32

31

30 R OUT

29

28 G OUT

27 GND4

26

24

23

21

19 <sub>SDA</sub>

18

17

20 SCL

M61311SP/M61316S

**BRIGHT** 

ABL IN

B OUT

NC(GND)

D/A OUT 4

D/A OUT 3

D/A OUT 1

Clamp Pulse IN

Retrace BLK IN

NC:NO CONNECTION

22 D/A OUT 2

VCC2(12V)

# M61311SP/M61316SP

PIN CONFIGURATION

R IN 2

GIN 4

B IN 7

9

GND2 8

SonG IN 5

VCC1(12V) 3

GND1(12V) 6

Sync Sepa OUT

Video Det OUT 10

VCC3(5V) 11

OSD R IN 13

OSD G IN 14

OSD B IN 15

GND3 16

OSD BLK IN 12

#### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

#### **DESCRIPTION**

M61311SP/M61316SP is Semiconductor Integrated Circuit for CRT Display Monitor.

It includes OSD Blanking, OSD Mixing, Retrace Blanking, Video Detector, Sync Separator, Wide Band Amplifier, Brightness Control.

Main/Sub Contrast, Video Response Adjust, Ret BLK Adjust, 4ch D/A OUT and OSD level Adjust Function can be controlled by IIC Bus.

#### **FEATURES**

Frequency Band Width

OSD:

RGB: 200MHz (M61311SP)

150MHz (M61316SP)

(4Vp-p at -3dB) 80MHz

Input

RGB: 0.7Vp-p (typical)

OSD: 3.5V --- 5.0V (positive)
OSD BLK: 3.5V --- 5.0V (positive)
Retrace BLK: 2.5V --- 5.0V (positive)
Clamp Pulse: 2.5V --- 5.0V (positive)

Output

RGB: 5Vp-p

(at Brightness less than 2VDC)

OSD: 4Vp-p

(at Brightness less than 2VDC)

Sync OUT: 5Vp-p

Video Det OUT: High = 4.2VDC, Low = 0.7VDC

Package: 32P4B

32 pin plastic SDIP

#### **STRUCTURE**

Bipolar Silicon Monolithic IC

### **APPLICATION**

**CRT Display Monitor** 

#### RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range 11.50V --- 12.50V (V3,V29)

4.75V --- 5.25V (V11)

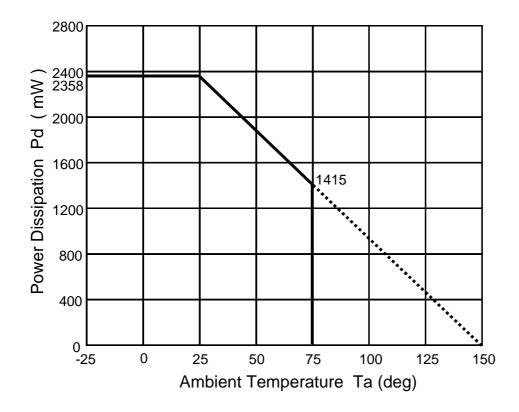
Rated Supply Voltage 12.00V (V3,V29)

5.00V (V11)

#### **MAJOR SPECIFICATION**

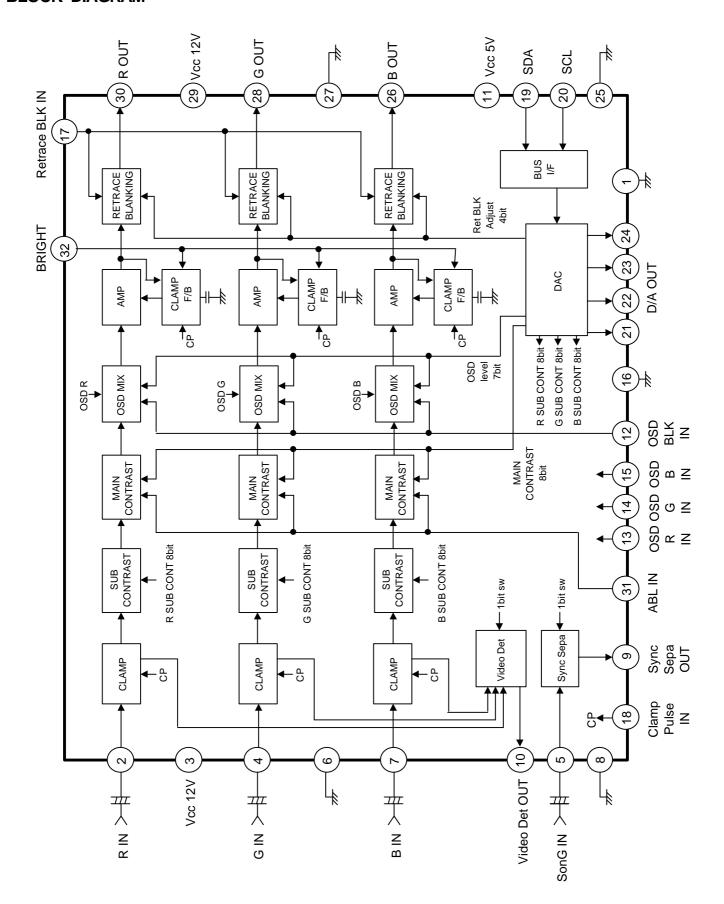
IIC Bus Controlled 3ch Video Pre-Amp with OSD Mixing Function and Retrace Blanking Function.

The difference in the M61311SP/M61316SP is RGB Video Frequency Band Width. M61311SP is 200MHz, M61316SP is 150MHz in conditions RGB Output is 4Vp-p at -3dB.




### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

# **ABSOLUTE MAXIMUM RATING (Ambient temperature:25deg)**


| Parameter                | Symbol  | Rating    | Unit |
|--------------------------|---------|-----------|------|
| Supply voltage (Pin3,29) | Vcc12   | 13.0      | V    |
| Supply voltage (Pin11)   | Vcc5    | 6.0       | V    |
| Power dissipation        | Pd      | 2358      | mW   |
| Ambient temperature      | Topr    | -20 +75   | deg  |
| Storage temperature      | Tstg    | -40 +150  | deg  |
| Recommend supply 12      | Vopr12  | 12.0      | V    |
| Recommend supply 5       | Vopr5   | 5.0       | V    |
| Voltage range 12         | Vopr'12 | 11.5 12.5 | V    |
| Voltage range 5          | Vopr'5  | 4.75 5.25 | V    |

# **THERMAL DERATING (Maximum Rating)**



#### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

### **BLOCK DIAGRAM**



A:Acknowledge P:Stop condition

#### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

#### **BUS CONTROL TABLE**

(1) Slave address:

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | R/W |      |
|----|----|----|----|----|----|----|-----|------|
| 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0   | =88H |

(2) Slave receiver format:

Normal mode

|   | 8bit          |   | 8bit        |   | 8bit      |   |   |   |
|---|---------------|---|-------------|---|-----------|---|---|---|
| S | SLAVE ADDRESS | Α | SUB ADDRESS | Α | DATA BYTE | Α | Р | l |

Auto increment mode

|      | 8bit               |     | 8bit                  |    | 8bit                      |      |
|------|--------------------|-----|-----------------------|----|---------------------------|------|
| S    | SLAVE ADDRESS      | Α   | SUB ADDRESS (0XH)+10H | Λ  | DATA<br>(SUB ADDRESS=0XH) | Α    |
|      | 8bit               |     | 8bit                  |    |                           |      |
| DAT  | - · -              | Α   | DATA                  | Α  | S:Start con               |      |
| (SUI | B ADDRESS=0(X+1)H) | , , | (SUB ADDRESS=0(X+2)H) | ,, | A:Acknowle                | edge |

(3) Sub address byte and data byte format:

