

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WWW.MOTOROLA.COM/SEMICONDUCTORS

M68HC05
Microcontrollers

M68HC05AG/D
Rev. 4, 3/2002

M68HC05

Applications Guide

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

M68HC05
Applications Guide

To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.motorola.com/semiconductors/

The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc. © Motorola, Inc., 1989, 1996, 2002
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications Guide 3
For More Information On This Product,

 Go to: www.freescale.com

Revision History

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: As this document was originally released in 1989, there have been some
changes in Motorola’s procedures. For example, there are references in
this document to an electronic bulletin board system (BBS) for freeware.
BBS has been replaced with the World Wide Web. For freeware and any
other referenced documentation please refer to:

http://www.motorola.com/semiconductors/

Revision History

Date
Revision

Level
Description

Page
Number(s)

April, 1997 3.0 Format and organizational changes Throughout

March, 2002 4.0

Updated to current publication styles

Appendix A. Instruction Set Details — Corrected
Boolean formulae for compare accumulator with
memory (CMP) instruction

270

Appendix A. Instruction Set Details — Corrected
Boolean formulae for subtract (SUB) instruction

297
M68HC05 Applications Guide — Rev. 4.0

4 Applications Guide MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

List of Sections

Section 1. General Description .21

Section 2. Microcontroller Operation 29

Section 3. MC68HC705C8 Functional Data73

Section 4. Applications. 187

Appendix A. Instruction Set Details 233

Appendix B. Review Questions 303
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA List of Sections 5
For More Information On This Product,

 Go to: www.freescale.com

List of Sections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Applications Guide — Rev. 4.0

6 List of Sections MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

Table of Contents

Section 1. General Description

1.1 Contents .21

1.2 Introduction .21

1.3 Definitions .22

1.4 Background. .23

1.5 Computer Systems Description .24

1.6 Microcontroller Applications Overview26

1.7 Project Description .27

Section 2. Microcontroller Operation

2.1 Contents .29

2.2 Introduction .30

2.3 Number Systems .31

2.4 Computer Codes. .34
2.4.1 Computer Memory .36
2.4.2 Computer Architecture .37
2.4.3 CPU Registers .38
2.4.4 Memory Uses .40
2.4.5 Memory Maps. .42

2.5 Timing .44

2.6 Programming .45
2.6.1 Flowchart .46
2.6.2 Mnemonic Source Code. .46
2.6.3 Software Delay Program .49
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Table of Contents 7
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.6.4 Assembler Listing .50
2.6.5 CPU View of a Program .54

2.7 CPU Operation .55
2.7.1 Detailed Operation of CPU Instructions55
2.7.1.1 Store Accumulator (Direct Addressing Mode)57
2.7.1.2 Load Accumulator (Immediate Addressing Mode)58
2.7.1.3 Conditional Branch. .59
2.7.1.4 Subroutine Calls and Returns .60
2.7.2 Playing Computer. .63

2.8 On-Chip Peripherals .68
2.8.1 Serial Communications Interface (SCI) 70
2.8.2 Serial Peripheral Interface (SPI). .70
2.8.3 16-Bit Timer System. .71
2.8.4 Memory Peripherals .72
2.8.5 Other On-Chip Peripherals. .72

Section 3. MC68HC705C8 Functional Data

3.1 Contents .73

3.2 Introduction .76

3.3 MCU Description. .77
3.3.1 Hardware Features. .77
3.3.2 Software Features .78
3.3.3 General Description .78

3.4 Pins and Connections. .80
3.4.1 Pin Functions .81
3.4.1.1 VDD and VSS .81
3.4.1.2 VPP. .81
3.4.1.3 IRQ (Maskable Interrupt Request)82
3.4.1.4 RESET .82
3.4.1.5 TCAP .82
3.4.1.6 TCMP. .83
3.4.1.7 OSC1 and OSC2 .83
3.4.1.8 PA7–PA0 .83
3.4.1.9 PB7–PB0 .83
M68HC05 Applications Guide — Rev. 4.0

8 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4.1.10 PC7–PC0 .85
3.4.1.11 PD5–PD0 and PD7 .85
3.4.2 Typical Basic Connections .85

3.5 On-Chip Memory .87
3.5.1 Memory Types .87
3.5.2 Memory Map .88

3.6 Central Processor Unit .88
3.6.1 Registers .90
3.6.1.1 Accumulator .90
3.6.1.2 Index Register .91
3.6.1.3 Condition Code Register .91
3.6.1.4 Program Counter .93
3.6.1.5 Stack Pointer .94
3.6.2 Arithmetic/Logic Unit (ALU) .94
3.6.3 CPU Control .95
3.6.4 Resets .95
3.6.4.1 Power-On Reset .95
3.6.4.2 Computer Operating Properly (COP)

Watchdog Timer Reset .97
3.6.4.3 Clock Monitor Reset. .99

3.7 Addressing Modes .99
3.7.1 Inherent Addressing Mode .101
3.7.2 Immediate Addressing Mode .103
3.7.3 Extended Addressing Mode .104
3.7.4 Direct Addressing Mode .105
3.7.5 Indexed Addressing Modes .108
3.7.5.1 Indexed, No Offset .108
3.7.5.2 Indexed, 8-Bit Offset .110
3.7.5.3 Indexed, 16-Bit Offset .112
3.7.6 Relative Addressing Mode .113
3.7.7 Bit Test and Branch Instructions .115
3.7.8 Instructions Organized by Type .115

3.8 Instruction Set Summary .119

3.9 Interrupts. .128
3.9.1 Software Interrupt (SWI). .129
3.9.2 External Interrupt .131
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Table of Contents 9
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.9.3 Timer Interrupt .132
3.9.4 Serial Communications Interface (SCI) Interrupt132
3.9.5 Serial Peripheral Interface (SPI Interrupt132

3.10 Microcontroller Input/Output .133
3.10.1 Parallel I/O .133
3.10.2 Serial I/O .136

3.11 Serial Communications Interface (SCI) 136
3.11.1 SCI Transmitter .137
3.11.2 SCI Receiver .139
3.11.3 Registers .141
3.11.3.1 Baud Rate Register (BAUD) .141
3.11.3.2 Serial Communications Control

Register One (SCCR1) .144
3.11.3.3 Serial Communications Control

Register Two (SCCR2) .144
3.11.3.4 Serial Communications Status

Register (SCSR) .145
3.11.3.5 Serial Communications Data Register (SCDAT)146
3.11.4 Data Formats .147
3.11.5 Hardware Procedures .148
3.11.6 Software Procedures .148
3.11.6.1 Initialization Procedure. .148
3.11.6.2 Normal Transmit Operation .149
3.11.6.3 Normal Receive Operation. .149
3.11.7 SCI Application Example .150

3.12 Synchronous Serial Peripheral Interface (SPI)153
3.12.1 Data Movement .155
3.12.2 Functional Description .156
3.12.3 Pin Descriptions .156
3.12.3.1 Serial Data Pins (MISO, MOSI)156
3.12.3.2 Serial Clock (SCK) .157
3.12.3.3 Slave Select (SS). .158
3.12.4 Registers .158
3.12.4.1 Serial Peripheral Control Register (SPCR) 158
3.12.4.2 Serial Peripheral Status Register (SPSR)160
3.12.4.3 Serial Peripheral Data I/O Register (SPDR) 161
M68HC05 Applications Guide — Rev. 4.0

10 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.13 SPI Application Example .161

3.14 Programmable Timer .163
3.14.1 Functional Description .166
3.14.2 Timer Counter and Alternate Counter Registers 168
3.14.3 Input-Capture Concept .169
3.14.4 Input-Capture Operation. .170
3.14.5 Output-Compare Concept .172
3.14.6 Output-Compare Operation .174
3.14.7 Timer Control Register (TCR) .175
3.14.8 Timer Status Register (TSR) .175
3.14.9 Timer Application Example. .177

3.15 STOP/WAIT Instruction Effects .177
3.15.1 Low Power-Consumption Modes .177
3.15.2 Effects on On-Chip Peripherals .180
3.15.2.1 Timer Action During Stop Mode.180
3.15.2.2 SCI Action During Stop Mode .180
3.15.2.3 SPI Action During Stop Mode .181
3.15.2.4 Wait Mode Effects .181

3.16 OTPROM/EPROM Programming .182
3.16.1 Erasing .182
3.16.2 Programming .182
3.16.3 Program Register .183
3.16.4 Option Register .184

Section 4. Applications

4.1 Contents .187

4.2 Introduction .187

4.3 Hardware Development Methods .189

4.4 Software Development Methods. .191
4.4.1 Freeware .193
4.4.2 Third-Party Software .194

4.5 Thermostat Project Details .196
4.5.1 Hardware Details .197
4.5.2 Project Programming .200
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Table of Contents 11
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A. Instruction Set Details

A.1 Contents .233

A.2 Introduction .235

A.3 M68HC05 Instruction Set .237
ADC — Add with Carry. 238
ADD — Add without Carry . 239
AND — Logical AND . 240
ASL — Arithmetic Shift Left . 241
ASR — Arithmetic Shift Right . 242
BCC — Branch if Carry Clear. 243
BCLR n — Clear Bit in Memory . 244
BCS — Branch if Carry Set . 245
BEQ — Branch if Equal . 246
BHCC — Branch if Half Carry Clear. 247
BHCS — Branch if Half Carry Set 248
BHI — Branch if Higher . 249
BHS — Branch if Higher or Same 250
BIH — Branch if Interrupt Pin is High 251
BIL — Branch if Interrupt Pin is Low 252
BIT — Bit Test Memory with Accumulator 253
BLO — Branch if Lower . 254
BLS — Branch if Lower or Same 255
BMC — Branch if Interrupt Mask is Clear 256
BMI — Branch if Minus. 257
BMS — Branch if Interrupt Mask is Set 258
BNE — Branch if Not Equal . 259
BPL — Branch if Plus. 260
BRA — Branch Always. 261
BRCLR n — Branch if Bit n is Clear 262
BRN — Branch Never . 263
BRSET n — Branch if Bit n is Set 264
BSET n — Set Bit in Memory . 265
BSR — Branch to Subroutine. 266
CLC — Clear Carry Bit . 267
CLI — Clear Interrupt Mask Bit . 268
CLR — Clear . 269
M68HC05 Applications Guide — Rev. 4.0

