

M5295AL/AP/AFP

Watchdog Timer

REJ03D0780-0200 Rev.2.00 Jun 15, 2007

Description

M5295A is a semiconductor integrated circuit which is designed for system reset to detect +5 V power supply.

This IC keeps the operation microcomputer watching. When the system is abnormal, it generates reset output until the system returns to normal states of the system.

It is possible to vary the two detective voltage by connecting the resistor, so it is suitable to high quality and high performance system.

Features

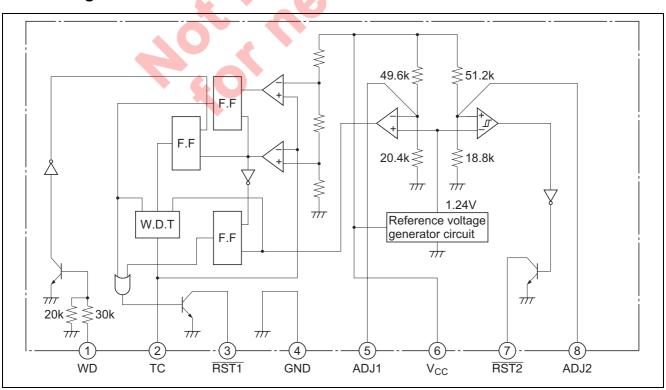
Watchdog timer

• Power on reset timer

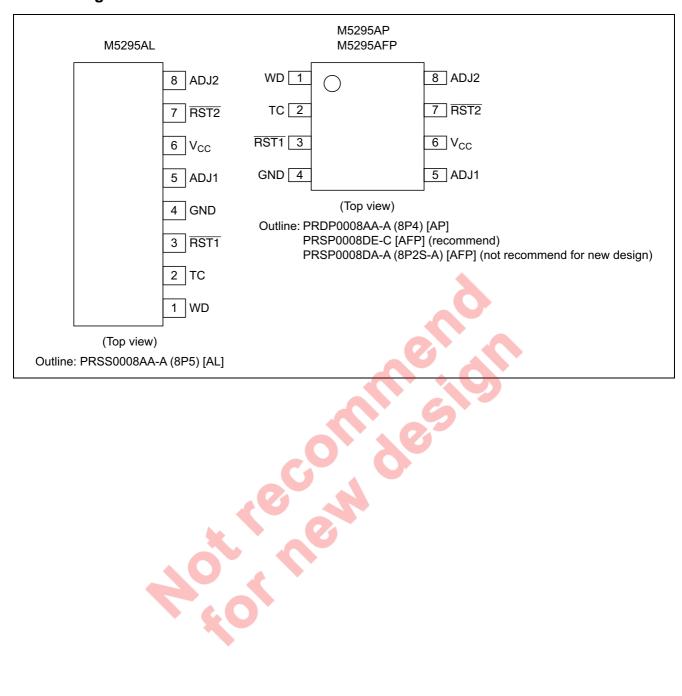
• Low circuit current: $0.8 \text{ mA} \text{ (Typ, V}_{CC} = 5 \text{ V)}$

• Wide supply voltage range: $V_{CC(max)} = 15 \text{ V}$

Application


• Microcomputer system

Recommended Operating Condition


Supply voltage range: 4 V to 15 V

• Rated supply voltage: 5 V

Block Diagram

Pin Arrangement

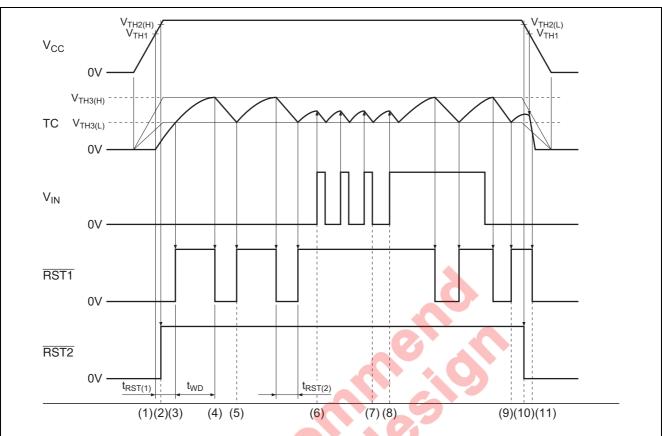
Absolute Maximum Ratings

($Ta = 25^{\circ}C$, unless otherwise noted)