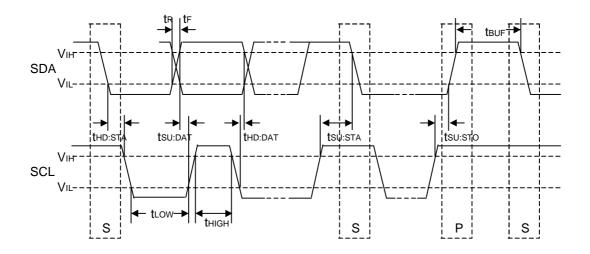
| Function          | Bit     | Sub  |     | Data byte(top:byte format under:start condition |     |     |     |     |     |     |  |
|-------------------|---------|------|-----|-------------------------------------------------|-----|-----|-----|-----|-----|-----|--|
| FUNCTION          | DIL     | add  | D7  | D6                                              | D5  | D4  | D3  | D2  | D1  | D0  |  |
| Main contrast     | 8       | 00H  | A07 | A06                                             | A05 | A04 | A03 | A02 | A01 | A00 |  |
| Main Contrast     | 0       | ООП  | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| Sub contrast R    | 8       | 01H  | A17 | A16                                             | A15 | A14 | A13 | A12 | A11 | A10 |  |
| Sub Contrast K    | 0       | 0111 | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| Sub contrast G    | 8       | 02H  | A27 | A26                                             | A25 | A24 | A23 | A22 | A21 | A20 |  |
| oub contrast o    | Ŭ       | 0211 | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| Sub contrast B    | 8       | 03H  | A37 | A36                                             | A35 | A34 | A33 | A32 | A31 | A30 |  |
| Sub contrast b    | 0       | 0311 | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| OSD level         | 7       | 04H  | -   | A46                                             | A45 | A44 | A43 | A42 | A41 | A40 |  |
| O3D level         | ′       | 0411 | -   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| RE-BLK Adjust     | 4       | 05H  | -   | -                                               | -   | -   | A53 | A52 | A51 | A50 |  |
| RE-BER Aujust     | 4       | 0311 | -   | -                                               | -   | •   | 0   | 0   | 0   | 1   |  |
| Sharpness control | 4       |      | -   | -                                               | -   | -   | A63 | A62 | A61 | A60 |  |
| Sharphess control | 4       |      | -   | -                                               | -   | -   | 0   | 0   | 0   | 1   |  |
| Sync Sepa SW      | 1       |      | -   | -                                               | -   | A64 | -   | -   | -   | -   |  |
| Syric Sepa Svv    | '       | 06H  | -   | -                                               | -   | 0   | -   | -   | -   | -   |  |
| Video Det SW      | 1       | ООП  | -   | -                                               | A65 | -   | -   | -   | -   | -   |  |
| video Del 3vv     | '       |      | -   | -                                               | 0   | -   | -   | -   | -   | -   |  |
| TEST MODE         | 2       | ]    | A67 | A66                                             | -   | -   | -   | -   | -   | -   |  |
| TEST WODE         |         |      | 0   | 0                                               | -   | -   |     |     | -   |     |  |
| D/A OUT1          | 8       | 07H  | A77 | A76                                             | A75 | A74 | A73 | A72 | A71 | A70 |  |
| DIA OUTT          | O       | 0/17 | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| D/A OUT2          | 8       | 08H  | A87 | A86                                             | A85 | A84 | A83 | A82 | A81 | A80 |  |
| DIA OUTZ          | 0       | UOIT | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| D/A OUT2          | ٥       | ᄱᄱ   | A97 | A96                                             | A95 | A94 | A93 | A92 | A91 | A90 |  |
| D/A OUT3          | 3 8 09H |      | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |
| D/A OUT4          | 8       | 0AH  | AA7 | AA6                                             | AA5 | AA4 | AA3 | AA2 | AA1 | AA0 |  |
| D/A 0014          | l °     | UAH  | 0   | 0                                               | 0   | 0   | 0   | 0   | 0   | 1   |  |

<sup>\*)</sup>pre-data

Sync Sepa SW A64 0:Sync Sepa ON 1:Sync Sepa OFF Video Det SW A65 0:Video Det ON 1:Video Det OFF Always set up as A66 and A67 in 0.

For IIC Data, please transfer in the period of Vertical.




<sup>\*)</sup>sub add. 06H

### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

# **IIC BUS CONTROL SECTION SDA, SCL CHARACTERISTICS**

| parameter                                                                      | symbol  | MIN      | MAX | unit |
|--------------------------------------------------------------------------------|---------|----------|-----|------|
| min. input LOW voltage                                                         | VIL     | -0.5     | 1.5 | V    |
| max. input HIGH voltage                                                        | VIH     | 3.0      | 5.5 | V    |
| SCL clock frequency                                                            | fSCL    | 0        | 400 | KHz  |
| Time the bus must be free before a new transmission can start                  | tBUF    | 1.3      | -   | uS   |
| Hold time start condition After this period the first clock pulse is generated | tHD:STA | 0.6      | -   | uS   |
| The LOW period of the clock                                                    | tLOW    | 1.3      | -   | uS   |
| The HIGH period of the clock                                                   | tHIGH   | 0.6      | -   | uS   |
| Set up time for start condition (Only relevant for a repeated start condition) | tsu:sta | 0.6      | -   | uS   |
| Hold time DATA                                                                 | thd:dat | 0        | 0.9 | uS   |
| Set-up time DATA                                                               | tsu:DAT | 100      | -   | nS   |
| Rise time both SDA and SCL lines                                               | tR      | 20+0.1Cb | 300 | nS   |
| Fall time both SDA and SCL lines                                               | tF      | 20+0.1Cb | 300 | nS   |
| Set-up time for stop condition                                                 | tsu:sto | 0.6      | -   | uS   |

### **TIMING DIAGRAM**

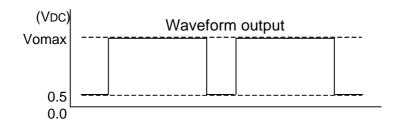




### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

# ELECTRICAL CHARACTERISTICS (VCC = 12V, 5V; Ta = 25°C unless otherwise specified)

| No. Symb                                          | pol parameter                                       | Test<br>point | 3        | 2        | 4        | 5    | 7        | Input<br>12 | 13       | 14       | 4-       | 4-1      |    | CTL | _   | _         | _         | _         | _         |     | _     | CTL (H)         |           | 001       |           | _         | _        | Limits |      | ۱ ا      |
|---------------------------------------------------|-----------------------------------------------------|---------------|----------|----------|----------|------|----------|-------------|----------|----------|----------|----------|----|-----|-----|-----------|-----------|-----------|-----------|-----|-------|-----------------|-----------|-----------|-----------|-----------|----------|--------|------|----------|
| 1 lcc1                                            | parameter                                           | point         |          |          |          |      |          | 12          | 10       | 14       | 15       | 17       | 18 | 31  | 32  | 00H       | 01H       | 02H       | 03H       | 04H | 05H   | 06H             | 07H       | 08H       | 09H       | 0AH       | 1        |        |      | Unit     |
| H                                                 |                                                     |               | 12V      | R        | G        | SonG | В        | OSD         | OSD      | OSD      | OSD      | RET      | CP | ABL | BRT | Main      | Sub R     | Sub G     | Sub B     | OSD | ReBLK | Sharp SonG VDET | D/A       | D/A       | D/A       | D/A       | MIN      | TYP    | MAX  | OTIIL    |
| H                                                 | -1/6/                                               |               | Vcc      | IN       | IN       | IN   | IN       | BLK         | R IN     | G IN     | B IN     | BLK      | IN | (V) | (V) | cont      | cont      | cont      | cont      | Adj | Adj   | ness SW SW      | OUT1      | OUT2      | OUT3      | OUT4      |          |        |      |          |
| 2 lcc2                                            | 5V Circuit current 1 power save mode                | IB            | а        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 2   | FF<br>255 | FF<br>255 | FF<br>255 | FF        | 00  | 00    | 8 0 0           | 00        | 00        | 00        | 00        | -        | 6      | 10   | mA       |
| 2 lcc2                                            | 12V Circuit current 2                               |               |          |          | Н        |      |          |             |          | -        | -        |          |    |     |     | FF        | Z55       | FF        | 255<br>FF | 00  | 00    | 8 0 0           | 00        | 00        | 00        | 00        |          |        |      | $\dashv$ |
| 1 1                                               | normal mode                                         | IA            | b        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 2   | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 0         | 0         | 0         | 0         | -        | 105    | 130  | mA       |
| 3 lcc3                                            | 5V Circuit current 3                                | IB            | b        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 2   | FF        | FF        | FF        | FF        | 00  | 00    | 08              | 00        | 00        | 00        | 00        |          | 4      | 8    | mA       |
| 0 .000                                            | normal mode                                         |               | Ľ        | Ľ        | Ľ        | ŭ    | <u>и</u> | ű           | ű        | ű        | ŭ        | ŭ        |    |     | _   | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 0         | 0         | 0         | 0         |          | ,      | _    |          |
| 4 Voma                                            | ax Output dynamic range                             | 26,28,<br>30  | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 0.5 | FF<br>255 | FF<br>255 | FF<br>255 | FF<br>255 | 00  | 00    | 8 0 0           | FF<br>255 | FF<br>255 | FF<br>255 | FF<br>255 | 7.5      | 9      | -    | VDC      |
| $\vdash$                                          |                                                     | 26,28,        | Н        |          | Н        |      |          |             | -        | -        | +        | -        |    |     |     | 46        | Z55       | FF        | Z55       | 00  | 00    | 08              | Z55<br>FF | FF.       | Z55       | Z55       |          |        |      | -        |
| 5 Vima                                            | Maximum input                                       | 30            | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | 70        | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 1.4      | -      | -    | Vp-p     |
| 6 Gv                                              | Maximum gain                                        | 26,28,        | b        | b        | ь        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 16       | 17.5   | 19   | dB       |
| 0 0                                               | waxiinam gain                                       | 30            | Ľ        | ŭ        | Ľ        | а    |          | а           | ű        | а        | ä        | a        |    | J   |     | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 10       | 17.5   | 13   | ub.      |
| 7 <b>∆</b> Gv                                     | Relative maximum gain                               | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | FF<br>255 | FF<br>255 | FF<br>255 | FF<br>255 | 00  | 00    | 8 0 0           | FF<br>255 | FF<br>255 | FF<br>255 | FF<br>255 | 0.8      | 1.0    | 1.2  | -        |
| $\vdash$                                          | Main contrast control                               | 26,28,        | Н        |          |          |      |          |             | _        | -        | +        |          |    |     |     | C8        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF.       | FF        | FF        |          |        |      | $\dashv$ |
| 8 VC1                                             | characteristics 1 (MAX)                             | 30            | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | 200       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 3.3      | 4      | 4.7  | Vp-p     |
| 9 <b>∆</b> VC1                                    | Main contrast control                               | _             |          | _        |          | -    |          | _           | _        | _        | _        | _        | _  |     | _   | C8        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.8      | 1.0    | 1.2  |          |
| ٠                                                 | relative characteristics 1                          |               |          |          |          |      |          |             |          |          | _        |          |    |     |     | 200       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.0      |        |      |          |
| 10 VC2                                            | Main contrast control characteristics 2 (TYP)       | 26,28,<br>30  | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | 80<br>128 | FF<br>255 | FF<br>255 | FF<br>255 | 00  | 00    | 8 0 0           | FF<br>255 | FF<br>255 | FF<br>255 | FF<br>255 | 2.3      | 2.8    | 3.3  | Vp-p     |
| H                                                 | Main contrast control                               |               | Н        | H        | Н        | H    |          |             | -        | $\dashv$ | +        | $\dashv$ |    |     |     | 80        | FF.       | FF        | Z55       | 00  | 00    | 08              | Z55<br>FF | FF.       | Z55       | FF.       |          | Н      | H    | $\dashv$ |
| 11 <b>∆</b> ∨C                                    | relative characteristics 2                          |               | L-       | L -      | L-       | L-   |          |             |          |          |          | <u> </u> | -  |     |     | 128       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 8.0      | 1.0    | 1.2  |          |
| 12 VC3                                            | Main contrast control                               | 26,28,        | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | 10        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.25     | 0.55   | 0.85 | Vp-p     |
| <u> </u>                                          | characteristics 3 (MIN)                             | 30            | بّــا    | Ľ        | بّــا    | Ľ    | _        |             |          | _        |          | _        | _  | _   |     | 16        | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       |          |        | 55   |          |
| 13 <b>∆</b> ∨C                                    | Main contrast control                               | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | 10        | FF<br>255 | FF<br>255 | FF        | 00  | 00    | 8 0 0           | FF        | FF        | FF        | FF<br>255 | -0.2     | 0      | 0.2  | Vp-p     |
| $\vdash$                                          | relative characteristics 3  Sub contrast control    | 26,28,        | H        | $\vdash$ | Н        | H    | $\vdash$ | H           | ┥        |          | $\dashv$ | ᅱ        | H  | H   | H   | 16<br>FF  | 255<br>C8 | 255<br>C8 | 255<br>C8 | 00  | 00    | 08              | 255<br>FF | 255<br>FF | 255<br>FF | FF.       |          | Н      | Н    | $\dashv$ |
| 14 VSC                                            | characteristics 1 (MAX)                             | 30            | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | 255       | 200       | 200       | 200       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 3.3      | 4      | 4.7  | Vp-p     |
| 15 <b>∆</b> ∨S0                                   | Sub contrast control                                | _             |          |          |          |      |          |             |          |          | I        |          |    |     |     | FF        | C8        | C8        | C8        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.8      | 1.0    | 1.2  |          |
| 13 2000                                           | relative characteristics 1                          |               | Ľ        | Ĺ        | Ľ        |      |          | _           | _        |          | _        |          | _  |     |     | 255       | 200       | 200       | 200       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.0      | 1.0    | 1.2  |          |
| 16 VSC                                            | Sub contrast control                                | 26,28,<br>30  | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | FF<br>255 | 80        | 80        | 80        | 00  | 00    | 8 0 0           | FF        | FF        | FF        | FF<br>255 | 2.3      | 2.8    | 3.3  | Vp-p     |
| $\vdash$                                          | characteristics 2 (TYP)  Sub contrast control       | - 50          | H        |          | H        |      |          |             | $\dashv$ |          | -        | -        | _  |     |     | FF        | 128<br>80 | 128<br>80 | 128<br>80 | 00  | 00    | 8 0 0           | 255<br>FF | 255<br>FF | 255<br>FF | Z55       |          |        |      | $\dashv$ |
| 17 <b>∆</b> VS0                                   | relative characteristics 2                          | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | 255       | 128       | 128       | 128       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.8      | 1.0    | 1.2  | -        |
| 18 VSC                                            | Sub contrast control                                | 26,28,        | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | FF        | 10        | 10        | 10        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.2      | 0.5    | 0.8  | Vp-p     |
| 10 100                                            | characteristics 3 (MIN)                             | 30            | Ü        | Ü        | ŭ        | а    | Ь        | а           | ű        | а        | ä        | а        | b  | 3   |     | 255       | 16        | 16        | 16        | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.2      | 0.0    | 0.0  | VPP      |
| 19 <b>∆</b> ∨S                                    | Sub contrast control                                | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | FF        | 10        | 10        | 10        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | -0.2     | 0      | 0.2  | Vp-p     |
| $\vdash$                                          | relative characteristics 3  ABL control             | 26,28,        | Н        |          | H        |      |          |             | $\dashv$ |          | -        | -        | -  |     |     | 255<br>FF | 16<br>FF  | 16<br>FF  | 16<br>FF  | 00  | 00    | 8 0 0           | 255<br>FF | 255<br>FF | 255<br>FF | 255<br>FF |          |        |      | $\dashv$ |
| 20 ABL                                            | characteristics 1                                   | 30            | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 4   | 2   | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 3.4      | 4.2    | 5.0  | Vp-p     |
| 21 <b>∆</b> ABI                                   | ABL control relative                                |               | Ι.       |          | Ι.       |      |          |             |          |          | _        |          |    |     |     | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.8      | 1.0    | 1.2  |          |
| 21 2/18                                           | characteristics 1                                   |               |          |          |          |      |          |             |          |          |          |          |    |     |     | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.0      | 1.0    | 1.2  |          |
| 22 ABL                                            | ABL control characteristics 2                       | 26,28,<br>30  | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 2   | 2   | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 1.5      | 2.0    | 2.5  | Vp-p     |
| $\vdash$                                          | ABL control relative                                |               | H        |          | H        |      |          |             |          |          |          |          |    |     |     | 255<br>FF | 255<br>FF | 255<br>FF | 255<br>FF | 00  | 00    | 8 0 0           | 255<br>FF | 255<br>FF | 255<br>FF | 255<br>FF |          |        |      | $\dashv$ |
| 23 <b>∆</b> ABI                                   | characteristics 2                                   | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.8      | 1.0    | 1.2  | -        |
| 24 ABL                                            | ABL control                                         | 26,28,        | ь        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 0   | 2   | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | -0.3     | 0      | 0.3  | Vp-p     |
| 2-7 ADL                                           | characteristics 3                                   | 30            | Ľ        | Ľ        | Ľ        | а    |          | а           | a        | a        | ٦        | а        | ٥  | Ŭ   |     | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.3      | Ľ      | 0.0  | יף-עי    |
| 25 <b>∆</b> ABI                                   | ABL control relative<br>characteristics 3           | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | FF        | FF<br>255 | FF        | FF<br>255 | 00  | 00    | 08              | FF        | FF<br>255 | FF<br>255 | FF<br>255 | -0.2     | 0      | 0.2  | Vp-p     |
| <del></del>                                       | Brightness control                                  | 26,28,        | H        | $\vdash$ | H        | H    |          |             | -        |          | $\dashv$ | -        | Ţ  |     | H   | 255<br>FF | FF        | 255<br>FF | FF        | 00  | 00    | 8 0 0           | 255<br>FF | FF<br>FF  | FF        | FF        | $\vdash$ | Н      |      | $\dashv$ |
| 26 VB1                                            | characteristics 1                                   | 30            | b        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 4   | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 3.4      | 3.8    | 4.2  | VDC      |
| 27 <b>∆</b> ∨B                                    | Brightness control                                  | _             |          | Ι.       | Γ.       |      |          |             | ╗        | Ī        | ╗        | ᄀ        | ╗  |     |     | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | -0.3     | 0      | 0.3  | V        |
| <u> </u>                                          | relative characteristics 1                          |               | Ĺ        | Ĺ        | Ĺ        |      |          |             |          | ]        | ļ        |          |    |     |     | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.0      | Ľ      | 0.0  |          |
| 28 VB2                                            | Brightness control                                  | 26,28,<br>30  | b        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 2   | FF 255    | FF<br>255 | FF 255    | FF 255    | 00  | 00    | 8 0 0           | FF<br>255 | FF<br>255 | FF<br>255 | FF<br>255 | 1.6      | 1.9    | 2.2  | VDC      |
| <del>                                      </del> | characteristics 2 Brightness control                | 50            | $\vdash$ | $\vdash$ | $\vdash$ |      |          |             | $\dashv$ | $\dashv$ | $\dashv$ | $\dashv$ |    |     |     | 255<br>FF | FF        | 255<br>FF | 255<br>FF | 00  | 00    | 8 0 0           | 255<br>FF | 255<br>FF | 255<br>FF | 255<br>FF |          |        |      | _        |
| 29 <b>∆</b> ∨B                                    | relative characteristics 2                          | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | -0.3     | 0      | 0.3  | V        |
| 30 VB3                                            | Brightness control                                  | 26,28,        | b        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 0.5 | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.3      | 0.5    | 0.7  | VDC      |
| VB                                                | characteristics 3                                   | 30            | Ľ        | Ľ        | Ľ        | а    | α        | а           | a        | a        | ۵,       | а        | ٥  | J   | J.J | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.0      | 0.0    | 5.7  | V DC     |
| 31 <b>∆</b> ∨B                                    | Brightness control                                  | -             | -        | -        | -        | -    | -        | -           | -        | -        | -        | -        | -  | -   | -   | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | -0.3     | 0      | 0.3  | V        |
| $\vdash$                                          | relative characteristics 3  Pulse characteristics 1 | 26,28,        | Н        | $\vdash$ | Н        | H    |          |             | -        | +        | $\dashv$ | -        | -  |     |     | 255<br>C8 | 255<br>FF | 255<br>FF | 255<br>FF | 00  | 00    | 8 0 0           | 255<br>FF | 255<br>FF | 255<br>FF | 255<br>FF | $\vdash$ | 2.2    | 3.0  |          |
| 32 Tr                                             | (4Vp-p)                                             | 26,28,        | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | 200       | 255       | 255       | 255       | 00  | 0     | 8 0 0           | 255       | 255       | 255       | 255       | H        | 2.7    | 3.0  | nS       |
| 22 4-                                             | Relative pulse                                      |               | П        |          | H        |      |          |             | 7        |          | T        | _        |    |     |     | C8        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.0      |        |      | nc.      |
| 33 <b>∆</b> Tr                                    | characteristics 1 (4Vp-p)                           | _             | Ŀ        | Ĺ        | Ŀ        | _    | _        | _           | _        | -        | -        | _        | -  |     | _   | 200       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | -0.8     | 0      | 0.8  | nS       |
| 34 Tf                                             | Pulse characteristics 2                             | 26,28,        | b        | b        | b        | а    | b        | а           | а        | а        | а        | а        | b  | 5   | 2   | C8        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | -        | 2.2    | 3.0  | nS       |
| $\vdash$                                          | (4Vp-p)                                             | 30            | Н        | H        | Н        | H    |          |             | _        | _        | $\dashv$ |          |    |     | H   | 200       | 255<br>EE | 255<br>EE | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | Ŀ        | 2.7    | 3.5  | _        |
| 35 <b>∆</b> ⊤f                                    | Relative pulse characteristics 2 (4Vp-p)            | -             | -        | -        | -        | -    | -        | -           | -        | - [      | - [      | -        | -  | -   | -   | C8<br>200 | FF<br>255 | FF<br>255 | FF<br>255 | 00  | 00    | 8 0 0           | FF<br>255 | FF<br>255 | FF<br>255 | FF<br>255 | -0.8     | 0      | 8.0  | nS       |
| 20 1/11 2                                         | Clamp pulso                                         | 26,28,        |          |          |          |      |          |             |          | ᄀ        | _        |          |    | -   |     | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        |          | H      | 0.0  | 1/-      |
| 36 VthC                                           | threshold voltage                                   | 30            | b        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 2   | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       | 0.7      | 1.5    | 2.3  | VDC      |
| 37 WCI                                            | Clamp pulse                                         | 26,28,        | b        | а        | а        | а    | а        | а           | а        | а        | а        | а        | b  | 5   | 2   | FF        | FF        | FF        | FF        | 00  | 00    | 08              | FF        | FF        | FF        | FF        | 0.2      | _ ]    | _    | uS       |
| ш                                                 | minimum width                                       | 30            |          |          |          |      |          |             |          |          |          |          |    |     |     | 255       | 255       | 255       | 255       | 0   | 0     | 8 0 0           | 255       | 255       | 255       | 255       |          | Ш      |      |          |


\*) No. 32&34 Pulse characteristics 1&2 (4Vp-p) top : M61311SP under : M61316SP



| П   |                |                                               |              | Ι   |    |    |      |    | Inpu |      |      |      |     |    | CTL | Vol |                  |                  |                  |                  |              | Rus      | CTL          | (H)   |      |                  |                  |                  |                  |      | Limits |          | $\overline{}$ |
|-----|----------------|-----------------------------------------------|--------------|-----|----|----|------|----|------|------|------|------|-----|----|-----|-----|------------------|------------------|------------------|------------------|--------------|----------|--------------|-------|------|------------------|------------------|------------------|------------------|------|--------|----------|---------------|
| No  | Cumahal        | norometer                                     | Test         | 3   | 2  | 4  | 5    | 7  | 12   | 13   | 14   | 15   | 17  | 18 | 31  | 32  | 00H              | 01H              | 02H              | 03H              | 04H          | 05H      | 06H          | (1.1) |      | 07H              | 08H              | 09H              | 0AH              |      |        | $\Box$   | Lloit         |
| No. | Symbol         | parameter                                     | point        | 12V | R  | G  | SonG | В  | OSD  | OSD  | OSD  | OSD  | RET | СР | ABL | BRT | Main             | Sub R            | Sub G            | Sub B            | OSD          | ReBLK    | Sharp        | SonG  | VDET | D/A              | D/A              | D/A              | D/A              | MIN  | TYP    | MAX      | Unit          |
|     |                |                                               |              | Vcc | IN | IN | IN   | IN | BLK  | R IN | G IN | B IN | BLK | IN | (V) | (V) | cont             | cont             | cont             | cont             | Adj          | Adj      | ness         | SW    | SW   | OUT1             | OUT2             | _                | OUT4             |      |        | ш        |               |
| 38  | OTr            | OSD pulse<br>characteristics 1                | 26,28,<br>30 | b   | а  | а  | а    | а  | а    | b    | b    | b    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 6F<br>111    | 00       | 8            | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | -    | 2      | 5        | nS            |
| 39  | OTf            | OSD pulse characteristics 2                   | 26,28,<br>30 | b   | а  | а  | а    | а  | а    | b    | b    | b    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 6F<br>111    | 00       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | -    | 4      | 7        | nS            |
| 40  | Oadj1          | OSD adjust control                            | 26,28,       | b   | а  | а  | а    | а  | b    | b    | b    | b    | а   | b  | 5   | 2   | FF               | FF               | FF               | FF               | 7F           | 00       | 08           |       |      | FF               | FF               | FF               | FF               | 3.3  | 4.0    | 4.9      | Vp-p          |
| Н   |                | characteristics 1 (MAX) OSD adjust control    | 30           | _   | _  | _  |      | -  |      | _    |      | _    | _   |    | _   |     | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 127<br>7F    | 0        | 8            | 0     | 0    | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        |      |        |          |               |
| 41  | <b>Δ</b> Oadj1 | relative characteristics 1                    | -            |     | -  | -  | •    | -  | -    | -    | -    | -    | -   | -  | -   | -   | 255              | 255              | 255              | 255              | 127          | 0        | 8            | 0     | 0    | 255              | 255              | 255              | 255              | 0.8  | 1.0    | 1.2      | _             |
| 42  | Oadj2          | OSD adjust control characteristics 2 (TYP)    | 26,28,<br>30 | b   | а  | а  | а    | а  | b    | b    | b    | b    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 40<br>64     | 00       | 8            | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 1.2  | 1.8    | 2.4      | Vp-p          |
| 43  | <b>∆</b> Oadj2 | OSD adjust control relative characteristics 2 | -            | -   | -  | -  | -    | -  | -    | -    | -    | -    | -   | -  | -   | -   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 40<br>64     | 00       | 80           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 0.8  | 1.0    | 1.2      | -             |
| 44  | Oadj3          | OSD adjust control<br>characteristics 3 (MIN) | 26,28,<br>30 | b   | а  | а  | а    | а  | b    | b    | b    | b    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00<br>0      | 00       | 08<br>8      | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | -0.5 | -0.1   | 0.3      | Vp-p          |
| 45  | <b>∆</b> Oadj3 | OSD adjust control relative characteristics 3 | -            |     | -  | -  | •    | -  | -    | -    | -    | -    | -   | -  | -   | -   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 00       | 88           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | -0.2 | 0      | 0.2      | -             |
| 46  | VthOSD         | OSD input<br>threshold voltage                | 26,28,<br>30 | b   | а  | а  | а    | а  | а    | b    | b    | b    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00<br>0      | 00<br>0  | 08<br>8      | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 1.7  | 2.5    | 3.3      | VDC           |
| 47  | OBLK           | Black level difference in OSD BLK on/off      | 26,28,<br>30 | b   | а  | а  | а    | а  | b    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00<br>0      | 00<br>0  | 08<br>8      | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | -0.5 | -0.1   | 0.3      | VDC           |
| 48  | ∆OBLK          | Relative OBLK                                 | 26,28,<br>30 | b   | а  | а  | а    | а  | b    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00<br>0      | 00<br>0  | 08<br>8      | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | -0.2 | 0      | 0.2      | -             |
|     |                |                                               |              |     |    |    |      |    |      |      |      |      |     |    |     |     |                  |                  |                  |                  |              |          |              |       |      |                  |                  |                  |                  |      |        |          |               |
| 50  | VthBLK         | OSD BLK input<br>threshold voltage            | 26,28,<br>30 | b   | b  | b  | а    | b  | b    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 00       | 08<br>8      | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 1.7  | 2.5    | 3.3      | VDC           |
| 51  | HBLK1          | Retrace BLK characteristics 1                 | 26,28,<br>30 | b   | а  | а  | а    | а  | а    | а    | а    | а    | b   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 0F<br>15 | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 1.6  | 1.9    | 2.2      | VDC           |
| 52  | HBLK2          | Retrace BLK characteristics 2                 | 26,28,       | b   | а  | а  | а    | а  | а    | а    | а    | а    | b   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 08       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 1.0  | 1.3    | 1.6      | VDC           |
| 53  | HBLK3          | Retrace BLK characteristics 3                 | 26,28,<br>30 | b   | а  | а  | а    | а  | а    | а    | а    | а    | b   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 00       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 0.3  | 0.6    | 0.9      | VDC           |
| 54  | VthHBLK        | Retrace BLK input threshold voltage           | 26,28,<br>30 | b   | а  | а  | а    | а  | а    | а    | а    | а    | b   | b  | 5   | 2   | FF               | FF               | FF               | FF               | 00           | 00       | 08           |       |      | FF               | FF               | FF               | FF               | 0.7  | 1.5    | 2.3      | VDC           |
| 55  | SS-NV          | SOG input maximum noise voltage               | 9            | b   | а  | а  | b    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   | 255<br>FF<br>255 | 255<br>FF<br>255 | 255<br>FF<br>255 | 255<br>FF<br>255 | 0<br>00<br>0 | 00       | 08           | 0     | 0    | 255<br>FF<br>255 | 255<br>FF<br>255 | 255<br>FF<br>255 | 255<br>FF<br>255 | -    | -      | 0.02     | Vp-p          |
| 56  | SS-SV          | SOG minimum input voltage                     | 9            | b   | а  | а  | b    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 00       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 0.2  | -      | -        | Vp-p          |
| 57  | VSH            | Sync output high level                        | 9            | b   | а  | а  | b    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 00       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 4.5  | 4.9    | 5.0      | VDC           |
| 58  | VSL            | Sync output low level                         | 9            | b   | а  | а  | b    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 00       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 0    | 0.4    | 0.7      | VDC           |
| 59  | TDS-F          | Sync output delay time 1                      | 9            | b   | а  | а  | b    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 00           | 00       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 10   | 30     | 65       | nS            |
| 60  | TDS-R          | Sync output delay time 2                      | 9            | b   | а  | а  | b    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF<br>255        | FF<br>255        | FF<br>255        | FF               | 00           | 00       | 08           | 0     | 0    | FF<br>255        | FF<br>255        | FF<br>255        | FF<br>255        | 10   | 30     | 65       | nS            |
| 61  | VD-NV          | V-DET input maximum noise voltage             | 10           | b   | b  | b  | а    | b  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF               | FF               | FF               | 255<br>FF        | 00           | 00       | 08           | 0     | 0    | FF               | FF               | FF               | FF<br>255        | -    | -      | 0.05     | Vp-p          |
| 62  | VD-SV          | V-DET minimum input voltage                   | 10           | b   | b  | b  | а    | b  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF               | FF               | FF               | FF               | 00           | 00       | 8<br>08<br>8 | 0     |      | FF               | FF               | FF               | FF               | 0.2  | -      | _        | Vp-p          |
| 63  | VVDH           | V-DET output high level                       | 10           | b   | b  | b  | а    | b  | а    | а    | а    | а    | а   | b  | 5   | 2   | FF               | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 08           |       | 0    | 255<br>FF        | FF               | FF               | 255<br>FF        | 3.8  | 4.2    | 5.0      | VDC           |
| 64  | VVDL           | V-DET output low level                        | 10           | b   | b  | b  | а    | b  | а    | а    | а    | а    | а   | b  | 5   | 2   | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8 08         | 0     | 0    | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 0    | 0.7    | 1.1      | VDC           |
| 65  | TDV-F          | V-DET output delay time 1                     | 10           | b   | b  | b  | а    | b  | а    | а    | а    | а    | а   | b  | 5   | 2   | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8 08         | 0     | 0    | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 10   | 23     | 50       | nS            |
| 66  | TDV-R          | V-DET output delay time 2                     | 10           | b   | b  | b  | а    | b  | а    | а    | а    | а    | а   | b  | 5   | 2   | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8 08         | 0     | 0    | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 1    | 13     | 40       | nS            |
| 67  | VDH            | D/A output                                    | 21,22,       | b   | а  | а  | а    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8            | 0     | 0    | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 4.7  | 5.2    | 5.7      | VDC           |
| 68  | VDL            | maximum voltage<br>D/A output                 | 23,24        | b   | a  | a  | a    | a  | a    | a    | a    | а    | а   | b  | 5   | 2   | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8            | 0     | 0    | 255<br>00        | 255<br>00        | 00               | 255<br>00        | 0    | 0.2    | 0.5      | Н             |
| 69  | IA+1           | minimum voltage  D/A OUT input current 1      | 23,24        | b   | a  | a  | a    | a  | a    | a    | a    | a    | a   | b  | 5   | 2   | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8            | 0     | 0    | 00               | 0                | 0                | 0                | 0.18 |        | 0.0      | mA            |
| 70  | IA+1           | D/A OUT input current 1                       | 23,24        |     | a  |    | Н    |    |      |      |      | а    |     | b  | 5   | 2   | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8            | 0     | 0    | 00               | 0                | 0                | 0                |      |        | $\vdash$ | Н             |
| H   |                | ·                                             | 23,24        | b   |    | а  | а    | а  | а    | а    | а    |      | а   |    |     |     | 255<br>FF        | 255<br>FF        | 255<br>FF        | 255<br>FF        | 00           | 00       | 8            | 0     | 0    | 0<br>FF          | 0<br>FF          | 0<br>FF          | 0<br>FF          | 0.18 | _      | -        | mA            |
| 71  | IA-            | D/A OUT output current                        | 23,24        | b   | а  | a  | а    | а  | а    | а    | а    | a    | а   | b  | 5   | 2   |                  | 255<br>FF        | 255<br>FF        | 255<br>FF        | 0            | 0        | 8            | 0     | 0    | 255<br>Vari      | 255<br>Vari      | 255<br>Vari      | 255<br>Vari      |      | -      | 0.4      | Н             |
| 72  | DNL            | D/A nonlinearity                              | 23,24        | b   | а  | а  | а    | а  | а    | а    | а    | а    | а   | b  | 5   | 2   |                  | 255              |                  | 255              | 0            | 0        | 8            | 0     | 0    | able             | able             |                  | able             | -1.0 | -      | 1.0      | LSB           |



- Note1) Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IE
- Note2) Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point I/
- Note3) Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IE
- Note4) It makes the amplitude of SG1 1.4p-p. Measure the DC voltage of the white level of the waveform output. The measured value is called Vomax.



