (address 0019₁₆) and bit 3 (SIOAC₃) of the serial I/O automatic transfer control register (address 001A₁₆). (See Table 2.)

If using the S_{CLK11} and S_{CLK12} pins for switching, set the $P5_3/S_{RDY1}/\overline{CS}/S_{CLK12}$ pin to $P5_3$ by setting the $SC1_4$ bit to "0", and set the $P5_3$ direction register to input mode.

Make sure that the $SIOAC_3$ bit is switched after automatic transfer is completed, while the transfer clock is still "H".

Table 2.	S _{CLK11}	and SCLK12	selection
----------	--------------------	------------	-----------

SC16	SC1 ₄	SC3 ₃	SIOAC ₃	P52/SCLK11	P53/SCLK12
			0	S _{CLK11}	P53
1	0	1	1	High	
				Impedanse	S _{CLK12}

Note. SC1₃ : <u>Serial</u> I/O1 port selection bit SC1₄ : <u>SRDY1</u> output selection bit SC1₆ : Synchronization clock selection bit SIOAC₃ : Synchronization clock output pin selection bit

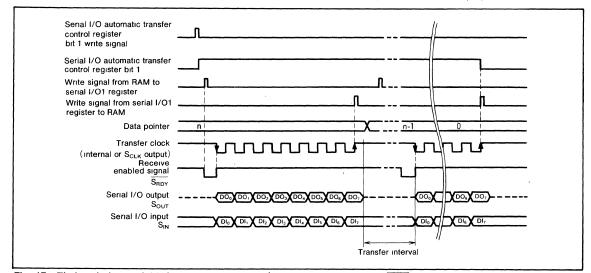


Fig. 17 Timing during serial I/O automatic transfer (internal clock selected, S_{RDY} used)

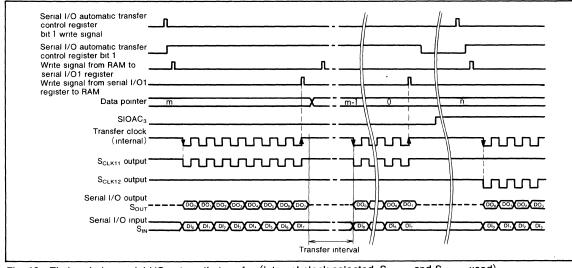


Fig. 18 Timing during serial I/O automatic transfer (internal clock selected, S_{CLK11} and S_{CLK12} used)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(2.4) If External Clock is Selected

If an external clock is selected, the internal clock and the transfer interval set by the serial I/O automatic transfer interval register are invalid, but the serial I/O output pin S_{OUT} and the internal transfer clock can be controlled from the outside by setting the $\overline{S_{RDY1}}$ and \overline{CS} (input) pins.

When the \overline{CS} input is "L", the S_{OUT} pin and the internal transfer clock are enabled. When the \overline{CS} input is "H", the S_{OUT} pin is at high impedance and the internal transfer clock is at "H".

Select the function of the $P5_3/\overline{S_{RDY1}}/\overline{CS}/S_{CLK12}$ pin by setting bit 4 (SC1₄) and bit 6 (SC1₆) of the serial I/O1 control register (address 0019₁₆) and bit 0 (SIOAC₀) of the serial I/O automatic transfer control register (address 001A₁₆).

Make sure that the \overline{CS} pin switches from "L" to "H" or from "H" to "L" while the transfer clock (S_{CLK} input) is "H" after one byte of data has been transferred.

If external clock is selected, make sure that the external clock goes "L" after at least nine cycles of the internal system clock ϕ after the start bit is set. Leave at least 11 cycles of the system clock ϕ free for the transfer interval after one byte of data has been transferred.

If \overline{CS} input is not being used, note that the S_{OUT} pin will not go high impedance, even after transfer is completed.

If \overline{CS} input is not being used, or if \overline{CS} is "L", control the external clock because the data in the serial I/O register will continue to shift while the external clock is input, even after the completion of automatic transfer. (Note that the automatic transfer interrupt request bit is set and bit 1 of the automatic transfer register is cleared at the point at which the specified number of bytes of data have been transferred.)

Table 3. $P5_3/\overline{S_{RDY1}}/\overline{CS}$ selection

SC16	SC1₄	SIOACo	P5 ₃ /S _{RDY1} /CS
	0	×	P53
0	1	0	S _{RDY1}
	1	1	CS

Note. $SC1_4$: $\overline{S_{RDY1}}$ output selection bit $SC1_6$: Synchronization clock selection bit $SIOAC_0$: Automatic transfer control bit

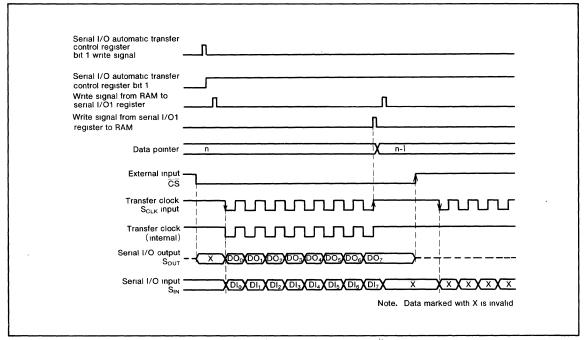


Fig. 19 Timing during serial I/O automatic transfer (external clock selected)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PULSE WIDTH MODULATION (PWM) OUTPUT CIRCUIT

Microcomputers of the M3811x group have a PWM function with a 14-bit resolution. When the oscillation frequency X_{IN} is 4MHz, the minimum resolution bit width is 500ns and the cycle period is 8192 μ s. The PWM timing generator supplies a PWM control signal based on a signal that is half the frequency of the X_{IN} clock.

The explanation in the rest of this data sheet assumes $X_{\text{IN}}{=}$ 4MHz.

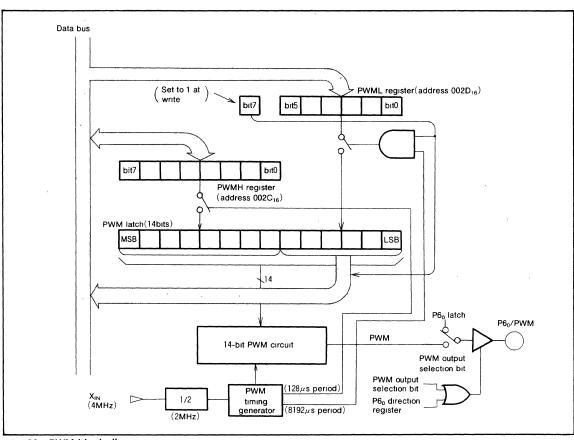


Fig. 20 PWM block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(1) Data Set-up

The PWM output pin also functions as port P6₀. Set port P6₀ to be the PWM output pin by setting bit 0 of the PWM mode register (address $002B_{16}$). The upper eight bits of output data are set in the upper PWM register PWMH (address $002C_{16}$) and the lower six bits are set in the lower PWM register PWML (address $002D_{16}$).

(2) Transfer From Register to Latch

Data written to the PWML register is transferred to the PWM latch once in each PWM period (every 8192μ s), and data written to the PWMH register is transferred to the PWM latch once in each sub-period (every 128μ s). When the PWML register is read, the contents of the latch are read. However, bit 7 of the PWML register indicates whether the transfer to the PWM latch is completed; the transfer is completed when bit 7 is "0".

Table 4. Relationship between lower 6 bits of data and period set by the ADD bit

Lower 6 Bits of Data(PWML)	Sub-periods tm Lengthened (m = 0 to 63)
00000 ^{LSB}	None
000001	m=32
000010	m=16, 48
000100	m= 8, 24, 40, 56
001000	m = 4, 12, 20, 28, 36, 44, 52, 60
010000	m = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m = 1, 3, 5, 7,, 57, 59, 61, 63

(3) PWM Operation

The timing of the 14-bit PWM function is shown in Fig. 23. The 14-bit PWM data is divided into the lower six bits and the upper eight bits in the PWM latch.

The upper eight bits of data determine how long an "H"-level signal is output during each sub-period. There are 64 sub-periods in each period, and each sub-period is $256 \times \tau$ (128μ s) long. The signal is "H" for a length equal to N times τ , where τ is the minimum resolution (500ns).

The contents of the lower six bits of data enable the lengthening of the high signal by τ (500ns). As shown in Fig. 20, the six bits of PWML determine which sub-cycles are lengthened.

As shown in Fig. 23, the leading edge of the pulse is lengthened. By changing the length of specific sub-periods instead of simply changing the "H" duration, an accurate waveform can be duplicated without the use of complex external filters.

For example, if the upper eight bits of the 14-bit data are 03₁₆ and the lower six bits are 05₁₆, the length of the "H"-level output in sub-periods t₈, t₂₄, t₃₂, t₄₀, and t₅₆ is 4 τ , and its length 3 τ in all other sub-periods.

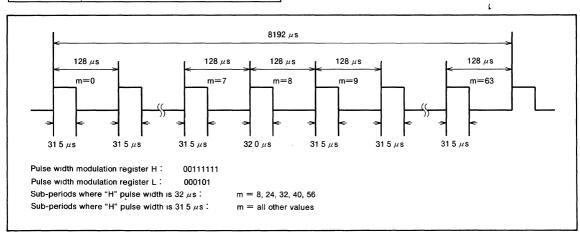
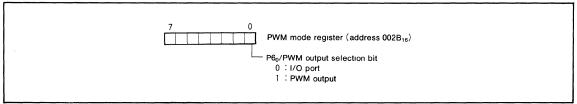
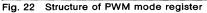




Fig. 21 PWM timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

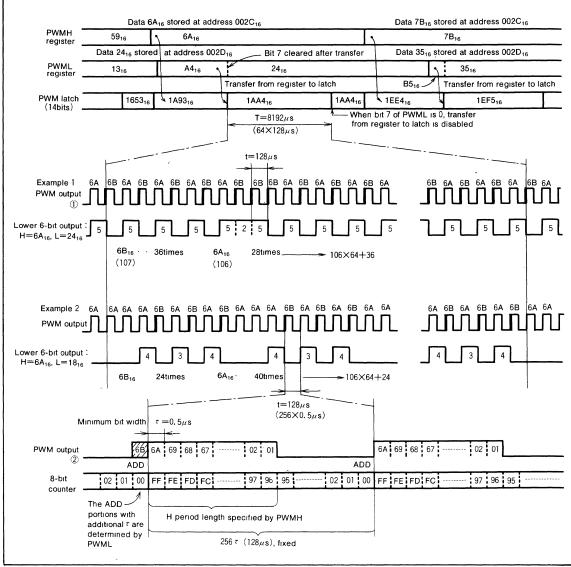


Fig. 23 14-bit PWM timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

COMPARATOR CIRCUIT Comparator Configuration

The comparator circuit consists of a switch tree, ladder resistors, a comparator, a comparator control cricuit, a comparator register (address 0030₁₆), and an analog signal input pin (P6₆/AN). The analog signal input pin (P6₆/AN) also functions as an ordinary digital I/O port.

Comparator Register (CMP)

The comparator register is a 5-bit register of which bits 0 to 3 can be used to generate internal refernce voltage in steps of 1/16 $V_{\rm CC}$. The result of the comparision between the analog input voltage and an internal reference voltage is stored in bit 4 of comparator register.

Comparator Operation

To activate the comparator, first set port P6₆ to input mode by setting the corresponding direction register (address 000D₁₆) to "0"—this ensures that port P6₆/AN is used as an analog voltage input pin. Then write a digital value corresponding to the internal comparison voltage into bits 0 to 3 of the comparator register (address 0030₁₆). This write operation immediately activates the comparison. After 14 cycles of the system clock ϕ (the time required for the comparison), the comparison result is stored in bit 4 of the comparator. If the analog input voltage is greater than the internal reference voltage, bit 4 is "1"; if it is less than the internal reference voltage, bit 4 is "0". To perform another omparison, the comparator must be written to again, even if the same internal reference voltage is to be used.

C	omparat	or regist	er			
Bit 3	Bit 2	Bit 1	Bit 0	Internal reference voltage		
0	0.	0	0	1/32V _{cc}		
0	0	0	1	$1/16V_{cc} + 1/32V_{cc}$		
0	0	1	0	$2/16V_{cc} + 1/32V_{cc}$		
0	0	1	1	$3/16V_{cc} + 1/32V_{cc}$		
0	1	0	0	$4/16V_{cc}+1/32V_{cc}$		
0	1	0	1	$5/16V_{cc} + 1/32V_{cc}$		
0	1	1	0	$6/16V_{cc} + 1/32V_{cc}$		
0	1	1	1	$7/16V_{cc} + 1/32V_{cc}$		
1	0	0	0	$8/16V_{cc}+1/32V_{cc}$		
1	0	0	1	$9/16V_{cc} + 1/32V_{cc}$		
1	0	1	0	$10/16V_{cc} + 1/32V_{cc}$		
1	0	1	1	$11/16V_{cc} + 1/32V_{cc}$		
1	1	0	0	$12/16V_{cc} + 1/32V_{cc}$		
1	1	0	1	$13/16V_{cc} + 1/32V_{cc}$		
1	1	1	0	$14/16V_{cc} + 1/32V_{cc}$		
1	1	1	1	$15/16V_{CC} + 1/32V_{CC}$		

Table 5.	Corresponde	ence bet	ween	bits 0 t	o 3 of the
	comparator	register	and	internal	reference
	voltage				

Fig. 24 Comparator circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FLD CONTROLLER

Microcomputers of the M3811x group have fluorescent display (FLD) drive and control circuits.

The FLD controller consists of the following components:

- 16 pins for segments
- · 20 pins for digits
- FLDC mode register
- · FLD data pointer
- · FLD data pointer reload register

- Port P0 segment/digit switching register
- Port P2 digit/port switching register
- Key-scan blanking register
- 32-byte FLD automatic display RAM

Eight to sixteen pins can be used as segment pins and eight to sixteen pins can be used as digit pins.

Note that only 28 pins (maximum) can be used as segment and digit pins.

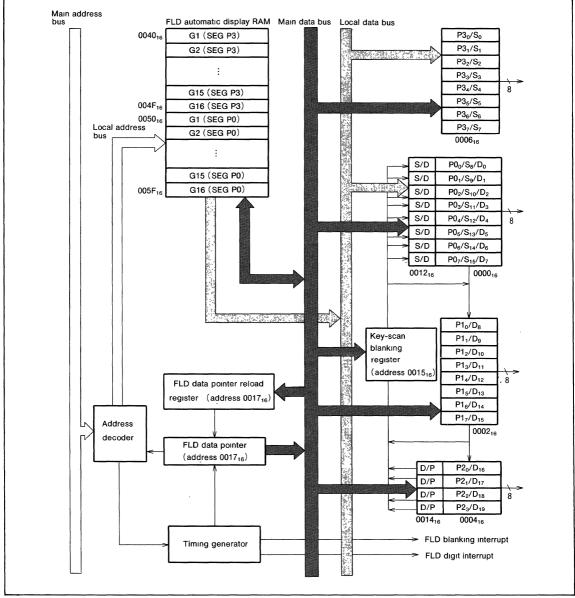


Fig. 25 FLD control circuit block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FLDC Mode Register (FLDM)

Key-scan Blanking Register (KSCN)

The FLDC mode register (address 0016_{16}) is a seven bit control register which is used to control the FLD automatic display.

The key-scan blanking register (address 0015_{16}) is a two bit register which sets the blanking period T_{scan} between the last digit and the first digit of the next cycle.

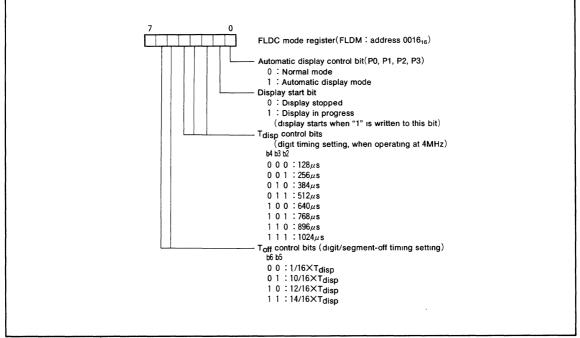
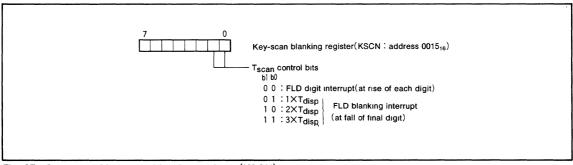
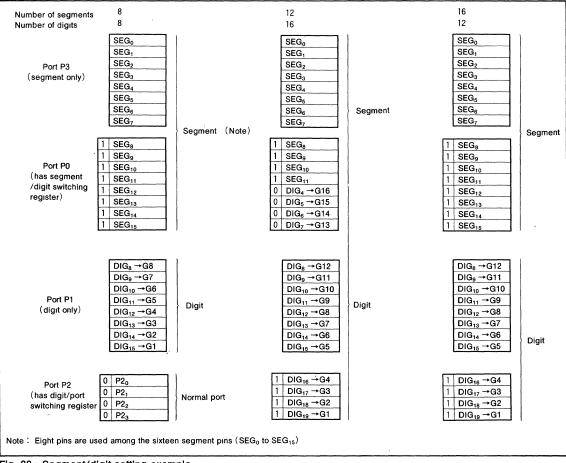



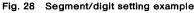
Fig. 26 Structure of FLDC mode register (FLDM)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FLD Automatic Display Pins

The FLD automatic display function of Ports P0, P1, P2₀-P2₃, and P3 is selected by setting the automatic display control bit of the FLDC mode register (address 0016_{16}) to


Table 6. Pins in FLD automatic display mode


When using the FLD automatic display mode, set the number of segments and digits for each port.

Port Name	Automatic Display Pins	Setting Method
P30-P37	SEG ₀ -SEG ₇	None (segment only)
P0 ₀ -P0 ₇	SEG ₈ -SEG ₁₅ or DIG ₀ -DIG ₇	The individual bits of the segment/digit switching register (address 0012_{16}) can be used to set each pin to segment ("1") or digit ("0") (Note)
P10-P17	DIG8-DIG15	None (digit only)
P2 ₀ -P2 ₃	DIG ₁₆ -DIG ₁₉ or P2 ₀ -P2 ₃	The individual bits of the digit/port switching register (address 0014_{16}) can be used to set each pin to digit ("1") or normal port output ("0") (Note)

"1".

Note. Always set digits in sequence

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FLD Automatic Display RAM

The FLD automatic display RAM area is the 32 bytes from address 0040_{16} to $005F_{16}$. The FLD automatic display RAM area can be used to store 2-byte data items for a maximum of 16 digits. Addresses 0040_{16} to $004F_{16}$ are used for P3 segment data, addresses 0050_{16} to $005F_{16}$ are used for P0 segment data.

• FLD Data Pointer and FLD Data Pointer Reload Register The FLD data pointer indicates the data address in the FLD automatic display RAM to be transferred to a segment, and the FLD data pointer reload register indicates the address of the first digit of segment P0. Both the FLD data pointer and the FLD data pointer reload register are allocated to address 0017_{16} and are 5bits wide. Data written to this address is written to the FLD data pointer reload register, data read from this address is read from the FLD data pointer.

The actual memory address is the value of the data pointer plus 40_{16} , 50_{16} .

The contents of the FLD data pointer indicate the start address of segment P0 at the start of automatic display. If segment P0 data is transferred to the segment, the FLD data pointer returns -16; if segment P3 data is transferred, it returns +15. After it reaches "00", the value in the FLD data pointer reload register is transferred to the FLD data pointer. In this way, two bytes of data for the P0 and P3 segments of one digit are transferred.

Bit	7	6	5	4	3	2	1	0		Final dıgıt			
004016	SEG ₇	SEG ₆	SEG₅	SEG₄	SEG ₃	SEG ₂	SEG ₁	SEG ₀	- -	(final data of			
0041 ₁₆	SEG ₇	SEG ₆	SEG ₅	SEG₄	SEG ₃	SEG ₂	SEG ₁	SEG ₀		segment P3)			
0042 ₁₆	SEG ₇	SEG ₆	SEG₅	SEG₄	SEG ₃	SEG ₂	SEG ₁	SEG ₀					
		1	1		1	1	ł	1		Segment P3 data area			
004D ₁₆	SEG ₇	SEG ₆	SEG₅	SEG₄	SEG ₃	SEG ₂	SEG1	SEG₀					
004E ₁₆	SEG ₇	SEG ₆	SEG₅	SEG ₄	SEG ₃	SEG ₂	SEG1	SEG ₀	1				
004F ₁₆	SEG ₇	SEG ₆	SEG₅	SEG₄	SEG ₃	SEG ₂	SEG ₁	SEG ₀		Final digit			
0050 ₁₆	SEG ₁₅	SEG ₁₄	SEG ₁₃	SEG ₁₂	SEG ₁₁	SEG ₁₀	SEG ₉	SEG ₈	 ← -	(final data of			
0051 ₁₆	SEG ₁₅	SEG ₁₄	SEG ₁₃	SEG ₁₂	SEG ₁₁	SEG ₁₀	SEG ₉	SEG ₈		segment P0)			
005216	SEG ₁₅	SEG ₁₄	SEG ₁₃	SEG ₁₂	SEG ₁₁	SEG ₁₀	SEG ₉	SEG ₈					
		1	1		1	1	1	1		Segment P0 data area			
005D ₁₆	SEG ₁₅	SEG ₁₄	SEG ₁₃	SEG ₁₂	SEG ₁₁	SEG ₁₀	SEG ₉	SEG ₈	1				
005E ₁₆	SEG ₁₅	SEG ₁₄	SEG ₁₃	SEG ₁₂	SEG ₁₁	SEG ₁₀	SEG ₉	SEG ₈					
005F ₁₆	SEG ₁₅	SEG ₁₄	SEG ₁₃	SEG ₁₂	SEG ₁₁	SEG ₁₀	SEG ₉	SEG ₈					

Fig. 29 FLD automatic display RAM and bit allocation

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Data Setup

When data is stored in the FLD automatic display RAM, the end of segment P3 data is stored at address 0040_{16} , and the end of segment P0 data is stored at address 0050_{16} . The head of each of the segment P3 and P0 data is stored at an address that is the number of digits – 1 away from the corresponding address 0040_{16} , 0050_{16} . Set the FLD data pointer reload register to the value given by the number of digits -1. "1" is always written to bit 4. Note that "0" is always read from bit 4 during a read.

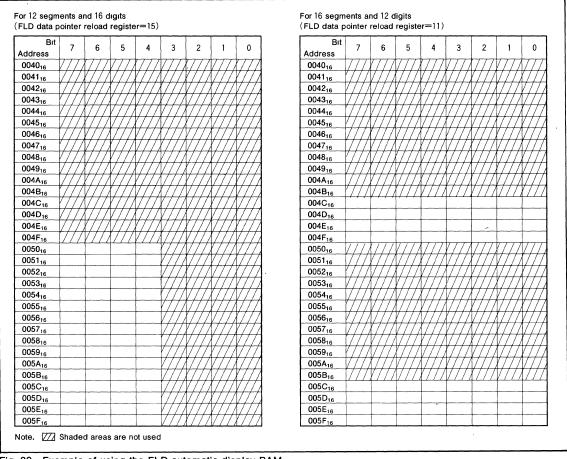


Fig. 30 Example of using the FLD automatic display RAM.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Timing Setting

The digit timing (Tdisp) and digit/segment turn-off timing (Toff) can be set by the FLDC mode register (address 0016₁₆). The scan timing (T_{scan}) can be set by the keyscan blanking register (address 0015₁₆).

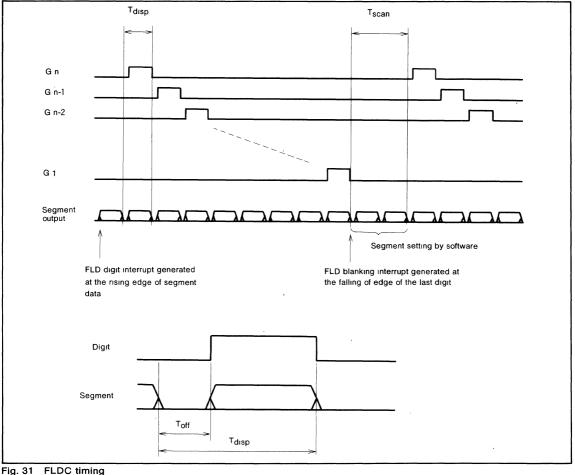
Note that flickering will occur if the repetition frequency $(1/(T_{disp} \times number of digits + T_{scan}))$ is an integral multiple of the digit timing Tdisp.

FLD Start

To perform FLD automatic display, you have to use the following registers.

- · Port P0 segment/digit switching register
- Port P2 digit/port switching register
- · Key-scan blanking register
- FLDC mode register
- FLD data pointer

Automatic display mode is activated by writing "1" to bit 0 of the FLDC mode register (address 001616), and the


automatic display is started by writing "1" to bit 1. During automatic display bit 1 always keeps "1", automatic display can be interrupted by writing "0" to bit 1.

If key-scan is to be performed by segment during the key-scan blanking period Tscan,

- 1. Write "0" to bit 0 (automatic display control bit) of FLDC mode register (address 0016₁₆).
- 2. Set the port corresponding to the segment to the normal port.
- 3. After the key-scan is performed, write "1" (automatic display mode) to bit 0 of FLDC mode register
- (address 0016₁₆).

Note on performance of key-scan in the above 1 to 3 order.

- 1. Do not write "0" to bit 1 of FLDC mode register (address 0016₁₆).
- 2. Do not write "1" to the port corresponding to the digit.

FLDC timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

After a reset, the microcomputer will start in high-speed operation start mode or low-speed operation start mode depending on a mask-programmable option.

High-Speed Operation Start Mode

In high-speed operation start mode, reset occurs if the RESET pin is held at an "L" level for at least 2μ s then is returned to an "H" level (the power supply voltage should be between 4.0V and 5.5V). Both the X_{IN} and the X_{CIN} clocks begin oscillating. In order to give the X_{IN} clock time to stabilize, internal operation does not begin until after 13 X_{IN} clock cycles are complete. After the re-

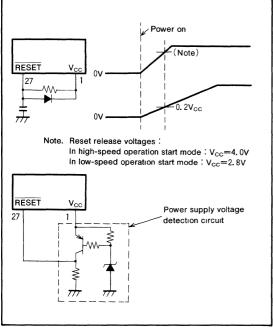


Fig. 32 Power-on reset circuit example

set is completed, the program starts from the address contained in address $FFFD_{16}$ (upper byte) and address $FFFC_{16}$ (lower byte).

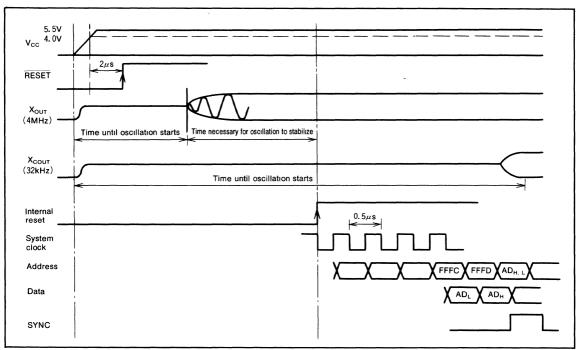
Low-Speed Operation Start Mode

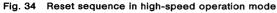
In low-speed operation start mode, reset occurs if the RESET pin is held at an "L" level for at least 2μ s then is returned to an "H" level (the power supply voltage should be between 2.8V and 5.5V). The X_{IN} clock does not begin oscillating. In order to give the X_{CIN} time to stabilize, timer 1 and timer 2 are connected together and 512 cycles of the X_{CIN}/16 are counted before internal operation begins. After the reset is completed, the program starts from the address FFFC₁₆ (lower byte).

If the X_{CIN} clock is stable, reset will complete after approximately 250ms (assuming f(X_{CIN})=32.768kHz).

Immediately after a power-on, the stability of the clock circuit will determine the reset timing and will vary according to the characteristics of the oscillation circuit used.

Note on Use


Make sure that the reset input voltage is no more than 0.8V in high-speed operation start mode, or no more than 0.5V in low-speed operation start mode.




SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

		Address	Register contents			Address	Register contents		
(1)	Port P0 register	(0000 ₁₆)	00 ₁₆	(24)	Timer 12 mode register	(0028 ₁₆)…			
(2)	Port P1 register	(0002 ₁₆)	0016	(25)	Timer 34 mode register	(0029 ₁₆)			
(3)	Port P2 register	(0004 ₁₆)	0016	(26)	PWM control register	(002B ₁₆)…			
(4)	Port P2 direction register	(0005 ₁₆)	0016	(27)	Comparator register	(0030 ₁₆)			
(5)	Port P3 register	(0006 ₁₆)	0016	(28)	High-breakdown-voltage port	(0038 ₁₆)	0016		
(6)	-	(0008 ₁₆)	0016]	control register				
(7)	Port P4 direction register	(0009 ₁₆)	0016	(29)	Interrupt edge selection register	(003A1e)····	0016		
(8)	Port P5 register	(000A ₁₆)	0016	(30)	CPU mode register	(003B ₁₆)			
(9)	Port P5 direction register	(000B ₁₆)	0016	(31)	Interrupt request register 1				
(10)	Port P6 register	(000C ₁₆)	0016	(32)	Interrupt request register 2				
(11)	Port P6 direction register	(000D ₁₆)		(33)	Interrupt control register 1	(003E ₁₆)			
	-	$(0 0 1 2_{16})$	00 ₁₆	(34)		$(003F_{16})$			
(12)	Port P0 segment/digit	(001216)	0016	1	Interrupt control register 2				
(10)	switching register	(0014)		(35)	Processor status register		$ \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} 1 \mathbf{X} \mathbf{X} $		
(13)	Port P2 digit/port switching	(0014 ₁₆)····	00 ₁₆	(36)	Program counter		Contents of address FFFD ₁₆		
	register	<i></i>		1		(PC _L)…	Contents of address FFFC ₁₆		
(14)	Key-scan blanking register	- L	0016	1			*		
(15)	FLDC mode register	(0016 ₁₆)	0016]					
(16)	Serial I/O1 control register	(0019 ₁₆)	0016						
(17)	Serial I/O automatic transfer	·(001A ₁₆)····	0016						
	control register	_							
(18)	Serial I/O automatic transfer	·(001C ₁₆)…	0016]					
	interval register								
(19)	Serial I/O2 control register	(001D ₁₆)	00 ₁₆]					
(20)	Timer 1 register	(0024 ₁₆)	FF ₁₆]					
(21)	Timer 2 register	(0025 ₁₆)	01 ₁₆]					
(22)	Timer 3 register	(0026 ₁₆)	FF ₁₆]					
(23)	Timer 4 register	(0027 ₁₆)	FF ₁₆]					
Fig	Note. * : The initial values of bits 7 and 6 of the CPU mode register are determined by a mask option. X : Underfined The contents of all other registers and RAM are undefined after a reset, so programs must set their initial values Fig. 33 Internal status at reset								

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATION CIRCUIT

When using an external clock signal, input the clock signal to the X_{IN} (X_{CIN}) pin and leave the X_{OUT} (X_{COUT}) pin open. If the X_{CIN} clock is not used, connect the X_{CIN} pin to V_{SS} , and leave the X_{COUT} pin open.

Either high-speed operation start mode or low-speed start mode can be selected by using a mask option.

High-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of X_{IN}. Immediately after power-on, both the X_{IN} and X_{CIN} clock start oscillating. To set the internal clock ϕ to low-speed operation mode, set bit 7 of the CPU mode register (address 003B₁₆) to "1".

Low-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of X_{CIN}. Immediately after power-on, only the X_{CIN} clock starts oscillating. To set the internal clock ϕ to high-speed operation mode, first set bit 6 (CM₆) of the CPU mode register (address 003B₁₆) to "0", the set bit 7 (CM₇) to "0". Note that the program must allow time for oscillation to stabilize.

Oscillation Control

Stop Mode

If the STP instruction is executed, oscillation stops with the internal clock ϕ at an "H" level. Timer 1 is set to "FF₁₆" and timer 2 is set to "01₁₆".

Either X_{IN} or X_{CIN} divided by 16 is input to timer 1, and the output of timer 1 is connected to timer 2. The timer 1 and timer 2 interrupt enable bits must be set to disabled ("0"), so a program must set these bits before executing an STP instruction. Oscillation restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 overflows. This allows time for the clock circuit oscillation to stabilize.

Wait Mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Low-Speed Mode

If the internal clock is generated from the sub clock $(X_{\rm CIN})$, a low power consumption operation can be entered by stopping only the main clock $X_{\rm IN}$. To stop the main clock, set bit 6 $({\rm CM_6})$ of the CPU mode register $(003B_{16})$ to "1". When the main clock $X_{\rm IN}$ is restarted, the program must allow enough time to for oscillation to stabilize.

Note that in low-power-consumption mode the X_{CIN} - X_{COUT} drive performance can be reduced, allowing even lower power consumption (20 μ A with X_{CIN} = 32kHz). To

reduce the X_{CIN} - X_{COUT} drive performance, clear bit 5 (CM₅) of the CPU mode register (003B₁₆) to "0". At reset or when an STP instruction is executed, this bit is set to "1" and strong drive is selected to help the oscillation to start.

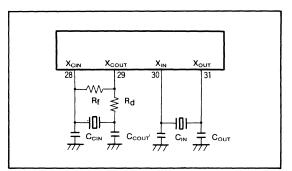


Fig. 36 Ceramic resonator circuit

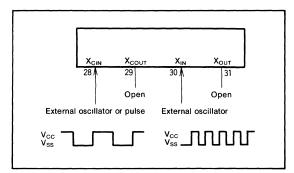


Fig. 37 External clock input circuit

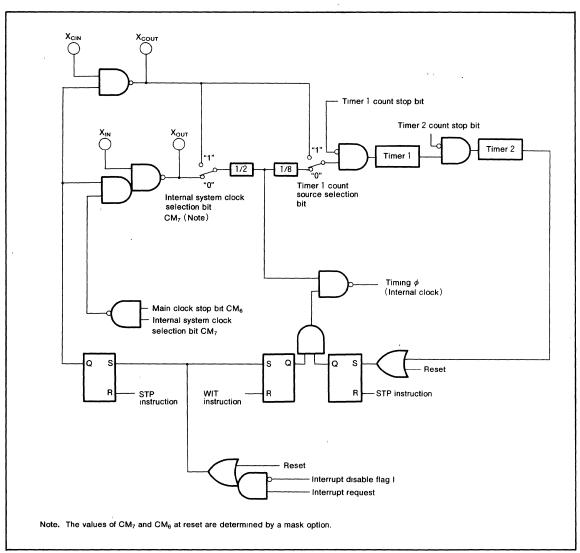
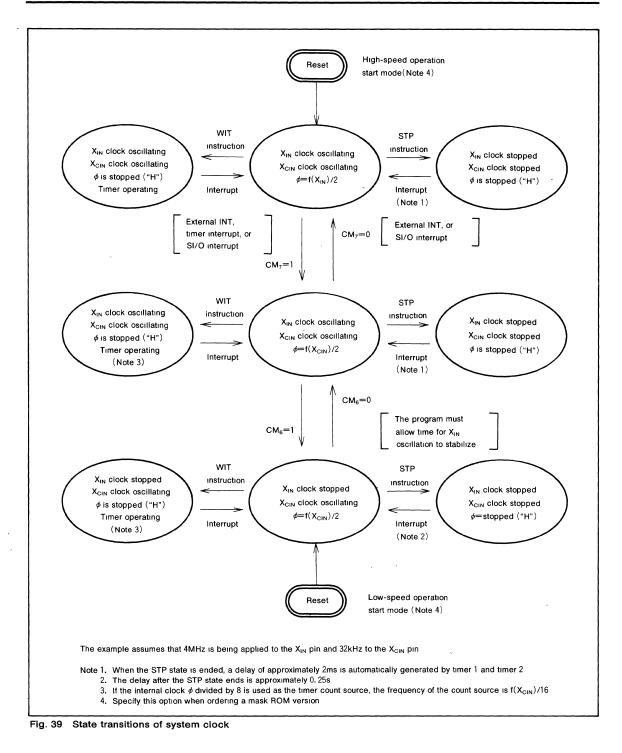



Fig. 38 System clock generation circuit block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

11

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

NOTES ON PROGRAMMING

Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1". Therefore, flags that affect program execution must be initialized after a reset. In particular, it is essential to initialize the T and D flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written.

After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute a ADC or SBC instruction. Only the ADC and SBC instruction yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.

In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).

Multiplication and Division Instructions

The MUL and DIV instructions do not affect the T and D flags.

The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

Serial I/O

When using an external clock, input "H" to the external clock input pin and clear the serial I/O interrupt request bit before executing a serial I/O transfer.

When using the internal clock, set the synchronization clock to internal clock, then clear the serial I/O interrupt request bit before executing a serial I/O transfer.

Instruction Execution Timing

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.

The number of cycles required to execute an instruction

is shown in the list of machine instructions. The frequency of the internal clock ϕ is half of the X_{IN} or X_{CIN} frequency.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- (1) Mask ROM Order Confirmation Form
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies)

If required, specify the following option on the Mask Confirmation Form:

· Operation start mode switching option

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter.

Package	Name of Write Adapter
64P4B, 64S1B	PCA4738S-64
64P6N	PCA4738F-64
64D0	PCA4738L-64

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 40 is recommended to verify programming

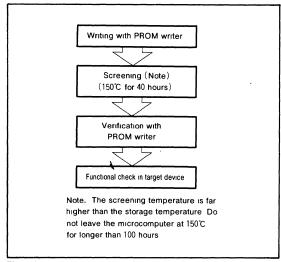


Fig. 40 Writing and testing of one-time programmable version

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 to 7.0	v
VEE	Pull-down power supply voltage		V_{cc} -40 to V_{cc} +0.3	v
V ₁	Input voltage P24-P27, P41-P47, P50-P57, P60-P67		-0.3 to V _{cc} $+0.3$	v
V ₁	Input voltage P40		-0.3 to V _{cc} $+0.3$	v
V,	Input voltage RESET, XIN	All voltages measured based on the V _{SS} pin	-0.3 to V _{cc} $+0.3$	v
Vi	Input voltage X _{CIN}	Output transistors are isolated	-0.3 to V _{cc} $+0.3$	· v
Vo	Output voltage P00-P07, P10-P17, P20-P23, P30-P37		V_{cc} -40 to V_{cc} +0.3	v
Vo	Output voltage P2 ₄ -P2 ₇ , P4 ₁ -P4 ₇ , P5 ₀ -P5 ₇ , P6 ₀ -P6 ₇ , X _{OUT} , X _{COUT}		-0.3 to V _{cc} +0.3	v
Pd	Power dissipation	$T_a = 25^{\circ}C$	1000(Note 1)	mW
Topr	Operating temperature		-10 to 85	°C
Tstg	Storage temperature		-40 to 125	ĉ

Note 1:600mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS ($v_{cc} = 4.0$ to 5.5V, $T_a = -10$ to 85°C, unless otherwise noted)

Symbol	Parameter			Limits		
Symbol			Min	Тур	Max	Unit
V _{cc}	Supply voltage	High-speed operation mode	4.0	5.0	5.5	v
	Supply Voltage	Low-speed operation mode	2.8	5.0	5.5	v
Vss	Supply voltage			0		V
VEE	Pull-down power sup	oly voltage	$V_{\rm cc}$ -38		V _{cc}	v
VIA	Analog input voltage		0		V _{cc}	V
VIH	"H" input voltage P24	-P27	0.4V _{CC}		V _{cc}	v
VIH	"H" input voltage P40		0.75V _{cc}		V _{cc}	v
VIH	"H" input voltage P41-P47, P50-P57, P60-P67		0.75V _{cc}		V _{cc}	v
VIH	"H" input voltage RES	SET	0.8V _{CC}		V _{cc}	v
ViH	"H" input voltage X _{IN} ,	X _{CIN}	0.8V _{CC}		V _{cc}	v
V _{IL}	"L" input voltage P24-	-P2 ₇	0		0.16V _{cc}	v
VIL	"L" input voltage P40		0		0.25V _{cc}	v
VIL	"L" input voltage P41-	P47, P50-P57, P60-P67	0		0.25V _{cc}	v
VIL	"L" input voltage RES	ET	0		$0.2V_{\rm CC}$	v
VIL	"L" input voltage XIN,	X _{CIN}	0		$0.2V_{\rm CC}$	v

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RECOMMENDED OPERATING CONDITIONS (V_{CC}=4.0 to 5.5V, T_a=-10 to 85°C, unless otherwise noted)

	Parameter		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	
51	"H" total peak output current P00-P07, P10-P17,			-240	mA	
Σl _{on} (peak)	(Note 1) P20-P27, P30-P37			-240	mA	
Σl _{on(peak)}	"H" total peak output current P41-P47, P60-P65			-60	mA	
51	"L" total peak output current P24-P27, P41-P47,			100		
Σl _{oL} (peak)	P50-P57, P61-P67			100	mA	
$\Sigma I_{OL}(peak)$	"L" total peak output current P60			3.0	mA	
21	"H" total average output current P00-P07, P10-P17,			-120	mA	
Σl _{on(avg)}	(Note 1) P2 ₄ -P2 ₇ , P3 ₀ -P3 ₇			-120	ША	
$\Sigma I_{OH}(avg)$	"H" total average output current P41-P47, P60-P67			-30	mA	
51	"L" total average output current P24-P27, P41-P47,			50	mA	
$\Sigma I_{OL}(avg)$	P50-P57, P61-P67			50	IIIA	
$\Sigma I_{OL}(avg)$	"L" total average output current P60			1.5	mA	
	"H" peak output current P00-P07, P10-P17, P20-P23,	1		40	-40	
lon(peak)	P30-P37 (Note 2)			-40	mA	
lon(peak)	"H" peak output current P24-P27, P41-P47, P60-P67			-10	mA	
I _{OL} (peak)	"L" peak output current P24-P27, P61-P67			10	mA	
I _{OL} (peak)	"L" peak output current P41-P47, P50-P57			10	mA	
I _{OL} (peak)	"L" peak output current P60			3.0	mA	
	"H" average output current P00-P07, P10-P17, P20-P23,		1	-18	mA	
I _{он} (avg)	(Note 3) P3 ₀ -P3 ₇			10		
1	"H" average output current P24-P27, P41-P47,			5.0	mA	
он(avg)	P60-P67			5.0	IIIA	
loL(avg)	"L" average output current P24-P27, P61-P67			5.0	mA	
IOL(avg)	"L" average output current P41-P47, P50-P57			5.0	mA	
IOL(avg)	"L" average output current P60			1.5	mA	
f(CNTR)	Clock input frequency for timer 4 (duty cycle 50%)			250	kHz	
f(X _{IN})	Main clock input oscillation frequency (Note 4)			4.2	MHz	
f(X _{CIN})	Sub clock input oscillation frequency (Note 4, 5)		32.768	50	kHz	

Note 1. The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100ms. The total peak current is the peak value of all the currents.

2. The peak output current is the peak current flowing in each port.

3. The average output current in an average value measured over 100ms

4. When the oscillation frequency has a duty cycle of 50%

5. When using the microcomputer in low-speed operation mode, make sure that the sub clock's input frequency $f(X_{CIN})$ is less than $f(X_{IN})/3$

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Test condition		Limits		Unit
Symbol	Falameter		Min	Тур	Max	
V _{он}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₇	I _{ОН} =—18mA	V _{cc} -2.	0		v
V _{он}	"H" output voltage P24-P27, P41-P47, P60-P67	I _{OH} =-10mA	V _{cc} -2.	0		v
Vol	"L" output voltage P2 ₄ -P2 ₇ , P4 ₁ -P4 ₇ , P5 ₀ -P5 ₇ , P6 ₁ -P6 ₇	I _{OL} =10mA			2.0	v
Vol	"L" output voltage P60	$I_{OL}=1.5 mA$			0.5	v
$V_{T+} - V_{T-}$	Hysteresis INT0-INT2, SIN1, SIN2, SCLK1, SCLK2, CNTR	When using a non-port	function	0.4		v
$V_{T+} - V_{T-}$	Hysteresis RESET, X _{IN}	RESET : V _{cc} =2.8V to	5. 5V	0.5		v
V _{T+} -V _{T-}	Hysteresis X _{CIN}			0.5		v
կլ	"H" input current P24-P27, P41-P47, P50-P57, P60-P67	VI=VCC			5.0	μA
կե	"H" input current P40	VI=VCC			5.0	μA
l _{in}	"H" input current RESET, X _{CIN}	VI=VCC			5.0	μA
 I _{ін}	"H" input current X _{IN}	VI=VCC		4.0		μΑ
կլ	"L" input current P24-P27, P41-P47, P50-P57, P60-P67	VI=VSS			-5.0	μΑ
η <u>ε</u> η _Ε	"L" input current P4 ₀	VI=VSS			-5.0	μA
հե	"L" input current RESET, X _{CIN}	V _I =V _{SS}			-5.0	μΑ
η <u>ε</u> Ι _{ΙΕ}	"L" input current XIN	V _I =V _{SS}	Anne the the test of the second	-4.0		μA
		$V_{EE} = V_{CC} - 36V$				
LOAD	Output load current P00-P07, P10-P17, P20-P23, P30-P37	V _{OL} =V _{CC} ,	150	500	900	μA
LUAD		With output transistors off				,
		$V_{EE} = V_{CC} - 38V$,				
ILEAK	Output leakage current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₇	$V_{OL} = V_{CC} - 38V$			-10	μA
LEAN		With output transistors off (E	(cept for reset)			,
VRAM	RAM hold voltage	When clock is stopped	2.0	-	5.5	v
		In high-speed operation mo		-		
		$f(X_{IN}) = 4MHz$				
		$f(X_{CIN})=32kHz$		5	10	mA
		Output transistors off		Ű		
		Comparator operating				
		In high-speed operation mod	10	+		
		$f(X_{IN}) = 4MHz$ (in WIT state)				
		$f(X_{CIN})=32kHz$		1		mA
		Output transistors off		1		
		Comparator stopped			1	
		In low-speed operation mod	<u>م</u>			
		$f(X_{IN}) = $ stopped, $f(X_{CIN}) = 3$				
l _{cc}	Power supply current	Low-power dissipation mode		60	200	μA
		(CM ₅ =0)		00	200	
		Output transistors off				
		In low-speed operation mod	•			
		$f(X_{IN}) = stopped$	6			
		$f(X_{IN}) = stopped$ $f(X_{CIN}) = 32kHz$ (in WIT state)				
		Low-power dissipation mode		20	40	μA
			5 301			
		(CM ₅ =0)				
		Output transistors off			+	
		All oscillation stopped Ta=	=25°C	0.1	1.0	μA
					10	

ELECTRICAL CHARACTERISTICS ($v_{cc} = 4.0$ to 5.5V, $T_a = -10$ to 85°C, unless otherwise noted)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

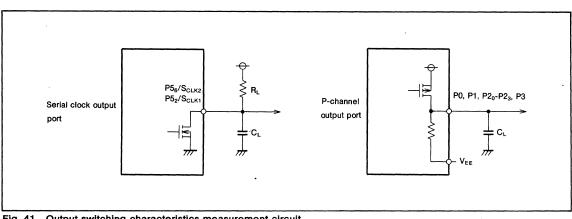
COMPARATOR CHARACTERISTICS

 $(v_{cc}=4.0 \text{ to } 5.5V, v_{ss}=0V, T_a=-10 \text{ to } 85^{\circ}C$, high-speed operation mode, f(X_{IN})=500kHz to 4MHz unless otherwise noted)

Cumhal	Symbol Parameter Test conditions	Test conditions	Limits			Unit
Symbol		Min	Тур	Мах	Unit	
-	Resolution				4	Bits
-	Absolute accuracy				1/2	LSB
T _{CONV}	Conversion time				7	μs
IIA.	Analog port input current				5.0	μA
RLADDER	Ladder resistor			30		kΩ

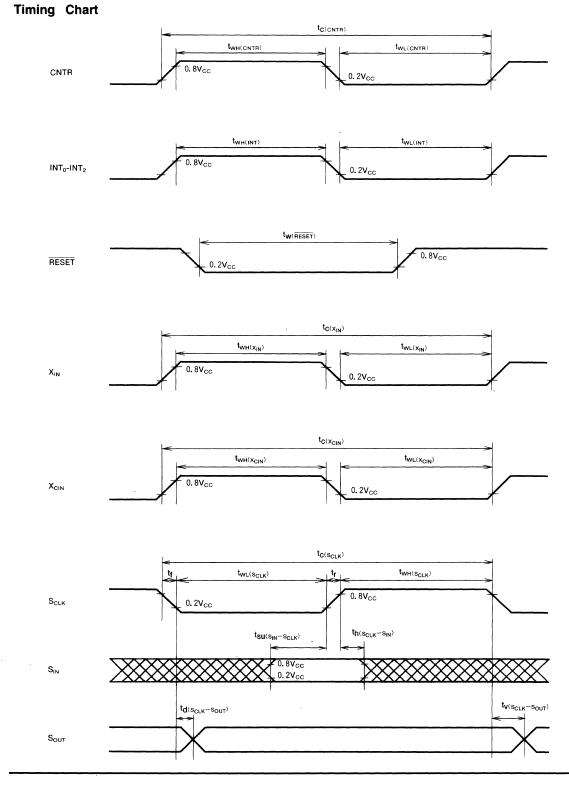
TIMING REQUIREMENTS ($v_{cc} = 4.0 \text{ to } 5.5 \text{V}$, $v_{ss} = 0 \text{V}$, $\tau_a = -10 \text{ to } 85 \text{°C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Unit
tw(RESET)	Reset input "L" pulse width		2			μs
t _{C(XIN})	Main clock input cycle time (X _{IN} input)		238			ns
t _{WH} (x _{IN})	Main clock input "H" pulse width		60			ns
	Main clock input "L" pulse width		60			ns
t _{C(XCIN)}	Sub clock input cycle time (X _{CIN} input)		2.0			ms
twh(x _{CIN})	Sub clock input "H" pulse width		0.5			ms
	Sub clock input "L" pulse width		0.5			ms
t _{C(CNTR)}	CNTR input cycle time		4			μs
twh(CNTR)	CNTR input "H" pulse width		1.6			μs
twl(CNTR)	CNTR input "L" pulse width		1.6			μs
t _{WH(INT)}	INT ₀ -INT ₂ input "H" pulse width		80			ns
twl(INT)	INT ₀ -INT ₂ input "L" pulse width		80			ns
t _{C(SCLK)}	Serial clock input cycle time		1			μs
t _{WH(SCLK)}	Serial clock input clock "H" pulse width		400			ns
twL(SCLK)	Serial clock input clock "L" pulse width		400			ns
tsu(SCLK-SIN)	Serial input setup time		200			ns
th(sclk-sin)	Serial input hold time		200			ns


$\label{eq:stars} \textbf{SWITCHING} \quad \textbf{CHARACTERISTICS} \quad (v_{cc} = 4.0 \text{ to } 5.5 \text{V}, \ v_{ss} = 0 \text{V}, \ \tau_a = -10 \text{ to } 85^\circ \text{C}, \ \text{unless otherwise noted})$

Symbol	Parameter	Test see ditions		Limits		
		Test conditions	' Min	Тур	Max	Unit
twH(SCLK)	Serial clock output "H" pulse width	$C_L=100pF, R_L=1k\Omega$	t _c /2-160			ns
twL(SCLK)	Serial clock output "L" pulse width	$C_L=100pF, R_L=1k\Omega$	t _c /2-160			ns
td(sclk-sout)	Serial output delay time				0.2t _C	ns
tv(sclk-sout)	Serial output hold time		0			ns
tf(SCLK)	Serial clock output fall time	$C_L=100pF, R_L=1k\Omega$			40	ns
t _{r(Pch} -strg)	P-channel high-breakdown voltage output rise time (Note 1)	$C_{L}=100pF, V_{EE}=V_{CC}-36V$		55		ns
t _{r(Pch-weak)}	P-channel high-breakdown voltage output rise time (Note 2)	$C_{L}=100pF, V_{EE}=V_{CC}-36V$		1.8		μs

Note 1. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at "0"


2. When bit 0 of the high-breakdown voltage port control register (address 003816) is at "1"