12 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMP — Compare Accumulator with Memory. 270
COM — Complement . 271
CPX — Compare Index Register with Memory 272
DEC — Decrement. 273
EOR — Exclusive-OR Memory with Accumulator 274
INC — Increment . 275
JMP — Jump . 276
JSR — Jump to Subroutine . 277
LDA — Load Accumulator from Memory 278
LDX — Load Index Register from Memory 279
LSL — Logical Shift Left. 280
LSR — Logical Shift Right . 281
MUL — Multiply Unsigned . 282
NEG — Negate . 283
NOP — No Operation. 284
ORA — Inclusive-OR . 285
ROL — Rotate Left thru Carry . 286
ROR — Rotate Right thru Carry. 287
RSP — Reset Stack Pointer. 288
RTI — Return from Interrupt. 289
RTS — Return from Subroutine . 290
SBC — Subtract with Carry . 291
SEC — Set Carry Bit . 292
SEI — Set Interrupt Mask Bit . 293
STA — Store Accumulator in Memory 294
STOP — Enable IRQ, Stop Oscillator 295
STX — Store Index Register X in Memory. 296
SUB — Subtract . 297
SWI — Software Interrupt . 298
TAX — Transfer Accumulator to Index Register 299
TST — Test for Negative or Zero 300
TXA — Transfer Index Register to Accumulator 301
WAIT — Enable Interrupt, Stop Processor. 302
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Table of Contents 13
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix B. Review Questions

B.1 Contents .303

B.2 Introduction .303

B.3 Review Questions. .304

B.4 Review Questions, Answers, and Explanations318
M68HC05 Applications Guide — Rev. 4.0

14 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

List of Figures

Figure Title Page

1-1 A Typical Computer System .24
1-2 A Temperature Control Flowchart. .26
1-3 Thermostat Project Block Diagram. .28

2-1 MCU Expanded Block Diagram .31
2-2 M68HC05 CPU Registers. .39
2-3 Memory and I/O Circuitry .42
2-4 Typical Memory Map .43
2-5 Example Flowchart .47
2-6 Flowchart and Mnemonics .48
2-7 Delay Routine Flowchart and Mnemonics 49
2-8 Explanation of Assembler Listing .51
2-9 Assembler Listing .52
2-10 Memory Map of Example Program .56
2-11 Subroutine Call Sequence .61
2-12 Playing Computer Worksheet .64
2-13 Completed Worksheet .66

3-1 MC68HC705C8 Microcontroller Block Diagram79
3-2 40-Pin Dual-In-Line Package Pin Assignments 80
3-3 44-Lead PLCC Package Pin Assignments81
3-4 Oscillator Connections .84
3-5 Typical Basic Connections .86
3-6 M68HC05 CPU Block Diagram. .88
3-7 MC68HC705C8 Memory Map .89
3-8 Programming Model .90
3-9 Accumulator (A) .90
3-10 Index Register (X) .91
3-11 Condition Code Register (CCR) .91
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA List of Figures 15
For More Information On This Product,

 Go to: www.freescale.com

List of Figures

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure Title Page

3-12 Program Counter (PC). .93
3-13 Stack Pointer (SP) .94
3-14 Hardware Interrupt Flowchart .130
3-15 Interrupt Stacking Order .131
3-16 Port A and Data Direction A Registers 134
3-17 Port B and Data Direction B Registers 134
3-18 Port C and Data Direction C Registers 134
3-19 Parallel Port I/O Circuitry .135
3-20 Port D Fixed Input Port .136
3-21 SCI Transmitter Block Diagram .138
3-22 SCI Receiver Block Diagram .140
3-23 Baud Rate Register .141
3-24 Rate Generator Division .142
3-25 Serial Communications Control Register One.144
3-26 Serial Communications Control Register Two.144
3-27 Serial Communications Status Register 145
3-28 Serial Communications Data Register.146
3-29 Double Buffering .146
3-30 Data Formats .147
3-31 SCI Normal Transmit Operation Flowchart149
3-32 SCI Normal Receive Operation Flowchart.149
3-33 SCI Application Example Program .152
3-34 SPI Block Diagram. .154
3-35 Shift Register Operation .155
3-36 Data/Clock Timing Diagram. .157
3-37 Serial Peripheral Control Register .158
3-38 Serial Peripheral Status Register. .160
3-39 Serial Peripheral Data I/O Register .161
3-40 SPI Application Example Diagram. .162
3-41 SPI Application Example Flowchart.164
3-42 SPI Application Example Program. .165
3-43 Programmable Timer Block Diagram.167
3-44 16-Bit Counter Reads .168
3-45 Input-Capture Operation .171
3-46 Output-Compare Operation .172
3-47 Timer Control Register. .175
M68HC05 Applications Guide — Rev. 4.0

16 List of Figures MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

List of Figures

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure Title Page

3-48 Timer Status Register .176
3-49 Timer Application Example Program178
3-50 STOP/WAIT Flowchart .179
3-51 Program Register. .183
3-52 Option Register .184

4-1 Thermostat Project Schematic Diagram198
4-2 Precision Temperature Sensing Circuit199
4-3 Port A Summary .200
4-4 Port B Summary .201
4-5 Port C Summary .201
4-6 Port D Summary .202
4-7 Display Checkout Flowchart .204
4-8 Display Checkout Program Listing. .205
4-9 Keypad Checkout Flowchart .208
4-10 Keypad Checkout Program Listing .209
4-11 Main Program Flowchart .211
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA List of Figures 17
For More Information On This Product,

 Go to: www.freescale.com

List of Figures

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Applications Guide — Rev. 4.0

18 List of Figures MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

List of Tables

Table Title Page

2-1 Decimal, Binary, and Hexadecimal Equivalents33

3-1 COP Timeout Period versus CM1 and CM0.98
3-2 Register/Memory Instructions .116
3-3 Read/Modify-Write Instructions. .117
3-4 Branch Instructions .118
3-5 Control Instructions. .119
3-6 Instruction Set Summary .121
3-7 Opcode Map .127
3-8 Vector Address for Interrupts and Reset 129
3-9 I/O Pin Functions .135
3-10 Prescaler Baud Rate Frequency Output.142
3-11 Transmit Baud Rate Output .143
3-12 ASCII-Hexadecimal Code Conversion151

4-1 Thermostat Project Parts List .199
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA List of Tables 19
For More Information On This Product,

 Go to: www.freescale.com

List of Tables

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Applications Guide — Rev. 4.0

20 List of Tables MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

Section 1. General Description

1.1 Contents

1.2 Introduction .21

1.3 Definitions .22

1.4 Background. .23

1.5 Computer Systems Description .24

1.6 Microcontroller Applications Overview26

1.7 Project Description .27

1.2 Introduction

Welcome to the world of microcontrollers!

In this applications guide, we will develop a project using a Motorola
MC68HC705C8 microcontroller unit (MCU) in a familiar application — a
home thermostat. The MC68HC705C8 is a member of the M68HC05
Family of MCUs. The project will demonstrate only a few of the many
possible microcontroller functions that you can use.

This guide assumes that you have no knowledge of microcontrollers and
no MCU applications experience.

Section 1. General Description begins with definitions, gives
background information, and describes computer systems. An overview
of microcontroller applications is also presented and an application
project is discussed.

Section 2. Microcontroller Operation describes in detail how
microcontrollers operate.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA General Description 21
For More Information On This Product,

 Go to: www.freescale.com

General Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Section 3. MC68HC705C8 Functional Data contains functional data for
the Motorola MC68HC705C8 MCU. This section gives you specific
information needed to use this MCU in an application. More information
can be found in slightly different form in BR594/D, the MC68HC705C8
Technical Summary, which is available separately.

Section 4. Applications shows you how to develop applications and
gives you the thermostat project details.

Appendix A. Instruction Set Details provides a detailed description of
each instruction in the MC68HC05 instruction set.

Appendix B. Review Questions contains review questions, answers,
and explanations.

1.3 Definitions

The heart of a computer is the central processor unit (CPU). A
microprocessor is a CPU on a single chip.

A computer system is a CPU plus peripherals such as input/output (I/0)
devices, memory, a program, and a timing reference.

A microcontroller is a very small product that contains many of the
functions found in any computer system. A microcontroller uses a
microprocessor (as its CPU) as well as memory and peripherals on the
same chip.

A microcontroller (MCU) is packaged as a single chip that can be
programmed by the user with a series of instructions loaded into its
memory.
M68HC05 Applications Guide — Rev. 4.0

22 General Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

General Description
Background

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.4 Background

Before MCUs, controllers were hard-wired electronic devices whose
operation was determined by the circuits and wires contained within
them.

The operation of an MCU-based controller is determined primarily by its
program instead of its components and wires. Any function that can be
implemented using hard-wired digital integrated circuits (ICs) can also
be implemented and performed by an MCU.

As the size and complexity of the devices increase, MCUs become
attractive for two reasons:

1. The hard-wired approach requires adding ICs to perform more
complex tasks; whereas, MCUs require only a longer program.

2. Microcontrollers are more versatile. Any change in a hard-wired
system usually involves replacing ICs and rerouting wires. Most
modifications to an MCU system are made simply by changing the
program.

MCUs are very useful where many decisions or calculations are
required. It is easier to use the computational power of a computer than
to use discrete logic.

Microcontrollers are now being used to replace existing designs
because they are far simpler to use than conventional IC logic. Since the
MCU approach is programmable, many additional features are possible
at little or no added cost. Programmability makes possible multiple use
of a common piece of hardware since only the control program needs to
be changed.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA General Description 23
For More Information On This Product,

 Go to: www.freescale.com

General Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.5 Computer Systems Description

Whatever their size, all computer systems consist of the same
fundamental parts: CPU, I/O devices, memory, program(s), and a timing
reference (clock) as shown in Figure 1-1.

The CPU processes information in accordance with a program of
instructions and data in a particular language called machine code. The
CPU controls all the system operations and provides control signals for
enabling and disabling the various peripherals and I/O devices.

Input devices supply information to the MCU from the outside world.
Some input devices convert analog signals into digital signals that the
MCU can understand and manipulate. Other input devices translate real-
world information into the 0 to + 5 Vdc signals required by MCUs.
Examples of this are a temperature sensor, a switch, a keypad, and a
typewriter-style keyboard. A computer system might have one or a
number of these input devices.

Figure 1-1. A Typical Computer System

A
B
C
I

321
654
987
>0<

LCD DISPLAY

BEEPER

RELAY

SWITCH

KEYPAD

TEMPERATURE
SENSOR

CENTRAL
PROCESSOR UNIT

(CPU)

MEMORY

CLOCK

INPUTS

°F

PROGRAM

OUTPUTS

CRYSTAL
M68HC05 Applications Guide — Rev. 4.0

24 General Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

General Description
Computer Systems Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Output devices are controlled by signals from the MCU. An external
interface is required by some output devices to translate the 0 to + 5 Vdc
MCU levels into different voltage or current levels. Liquid crystal
displays, video display terminals, and heating/cooling equipment are
examples of output devices.

Memory can store information, including the instructions and data that
the CPU uses. The two basic memory types are random access memory
(RAM) and read-only memory (ROM).

RAM is used for temporary storage of data and instructions. The
computer system can write information into and read information from a
RAM in an arbitrary random order. RAM is volatile in that its contents are
lost when power is removed.

ROM has data and instructions (a program) stored permanently in it
when it is manufactured. The CPU can read information from a ROM but
cannot write information into it. ROM information is nonvolatile in that it
does not change even when power is removed.

A programmable read-only memory (PROM) is a type of ROM that can
be programmed by the user.

An erasable programmable read-only memory (EPROM) is a type of
PROM that can be erased by exposing it to ultraviolet light. Once erased,
an EPROM may be reprogrammed with new instructions and data.

An OTPROM is a type of EPROM that is manufactured in an inexpensive
plastic package. Since the plastic package is opaque to ultraviolet light,
an OTPROM can be programmed only once.

Like ROM, PROM, EPROM, and OTPROM are nonvolatile types of
memory.

The program contains instructions and data. The computer system uses
the program to perform some desired processes.

The computer clock is used for timing and sequencing the various
operations. A crystal is usually used to provide the reference frequency
for the clock.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA General Description 25
For More Information On This Product,

 Go to: www.freescale.com

General Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.6 Microcontroller Applications Overview

The development of a new microcontroller application is limited only by
skill and imagination, since the elements of a microcontroller system are
easily assembled. MCU applications generally allow many new functions
that make process control simpler and more powerful, often at reduced
cost.

Many applications require analog inputs and outputs. The resulting
system is the equivalent of a traditional analog controller with a number
of control loops. Control loops regulate an output as a function of one or
more inputs. Control loops are illustrated in the flowchart of Figure 1-2.

Figure 1-2. A Temperature Control Flowchart

COOLING
SELECTED

?

TURN OFF HEATING

HEATING
SELECTED

?

START

TURN OFF COOLING

TEMP TOO
HOT

?

TURN ON COOLING

TURN OFF COOLING

TEMP TOO
COLD

?

TURN ON HEATING

YES

NO

YES

NO

YES

NO

YES

NO
TURN OFF HEATING

CONTROL LOOP
M68HC05 Applications Guide — Rev. 4.0

26 General Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

General Description
Project Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Some applications have costly sensors and control mechanisms. The
cost of the sensors required for input and the cost of the control devices
required for output are usually much greater than the cost of a standard
MCU.

The advantage of an MCU system is the use of software to replace
complex and expensive hardware previously required. The cost of the
software is a tradeoff against the cost of the additional hardware and the
space it requires.

Programming allows use of complex functions that could not easily be
accomplished with hard-wired devices. Changes in functions can be
made and programs can be improved or replaced with few or no
hardware changes.

1.7 Project Description

A basic thermostat controller was chosen for this project because it
should be familiar to all readers and because it includes the fundamental
elements common to all MCU applications. Figure 1-3 illustrates a home
thermostat controller that can control both heating and air conditioning.

Since the thermostat is based on an MCU, complex functions can be
added. The thermostat could include a timed setback feature that allows
specifying certain times of the day when there will be reduced demand
for heating or air conditioning, thus giving some energy savings. A more
unusual feature would be to measure the outdoor temperature and
control the indoor-to-outdoor temperature difference. This would be very
difficult to accomplish with a conventional electromechanical thermostat.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA General Description 27
For More Information On This Product,

 Go to: www.freescale.com

General Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1-3. Thermostat Project Block Diagram

The four fundamental elements of this system are inputs, outputs, time,
and a microcontroller to tie the other elements together. The inputs
include push-buttons (a keypad) to enter time and temperature
information into the MCU and sensors to measure the indoor and
outdoor temperatures. Outputs include a display to show system
conditions and signals to the interfaces that control the heating and air
conditioning equipment. Time is derived from a crystal connected to the
MCU. As we will see later, this crystal would be used by the CPU even
if the application did not have time-of-day requirements, A program
controls the entire operation of the thermostat. Section 4. Applications
of this manual contains project details.

OUTDOOR
TEMPERATURE

SENSOR

RELAY

DATA ENTRY
KEYPAD

A
B
C
I

321
654
987
>0<

LCD DISPLAY

BEEPER

RELAY

CRYSTAL

INTERFACE

RELAY

INDOOR
TEMPERATURE

SENSOR

COOL

HEAT

FAN

MICROCONTROLLER

IN
TE

RF
AC

E

IN
TE

RF
AC

E

°F

°F
M68HC05 Applications Guide — Rev. 4.0

28 General Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

Section 2. Microcontroller Operation

2.1 Contents

2.2 Introduction .30

2.3 Number Systems .31

2.4 Computer Codes. .34
2.4.1 Computer Memory .36
2.4.2 Computer Architecture .37
2.4.3 CPU Registers .38
2.4.4 Memory Uses .40
2.4.5 Memory Maps. .42

2.5 Timing .44

2.6 Programming .45
2.6.1 Flowchart .46
2.6.2 Mnemonic Source Code. .46
2.6.3 Software Delay Program .49
2.6.4 Assembler Listing .50
2.6.5 CPU View of a Program .54

2.7 CPU Operation .55
2.7.1 Detailed Operation of CPU Instructions55
2.7.1.1 Store Accumulator (Direct Addressing Mode)57
2.7.1.2 Load Accumulator (Immediate Addressing Mode)58
2.7.1.3 Conditional Branch. .59
2.7.1.4 Subroutine Calls and Returns .60
2.7.2 Playing Computer. .63

2.8 On-Chip Peripherals .68
2.8.1 Serial Communications Interface (SCI) 70
2.8.2 Serial Peripheral Interface (SPI). .70
2.8.3 16-Bit Timer System. .71
2.8.4 Memory Peripherals .72
2.8.5 Other On-Chip Peripherals. .72
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 29
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2 Introduction

A microcontroller unit (MCU) is a complete computer system on a single
silicon chip. In a great many controller applications, the MCU can satisfy
all system requirements with no additional integrated circuits (ICs). Due
to very low cost and a high degree of flexibility, these powerful new MCU
devices are finding their way into many applications that were previously
accomplished with combinational logic or even by mechanical means.
As a result, there are many experienced engineers who need to become
familiar with the function and application of Motorola MCUs. This
section, which is specifically designed for those engineers, is also a
good reference for engineers who are familiar with MCUs from some
other manufacturer.

The MCU block in Figure 1-3. Thermostat Project Block Diagram can
be expanded as shown in Figure 2-1 to show the functional blocks within
the MCU. The CPU block is the central element of a digital binary
computer much like mainframe computers used in business except that
it is much smaller. The goal of this section is to study the internal
operation of this CPU and how it interacts with the other functional blocks
within the MCU. Although this discussion is based on a relatively simple
CPU, the principles apply to even the most powerful mainframe
computers.

The CPU is a system of simple logic elements and buses that can
sequentially interpret and execute a finite set of instructions. Starting
from a specific address in memory after reset, the CPU mindlessly
fetches and executes one simple instruction after another. Each
instruction is composed of several even simpler steps. The small
substeps comprising each instruction are determined by the wiring within
the CPU. The transistors, logic gates, and buses which comprise the
CPU are called hardware. The instructions the CPU follows to
accomplish an application task are determined by an end user or design
engineer and are called a software program. Before we can get into the
discussion of the internal operations of the CPU, some basic concepts
must be understood. The following paragraphs discuss numbering
systems and special codes used by computers.
M68HC05 Applications Guide — Rev. 4.0

30 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Number Systems

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-1. MCU Expanded Block Diagram

2.3 Number Systems

Computers work best with information in a different form than people
use. Humans typically work in the base 10 (decimal) numbering system
(probably because we have ten fingers). Digital binary computers work
in the base 2 (binary) numbering system because this allows all
information to be represented by sets of digits, which can only be zeros
or ones. In turn, a one or zero can be represented by the presence or
absence of a logic voltage on a signal line or the on and off states of a
simple switch.

CRYSTAL

•
•
•

RESET

(POWER)

(GROUND)

DIGITAL
INPUTS

•
•
•

•
•
•

•
•
•

DIGITAL
OUTPUTS

VDD

VSS

OSCILLATOR
AND

CLOCKS CENTRAL PROCESSOR UNIT
(CPU)

DATA
MEMORY

I/O
AND

PERIPHERALS

ADDRESS
BUS

DATA
BUS

PROGRAM
MEMORY
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 31
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In decimal (base 10) numbers, the weight of each digit is ten times as
great as the digit immediately to its right. The rightmost digit of a decimal
integer is the ones place, the digit to its left is the tens digit, and so on.
In binary (base 2) numbers, the weight of each digit is two times as great
as the digit immediately to its right. The rightmost digit of the binary
integer is the ones digit, the next digit to the left is the twos digit, next is
the fours digit, then the eights digit, and so on.

Although computers are quite comfortable working with binary numbers
of 8, 16, or even 32 binary digits, humans find it very inconvenient to
work with so many digits at a time. The base 16 (hexadecimal)
numbering system offers a practical compromise. One hexadecimal digit
can exactly represent four binary digits, thus, an 8-bit binary number can
be expressed by two hexadecimal digits.

The correspondence between a hexadecimal digit and the four binary
digits it represents is simple enough that humans who work with
computers easily learn to mentally translate between the two. In
hexadecimal (base 16) numbers, the weight of each digit is 16 times as
great as the digit immediately to its right. The rightmost digit of a
hexadecimal integer is the ones place, the digit to its left is the sixteens
digit, and so on.

Table 2-1 demonstrates the relationship between the decimal, binary,
and hexadecimal representations of values. These three different
numbering systems are just different ways to represent the same
physical quantities.

The letters A through F are used to represent the hexadecimal values
corresponding to 10 through 15 because each hexadecimal digit can
represent 16 different quantities; whereas, our customary numbers only
include the 10 unique symbols (0 through 9). Thus, some other single-
digit symbols had to be used to represent the hexadecimal values for 10
through 15.
M68HC05 Applications Guide — Rev. 4.0

32 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Number Systems

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To avoid confusion about whether a number is decimal or hexadecimal,
hexadecimal numbers are preceded by the $ symbol. For example, 64
means decimal “sixty-four”; whereas, $64 means hexadecimal “six-four”,
which is equivalent to decimal 100. Some other computer manufacturers
follow hexadecimal values with a capital H (as in 64H).

Hexadecimal is a good way to express and discuss numeric information
processed by computers because it is easy for people to mentally
convert between hexadecimal digits and their 4-bit binary equivalent.
The hexadecimal notation is much more compact than binary while
maintaining the binary connotations.

Table 2-1. Decimal, Binary, and Hexadecimal Equivalents

Base 10 Decimal Base 2 Binary
Base 16

Hexadecimal

0
1
2
3

0000
0001
0010
0011

0
1
2
3

4
5
6
7

0100
0101
0110
0111

4
5
6
7

8
9

10

1000
1001
1010
1011

8
9
A
B

12
13
14
15

1100
1101
1110
1111

C
D
E
F

16
17

0001 0000
0001 0001

10
11

100
255

0110 0100
1111 1111

64
FF

1024
65,535

0100 0000 0000
1111 1111 1111 1111

400
FFFF
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 33
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.4 Computer Codes

Computers must handle many kinds of information other than just
numbers. Text (alphanumeric characters) and instructions must be
encoded in such a way that the computer can understand this
information. The most common code for text information is the American
Standard Code for Information Interchange (or ASCII). The ASCII code
establishes a widely accepted correlation between alphanumeric
characters and specific binary values. Using the ASCII code, $41
corresponds to capital A, $20 corresponds to a space character, etc. The
ASCII code translates characters to 7-bit binary codes, but in practice
the information is most often conveyed as 8-bit characters with the most
significant bit equal to zero. This standard code allows equipment made
by various manufacturers to communicate because all of the machines
use this same code.

Computers use another code to give instructions to the CPU. This code
is called an operation code or opcode. Each opcode instructs the CPU
to execute a very specific sequence of steps that together accomplish an
intended operation. Computers from different manufacturers use
different sets of opcodes because these opcodes are internally hard-
wired in the CPU logic. The instruction set for a specific CPU is the set
of all opcodes that the CPU knows how to execute. Even though the
opcodes differ from one computer to another, all digital binary computers
perform the same kinds of basic tasks in similar ways. The CPU in the
MC68HC05 MCU can understand 62 basic instructions. Some of these
basic instructions have several slight variations, each requiring a
separate opcode. The instruction set of the MC68HC05 includes 210
unique instruction opcodes. We will discuss how the CPU actually
executes instructions a little later in this section after a few more basic
concepts have been presented.

An opcode such as $4C is understood by the CPU, but it is not very
meaningful to a human. To solve this problem, a system of mnemonic
instruction formats is used. The $4C opcode corresponds to the INCA
mnemonic, which is read “increment accumulator.” Although there is
printed information to show the correlation between mnemonic
instructions and the opcodes they represent, this information is seldom
used by a programmer because the translation process is automatically
M68HC05 Applications Guide — Rev. 4.0

34 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Computer Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

handled by a separate computer program called an assembler. An
assembler is a program that converts a program written in mnemonics
into a list of machine codes (opcodes) that can be used by a CPU.

An engineer develops a set of instructions for the computer in mnemonic
form and then uses an assembler to translate these instructions into
opcodes that the CPU can understand. We will discuss instructions,
writing programs, and assemblers later in this applications guide, but
you should understand that people prepare instructions for a computer
in mnemonic form and the computer understands only opcodes; thus, a
translation step is required to change the mnemonics to opcodes, and
this is the function of the assembler.

Before leaving this discussion of number systems and codes, we will
look at two additional codes you may have heard about. Octal (base 8)
notation was used for some early computer work but is seldom used
today. Octal notation uses the numbers 0 through 7 to represent sets of
three binary digits in the same way hexadecimal is used to represent
sets of four binary digits. The octal system had the advantage of using
customary number symbols (unlike the hexadecimal symbols A through
F discussed earlier).

Two disadvantages caused octal to be abandoned for the hexadecimal
notation used today. First of all, most computers use 4, 8, 16, or 32 bits
per word; these words do not break down nicely into sets of three bits.
(Some early computers used 12-bit words which did break down into
four sets of three bits each.) The second problem was that octal is not as
compact as hexadecimal. For example, the ASCII value for capital A is
10000012 in binary, 4116 in hexadecimal, and 1018 in octal. When a
human is talking about the ASCII value for A, it is easier to say “four-one”
than it is to say “one-zero-one.” When mentally translating from
hexadecimal to binary, it is easy to convert each hexadecimal digit into
four binary bits. It is more difficult to make the octal-to-binary translation
because you have to remember to throw away the leading zero of the
first group of three binary bits. You probably had to think twice about that
last statement, and that is exactly the point.

Binary coded decimal (BCD) is a hybrid notation used to express
decimal values in binary form. BCD uses four binary bits to represent
each decimal digit. Since four binary digits can express 16 different
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 35
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

physical quantities, there will be six bit-value combinations that are
considered invalid (specifically, the hexadecimal values A through F).
Values are kept in pseudo-decimal form during calculations.

When the computer does a BCD add operation, it performs a binary
addition and then adjusts the result back to BCD form. As a simple
example, consider the BCD addition of 910 + 110 = 1010. The computer
adds 0000 10012 + 0000 00012 = 0000 10102, but 10102 is equivalent to
A16, which is not a valid BCD value. When the computer finishes the
calculation, a check is performed to see if the result is still a valid BCD
value. If there was any carry from one BCD digit to another or if there
was any invalid code, a sequence of steps would be performed to correct
the result to proper BCD form (0000 10102 is corrected to 0001 00002
(BCD 10) in this example).

In most cases, it is inefficient to use BCD notation in computer
calculations. It is better to change from decimal to binary as information
is entered, do all computer calculations in binary, and change the binary
result back to BCD or decimal as needed for display. First, not all
computers are capable of doing BCD calculations because they need a
digit-to-digit carry indicator which is not present on all computers (though
Motorola MCUs do have this half-carry indicator). Secondly, forcing the
computer to emulate human behavior is inherently less efficient than
allowing the computer to work in its native binary system.

2.4.1 Computer Memory

Before the operation of the CPU can be discussed in detail, some
conceptual knowledge of computer memory is required. In many
beginning programming classes, memory is presented as being similar
to a matrix of pigeon holes where you can save messages and other
information. The pigeon holes we are referring to are like the mailboxes
in a large apartment building. This is a good analogy but needs a little
refinement if it is to be used to explain the inner workings of a CPU. We
will confine our discussion to an 8-bit CPU so that we can be very
specific.
M68HC05 Applications Guide — Rev. 4.0

36 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Computer Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In an 8-bit CPU, each pigeon hole (or mailbox) can be thought of as
containing a set of eight on/off switches (eight bits of data are called a
byte of data). Unlike a pigeon hole, you cannot fit more information in by
writing smaller, and there is no such thing as an empty pigeon hole
(though the contents of a memory location can be unknown or undefined
at a given time). The switches would be in a row where each switch
would represent a single binary digit.

A binary one corresponds to the switch being on, and a binary zero
corresponds to the switch being off. Each pigeon hole (memory location)
has a unique address so that information can be stored and reliably
retrieved.

2.4.2 Computer Architecture

Motorola M68HC05 and M68HC11 8-bit MCUs have a specific
organization which is called a Von Neumann architecture after an
American mathematician of the same name. In this architecture, a CPU
and a memory array are interconnected by an address bus and a data
bus. The address bus is used to identify which pigeon hole is being
accessed, and the data bus is used to convey information either from the
CPU to the memory location (pigeon hole) or from the memory location
to the CPU.

In the Motorola implementation of this architecture, there are a few
special pigeon holes (called CPU registers) inside the CPU, which act as
a small scratch pad and control panel for the CPU. These CPU registers
are similar to memory in that information can be written into them and
remembered. However, it is important to remember that these registers
are directly wired into the CPU and are not part of the addressable
memory available to the CPU.

All information (other than the CPU registers) accessible to the CPU is
envisioned (by the CPU) to be in a single row of several thousand pigeon
holes. This organization is sometimes called a ’memory-mapped I/O’
system because the CPU treats all memory locations alike whether they
contain program instructions, variable data, or input-output (I/O)
controls. There are other computer architectures, but this applications
guide is not intended to explore these variations. Fortunately, the
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 37
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Motorola architecture we are discussing is one of the easiest to
understand and use. This architecture encompasses the most important
concepts of digital binary computers; thus, the information presented in
this applications guide will be applicable even if you go on to study other
architectures.

The number of wires in the address bus determines the total possible
number of pigeon holes; the number of wires in the data bus determines
the amount of information that can be stored in each pigeon hole. In the
MC68HC705C8, the address bus is 13 bits, making a maximum of
819210 separate pigeon holes (in MCU jargon you would say this CPU
can access 8K locations). Since the data bus in the MC68HC705C8 is
eight bits, each pigeon hole can hold one byte of information. One byte
is eight binary digits, or two hexadecimal digits, or one ASCII character,
or a decimal value from 0 to 255.

2.4.3 CPU Registers

Different CPUs have different sets of CPU registers. The differences are
primarily the number and size of the registers. Figure 2-2 shows the
CPU registers found in an M68HC05. While this is a relatively simple set
of CPU registers, it is representative of all types of CPU registers and
can be used to explain all of the fundamental concepts.

The A register, an 8-bit scratch-pad register, is also called an
accumulator because it is often used to hold one of the operands or the
result of an arithmetic operation.

The X register is an 8-bit index register, which can also serve as a simple
scratch pad. The main purpose of an index register is to point at an area
in memory where the CPU will load (read) or store (write) information.
Sometimes an index register is called a pointer register. We will learn
more about index registers when we discuss indexed addressing
modes.
M68HC05 Applications Guide — Rev. 4.0

38 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Computer Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-2. M68HC05 CPU Registers

The program counter (PC) register is used by the CPU to keep track of
the address of the next instruction to be executed. When the CPU is
reset (starts up), the PC is loaded from a specific pair of memory
locations called the reset vector. The reset vector locations contain the
address of the first instruction to be executed by the CPU. As instructions
are executed, logic in the CPU increments the PC such that it always
points to the next piece of information that the CPU will need. The
number of bits in the PC exactly matches the number of wires in the
address bus. This determines the total potentially available memory
space that can be accessed by a CPU. In the case of an
MC68HC705C8, the PC is 13 bits long; therefore, its CPU can access
up to 8 Kbytes (8192) of memory. Values for this register are expressed
as four hexadecimal digits where the upper-order three bits of the
corresponding 16-bit binary address are always zero.

The condition code (CC) register is an 8-bit register holding status
indicators that reflect the result of some prior CPU operation. The three
high-order bits of this register are not used and always stay at logic one.

1 1 1 H I N Z C

0 7

7 0

0 0 0 PROGRAM COUNTER

0 0 0 0 0 1 1 STACK POINTER

INDEX REGISTER

ACCUMULATOR

12 5

0

0

15 12

7 4 3 2 1

CONDITION CODE REGISTER

A

X

SP

PC

CC

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 39
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Branch instructions use these status bits to make simple either or
decisions.