Item	Symbol	Ratings	Unit
Supply voltage	Vcc	15	V
Input voltage	V _{IN}	-10 to +10	V
Output voltage	V _{OUT}	15	V
Output current	l _{out}	10	mA
Power dissipation	Pd	800(AL)/625(AP)/440(AFP)	mW
Thermal derating	Κθ	8.0(AL)/6.25(AP)/4.4(AFP)	mW/°C
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-55 to +125	°C

Electrical Characteristics

 $(Ta = 25^{\circ}C, unless otherwise noted)$


DC Characteristics

							Test Conditions
Item	Symbol	Min	Тур	Max	Unit	Pin	
WD input current	I _{IH}	0.06	0.15	0.25	mA	WD	V _{IN} = 5V
	I _{IL}	-0.05	-0.1	-0.15			$V_{IN} = -5V$
WD input voltage	V_{IH}	2	_		V	WD	
	V_{IL}	-	_	0.8			
TC output current	I _{OUT}	-	_	-1	μΑ	TC	V _{IN} = 1.5V
TC input current	I _{IN}	-	3.3	-	mA	TC	V _{OUT} = 4.2V
Threshold voltage of	V _{TH3(H)}	3.7	4	4.3	V	TC	
watchdog timer	V _{TH3(L)}	1.7	2	2.3			
Output voltage	V_{OL}		0.1	0.5	V	RST1	$I_{OUT} = 1mA$
Output leakage current	lleak		$-\lambda$	5	μΑ	RST2	$V_{OUT} = 15V$
V _{CC} detective voltage (1)	V_{TH1}	4.05	4.25	4.45	V	V_{CC}	
V _{CC} detective voltage (2)	V _{TH2(H)}	4.5	4.7	4.9	V	Vcc	
	V _{TH2(L)}	4.45	4.6	4.75			
	ΔV_{TH2}	0.05	0.1	0.2			
ADJ1 voltage	V_5	1.17	1.46	1.75	V	ADJ1	
ADJ2 voltage	V_8	1.07	1.34	1.61	V	ADJ2	
RST1 on voltage	RST1		_	0.5	V	RST1	$V_{CC} = 1.2V, R_L = 4.7k\Omega$
RST2 on voltage	RST2		_	0.5	V	RST2	$V_{CC} = 1.2V, R_L = 4.7k\Omega$
Circuit current	I _{CC}	<u> </u>	0.8	1.5	mA	V_{CC}	

DC Characteristics

							Test Conditions
Item	Symbol	Min	Тур	Max	Unit	Pin	
Watchdog timer	T_{WD}		1.1·C·R ₁	-	s	RST1	
		0.5	1.1	1.7	ms		$C = 0.1 \mu F, R_1 = 10 k\Omega$
Reset timer (1)	t _{RST(1)}	_	0.5·C·R ₁	_	S	RST1	
		0.2	0.5	1.1	ms		$C = 0.1 \mu F, R_1 = 10 k\Omega$
Reset timer (2)	t _{RST(2)}	1	830·C	1	S	RST1	$R_1 = 10k\Omega$
		40	83	220	μS		$C = 0.1 \mu F, R_1 = 10 k\Omega$
Input pulse watch	t _{WDIN}	3	_	1	μS	WD	
Transmittal delay time	t _{d1}		20		μS	RST1	
	t _{d2}	_	10	_		RST2	

