

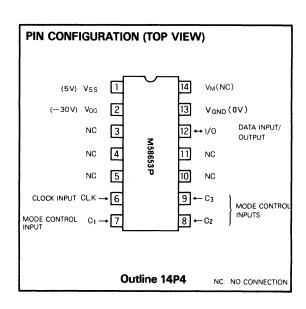
MITSUBISHI LSIS

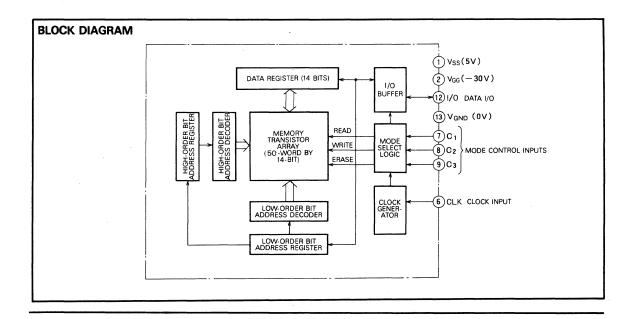
700-BIT (50-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

DESCRIPTION

The M58653P is a serial input/output 700 bit electrically erasable and reprogrammable ROM organized as 50 words of 14 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

FEATURES


- Word-by-word electrically alterable
- Non-volatile data storage 10 years (min)
- Typical power supply voltages -30V, +5V
- Number of erase-write cycles 10⁵ times (min)
- Number of read access unrefreshed. . . 10⁹ times (min)
- 5V I/O interface


APPLICATION

 Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

FUNCTION

The address is designated by two consecutive one-of-tencoded digits. Seven modes—accept address, accept data, shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to C_1 , C_2 , and C_3 . Data is stored by internal negative writing pulses that selectively tunnel charges into the $SiO_2-Si_3N_4$ interface of the gate insulators of the MNOS memory transistors.

PIN DESCRIPTION

Pin	Name	Functions	
1/0	1/0	In the accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.	
VM	Test	Used for testing purposes only. It should be left unconnected during normal operation.	
Vss	Chip substrate voltage	Normally connected to+5V.	
V _{GG}	Power supply voltage	Normally connected to -30V.	· ·
CLK	Clock input	14kHz timing reference. Required for all operating modes. High-level input is possible during standby mode.	
$C_1 \sim C_3$	Mode control input	Used to select the operation mode.	
Vgnd	Ground voltage	Connected to ground (OV)	

OPERATION MODES

C1	C2	C3	Functions
н	Н	H .	Standby mode: The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.
н	н	L	Not used.
н	L	н	Erase mode: The word stored at the addressed location is erased. The data bits after erasing are all low-level.
н	L	_ L	Accept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by two one-of-ten-coded digits.
L	н	н	Read mode: The addressed word is read from the memory into the data register.
L	н	L	Shift data output mode: The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.
L	L	н	Write mode: The data contained in the data register is written into the location designated by the address registers.
L	L	L	Accept data mode: The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits.	Unit
V _{GG}	Supply voltage		0.3~-40	v
VI	Input voltage	With respect to VSS	0.3~-20	v
Vo	Output voltage		0.3~-20	v
Tstg	Storage temperature range		- 40 ~ 125	r
Topr	Operating free-air temperature range		- 10~70	ĉ

RECOMMENDED OPERATING CONDITIONS ($Ta = -10 \sim 70$ °C, unless otherwise noted.)

Symbol	Parameter	Limits			Unit				
Symbol	Parameter	Min	Nom	Max	Onit	Note 1: The order of Vss VGG with on or off,			
V _{GG} -V _{SS}	Supply voltage	- 32.2	- 35	- 37.8	V	With on, V _{GG} is turned on after V _{SS} is done.			
Vss-VGND Supply voltage	Supply voltage	4.75	5	6	V	With off, V_{SS} is turned off after V_{GG} is done.			
ViH	High-level input voltage	V _{SS} -1		V _{SS} +0.3	V				
VIL	Low-level input voltage	V _{SS} -6.5		V _{SS} -4.25	V				

 $\label{eq:Electrical characteristics} \texttt{Electrical characteristics} (\texttt{Ta}=-10 \sim 70 \, \text{°C}, \texttt{V}_{\text{GG}}-\texttt{V}_{\text{SS}}=-35 \, \text{V} \pm 8 \, \text{\%}, \texttt{V}_{\text{SS}}-\texttt{V}_{\text{GND}}=5 \, \text{V}-5 \, \text{\%}, \texttt{unless otherwise noted.})$

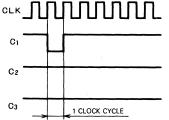
		Test and dising		11.5		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		Vss-1		V _{SS} +0.3	v
VIL	Low-level input voltage		V _{SS} -6.5		Vss-4.25	v
կ∟	Low-level input current	V ₁ -V _{SS} =-6.5V			± 10	μA
loz∟	Off-state output current, low-level voltage applied	$V_{0}-V_{SS} = -6.5V$			± 10	μA
Vон	High-level output voltage	$I_{OH} = -200 \mu A$	$V_{SS}-1$			V
Vol	Low-level output voltage	$I_{OL} = 10 \mu A$			VGND+0.5	V
IGG	Supply current from V _{GG}	$I_0 = 0 \mu A$		5.5	8.8	mA

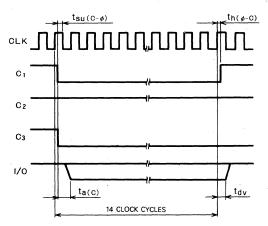
Note 2: Typical values are at Ta=25°C and nominal supply voltage.

TIMING REQUIREMENTS ($T_a = -10 \sim 70$ °C, $V_{GG} - V_{SS} = -35$ V ± 8 %, $V_{SS} - V_{GND} = 5$ V -5 %, unless otherwise noted.)

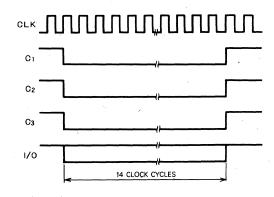
Symbol	Parameter	Alternative	Test conditions		Unit		
		symbols		Min	Тур	Max	Unit
f(¢)	Clock frequency	fø		11.2	14	16.8	kHz
D(ø)	Clock duty cycle	Dø		30	50	55	%
tw(w)	Write time	tw		16	20	24	ms
tw(E)	Erase time	te		16	20	24	ms
tr. tf	Risetime, falltime	tr, tf				1	μs
$tsu(c-\phi)$	Control setup time before the fall of the clock pulse	tcs		0			ns
th(¢−c)	Control hold time after the rise of the clock pulse	tсн]	0			ns

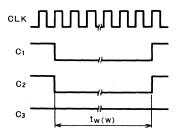
SWITCHING CHARACTERISTICS (Ta = $-10 \sim 70\,^\circ\text{C}$, V_{GG} = $-35 V \pm$ 8 %, unless otherwise noted.)

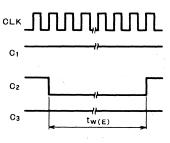

Symbol	Parameter	Alternative	Test conditions		Unit		
Symbol		symbols	Test conditions	Min	Тур	Max	Onit
_ ta(c)	Read access time	tpw	$C_{L} = 100 PF \frac{V_{OH} = V_{SS} - 2V}{V_{OL} = V_{GND} + 1.5V}$			20	μs
	Unpowered nonvolatile data retention time	Τs	$N_{EW} = 10^4$, $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	10			Year
ts		Τs	$N_{EW} = 10^5$, $\frac{t_{W(W)} = 20 \text{ ms}}{t_{W(E)} = 20 \text{ ms}}$	1			Year
NEW	Number of erase/write cycles	Nw		10 ⁵	1		Times
NRA	Number of read access unrefreshed	NRA		10 ⁹			Times
tdv	Data valid time	tew				20	μs


TIMING DIAGRAM Accept Address Mode ກກກກກກກກກກກກກກກກກ CLK Cı C2 С3 1/0 n 40 30 20 10 n 6 5 ADDRESS LOCATION MOST SIGNIFICANT DIGIT LEAST SIGNIFICANT DIGIT

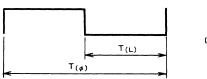
Note 3: The address is designated by two one-of-ten-coded digits. The figure shows designation of the address 49.


Read Mode

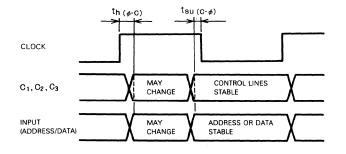

Shift Data Output Mode

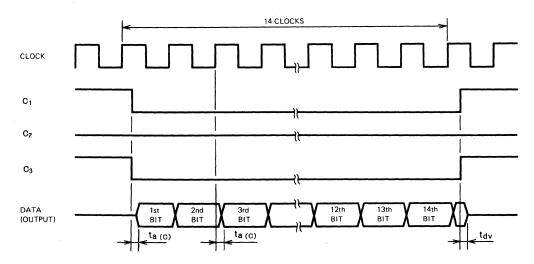

Accept Data Mode

Write Mode



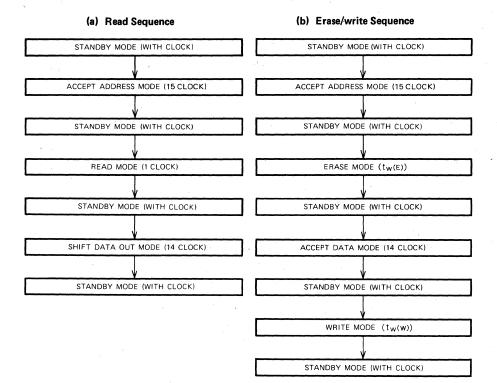
Erase Mode


• The difinition of clock duty cycle, D (ϕ)


 $D(\phi) = T(L) / T(\phi)$

• Timing of data input and mode control inputs

Mode control inputs, C_1 , C_2 , C_3 and input signal my change, when clock is 'H' level.


Timing of data output

The 1st bit of output data is output after access time of $t_{a(C)}$ from the mode control transition. And other bits are output after $t_{a(C)}$ from positive edge of clock.

• Operating sequential flow

