MITSUBISHI LINEAR ICs

M51361P/M5E565P

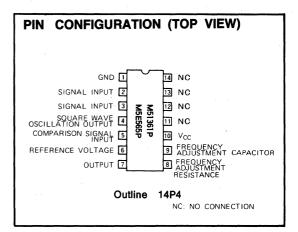
PLL

DESCRIPTION

The M51361P/M5E565P is semiconductor integrated circuit consisting of a phase locked loop (PLL)IC which includes a phase comparator, a voltage controlled oscillator and a DC amplifier.

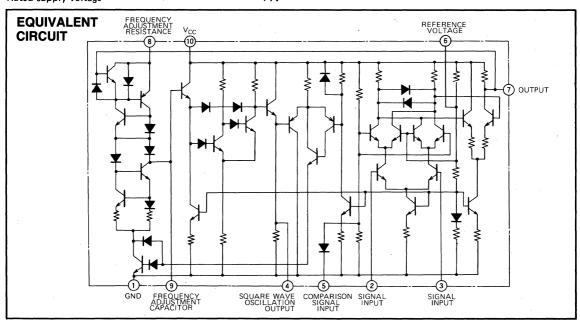
The center frequency is determined by the oscillation frequency of the voltage controlled oscillator; the oscillation frequency can easily adjusted with a resistor and a capacitor, making this IC suitable for use in frequency modulators and tracking filters, etc.

FEATURES


- The total harmonic distortion of demodulated output is
 low 0.35%
- Both square and triangular wave forms can be obtained as oscillator output
- Both lock range and capture range are externally controllable
- Wide oscillation frequency range0.5~500kHz
- The loop can be opened and a frequency divider inserted from outside

APPLICATION

Frequency modulators, frequency discriminators, tracking filters, frequency multipliers, FSK (Frequency shift keying) modulators.


RECOMMENDED OPERATING CONDITIONS

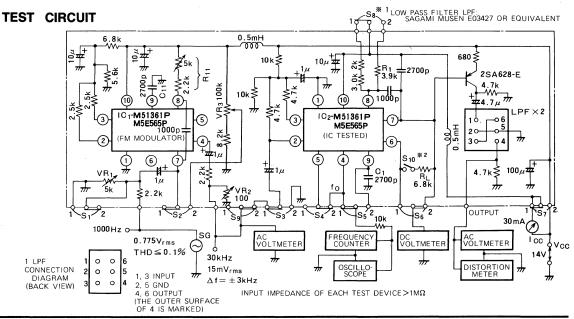
Supply voltage range 12~15.6V Rated supply voltage 14V

14-pin molded plastic DIL

MITSUBISHI LINEAR ICs M51361P/M5E565P

PLL

ABSOLUTE MAXIMUM RATINGS ($T_a=25$ °C, unless otherwise noted)


Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		16	v
Vin	Input voltage		1	Vp-p
l cc	Circuit current		30	mA
Pd	Power dissipation		600	mW
Kθ	Thermal derating	Ta≧ 25°C	6	mW/°C
Topr	Operating temperature		0~+75	°C
Tstg	Storage temperature		-40~+125	°C

$\label{eq:characteristics} {\tt ELECTRICAL} \quad {\tt CHARACTERISTICS} \ ({\tt T}_a = 25 °{\tt C}, \ {\tt unless} \ {\tt otherwise} \ {\tt noted})$

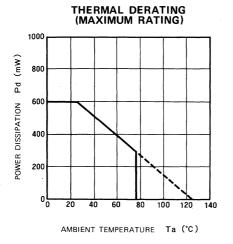
					Limits			
Symbol		Parameter	Test conditions	Min	Тур	Max	Unit	
I _{CCO}	Qu	iescent circuit current			11	17	mA	
V®	Pir	n 7 voltage	No signal		12.5	13.5	v	
V @-⑦	Of	fset voltage	Potential difference between pins 6 and 7		150	360	mV	
Vo(af)	Output voltage		Oscillation frequency 30kHz	200	300		mVrms	
THD	Demodulation circuit	Total harmonic distortion	Input frequency 30 kHz Input voltage 15mVrms		0.35	0.75	%	
S/N	Demo	Signal to noise ratio	Modulation frequency 1kHz Frequency deviation ±3kHz		* 1 56		dB	
VsQ	Ļ	Square wave output voltage			7.0		VP-P	
	oscillator	Duty cycle	Oscillation frequency 30 kHz	40	50	60	%	
VTRI		Triangular wave output voltage			2.4		VP-P	
fo(max)	controlled	Maximum free-running frequency	Frequency setting capacitor 100pF		* ² 500		kHz	
	Voltage con	Oscillation frequency drift vs V_{CC}			200		Hz/V	
		Oscillation frequency drift vs temperature Oscillation frequency 30 kHz	Oscillation frequency 30 kHz		850		ppm/°C	
fL	>	Lock range		25		kHz		

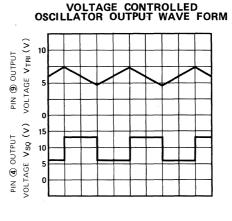
* 1: Unmodulated

*** 2**: Free-running frequency adjustment resistor R $_1$ = 2k \sim 20k Ω (4k Ω standard)

MITSUBISHI LINEAR ICs

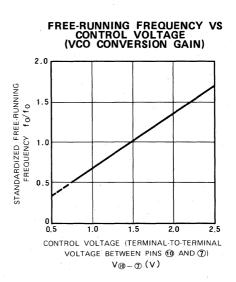
M51361P/M5E565P


PLL


TEST METHODS

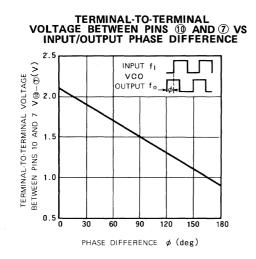
Parameter	S1 .	S2	S3	S4	S5	S ₆	S7	S8	Sg	Method
Oscillation frequency adjustment	,		2	2	1		2	1		Adjust f_0 to 30±0.5kHz with R_1 to prepare for testing (testing with the frequency counter)
Quiescent circuit current		· · · ·	2	2			1	1		Ammeter
Demodulated output voltage	2	1	1	2			2	1	2	V _{O (af)} (AC Voltmeter)
Total harmonic distortion	2	1	1	2		1	2	1	2	Distortion meter
Signal to noise ratio	1	1	1	2			2	1	2	Ratio to V _{O (af)} (AC Voltmeter)
Pin⑦DC voltage			2	2		2	2	1		(DC Voltmeter)
Lock range	1	2	1	2		1	2	1	2	Measure the limits of the pin @output frequency which is synchronized with input frequency by variing VR3.

2: Connect pins (and () through a 6.8k Ω resistance only when measuring the lock range. (S₁₀ ON)

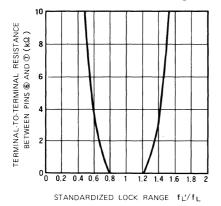

TYPICAL CHARACTERISTICS (Ta = 25°C, $V_{CC} = 12V$, unless otherwise noted)

TIME t

- 10 $\dot{0}$ dB = 1V - 20 INPUT LEVEL Vi (dB) - 30 - 40 - 50 - 60 L 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 1 NORMALIZED LOCK RANGE fL/fo



LOCK RANGE VS INPUT LEVEL



MITSUBISHI LINEAR ICs M51361P/M5E565P

PLL

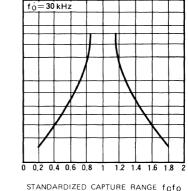
LOCK RANGE VS TERMINAL-TO-TERMINAL RESISTANCE BETWEEN PINS (6) AND T

EXPLANATION OF TERMINOLOGY AND THE BASIC COMPUTATIONAL DESIGN EXPRES-SIONS

1. Terminology

Terms commonly employed in describing phase locked loop systems are explained below.

Free-running frequency fo


This is the frequency produced by the voltage controlled oscillator (VCO) when no input signal is applied.

Lock state

When the loop can sequentially follow changes in the input signal phase or frequency it is said to be in the lock state.

Capture range

If the loop enters the lock state when a signal is input to it, then the frequency of the signal is within the capture CAPTURE RANGE VS LOW PASS FILTER CAPACITANCE

-OW PASS FILTER CAPACITANCE C1(pF)

range. Frequencies outside of the capture range cannot cause the loop to enter the lock state.

Lock range

A frequency is said to be within the lock range if the lock state is maintained after it is captured by a signal even though the frequency of the signal is changed. The loop will lose the lock state if the signal shifts to a frequency outside this range. In general, the lock range is wider than the capture range.

2. Computational expression

The computational expressions which are the basis for operation of the M51361P/M5E565P are as follows.

Free-running frequency fo

$$f_{O} \doteq \frac{1}{4R_{1}C_{1}} \qquad (Hz) \qquad (1)$$

where R_1 is the resistance between pins (8) and (10) in ohms and C_1 is the capacitance between pin(9) and GND in Farads.

Lock range

$$f_{L} = \pm \frac{8fo}{V_{CC}} \qquad (Hz) \dots \dots \dots (2)$$

Capture range

 $f_{c} = \frac{1}{2\pi} \sqrt{\frac{2\pi f_{L}}{\tau}} \qquad (Hz) \qquad (3)$

where $\tau = 3.6 \times 10^3$) x C₂ and C₂ (F) is the capacitance between pins(7) and (10) in farads.

Lock range control

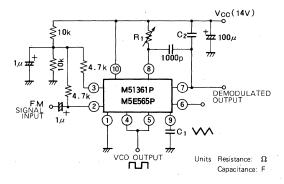
The lock range is determined by the supply voltage

APPLICATION EXAMPLE

FM Demodulation

FM signals can be demodulated with good linearity using the M51361P. When the loop is in the lock state, the amount of variation in the average direct current voltage level of the signal output by the phase comparator is proportional to variation in the frequency of the input signal. With the M51361P/M5E565P variations in the input frequency over a wide range (about $\pm 60\%$) are followed with a linearity which is within about 0.5%.

A basic example of application of this IC as an FM demodulator is shown in the diagram at right. The VCO free-running frequency is $(f_0) = 1/4C_1R_1$ so that it is the same (at pin ④)as the center frequency of the input signal when the circuit is idle. A value for R_1 of about $4k\Omega$ is appropriate, but any value from $2 \sim 20k\Omega$ may be used. Sometimes it is desirable to insert a $300 \sim 1000 pF$ capacitor between pins ⑦ and ⑧ to prevent parasitic oscillation. Capacitor C_2 between pin ⑦ and V_{CC} constitutes a low pass filter which, together with the internal output resistance (about $3.6k\Omega$), determines the cut-off frequency for the demodulated output.


 (V_{CC}) and the free-running frequency (f_O) ; this range can be reduced, however, by connecting pins (6) and (7) through a resistance. In such cases the lock range becomes

 $f_{L'} = f_{L} \frac{(R_{\textcircled{0}-\textcircled{0}}+1.6)}{(R_{\textcircled{0}-\textcircled{0}}+5.2)}$ (Hz) (4)

where $R_{6\sim7}$ is, the resistance between pins (6) and (7) in $k\Omega$ and f_L is the lock range when pins (6) and (7) are not connected in Hz.

This method can be used to reduce the lock range about 30% from that when pins@and() are not connected.

FM demodulation circuit