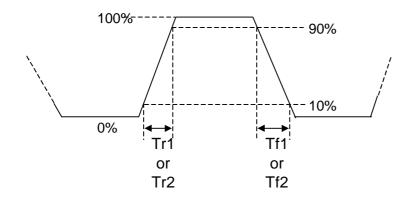
- Note5) Increase the input signal(SG1) amplitude gradually, starting from 0.7Vp-p. Measure the amplitude of the input signal when the output signal starts becoming distorted.
- Note6) Input SG1, and measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30 Maximum gain GV is calculated by the equation below: GV = 20 LOG (VOUT / 0.7) (dB)
- Note7) Relative maximum gain  $\Delta GV$  is calculated by the equation below:  $\Delta GV = VOUT(26) / VOUT(28)$ , VOUT(28) / VOUT(30), VOUT(30) / VOUT(26)
- Note8) Input SG1, and measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30 The measured value is called VC1.
- Note9) Relative characteristics  $\triangle$ VC1 is calculated by the equation below:  $\triangle$ VC1 = VOUT(26) / VOUT(28) , VOUT(30) , VOUT(30) / VOUT(26)
- Note10) Measuring condition and procedure are the same as described in Note8.
- Note11) Measuring condition and procedure are the same as described in Note9.
- Note12) Measuring condition and procedure are the same as described in Note8.
- Note13) Relative characteristics  $\triangle$ VC3 is calculated by the equation below:  $\triangle$ VC3 = VOUT(26) VOUT(28) , VOUT(28) VOUT(30) , VOUT(30) VOUT(26)
- NOte14) Input SG1, and measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30 The measured value is called VSC1.
- Note15) Relative characteristics  $\triangle$ VSC1 is calculated by the equation below:  $\triangle$ VSC1 = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)
- Note16) Measuring condition and procedure are the same as described in Note14.
- Note17) Measuring condition and procedure are the same as described in Note15.
- Note18) Measuring condition and procedure are the same as described in Note14.
- Note19) Relative characteristics  $\triangle$ VSC3 is calculated by the equation below:  $\triangle$ VSC3 = VOUT(26) VOUT(28) , VOUT(28) VOUT(30) , VOUT(30) VOUT(26)



### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

- Note20) Measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30). The measured value is ABL1.
- Note21) Relative characteristics  $\triangle$ ABL1 is calculated by the equation below:  $\triangle$ ABL1 = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)
- Note22) Measuring condition and procedure are the same as described in Note20.
- Note23) Measuring condition and procedure are the same as described in Note21.
- Note24) Measuring condition and procedure are the same as described in Note20.
- Note25) Relative characteristics  $\triangle$ ABL3 is calculated by the equation below:  $\triangle$ ABL3 = VOUT(26) VOUT(28) , VOUT(28) VOUT(30) , VOUT(30) VOUT(26)
- Note26) Measure the DC voltage at OUT(26,28,30). The amplitude is called VOUT(26,28,30). The measured value is called VB1.
- Note27) Relative characteristics  $\triangle VB1$  is calculated by the equation below:  $\triangle VB1 = VOUT(26) VOUT(28)$ , VOUT(28) VOUT(30), VOUT(30) VOUT(26)
- Note28) Measuring condition and procedure are the same as described in Note26.
- Note29) Measuring condition and procedure are the same as described in Note27.
- Note30) Measuring condition and procedure are the same as described in Note26.
- Note31) Measuring condition and procedure are the same as described in Note27.
- Note32) Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and for the output pulse to rise from 10% to 90% (Tr2) with an active probe.

  Pulse characteristics Tr is calculated by the equations below:


$$Tr = \sqrt{(Tr2)^2 - (Tr1)^2}$$
 (nS)

- Note33) Relative characteristics  $\Delta Tr$  is calculated by the equation below:  $\Delta Tr = Tr(26) - Tr(28)$ , Tr(28) - Tr(30), Tr(30) - Tr(26)
- Note34) Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an active probe.

  Pulse characteristics Tf is calculated by the equations below:

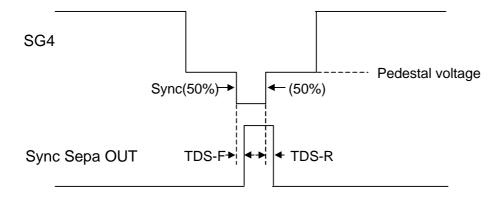
$$Tf = \sqrt{(Tf2)^2 - (Tf1)^2}$$
 (nS)

Note35) Relative characteristics  $\Delta Tf$  is calculated by the equation below:  $\Delta Tf = Tf(26) - Tf(28)$ , Tf(28) - Tf(30), Tf(30) - Tf(26)





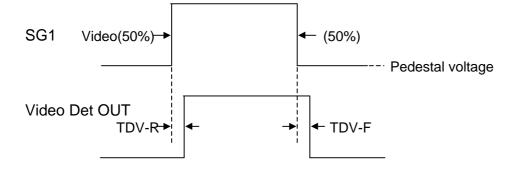
- Note36) Decrease the SG5 input level gradually from 5.0Vp-p, monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable. And increase the SG5 input level gradually from 0Vp-p. Measure the top level of input pulse when the output pedestal voltage turn increase with stable (a point of 2.0V). The measured value is called VthCP.
- Note37) Decrease the SG5 pulse width gradually from 0.5uS, monitoring the output. Measure the SG5 pulse width when the output pedestal voltage turn decrease with unstable. And increase the SG5 pulse width gradual from 0uS. Measure the SG5 pulse width when the output pedestal voltage turn increase with stable (a poof 2.0V). The measured value is called WCP.
- Note38) Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.
- Note39) Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.
- Note40) Measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30). The measured value is called Oadi1.
- Note41) Relative characteristics  $\triangle$ Oadj1 is calculated by the equation below:  $\triangle$ Oadj1 = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)
- Note42) Measuring condition and procedure are the same as described in Note40.
- Note43) Measuring condition and procedure are the same as described in Note41.
- Note44) Measuring condition and procedure are the same as described in Note40.
- Note45) Relative characteristics  $\triangle$ Oadj3 is calculated by the equation below:  $\triangle$ Oadj3 = VOUT(26) VOUT(28) , VOUT(28) VOUT(30) , VOUT(30) VOUT(26)
- Note46) Decrease the SG6 input level gradually from 5.0Vp-p, monitoring the output. Measure the top level of SG when the output is disappeared. And increase the SG6 input level gradually from 0Vp-p. Measure the top level of SG6 when the output is appeared. The measured value is called VthOSD.
- Note47) Calculating the black level voltage minus the output voltage of high section of SG6 it makes VOUT(26,28,30). The calculated value is called OBLK.
- Note48) Relative characteristics ΔOBLK is calculated by the equation below: ΔOBLK = VOUT(26) VOUT(28) , VOUT(28) VOUT(30) , VOUT(30) VOUT(26)
- Note50) Confirm that output signal is being blanked by the SG6 at the time.


  Decrease the SG6 input level gradually from 5.0Vp-p, monitoring the output. Measure the top level of SG when the blanking period is disappeared. And increase the SG6 input level gradually from 0Vp-p. Measure the top level of SG6 when the blanking period is appeared. The measured value is called VthBLK.
- Note51) Measure the bottom voltage at amplitude of OUT(26,28,30). The measured value is called HBLK1.
- Note52) Measuring condition and procedure are the same as described in Note51.
- Note53) Measuring condition and procedure are the same as described in Note51.
- Note54) Decrease the SG7 input level gradually from 5.0Vp-p, monitoring the output. Measure the top level of SG when the output is disappeared. And increase the SG7 input level gradually from 0Vp-p. Measure the top level of SG7 when the output is appeared. The measured value is called VthHBLK.



- Note55) When SG4 is all black (no video), the sync's amplitude of SG4 gradually from 0Vp-p to 0.02Vp-p. No pulse output permitted.
- Note56) When SG4 is all white or all black, the sync's amplitude of SG4 gradually from 0.2Vp-p to 0.3Vp-p. Positive pulse has occurred to Sync Sepa OUT.
- Note57) Measure the high voltage at Sync Sepa OUT. The measured value is treated as VSH.
- Note58) Measure the low voltage at Sync Sepa OUT. The measured value is treated as VSL.
- Note59) Sync Sepa OUT becomes high with sink part of SG4.

  Measure the time needed for the front edge of SG4 Sync to fall from 50% and for SyncOUT to rise from 50% with an active probe. The measured value is called TDS-F.
- Note60) Sync Sepa OUT becomes high with sink part of SG4.


  Measure the time needed for the rear edge of SG4 Sync to rise from 50% and for SyncOUT to fall from 50% with an active probe. The measured value is called TDS-R.



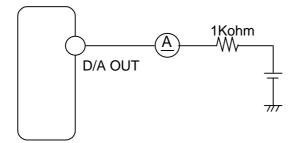
- Note61) Increase the SG1 input level gradually from 0Vp-p to 0.05Vp-p. No pulse Video Det OUT permitted.
- Note62) Decrease the SG1 input level gradually from 0.2p-p to 0.3Vp-p. Positive pulse has occurred to Video Det OUT
- Note63) Measure the high voltage at Video Det OUT. The measured value is treated as VVDH.
- Note64) Measure the low voltage at Video Det OUT. The measured value is treated as VVDL.
- Note65) Video Det OUT becomes high with signal part of SG1.

  Measure the time needed for the SG1 to fall from 50% and for Video Det OUT to fall from 50% with an ac probe. The measured value is called TDV-F.
- Note66) Video Det OUT becomes high with signal part of SG1.

  Measure the time needed for the SG1 to rise from 50% and for Video Det OUT to rise from 50% with an a probe. The measured value is called TDV-R.

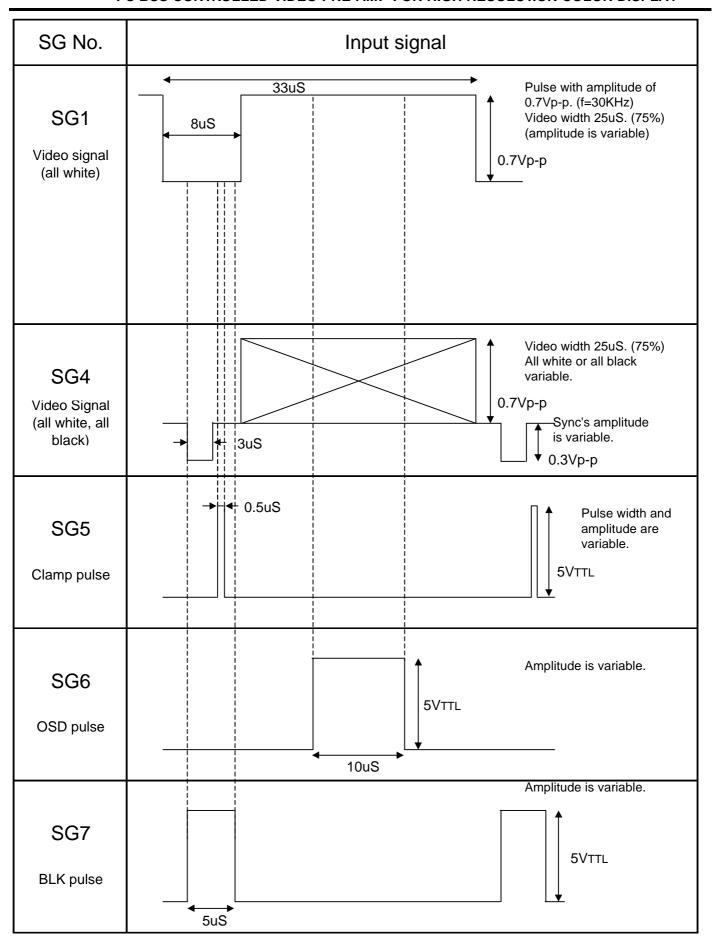





### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

Note68) Measure the DC voltage at D/A OUT. The measured value is called VDL.

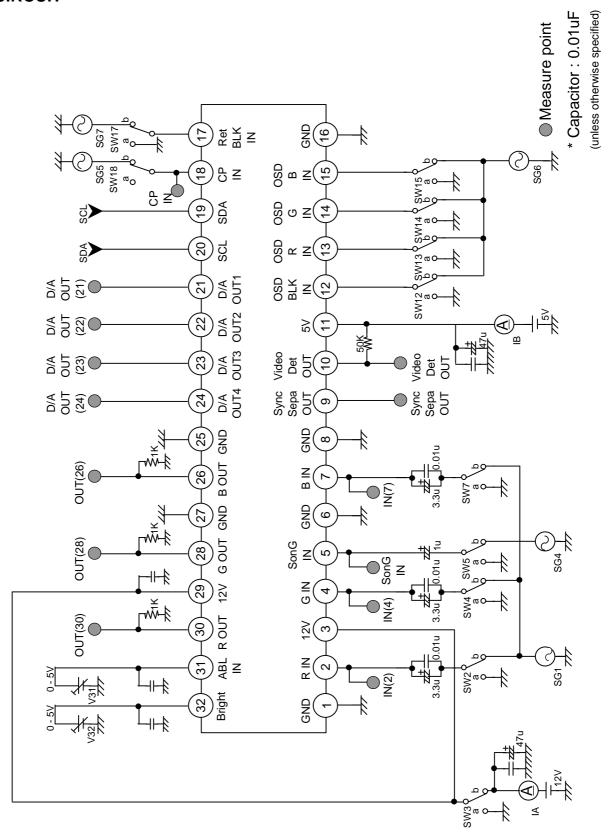
Note69) Measure the input current that flows into D/A OUT through 1Kohm by 2VDC.


Note70) Measure the input current that flows into D/A OUT through 1Kohm by 0.5VDC.

Note71) Measure the output current that flows out of D/A OUT through 1Kohm by 4.2VDC.



Note72) The difference of differential non-linearity of D/A OUT must be less than ±1.0LSB.








#### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

### **TEST CIRCUIT**

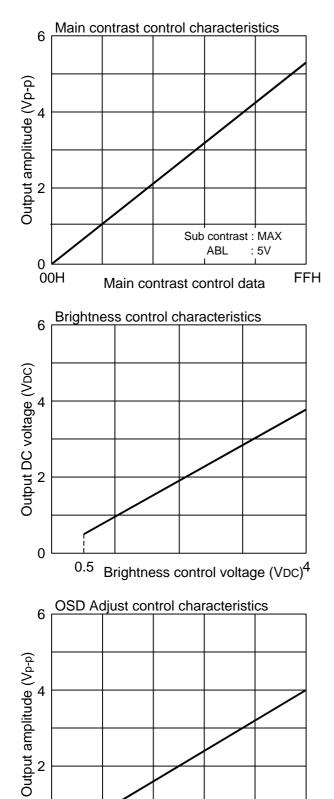


### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

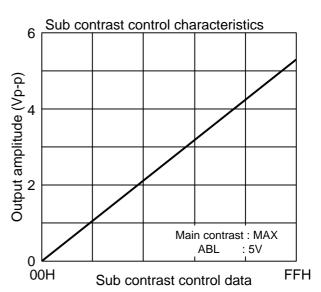
### **TERMINAL DESCRIPTION**

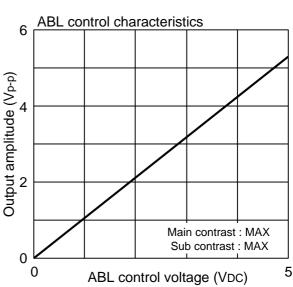
| No.                     | Name                                    | DC Voltage(V)    | Peripheral Circuit of pins                                                                                               | Remark                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|-----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>4<br>7             | R IN<br>G IN<br>B IN                    | 3.5              | 2K 2K 2K 0.02mA 2.25V 3.5V                                                                                               | Clamp to about 3.5V due to clamp pulse from Pin18. Input at low impedance.                                                                                                                                                                                                                                                                                   |
| 3                       | VCC 1 (12V)                             | 12               |                                                                                                                          | Connect to the power supply that stabilized.                                                                                                                                                                                                                                                                                                                 |
| 5                       | SonG IN                                 | When open<br>2.3 | 30K<br>1.5K<br>1.5K<br>1.5K<br>6K<br>6K<br>6K<br>6K<br>10K<br>10K<br>10K<br>10K<br>10K<br>10K<br>10K<br>10K<br>10K<br>10 | SYNC ON VIDEO input pin. Sync is negative. Input signal at Pin5, compare with the reference voltage of internal circuit in order to separate Sync signal from Sync on Green signal. Input at low impedance. Do not input the signal without the Sync. When it does not use this function, connect to capacitor between GND, turn on Sync Sepa SW by IIC BUS. |
| 1<br>6<br>8<br>16<br>27 | GND<br>GND 1<br>GND 2<br>GND 3<br>GND 4 | GND              |                                                                                                                          | Connect to GND.                                                                                                                                                                                                                                                                                                                                              |
| 9                       | Sync Sepa<br>OUT                        | -                | 1K 2 9                                                                                                                   | Sync Sepa output pin. When the rise time of the signal is sped up, connect about 2.3 Kohm between 5V power supply. When it does not use, do openly. So as not to flow into Pin9 8mA over, resistance value does not make to 2.3Kohm or under. Output is a positive.                                                                                          |
| 10                      | Video Det<br>OUT                        | -                | 12V<br>50KZ                                                                                                              | Pin10 needs to connect the 50Kohm<br>between 5V power supply.<br>When it does not use this function,<br>turn off Video Det SW by IIC BUS.                                                                                                                                                                                                                    |
| 11                      | VCC (5V)                                | 5                |                                                                                                                          | Connect to the power supply that stabilized.                                                                                                                                                                                                                                                                                                                 |

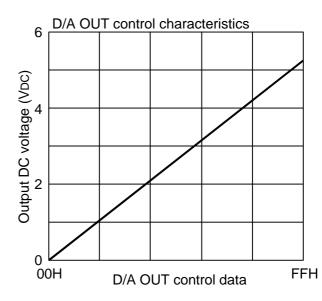



| No.                  | Name                                  | DC Voltage(V) | Peripheral Circuit of pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remark                                                                                                                                                        |
|----------------------|---------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12<br>13<br>14<br>15 | OSD BLK IN OSD R IN OSD G IN OSD B IN |               | 3.25V<br>3.25V<br>7111<br>3.25V<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>7111<br>711 | Input the positive pulse.  3.5 5V  1.5V GND  When it does not use this function, connect to GND.  When input OSD RGB pulse, input OSD BLK pulse without fail. |
| 17                   | Retrace BLK<br>IN                     | -             | 2.25V 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Input the positive pulse.  2.5 5V  0.5V GND  When it does not use this function, connect to GND.                                                              |
| 18                   | Clamp Pulse<br>IN                     | -             | 0.15mA 0<br>750 ₹50K<br>750 ₹50K<br>10K ₹10K 500<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input the positive pulse which width 200nS over. Input at low impedance.  2.5 5V 0.5V GND                                                                     |
| 19                   | SDA                                   | -             | 19 2K 3.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDA of IIC BUS.<br>(Serial data line)<br>Tth = 2.3V                                                                                                           |

| No.                  | Name                                    | DC Voltage(V)     | Peripheral Circuit of pins | Remark                                                                                                                                                                                           |
|----------------------|-----------------------------------------|-------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                   | SCL                                     | -                 | 20 2K 3.0V                 | SCL of IIC BUS.<br>(Serial clock line)<br>Tth = 2.3V                                                                                                                                             |
| 21<br>22<br>23<br>24 | D/A OUT 1 D/A OUT 2 D/A OUT 3 D/A OUT 4 |                   | 12V                        | D/A output pin. Output voltage ranges is 0V to 5V. Input current is below 0.18mA. Output current is below 0.4mA.                                                                                 |
| 26<br>28<br>30       | B OUT<br>G OUT<br>R OUT                 | Variable          | 29<br>50<br>50             | This terminal needs to connect the 1 to 3Kohm resister between GND. This resistance value may be changed, to improve the video output characteristics.                                           |
| 27                   | GND 4                                   |                   |                            | Connect to GND.                                                                                                                                                                                  |
| 29                   | VCC 2 (12V)                             | 12                | <del></del>                | It is the power supply of emitter follower of RGB output exclusive use.                                                                                                                          |
| 31                   | ABL IN                                  | When open<br>2.5V | 5K                         | ABL (Automatic beam limitter) input pin. Input voltage in the ranges of 0V to 5V. Output amplitude MAX with 5V. Output amplitude MIN with 0V. When it does not use this function, connect to 5V. |
| 32                   | BRIGHT                                  | -                 | 35K 35K 35K                | It is recommended that the IC is used between pedestal voltage 2V to 3V.                                                                                                                         |
| 25                   | NC                                      | -                 |                            | Connect to GND.                                                                                                                                                                                  |





### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY


### **ELECTRICAL CHARACTERISTICS (Reference data)**



00H







7FH

Brightness: 2VDC

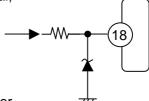
OSD adjust control data

#### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

#### APPLICATION METHOD FOR M61311SP/M61316SP

#### ABOUT CLAMP PULSE INPUT

Clamp pulse needs to be always inputted. Clamp pulse width is recommended:


15KHz at 1.0 uS over

30KHz at 0.5 uS over

64KHz at 0.3 uS over

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connect to external terminal, it is very easy affected by large surge.

Therfore, the fig. shown right is recommended.



#### NOTICE OF APPLICATION

Make the nearest distanse between output and pull down resister.

Recommend this resister is 1 to 3 Kohm.

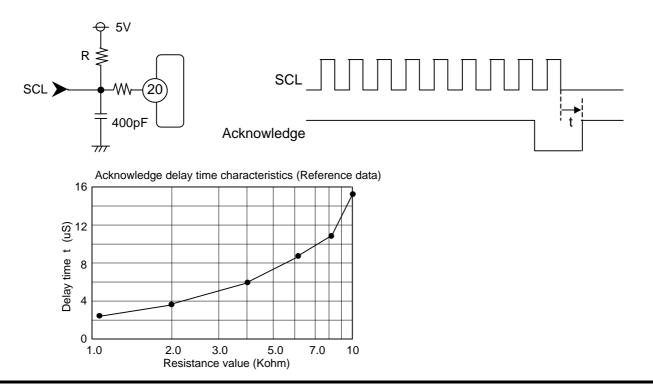
Power dissipation in 3Kohm is smaller than 1Kohm.

Recommend pedestal voltage of IC output signal is 2V.

As for the low level of the pulse input of OSD BLK, OSD, Clamp Pulse, Retrace BLK etc., avoid consthe GND level or under.

PIN31 connect to the voltage that stabilized, and pay attention as surge etc. does not flow into.

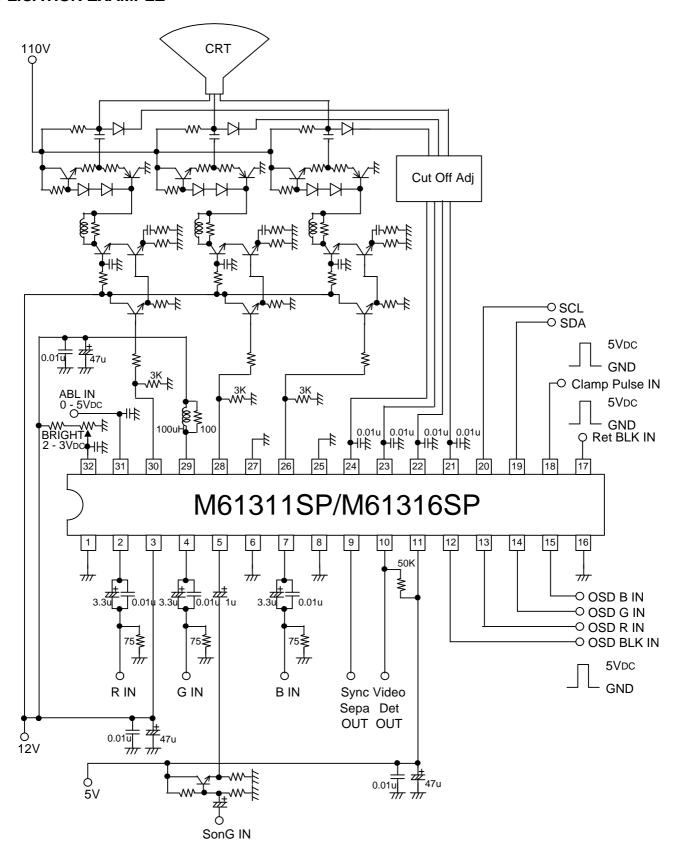
VCC(12V,5V) connects to the power supply that stabilized, and bypass-capacitor connects near the term When capacitor is connected to Pin29, it sometimes oscillates. Do not connect capacitor to Pin29.


Connect to bypass-capacitance of the DC line near the terminal.

Connect to the NC Pin to GND.

The time(t) is from fall of 9bit of SCL to rise of Acknowledge.

About the fowarding of IIC BUS, the time(t) changes with the resistance that connected outside.

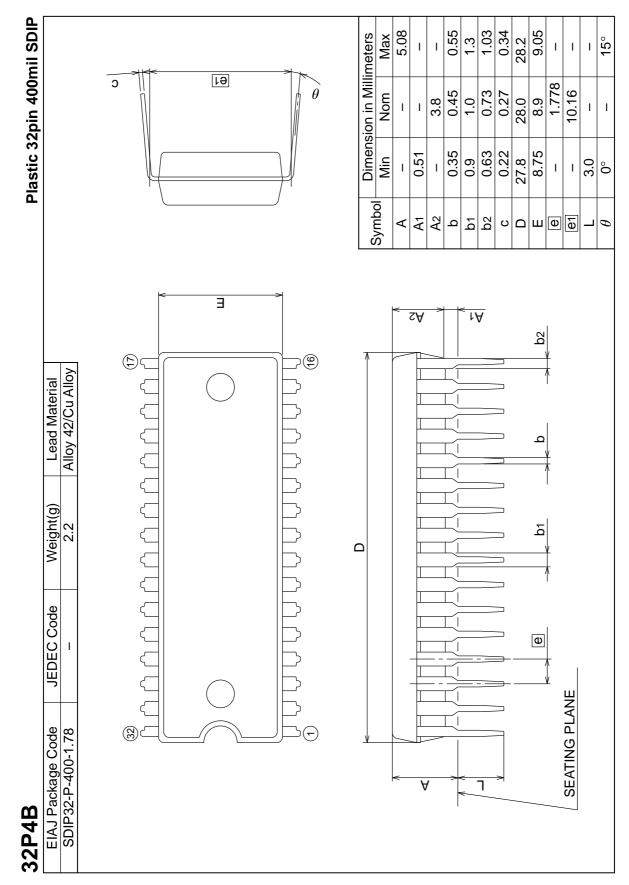

The next SCL does not overlap into this time(t).





#### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

### **APPLICATION EXAMPLE**




"Purchase of Mitsubishi electric corporation's IIC components conveys a license under the Philips IIC Patent Rights to use these components in an IIC system, provided that the system conforms the IIC Standard Specification as defined by PI



### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

### **DETAILED DIAGRAM OF PACKAGE OUTLINE**



#### I<sup>2</sup>C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAY

Keep safety first in your circuit designs!

•Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

#### Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