Operating Description

- (1): The V_{CC} rises up to 0.8 V, then RST1 and RST2 generates low output, and rising up to 4.25 V, charge of C1 begins.
- (2): The V_{CC} rises up to 4.7 V, then RST2 generates high.
- (3), (4): The voltage at TC pin is 2 V, then RST2 generates high, when 4 V, C1 is discharged and RST1 generates low.
 - (5): The voltage at TC pin falls to 2 V, then RST1 generates high unless normal clock signal is entered to WD pin, RST1 repeats this operation.
- (6), (7): Before the voltage at TC pin reaches 4 V, if normal clock signal is entered to WD pin, low RST1 is canceled.
- (8), (9): In the case of entrance of abnormal signal input, as the waveform of TC pin repeats charge and discharge of RST1 alternatively from 2 V to 4 V, the RST1 repeats high and low output operation.
 - (10): The V_{CC} falls to 4.6 V, then RST2 generates low, this detective voltage has a 100 mV hysteresis.
 - (11): When V_{CC} goes down to 4.25 $V(V_{TH1})$, the status of TC pin is switched to discharge. When the potentional at TC pin is detected being $V_{TH3(H)}$ or $V_{TH3(L)}$, the status of $\overline{RST1}$ becomes "low".

Terminology

 $t_{RST(1)}$: Time required for TC pin potential to rise from 0 V $V_{TH3(L)}$ when V_{CC} is being applied.

 t_{WD} : Time required for TC pin potential to rise from $V_{TH3(L)}$ to $V_{TH3(H)}$.

 $t_{RST(2)}\!\!:$ Time required for TC pin potential to go down from $V_{TH3(H)}$ to $V_{TH3(L)}\!\!.$

Figure 1 Operating Waveform

1. Pin(2) (TC pin) charge time and discharge time When input to WD pin is abnormal, TC pin output waveform is as shown below:

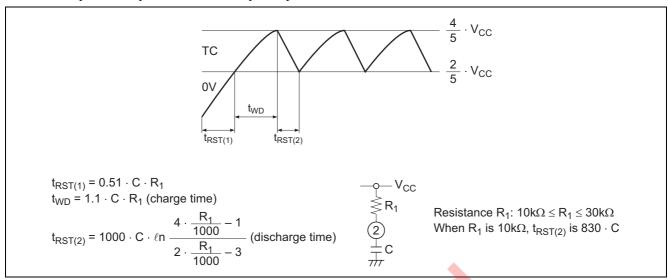


Figure 2

2. Pin (1) (WD pin) input frequency, input pulse width, charge time and discharge time When input to WD pin is normal, TC pin output waveform is as shown below:

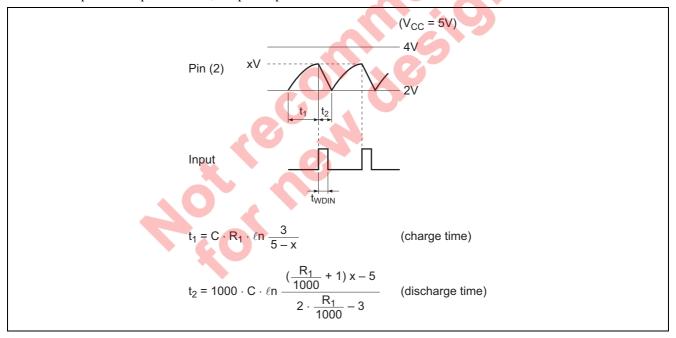


Figure 3

- Pin (1) (WD pin) input requirements
 - (1) Connect capacitor between WD pin and voltage input. (refer to section 3)
 - (2) Input cycle: t_{WD} or less (discharge should start before voltage at WD pin reaches 4 V.)

$$\frac{1}{1.1 \cdot C \cdot R_1} < f$$

(3) Input pulse width t_{WDIN} : t_2 or less

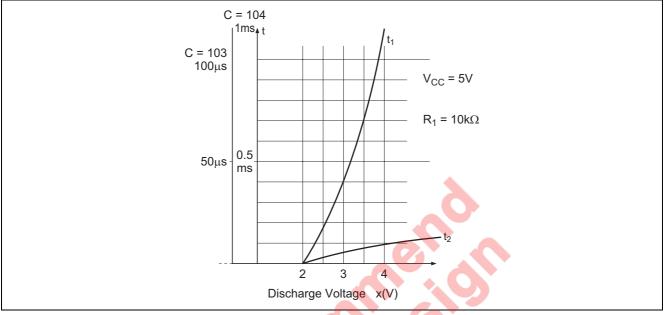


Figure 4

3. Relationship between input pulse width and input capacitance Cin When input to pin (1) is 1.5 V or more, TC pin discharges electricity. Determine pulse width and input capacitance Cin with reference to the diagram shown in figure 5.

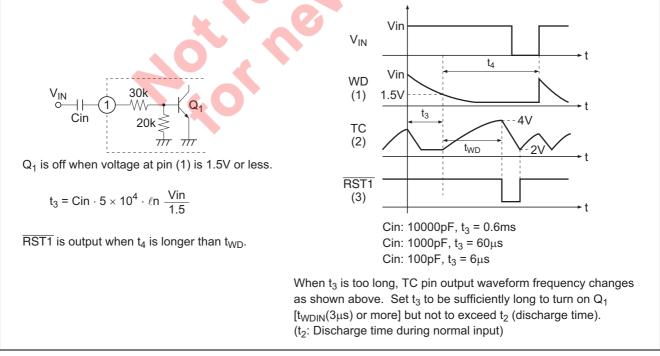
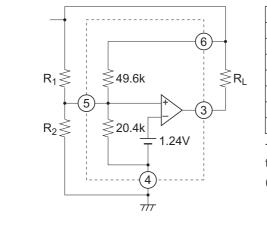



Figure 5

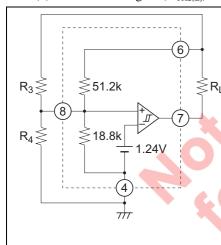
RENESAS

- 4. V_{CC} detection voltage adjustment
 - (1) Detection voltage 1 (V_{TH1}) adjustment

V _{TH1} (V)	R_1 (k Ω)	$R_2 (k\Omega)$	Detection voltage calculation formula
13	10	0.92	
10	10	1.25	$V = R_{01} + R_{02} + 24.00$
7	10	1.96	$V_{TH1} = \frac{R_{01} + R_{02}}{R_{02}} \times 1.24 \text{ (V)}$
5	10	3.17	
4.25	_	_	$\begin{cases} R_{01} = R_1 // 49.6k\Omega \\ R_{02} = R_2 // 20.4k\Omega \end{cases}$
4	10.90	5	$\frac{1}{102} - \frac{1}{12} = \frac{1}{12}$
3.5	8.59	5	

To adjust detection voltage 1, determine external resistance with the following equations.

(a)
$$V_{TH1} > 4.25V (R_1 = 10k\Omega)$$


$$R_2 = \frac{1}{\frac{1}{R_0} - \frac{1}{20.4k}} \qquad (R_0 = \frac{8.322k \times 1.24}{V_{TH1} - 1.24})$$

(b)
$$V_{TH1} < 4.25V (R_2 = 5k\Omega)$$

$$R_1 = \frac{1}{\frac{1}{R_0} - \frac{1}{49.6k}} \qquad (R_0 = \frac{(V_{TH1} - 1.24) \cdot 4.016k}{1.24})$$

Figure 6 Detection Voltage 1 (V_{TH1}) Adjustment

(2) Detection voltage 2 ($V_{TH2(L)}$) adjustment

	V _{TH2(L)} (V)	R_3 (k Ω)	R_4 (k Ω)	∆V _{TH2} (mV)	Detection voltage calculation formula
	13	10	0.93	16.3	$V_{T,10(1)} = \frac{R_{03} + R_{04}}{R_{04} \times 1.24} (V)$
	10	10	1.26	16.3	$V_{TH2(L)} = \frac{R_{03} + R_{04}}{R_{04}} \times 1.24 \text{ (V)}$
	7	10	1.99	16.3	$R_{\text{oo}} = R_0 // 51.2 \text{kO}$
1	5	10	3.24	16.3	$\begin{cases} R_{03} = R_3 // 51.2k\Omega \\ R_{04} = R_4 // 18.8k\Omega \end{cases}$
	4.6		_	100	'
4	4	10.61	5	17.2	$\Delta V_{TH2} = \frac{R_{03}}{51.2k} \times 100 \text{ (mV)}$
	3.5	8.38	5	14.1	51.2k

To adjust detection voltage 2, determine external resistance with the following equations.

(a)
$$V_{TH2(L)} > 4.6V (R_3 = 10k\Omega)$$

$$R_4 = \frac{1}{\frac{1}{R_0} - \frac{1}{18.8k}} \qquad (R_0 = \frac{8.37k \times 1.24}{V_{TH2(L)} - 1.24})$$

(b)
$$V_{TH2(L)} < 4.6V (R_4 = 5k\Omega)$$

$$R_3 = \frac{1}{\frac{1}{R_0} - \frac{1}{51.2k}} \qquad (R_0 = \frac{(V_{TH2(L)} - 1.24) \ 3.95k}{1.24})$$

Figure 7 Detection Voltage 2 (V_{TH2(L)}) Adjustment

Application Example

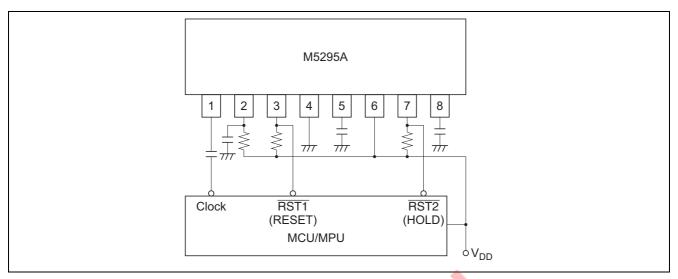


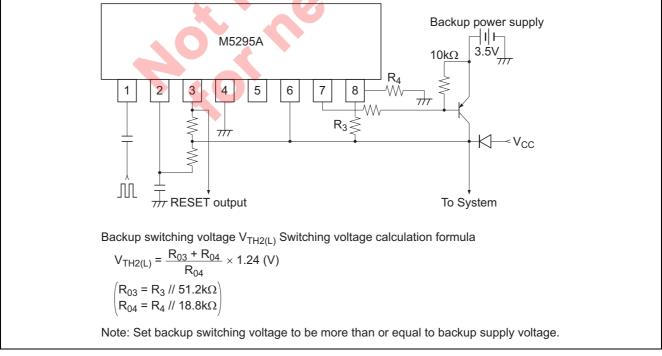
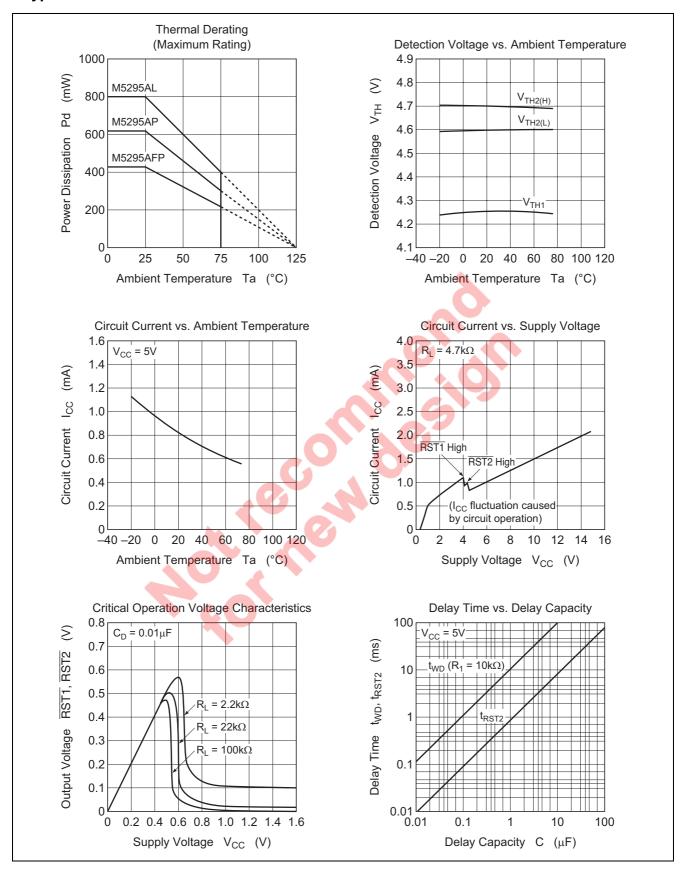
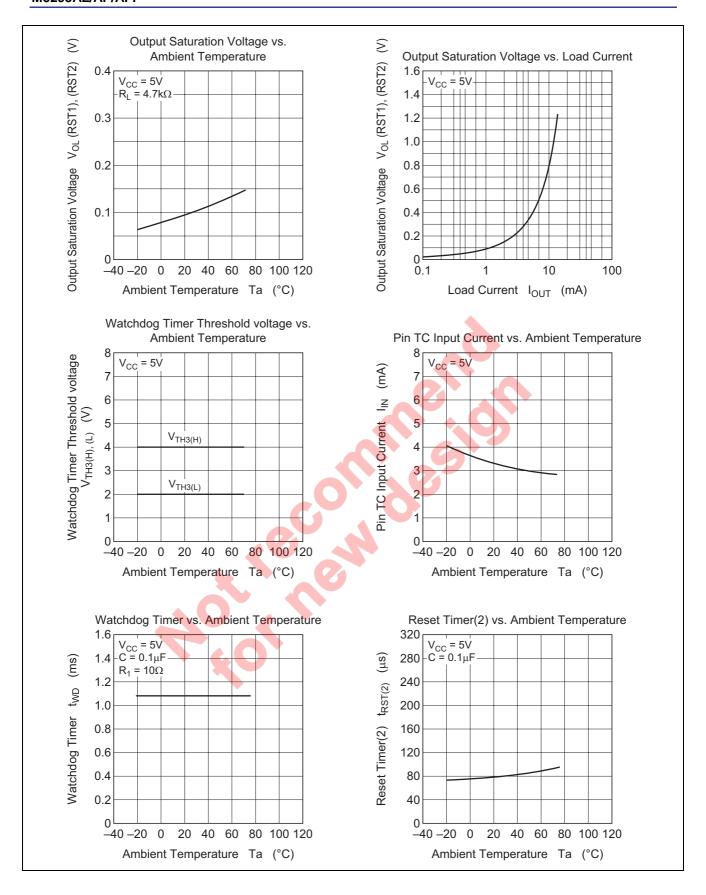
Figure 8 Application Example

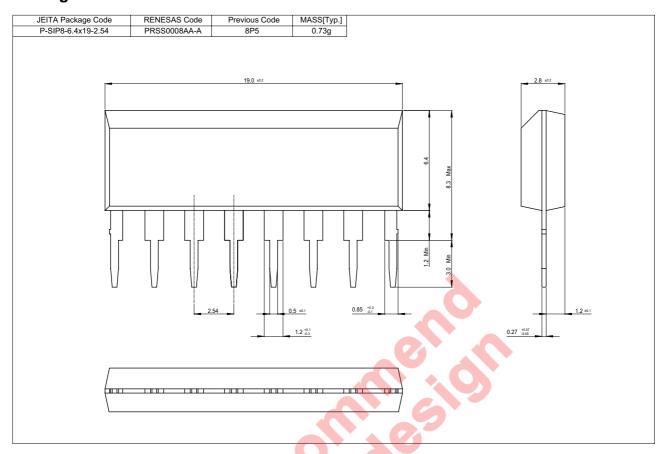
Notice for Use

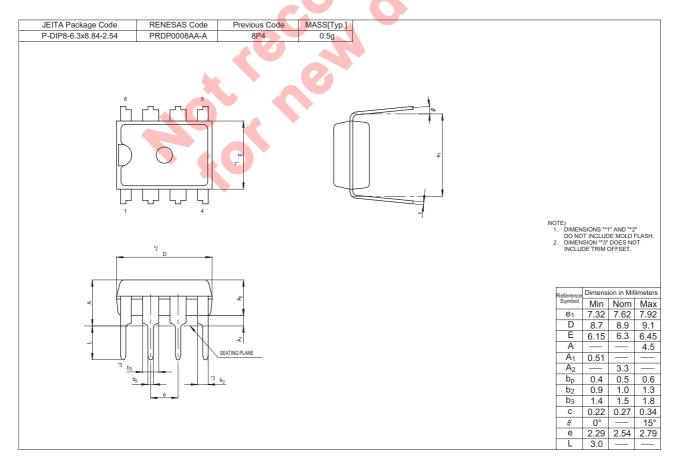
- 1. When malfunction occurs due to noise or order related trouble, connect capacitance of approximately 1000 pF between pin (5) and GND as well as pin (8) and GND to stabilize operation.
- 2. To adjust detection voltage, add resistance of 15 k Ω or less to both V_{CC} and GND via adjusting pins. (Set detection voltage to no less than 3 V.)
- 3. Set t_{WD} and $t_{RST(2)}$ as shown below:

$$\begin{array}{l} 110~\mu s \leq t_{WD} \leq 1.1~s \\ 8.3~\mu s \leq t_{RST(2)} \leq 83~ms \\ 10~k\Omega \leq R_1 \leq 30~k\Omega \end{array}$$

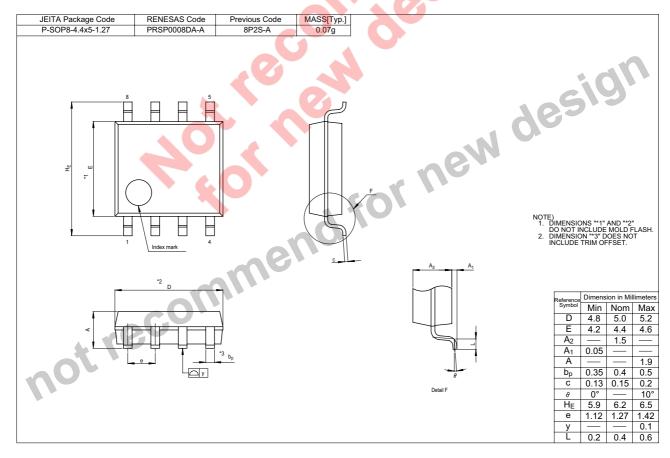
4. Input clock pulses to pin (1) via capacitor. To determine capacitance, refer to "Relationship between input pulse width and input capacitance Cin".


Figure 9 Example of Backup Circuit with M5295AL


Typical Characteristics





Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property rights or any other rights of Renesas or shy third party with respect to the information in this document.

 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, but not limited to, product data, diagrams, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass and regulations, and procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations. All procedures required by such laws and regulations and procedures required by such laws and regulations and procedures required by such laws and regulations. All procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures are such as a result of errors or omissions in the information with a Renesas sales office of the date of the deciding and regulations and procedures of the product

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.

Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510