The stack pointer (SP) is used as a pointer to the next available location
in a last-in-first-out (LIFO) stack. The stack can be thought of as a pile of
cards, each holding a single byte of information. At any given time, the
CPU can put a card on top of the stack or take a card off the stack. Cards
within the stack cannot be used unless all the cards piled on top are
removed first. The CPU accomplishes this stack effect by way of the SP.
The SP points to a memory location (pigeon hole), which is thought of as
the next available card. When the CPU pushes a piece of data onto the
stack, the data value is written into the pigeon hole pointed to by the SP;
the SP is then decremented so it points at the next previous memory
location (pigeon hole). When the CPU pulls a piece of data off the stack,
the SP is incremented so it points at the most recently used pigeon hole,
and the data value is read from that pigeon hole. When the CPU is first
started up or after a reset stack pointer (RSP) instruction, the SP points
to a specific memory location in RAM (a certain pigeon hole).

2.4.4 Memory Uses

The computer memory holds all information needed by the computer for
instructions, variable data, and even I/O status and controls. Some
memory locations contain fixed data like the instructions for the CPU and
tables of constant data. This information is typically held in a read-only
memory (ROM) although there is no special requirement that this
information has to be located in ROM. A second type of information used
by computers is variable information that changes often during the
operation of the system. This type of data is typically held in a read-write
random-access memory (RAM). Information can be read from or written
to various locations in RAM in an arbitrary random order. A third type of
information found in a computer system is I/O status and control
information. This type of memory location allows the computer system to
get information to or from the outside world. This type of memory location
is unusual because the information can be sensed and, or changed by
something other than the CPU.
M68HC05 Applications Guide — Rev. 4.0

40 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Computer Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The simplest kind of I/O memory locations are a simple input port and a
simple output port. In an 8-bit MCU, a simple input port would consist of
eight pins that can be read by the CPU. A simple output port would
consist of eight pins that the CPU can control (write to). In practice, a
simple output port location is usually implemented with eight latches and
feedback paths that allow the CPU to read back what was previously
written to the address of the output port.

Figure 2-3 shows the equivalent circuit for one bit of RAM, one bit of an
input port, and one bit of a typical output port having readback capability.
In a real MCU, this circuit would be repeated eight times to make a single
8-bit RAM location, input port, or output port.

When the CPU stores a value to the address that corresponds to the
RAM bit in Figure 2-3 (a), the WRITE signal is activated to latch the data
from the data bus line into the flip-flop [1]. This latch is static and
remembers the value written until a new value is written to this location
(or power is removed). When the CPU reads the address of this RAM bit,
the READ signal is activated, which enables the multiplexer at [2]. This
multiplexer couples the data from the output of the flip-flop into the data
bus line. In a real MCU, RAM bits are actually much simpler than shown
here, but they are functionally equivalent to this circuit.

When the CPU reads the address of the input port shown in Figure 2-3
(b), the READ signal is activated, which enables the multiplexer at [3].
The multiplexer couples the buffered data from the pin onto the data bus
line. A write to this address would have no meaning.

When the CPU stores a value to the address that corresponds to the
output port in Figure 2-3 (c), the WRITE signal is activated to latch the
data from the data bus line into the flip-flop [4]. The output of this latch,
which is buffered by the buffer driver at [5], appears as a digital level on
the output pin. When the CPU reads the address of this output port, the
READ signal is activated, which enables the multiplexer at [6]. This
multiplexer couples the data from the output of the flip-flop onto the data
bus line.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 41
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-3. Memory and I/O Circuitry

2.4.5 Memory Maps

Since there are several thousand memory locations in the MCU system,
it is important to have a convenient way to track locations. A memory
map is a pictorial representation of the total MCU memory space.
Figure 2-4 is a typical memory map showing a subset of the memory
resources in the MC68HC705C8. Some memory areas (reserved for
Motorola use) were purposely left out of this figure to make it easier to
understand. The complete version of this memory map can be found in
the Figure 3-7. MC68HC705C8 Memory Map.

D

C

Q

Q

[2] READ

DATA BIT n
(n=0, 1...OR 7)

WRITE
[1]

(a) RAM Bit

[3]

(b) Input Port Bit

D

C

Q

Q

[6] READ

DATA BIT n
(n=0, 1...OR 7)

WRITE

[4]

(c) Output Port with Readback

HFF

BUFFER - DRIVER

PIN
[5] DIGITAL

OUTPUT

DATA BIT n
(n=0, 1...OR 7)

READ

PIN
DIGITAL
INPUT

BUFFER

HFF
M68HC05 Applications Guide — Rev. 4.0

42 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Computer Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-4. Typical Memory Map

MOTOROLA USE
48 BYTES

I/O
32 BYTES

MOTOROLA USE
144 BYTES

USER PROM
VECTORS
12 BYTES

STACK
64 BYTES

USER PROM
7680 BYTES

RAM
176 BYTES

$001F

$0000

$0020

$004F
$0050

$00BF
$00C0

$00FF
$0100

$1EFF
$1F00

$1FF3
$1FF4

$1FFF

PORT A DATA REGISTER
PORT B DATA REGISTER
PORT C DATA REGISTER

PORT D FIXED INPUT REGISTER
PORT A DATA DIRECTION REGISTER
PORT B DATA DIRECTION REGISTER
PORT C DATA DIRECTION REGISTER

UNUSED
UNUSED
UNUSED

SPI CONTROL REGISTER
SPI STATUS REGISTER
SPI DATA I/O REGISTER

SCI BAUD RATE REGISTER
SCI CONTROL REGISTER 1
SCI CONTROL REGISTER 2

SCI STATUS REGISTER
SCI DATA REGISTER

TIMER CONTROL REGISTER
TIMER STATUS REGISTER

INPUT-CAPTURE REGISTER (HIGH)
INPUT-CAPTURE REGISTER (LOW)

OUTPUT-COMPARE REGISTER (HIGH)
OUTPUT-COMPARE REGISTER (LOW)

TIMER COUNT REGISTER (HIGH)
TIMER COUNT REGISTER (LOW)
ALT. COUNT REGISTER (HIGH)
ALT. COUNT REGISTER (LOW)
EPROM PROGRAM REGISTER

COP RESET REGISTER
COP CONTROL REGISTER

UNUSED

SPI VECTOR (HIGH)
SPI VECTOR (LOW)
SCI VECTOR (HIGH)
SCI VECTOR (LOW)

TIMER VECTOR (HIGH)
TIMER VECTOR (LOW)

IRQ VECTOR (HIGH)
IRQ VECTOR (LOW)
SWI VECTOR (HIGH)
SWI VECTOR (LOW)

RESET VECTOR (HIGH BYTE)
RESET VECTOR (LOW BYTE)

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F

$1FF4
$1FF5
$1FF6
$1FF7
$1FF8
$1FF9
$1FFA
$1FFB
$1FFC
$1FFD
$1FFE
$1FFF

PORT A DATA DIRECTION REGISTER $04 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

BIT 7 BIT 0
INSET

SEE INSET
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 43
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The four-digit hexadecimal values along the left edge of Figure 2-4 are
addresses beginning with $0000 at the top and increasing to $1FIFF at
the bottom. $0000 corresponds to the first memory location selected
(when the CPU drives all address lines of the internal address bus to
logic zero). $1FFF corresponds to the last memory location selected
(when the CPU drives all 13 address lines of the internal address bus to
logic one). The labels within the vertical rectangle identify what kind of
memory (RAM, PROM, I/O registers, etc.) resides in a particular area of
memory.

Some areas, such as I/O registers, need to be shown in more detail
because it is important to know the names of each individual location.
The vertical rectangle can be interpreted as a row of 8192 pigeon holes
(memory locations). Each of these 8192 memory locations contains
eight bits of data as shown in the inset in Figure 2-4.

The first 256 memory locations ($0000-$00FF) can be accessed with the
direct addressing mode of many CPU instructions. In this addressing
mode, the CPU assumes that the upper two hexadecimal digits of
address are always zeros; thus, only the two low-order digits of the
address need to be explicitly given in the instruction. All on-chip I/O
registers and 176 bytes of RAM are located in the $0000-$00FF area of
memory. In the memory map (Figure 2-4), the expansion of the I/O area
of memory identifies each register location with the two low-order digits
of its address rather than the full four-digit address. For example, the
two-digit hexadecimal value $00 appears to the right of the port A data
register, which is actually located at address $0000 in the memory map.

Now that we have some background knowledge of computer memory,
we can continue with our discussion of the CPU.

2.5 Timing

A high-frequency clock source (typically derived from a crystal
connected to the MCU) is used to control the sequencing of CPU
instructions. Typical MCUs divide the basic crystal frequency by two or
more to arrive at a bus-rate clock. Each memory read or write takes one
bus-rate clock cycle. In the case of the MC68HC705C8 MCU, a 4-MHz
M68HC05 Applications Guide — Rev. 4.0

44 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Programming

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(maximum) crystal oscillator clock is divided by two to arrive at a 2-MHz
(maximum) internal processor clock. Each substep of an instruction
takes one cycle of this internal processor clock (500 ns). Most
instructions take two to five of these substeps; thus, the CPU is capable
of executing about 500,000 instructions every second.

2.6 Programming

At this point, we will write a short program in mnemonic form, translate it
into machine code, and discuss how the CPU would execute the
program. This exercise will provide insight into the internal operation of
the CPU and computers in general. The instruction set explanations and
the process of writing programs will be more understandable with this
background.

Our program will read the state of a switch connected to an input pin.
When the switch is closed, the program will cause an LED connected to
an output pin to light for about one second and then go out. The LED will
not light again until the switch has been released and closed again. The
length of time the switch is held closed will not affect the length of time
the LED is lighted.

Although this program is very simple, it demonstrates the most common
elements of any MCU application program. First, it demonstrates how a
program can sense input signals such as switch closures. Second, this
is an example of a program controlling an output signal. Third, the LED
on-time of about one second demonstrates one way a program can be
used to measure real time. Because the algorithm is sufficiently
complicated, it cannot be accomplished in a trivial manner with discrete
components (at minimum, a one-shot IC with external timing
components would be required). This example demonstrates that an
MCU and a user-defined program (software) can replace complex
circuits.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 45
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.6.1 Flowchart

Figure 2-5 is a flowchart of the example program. Flowcharts are often
used as a planning tool for writing software programs because they
show the function and flow of the program under development. The
importance of notes, comments, and documentation for software cannot
be overemphasized. Just as you would not consider a circuit-board
design complete until there is a schematic diagram, parts list, and
assembly drawing, you should not consider a program complete until
there is a commented listing and a comprehensive explanation of the
program such as a flowchart.

2.6.2 Mnemonic Source Code

Once the flowchart or plan is completed, the programmer develops a
series of assembly language instructions to accomplish the functions
called for in each block of the plan. The programmer is limited to
selecting instructions from the instruction set for the CPU being used (in
this case the MC68HC05).

The programmer writes instructions in a mnemonic form which is easy to
understand. Figure 2-6 shows the mnemonic source code next to the
flowchart of our example program so you can see what CPU instructions
are used to accomplish each block of the flowchart. The meanings of the
mnemonics used in the right side of Figure 2-6 can be found in
Appendix A. Instruction Set Details.

During development of the program instructions, it was noticed that a
time delay was needed in three places. A subroutine was developed that
would generate a 50-ms delay. This subroutine was used directly in two
places (for switch debouncing) and made the one-second delay easier
to produce. To keep this figure simple, the comments that would usually
be included within the source program for documentation are omitted.
The comments will be shown in the complete assembly listing in
Figure 2-9.
M68HC05 Applications Guide — Rev. 4.0

46 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Programming

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-5. Example Flowchart

SWITCH
STILL CLOSED

?

READ SWITCH

CLOSED
?

BEGIN

YES

NO

YES

NO

SET INITIAL CONDITIONS:
PORT C = ALL OUTPUTS

DATA PATTERN 1110 0000 TO PORT C

DELAY TO DEBOUNCE

TURN ON LED

DELAY 1 SECOND

TURN OFF LED

DELAY TO DEBOUNCE

FLOWCHART
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 47
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-6. Flowchart and Mnemonics

SWITCH
STILL CLOSED

?

READ SWITCH

CLOSED
?

BEGIN

YES

NO

YES

NO

SET INITIAL CONDITIONS:
PORT C = ALL OUTPUTS

DATA PATTERN 1110 0000 TO PORT C

DELAY TO DEBOUNCE

TURN ON LED

DELAY 1 SECOND

TURN OFF LED

DELAY TO DEBOUNCE

FLOWCHART

INIT LDA #$FF
STA DDRC
LDA #$E0
STA PORTC

TOP LDA PORTB

BPL TOP

JSR DLY50

BCLR 6, PORTC

LDA #20
DLYLP JSR DLY50

DECA
BNE DLYLP

BSET 6, PORTC

OFFLP BRSET 7, PORTB, OFFLP

JSR DLY50

BRA TOP

MNEMONIC PROGRAM
M68HC05 Applications Guide — Rev. 4.0

48 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Programming

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.6.3 Software Delay Program

Figure 2-7 shows an expanded flowchart of the 50-ms delay subroutine.
A subroutine is a relatively small program which performs some
commonly required function. Even if the function needs to be performed
many times in the course of a program, the subroutine only has to be
written once. Each place where this function is needed, the programmer
would call the subroutine with a branch-to-subroutine (BSR) or jump-to-
subroutine (JSR) instruction.

Figure 2-7. Delay Routine Flowchart and Mnemonics

Before starting to execute the instructions in the subroutine, the address
of the instruction which follows the JSR (or BSR) is automatically stored
in temporary RAM memory locations. When the CPU finishes executing
the instructions within the subroutine, a return-from-subroutine (RTS)
instruction is performed as the last instruction in the subroutine. The
RTS instruction causes the CPU to recover the previously saved return

COUNT
EXPIRED

?

SAVE ACCUMULATOR

YES

NO

LOAD VALUE
CORRESPONDING TO 50mS

6 (JSR)

DLY50 STA TEMP1 4

LDA #32 2

OUTLP CLRX 3

INNRLP DECX 3
BNE INNRLP 3

DECA 3

BNE OUTLP 3

LDA TEMP1 3

RTS 6

START
SUBROUTINE

DECREMENT COUNT

RESTORE
ACCUMULATOR

RETURN FROM
SUBROUTINE

[1]

[2]
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 49
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

address; thus, the CPU continues the program with the instruction
following the JSR (or BSR) instruction that originally called the
subroutine.

The delay routine of Figure 2-7 involves an inner loop (INNRLP) within
another loop (OUTLP). The inner loop consists of two instructions
executed 256 times before X reaches $00 and the BNE branch condition
fails. This amounts to six cycles at 1 µs/cycle times 256, which equals
1.536 ms for the inner loop. The outer loop executes 32 times. The total
execution time for the outer loop is 32(1536 + 9) or 32(1545) = 49.44 ms.
The miscellaneous instructions in this routine other than those in the
outer loop total 21 cycles; thus, the total time required to execute the
DLY50 routine is 49.461 ms, including the time required for the JSR
instruction that calls DLY50.

The 16-bit timer system in the MC68HC705C8 can also be used to
measure time. The timer-based approach is actually preferred because
the CPU can perform other tasks during the delay, and the delay time is
not dependent on the exact number of instructions executed as it is in
DLY50.

2.6.4 Assembler Listing

After a complete program or subprogram is written, it must be converted
from mnemonics into binary machine code that the CPU can later
execute. A separate computer system, such as an IBM PC, is used to
perform this conversion to machine language. A computer program
called an assembler is used. The assembler reads the mnemonic
version of the program (also called the source version of the program)
and produces a machine-code version of the program in a form that can
be programmed into the memory of the MCU.

The assembler also produces a composite listing showing both the
original source program (mnemonics) and the object code translation.
This listing is used during the debug phase of a project and as part of the
documentation for the software program. Figure 2-9 shows the listing
which results from assembling the example program. Comments were
added before the program was assembled.
M68HC05 Applications Guide — Rev. 4.0

50 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Programming

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Section 4. Applications should be thoroughly studied before
attempting to run any of the sample programs in this guide. Some of the
sample programs were developed on another member of the M68HC05
Family which has a slightly different memory map than the
MC68HC705C8. Minor modifications may be necessary to successfully
run these programs on the MC68HC705C8.

Refer to Figure 2-8 for the following discussion. This figure shows some
lines of the listing with reference numbers indicating the various parts of
the line. The first line is an example of an assembler directive line. This
line is not really part of the program; rather, it provides information to the
assembler so that the real program can be converted properly into binary
machine code.

EQU, short for equate, is used to give a specific memory location or
binary number a name which can then be used in other program
instructions. In this case, the EQU directive is being used to assign the
name PORTB to the value $01, which is the address of port B in the
MC68HC705C8. It is easier for a programmer to remember the
mnemonic name PCRTB rather than the anonymous numeric value $01.
When the assembler encounters one of these names, the name is
automatically converted to its corresponding binary value in much the
same way that instruction mnemonics are converted into binary
instruction codes.

0001 PORTB EQU $01 Direct address of port B (sw)
00a0 ORG $A0 Program will start at $00A0
00a8 b6 01 TOP LDA PORTB Read sw at MSB of Port B
---- ----- ----- --- ----- -----------------------------
[1] [2] [3] [4] [5] [6]->

Figure 2-8. Explanation of Assembler Listing
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 51
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* Simple 68HC05 Program Example *
* Read sw connected to bit-7 of port B; 1 = closed *
* When sw. closes, light LED for about 1 Sec; LED *
* on when port C bit 6 = 0. wait for sw release, *
* then repeat. Debounce sw 50ms on & off *
**

0001 PORTB EQU $01 Direct address of port B (sw)
0002 PORTC EQU $02 Direct address of port C (LED)
0005 DDRB EQU $05 Data direction control, port B
0006 DDRC EQU $06 Data direction control, port C
009f TEMP1 EQU $9F One byte temp storage location

00a0 ORG $A0 Program will start at $00A0

* $00A0 is in ’705C8 RAM

00a0 a6 ff INIT LDA #$FF Begin initialization
00a2 b7 06 STA DDRC Set port C to act as outputs

* Port B is configured as inputs by default from reset.
00a4 a6 e0 LDA #$E0 Red & green LEDs and beeper off
00a6 b7 02 STA PORTC Turn off red LED

* Some pins of port C (of my board) happen to be connected
* to devices which don’t apply to this example program.
* The $EO pattern turns off my stuff & turns off red LED

00a8 b6 01 TOP LDA PORTB Read sw at MSB of Port B
00aa 2a fc BPL TOP Loop till MSB = 1 (Neg trick)
00ac cd 00 c3 JSR DLY50 Delay about 50 ms to debounce
00af ld 02 BCLR 6,PORTC Turn on LED (bit-6 to zero)
00bl a6 14 LDA #20 Decimal 20 assembles to $14
00b3 cd 00 c3 DLYLP JSR DLY50 Delay 50 ms
00b6 4a DECA Loop counter for 20 loops
00b7 2 6 fa BNE DLYLP 20 times (20-19,19-18-1-0)
00b9 1c 02 BSET 6,PORTC Turn LED back off
00bb Oe 01 fd OFFLP BRSET 7,PORTB,OFFLP Loop here till. sw off
00be cd 00 c3 JSR DLY50 Debounce release
00cl 20 e5 BRA TOP Look for next sw closure

* DLY50-Subroutine to delay ’-50ms
* Saves original accumulator value
* but X will always be zero on return

00c3 b7 9f DLY50 STA TEMP1 Save accumulator in RAM
00c5 a6 20 LDA #32 Do outer loop 32 times
00c7 5f OUTLP CLRX X used as inner loop count
00c8 5a INNRLP DECX O-FF, FF-FE,...1-0 256 loops
00c9 26 fd BNE INNRLP 6cyc*256*1 µS/cyc = 1.536ms
00cb 4a DECA 32-31, 31-30,...1-0
00cc 26 f9 BNE OUTLP 1545cyc*32*1 µS/cyc = 49.440ms
00ce b6 9f LDA TEMP1 Recover saved Accumulator val
00d0 81 RTS ** Return **

Figure 2-9. Assembler Listing
M68HC05 Applications Guide — Rev. 4.0

52 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
Programming

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The second line shown in Figure 2-8 is another assembler directive. The
mnemonic ORG, which is short for originate, tells the assembler where
the program will start (the address of the start of the first instruction
following the ORG directive line). ORG directives may be used more
than once in a program to tell the assembler to put different parts of the
program in specific places in memory. Refer to the memory map of the
MCU to select an appropriate memory location where a program should
start.

In this assembler listing, the first two fields, [1] and [2], are generated by
the assembler, and the last four fields, [3], [4], [5], and [6], are the original
source program written by the programmer. Field [3] is a label (TOP)
which can be referred to in other instructions. In our example program,
the last instruction was “BRA TOP”, which simply means the CPU will
continue execution with the instruction that is labeled “TOP”.

When the programmer is writing a program, the addresses where
instructions will be located are not typically known. Worse yet, in branch
instructions, rather than using the address of a destination, the CPU
uses an offset (difference) between the current PC value and the
destination address. Fortunately, the programmer does not have to
worry about these problems because the assembler takes care of these
details through a system of labels. This system of labels is a convenient
way for the programmer to identify specific points in the program (without
knowing their exact addresses); the assembler can later convert these
mnemonic labels into specific memory addresses and even calculate
offsets for branch instructions so that the CPU can use them.

Field [4] is the instruction field. The LDA mnemonic is short for load
accumulator. Since there are six variations (different opcodes) of the
load accumulator instruction, additional information is required before
the assembler can choose the correct binary opcode for the CPU to use
during execution of the program. Field [5] is the operand field, providing
information about the specific memory location or value to be operated
on by the instruction. The assembler uses both the instruction mnemonic
and the operand specified in the source program to determine the
specific opcode for the instruction.

The different ways of specifying the value to be operated on are called
addressing modes (a more complete discussion of addressing modes is
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 53
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

presented later). The syntax of the operand field is slightly different for
each addressing mode so the assembler can determine the correct
intended addressing mode from the syntax of the operand. In this case,
the operand [5] is PORTB, which the assembler automatically converts
to $01 (recall the EQU directive). The assembler interprets $01 as a
direct addressing mode address between $0000 and $00FF, thus
selecting the opcode $136, which is the direct addressing mode variation
of the LIDA instruction. If PCRTB had been preceded by a # symbol, that
syntax would have been interpreted by the assembler as an immediate
addressing mode value, and the opcode $A6 would have been chosen
instead of $B6.

Field [6] is called the comment field and is not used by the assembler to
translate the program into machine code. Rather, the comment field is
used by the programmer to document the program. Although the CPU
does not use this information during program execution, a good
programmer knows that it is one of the most important parts of a good
program. The comment [6] for this line of the program says “read sw at
MSB of port B.” This comment tells someone who is reading the listing
why port B is being read, which is essential for understanding how the
program works. An entire line can be made into a comment line by using
an asterisk (*) as the first character in the line. In addition to good
comments in the listing, it is also important to document programs with
a flowchart or other detailed information explaining the overall flow and
operation of the program.

2.6.5 CPU View of a Program

Figure 2-10, a memory map of the MC68HC705C8, shows how the
example program fits in the memory of the MCU. This figure is the same
as Figure 2-4 except that a different portion of the memory space has
been expanded to show the contents of all locations in the program.
Figure 2-10 shows that the CPU sees the example program as a linear
sequence of binary codes, including instructions and operands in
successive memory locations. The CPU begins this program with its
program counter (PC) pointing at the first byte in the program. Each
instruction opcode tells the CPU how many (if any) and what type of
operands go with that instruction. In this way, the CPU can remain
M68HC05 Applications Guide — Rev. 4.0

54 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
CPU Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

aligned to instruction boundaries even though the mixture of opcodes
and operands looks confusing to us.

Most application programs would be located in ROM, EPROM, or
OTPROM. This example program is loaded into an area of RAM to avoid
having to program (and later erase) the EPROM. There is no special
requirement that instruction must be in a ROM-type memory to execute.
As far as the CPU is concerned, any program is just a series of binary bit
patterns which are sequentially processed.

Carefully study the program listing in Figure 2-9 and the memory map of
Figure 2-10. Find the first instruction of the DLY50 subroutine in
Figure 2-9 and then find the same two bytes in Figure 2-10.

You should have found the following line from near the bottom of
Figure 2-9.
00c3 b7 9f DLY50 STA TEMP1 Save accumulator in PAM

The outlined section of memory in Figure 2-10 is the area you should
have identified.

2.7 CPU Operation

This section will first discuss the detailed operation of CPU instructions
and then explain how the CPU would execute the example program. The
detailed descriptions of typical CPU instructions are intended to make
you think like a CPU. We can then go through the example program
using a teaching technique called "playing computer" in which you
pretend you are the CPU interpreting and executing the instructions in a
program.

2.7.1 Detailed Operation of CPU Instructions

Before seeing how the CPU would execute the example program, it
would help to know (in detail) how the CPU breaks down instructions into
fundamental operations and performs these tiny steps to accomplish a
desired instruction. As we will see, many small steps execute very
quickly and very accurately within each instruction, but none of the small
steps is very complicated.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 55
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-10. Memory Map of Example Program

The logic circuitry inside the CPU would seem straightforward to a
design engineer accustomed to working with TTL logic or even relay
logic. What sets the MCU and its CPU apart from these other forms of
digital logic is the packing density. Very large scale integration (VLSI)
techniques have made it possible to fit the equivalent of thousands of
TTL integrated circuits on a single silicon die. By arranging these logic
gates to form a CPU, you get a general-purpose instruction executer

MOTOROLA USE
48 BYTES

I/O
32 BYTES

MOTOROLA USE
144 BYTES

USER PROM
VECTORS
12 BYTES

EXAMPLE
PROGRAM

USER PROM
7680 BYTES

RAM
176 BYTES

$001F

$0000

$0020

$004F
$0050

$009F
$00A0

$00FF
$0100

$1EFF
$1F00

$1FF3
$1FF4

$1FFF

$A6
$FF
$B7
$06
$A6
$E0
$B7
$02
$B6
$01
$2A
$FC
$CD
$00
$C3
$1D
$02
$A6
$14
$CD
$00
$C3
$4A
$26
$FA
$1C
$02
$0E
$01
$FD
$CD
$00
$C3
$20
$E5
$B7
$9F
$A6
$20
$5F
$5A
$26
$FD
$4A
$26
$F9
$B6
$9F
$81

$00A0
$00A1
$00A2
$00A3
$00A4
$00A5
$00A6
$00A7
$00A8
$00A9
$00AA
$00AB
$00AC
$00AD
$00AE
$00AF
$00B0
$00B1
$00B2
$00B3
$00B4
$00B5
$00B6
$00B7
$00B8
$00B9
$00BA
$00BB
$00BC
$00BD
$00BE
$00BF
$00C0
$00C1
$00C2
$00C3
$00C4
$00C5
$00C6
$00C7
$00C8
$00C9
$00CA
$00CB
$00CC
$00CD
$00CE
$00CF
$00D0

$00C3
$00C4

$B7
$9F
M68HC05 Applications Guide — Rev. 4.0

56 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
CPU Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

capable of acting as a universal logic element. By placing different
combinations of instructions in the device, it can perform virtually any
definable function.

A typical instruction takes two to five cycles of the internal processor
clock. Although it is not normally important to know exactly what
happens during each of these execution cycles, it can help to go through
a few instructions in detail to understand how the CPU works internally.

2.7.1.1 Store Accumulator (Direct Addressing Mode)

Look up the STA instruction in Appendix A. Instruction Set Details. In
the table at the bottom of the page, we see that $B7 is the direct
addressing mode version of the store accumulator instruction. We also
see that the instruction requires two bytes, one to specify the opcode
($B7) and the second to specify the direct address where the
accumulator will be stored. (The two bytes are shown as “B7 dd” in the
machine code column of the table.)

We will be discussing the addressing modes in more detail later, but the
following brief description will help in understanding how the CPU
executes this instruction. In direct addressing modes, the CPU assumes
the address is in the range of $0000 through $00IFF; thus, there is no
need to include the upper byte of address of the operand in the
instruction (since it is always $00).

The table at the bottom of the STA description found in Appendix A.
Instruction Set Details shows that the direct addressing version of the
STA instruction takes four CPU cycles to execute. During the first cycle
of this STA instruction, the CPU reads the opcode $B7, which identifies
the instruction as the direct addressing version of the STA instruction
and advances the PC to the next memory location.

During the second cycle, the CPU places the value from the PC on the
internal address bus and reads the low-order byte of the direct address
($02 for example). The CPU uses the third cycle of this STA instruction
to internally construct the full address where the accumulator is to be
stored, and also advances the PC so it points to the next address in
memory (the address of the opcode of the next instruction).
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 57
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In this example, the CPU appends the assumed value $00 (because of
direct addressing mode) to the $02 that was read during the second
cycle of the instruction to arrive at the complete address $0002. During
the fourth cycle of this instruction, the CPU places this constructed
address ($0002) on the internal address bus, places the accumulator
value on the internal data bus, and asserts the write signal. That is, the
CPU writes the contents of the accumulator to $0002 during the fourth
cycle of the STA instruction.

This explanation left out certain details, such as setting the condition
code flags, but it gives an idea of what occurs within the CPU during the
execution of a single instruction.

2.7.1.2 Load Accumulator (Immediate Addressing Mode)

Next, look up the LDA instruction in Appendix A. Instruction Set
Details. The immediate addressing mode version of this instruction
appears as “A6 ii” in the machine code column of the table at the bottom
of the page. This version of the instruction takes two internal processor
clock cycles to execute.

The $A6 opcode tells the CPU to get the byte of data that immediately
follows the opcode and put this value in the accumulator. During the first
cycle of this instruction, the CPU reads the opcode $A6 and advances
the PC to point to the next location in memory (the address of the
immediate operand ii). During the second cycle of the instruction, the
CPU reads the contents of the byte following the opcode into the
accumulator and advances the PC to point at the next location in
memory (i.e., the opcode byte of the next instruction).

While the accumulator was being loaded, the N and Z bits in the
condition code register were set or cleared according to the data that
was loaded into the accumulator. The Boolean logic formulae for these
bits appears near the middle of the instruction set page. The Z bit will be
set if the value loaded into the accumulator was $00; otherwise, the Z bit
will be cleared. The N bit will be set if the most significant bit of the value
loaded was a logic one; otherwise, N will be cleared.

The N (negative) condition code bit may be used to detect the sign of a
twos-complement number. In twos-complement numbers, the most
M68HC05 Applications Guide — Rev. 4.0

58 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
CPU Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

significant bit is used as a sign bit, one indicates a negative value, and
zero indicates a positive value. The N bit may also be used as a simple
indication of the state of the most significant bit of a binary value.

2.7.1.3 Conditional Branch

Branch instructions allow the CPU to select one of two program flow
paths, depending upon the state of a particular bit in memory or various
condition code bits. If the condition checked by the branch instruction is
true, program flow proceeds to a specified location in memory. If the
condition checked by the branch is not true, the CPU proceeds to the
instruction following the branch instruction. Decision blocks in a
flowchart correspond to conditional branch instructions in the program.

Most branch instructions contain two bytes, one for the opcode and one
for a relative offset byte. Branch on bit clear (BRCLR) and branch on bit
set (BRSET) instructions require three bytes: the opcode, a one-byte
direct address (to specify the memory location to be tested), and the
relative offset byte.

The relative offset byte is interpreted by the CPU as a twos-complement
signed value. If the branch condition checked is true, this signed offset
is added to the PC, and the CPU reads its next instruction from this
calculated new address. If the branch condition is not true, the CPU just
continues to the next instruction after the branch instruction.

The following excerpt from Figure 2-9 demonstrates a useful way to use
a conditional branch based on the N condition code bit that is sometimes
overlooked.

00a8 b6 01 TOP LDA PORTB Read sw at MSB of Port B
00aa 2a fc BPL TOP Loop till MSB = 1 (Neg trick)
00ac cd 00 c3 JSR DLY50 Delay about 50 ms to debounce

The first line means “load accumulator with the value at I/O port B of the
MCU.” The most significant bit of this port is connected to a normally
opened switch and a pulldown resistor. When the switch is pressed
(closed), a logic one is applied to the port pin. If the LDA PCRTB
instruction is executed when the switch is opened, the N condition code
bit will be cleared. Conversely, if the LDA PORTB instruction is executed
when the switch is closed, the N condition code bit will be set.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 59
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The second line in the listing (BPL TOP) is read “branch if plus to TOP.”
In response to this instruction, the CPU either branches back to the first
line of this program or falls to the third line of the program, depending on
the condition of the N condition code bit. If the N condition code bit is
clear, the CPU branches to the first line of the program. This
corresponds to the CPU interpreting the value previously read from port
B as a positive value; hence, the instruction name “branch if plus.”

Tricks such as that just described are not the only way to read and
respond to I/O conditions. The following two lines of code would
accomplish the same effect as the three lines which used the N-bit trick.

00a8 Of 01 fd TOP BRCLR 7, PORTB, TOP Loop till sw closed
00ab cd 00 c3 JSR DLY50 Delay about 50 ms to debounce

The first line of this sequence is read “branch to TOP if bit 7 of port B is
clear.” In this particular case, the second sequence is better than the first
sequence for several reasons. The second sequence is more
straightforward (less chance for confusion), it takes one less byte of
machine code, and it executes one cycle faster than the three-line
sequence. However, in some cases the operand (PORTB) is needed in
the accumulator for some other reason; thus, the first instruction
sequence based on the N-bit trick becomes the slightly better choice.
From a practical point of view, the differences between these two
approaches are very small, and either would work well in an application.

2.7.1.4 Subroutine Calls and Returns

The jump-to-subroutine (JSR) and branch-to-subroutine (BSR)
instructions automate the process of leaving the normal linear flow of a
program to go off and execute a set of instructions and then return to
where the normal flow left off. The set of instructions outside the normal
program flow is called a subroutine. A JSR or BSR instruction is used to
go from the running program to the subroutine and a return-from-
subroutine (RTS) instruction is used to return to the program from which
the subroutine was called.

The following shows lines of an assembler listing which will be used to
demonstrate how the CPU executes a subroutine call. Assume that the
M68HC05 Applications Guide — Rev. 4.0

60 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
CPU Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

stack pointer (SP) points to address $00FF when the CPU encounters
the JSR instruction at location $0102.

0100 a6 02 TOP LDA #$02 Load an immediate value
0102 cd 02 00 JSR SUBBY Go do a subroutine
0105 b7 02 STA $02 Store accumulator to port C
 " " " " " "
 " " " " " "
 " " " " " "
02 0 0 4a SUBBY DECA Decrement accumulator
0201 26 fd BNE SUBBY Loop till accumulator = 0
0203 81 RTS ** Return from subroutine

Refer to Figure 2-11 during the following discussion. We will begin the
explanation with the CPU executing the instruction “LDA #$02” at
address $0100. The left side of the figure shows the normal program flow
composed of TOP LIDA #$20, JSR SUBBY, and STA $02 (in that order)
in consecutive memory locations. The right half of the figure shows
subroutine instructions SUBBY DECA, BNE SUBBY, and RTS.

Each number in square brackets indicates a cycle of the internal
processor clock. The cycle numbers will be used as references in the
following explanation of this figure.

Figure 2-11. Subroutine Call Sequence

START

$A6

$02

$CD

$02

$00

$B7

$02

$0100

$0101

$0102

$0103

$0104

$0105

$0106

TOP LDA #$02

JSR SUBBY

STA $02

[1]

[2]

[3]

[4]

[5]

[27]

[6]
[7]
[8]

[28]
[29]
[30]

$4A

$26

$FD

$81

[9]

[12]

[13]

[10]
[11]

[21]
[14]

[22]
[23]
[24]
[25]
[26]

$0200

$0201

$0202

$0203

[15]

[18]

[19]

[16]
[17]

[20]

SUBBY DECA

BNE SUBBY

RTS
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 61
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

[1] CPU reads $A6 opcode from location $0100 (LIDA
immediate).

[2] CPU reads immediate data $02 from location $0101 into the
accumulator.

[3] CPU reads $CD opcode from location $0102 (JSR
extended).

[4] CPU reads high-order extended address $02 from $0103.

[5] CPU reads low-order extended address $00 from $0104.

[6] CPU builds full address of subroutine ($0200).

[7] CPU writes $05 to $00FF and decrements SP to $00FE.
Another way to say this is “push low-order half of return
address on stack.”

[8] CPU writes $01 to $00FE and decrements SP to $00FD.
Another way to say this is “push high-order half of return
address on stack.” The return address that was saved on the
stack is $0105, which is the address of the instruction that
follows the JSR instruction.

[9] CPU reads $4A opcode from location $0200. This is the first
instruction of the called subroutine.

[10] [11] The DECA instruction takes three cycles ([9], [10], and [11]).

[12] CPU reads BNE opcode ($26) from location $0201.

[13] CPU reads relative offset ($FD) from $0202.

[14] During the LDA #$02 instruction at [1], the accumulator was
loaded with the value 2; during the DECA instruction at [9],
the accumulator was decremented to 1 (which is not equal
to zero). Thus, at [14] the branch condition was true, and the
twos-complement offset ($FD or -3) was added to the
internal PC (which was $0203 at the time) to get the value
$0200.

[15] – [19] Repeat of cycles [9] through [13] except that when the DECA
instruction at [15] was executed this time, the accumulator
went from $01 to $00.
M68HC05 Applications Guide — Rev. 4.0

62 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
CPU Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

[20] Since the accumulator is now “equal to zero,” the BNE [19]
branch condition is not true, and the branch will not be taken.

[21] CPU reads the RTS opcode ($81) from $0203.

[22] – [26] The RTS takes six cycles. During the last five cycles of this
instruction, the SP is incremented to $00FE, the high-order
return address ($01) is read from the stack ($00FE), the SP
is incremented again to $00FF, the low-order return address
($05) is read from the stack ($00FF), and the PC is loaded
with this recovered return address ($0105).

[27] CPU reads the STA direct opcode ($B7) from location
$0105.

[28] CPU reads the low-order direct address ($02) from location
$0106.

[29] [30] The STA direct instruction takes a total of four cycles. During
these last two cycles of the instruction, the CPU constructs
the complete address where the accumulator will be stored
by appending $00 (assumed value for the high-order half of
the address due to direct addressing mode) to the $02 read
during [28]. The accumulator ($00 at this time) is then stored
to this constructed address ($0002).

2.7.2 Playing Computer

Playing computer is a learning exercise where you pretend to be a CPU
that is executing a program. Programmers often mentally check
programs by playing computer as they read through a software routine.
While playing computer, it is not necessary to break instructions down to
individual processor cycles. Instead, instructions are treated as a single
complete operation rather than several detailed steps.

The following paragraphs demonstrate the process of playing computer
by going through the subroutine-call exercise of Figure 2-11. The
playing-computer approach to analyzing this sequence is much less
detailed than the cycle-by-cycle analysis done earlier on Figure 2-11,
but it accomplishes the same basic goal — i.e., it shows what happens
as the CPU executes the sequence. After seeing how to do this exercise,
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 63
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

you should attempt the same thing with a larger program such as the
example of Figure 2-10.

You begin the process by preparing a worksheet like that shown in
Figure 2-12. This sheet includes the mnemonic program and the
machine code that it assembles to. (You could alternately choose to use
a listing positioned next to the worksheet.) The worksheet also includes
the CPU register names across the top of the sheet with ample room
below to write new values as the registers change in the course of the
program.

Figure 2-12. Playing Computer Worksheet

CONDITION
CODES

 1 1 1 H I N Z C

0100 A6 02 TOP LDA #$02 LOAD AN IMMEDIATE VALUE
0102 CD 02 00 JSR SUBBY GO DO A SUBROUTINE
0105 B7 02 STA $02 STORE ACCUMULATOR TO
PORT C
 “ “ “ “ “
 “ “ “ “ “
 “ “ “ “ “
0200 4A SUBBY DECA DECREMENT ACCUMULATOR
0201 26 FD BNE SUBBY LOOP TILL ACCUMULATOR =

STACK
POINTER ACCUMULATOR

PROGRAM
COUNTER

$00FC
$00FD
$00FE
$00FF

INDEX
REGISTER

LISTING OF PROGRAM

TO BE EXAMINED

LISTING OF PROGRAM

TO BE EXAMINED
M68HC05 Applications Guide — Rev. 4.0

64 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
CPU Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

On this worksheet, there is an area for keeping track of the stack. After
you become comfortable with how the stack works, you would probably
leave this section off, but it will be instructive to leave it here for now.

As a value is saved on the stack, you will cross out any prior value and
write the new value to its right in a horizontal row. You must also update
(decrement) the SP value by crossing out any prior value and writing the
new value beneath it under the SP heading at the top of the worksheet.
As a value is recovered from the stack, you would update (increment) the
value of SP by crossing out the old value and writing the new value
below it. You would then read the value from the location now pointed to
by the SP and put it wherever it belongs in the CPU (e.g., in the upper or
lower half of the PC).

Figure 2-13 shows how the worksheet will look after working through the
whole JSR sequence. Follow the numbers in square brackets as the
process is explained. During the process, many values were written and
later crossed out; a line has been drawn from the square bracket to
either the value or the crossed out mark to show which item the
reference number applies to.

Beginning the sequence, the PC should be pointing to $0100 [1], and the
SP should be pointing to $00FF [2] (due to an earlier assumption). The
CPU reads and executes the LDA #$02 instruction (load accumulator
with the immediate value $02); thus, you write $02 in the accumulator
column [3] and replace the PC value [4] with $0102, which is the address
of the next instruction. The load accumulator instruction affects the N
and Z CCR bits. