

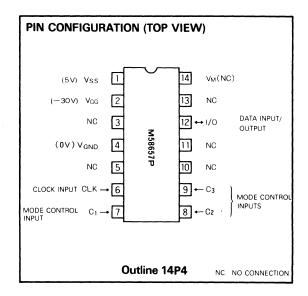
MITSUBISHI LSIS

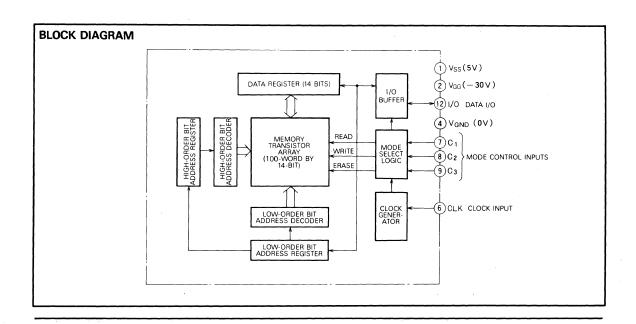
1400-BIT (100-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

DESCRIPTION

The M58657P is a serial input/output 1400 bit electrically erasable and reprogrammable ROM organized as 100 words of 14 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

FEATURES


- Word-by-word electrically alterable
- Non-volatile data storage.....10 years (min)
- Typical power supply voltages-30V, +5V
- Number of erase-write cycles 10⁵ times (min)
- Number of read access unrefreshed. . .10⁹ times (min)
- 5V I/O interface


APPLICATION

 Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

FUNCTION

The address is designated by two consecutive one-of-tencoded digits. Seven modes—accept address, accept data, shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to C_1 , C_2 , and C_3 . Data is stored by internal negative writing pulses that selectively tunnel charges into the $SiO_2-Si_3N_4$ interface of the gate insulators of the MNOS memory transistors.

PIN DESCRIPTION

Pin Name		Functions								
1/0	1/0	In the accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.								
Vм	Test	Used for testing purposes only. It should be left unconnected during normal operation.								
Vss	Chip substrate voltage	Normally connected to +5V.								
V _{GG}	Power supply voltage	Normally connected to -30V.								
CLK	Clock input	14kHz timing reference. Required for all operating modes. High-level input is possible during standby mode.								
$C_1 \sim C_3$	Mode control input	Used to select the operation mode.								
VGND	Ground voltage	Connected to ground (OV)								

OPERATION MODES

Cı	Cz	Сз	Functions				
н	н	н	Standby mode: The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.				
н	н	L	Not used.				
н	L	н	Erase mode. The word stored at the addressed location is erased. The data bits after erasing are all low-level.				
н	L	L	cept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. T dress is designated by two one-of-ten-coded digits.				
L	н	н	Read mode: The addressed word is read from the memory into the data register.				
L	н	L	Shift data output mode: The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.				
L	L	н	Write mode. The data contained in the data register is written into the location designated by the address registers.				
L	L.	L	Accept data mode: The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.				

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit	
V _{GG}	Supply voltage	0.3~-40	v		
VI	Input voltage	With respect to VSS	0.3~-20		
Vo	Output voltage		0.3~-20	v	
Tstg	Storage temperature range		- 40 ~ 125	r	
Topr	Operating free-air temperature range		- 10 ~ 70	r	

RECOMMENDED OPERATING CONDITIONS ($Ta = -10 \sim 70 \, \text{°C}$. unless otherwise noted.)

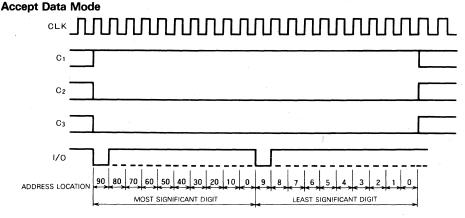
Vss-VGND Supply volta	Parameter	Limits			Unit		
	Parameter		Nom	Max	Onit		
	Supply voltage	- 32.2	- 35 5	- 37.8 6	V	Note 1: The order of $V_{SS} V_{GG}$ with on or off. With on, V_{GG} is turned on after V_{SS} is done.	
	Supply voltage	4.75			v		
	High-level input voltage	V _{SS} -1		V _{SS} +0.3	v	With off, V_{SS} is turned off after V_{GG} is done.	
VIL	Low-level input voltage	V _{SS} -6.5		V _{SS} -4.25	v		

ELECTRICAL CHARACTERISTICS ($T_a = -10 \sim 70 \text{ C}$, $V_{GG} = V_{SS} = -35V \pm 8$ %, $V_{SS} = V_{GND} = 5V - 5$ %. unless otherwise noted.)

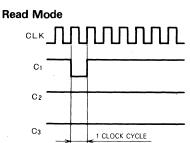
Symbol		Total		Limits			
	Parameter	Test conditions	Min	Тур	Max	Unit	
VIH	High-level input voltage		V _{SS} – 1		V _{SS} +0.3	v	
VIL	Low-level input voltage		V _{SS} -6.5		Vss-4.25	v	
հլ	Low-level input current	$V_1 - V_{SS} = -6.5V$			± 10	μA	
IOZL	Off-state output current, low-level voltage applied	$V_{0}-V_{SS} = -6.5V$			± 10	μA	
V _{OH}	High-level output voltage	$I_{OH} = -200 \mu A$	$V_{SS} - 1$			V	
VOL	Low-level output voltage	$I_{OL} = 10 \mu A$			V GND + 0.5	V	
laa	Supply current from VGG	$I_0 = 0\mu A$		5.5	8.8	mA	

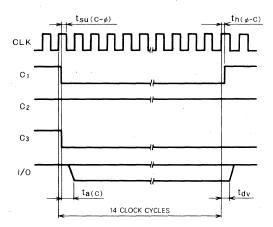
Note 2: Typical values are at Ta=25°C and nominal supply voltage.

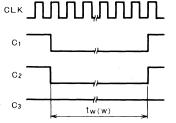
TIMING REQUIREMENTS ($T_a = -10 \sim 70$ °C, $V_{GG} = V_{SS} = -35V \pm 8$ %, $V_{SS} = V_{GND} = 5V - 5$ %. unless otherwise noted.)

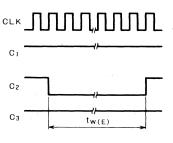

Symbol	Parameter	Alternative	Test conditions				
		symbols		Min	Тур	Max	Unit
f(Clock frequency	fø		10	14	17	kHz
D(<i>φ</i>)	Clock duty cycle	Dø		30	50	55	%
tw(w)	Write time	tw		16	20	24	ms
tw(E)	Erase time	te		16	20	24	ms
tr tf	Risetime, fall-time	tr, tf				1	μs
$tsu(c-\phi)$	Control setup time before the fall of the clock pulse	tcs		0			ns
th(φ−c)	Control hold time after the rise of the clock pulse	t _{CH}		0			ns

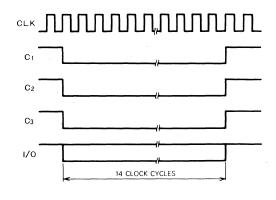
SWITCHING CHARACTERISTICS (Ta = - 10 \sim 70 °C. V_{GG} = - 35V \pm 8 %. unless otherwise noted.)


Sumbal	Parameter	Alternative	Test conditions		Limits			
Symbol		symbols	rest conditions	Min	Түр	Max	Unit	
ta(c)	Read access time	tew	$C_{L} = 100 pF \frac{V_{OH} = V_{SS} - 2V}{V_{OL} = V_{GND} + 1.5V}$			20	μs	
	Unpowered nonvolatile data retention time	Τs	$N_{EW} = 10^4$ $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	10			Year	
ts		Τs	$N_{EW} = 10^5$ $t_{W(W)} = 20 \text{ ms}$ $t_{W(E)} = 20 \text{ ms}$	1			Year	
New	Number of erase/write cycles	Nw		10 ⁵			Times	
NRA	Number of read access unrefreshed	NRA		10 ⁹			Times	
tdv	Data valid time	tpw				20	μs	

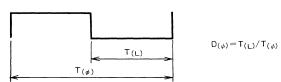

TIMING DIAGRAM


Note 3: The address is designated by two one-of-ten-coded digits. The figure shows designation of the address 99.

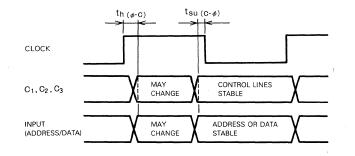

Shift Data Output Mode


Write Mode

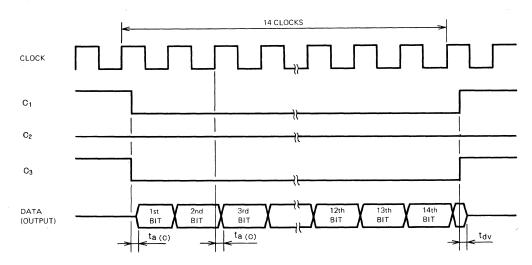
Erase Mode



Accept Data Mode

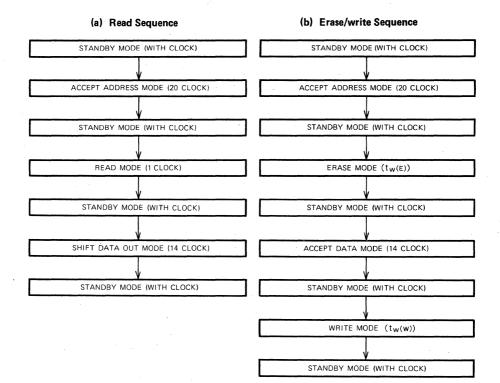


• The difinition of clock duty cycle, D (ϕ)



• Timing of data input and mode control inputs

Mode control inputs, C_1 , C_2 , C_3 and input signal my change, when clock is 'H' level.


• Timing of data output

The 1st bit of output data is output after access time of $t_{a(C)}$ from the mode control transition. And other bits are output after $t_{a(C)}$ from positive edge of clock.

• Operating sequential flow

