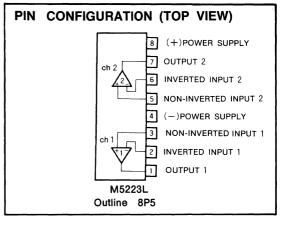
M5223/M5N358P

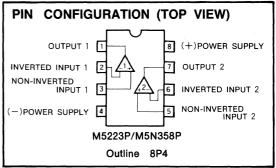
DUAL SINGLE POWER SUPPLY OPERATIONAL AMPLIFIERS

DESCRIPTION

The M5223/M5N358P are a semiconductor integrated circuit designed as a dual operational amplifier which permits single power supply operation.

The device comes in a compact 8-pin SIL or DIL package and it contains two circuits for yielding a high internal phase compensation and high performance. For both input and output operation is possible from the GND level and this makes it possible for the device to be used widely as a general-purpose operational amplifier in the motor control circuits of such equipment as cassette decks, turntables, VTRs and digital audio disc players as well as in automotive electronic products and communications equipment. It can also be employed as a simple comparator.

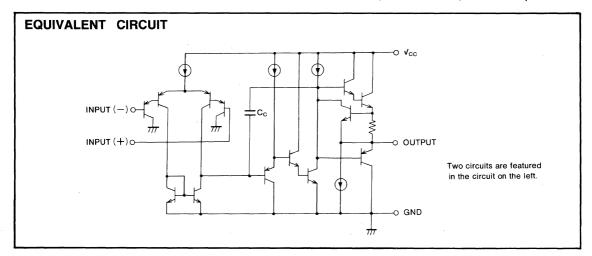

FEATURES


- Wide common input voltage range and operation permitted with GND level input······· V_I = 0.3~36V
- Output voltage level can be reduced to near the GND level
- High voltage gain ····· $G_{VO} = 100 dB(typ.)$
- High allowable power dissipation

..... $P_d = 800 \text{mW}(\text{SIL}), 625 \text{mW} (\text{DIL})$

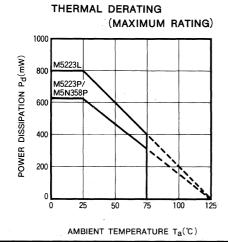
APPLICATION

General-purpose amplifier in control circuits of cassette decks, turntables, VTRs, video disc players and audio disc players; general-purpose amplifier in automotive electronic products, communications equipment and copying machines. General-purpose amplifier in radio-controlled and electronic toys, and electronic games.

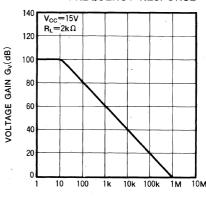


8-pin molded plastic DIL 8-pin molded plastic SIL

DUAL SINGLE POWER SUPPLY OPERATIONAL AMPLIFIERS


ABSOLUTE MAXIMUM RATINGS (τ_a =25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit	
V _{cc}	Supply voltage		36(±18)	V	
ILP	Load current		50	mA	
Vid	Differential input voltage		36	٧.	
Vı	Input voltage		-0.3~+36	V	
Pd	Power dissipation		800(SIL)	mW	
			625(DIL)		
$K_{ heta}$	Thermal derating	τ _a ≥25℃	8(SIL)	mW/℃	
			6. 25(DIL)		
Topr	Ambient temperature		-20~ + 75	°C	
Tstg	Storage temperature		-55~+125	°°°	


ELECTRICAL CHARACTERISTICS (T_a=25°C, V_{cc}=±15V)

Symbol	Parameter	Test conditions	Limits			11-14
			Min	Тур	Max	Unit
Icc	Circuit current	V _{IN} =0	_	0.7	1.2	mA
V _{IO}	Input offset voltage	R _S ≦50kΩ	_	2	7	mV
l _{io}	Input offset current	,	_	5	50	nA
I _{IB}	Input bias current		_	30	250	nA
C _{SR}	Channel separation	f=1kHz	_	120	_	dB
G _{vo}	Open loop voltage gain	R _L ≥2kΩ	90	100	_	dB
V _{OH}	Maximum output voltage	R _L ≥2kΩ	12.0	13.5	_	٧
V _{OL}		R _L ≦2kΩ	_	0.9	1.8	٧
V _{CM}	Common input voltage width	,	-0.3	_	13.5	· V
CMRR	Common mode rejection ratio	R _S ≤50κΩ	_	85	_	dB
SVRR	Supply voltage rejection ratio	R _S ≤50kΩ	_	100	_	dB
Pd	Power dissipation		_	10.5	18	mW
SR	Slew rate	$G_V=0$ dB, $R_L=2$ k Ω	_	0.6	_	V/μs
Isource	Output source current		20	40		mA
l _{sink}	Output sink current		10	20	_	mA

TYPICAL CHARACTERISTICS

VOLTAGE GAIN VS FREQUENCY RESPONSE

FREQUENCY f(Hz)

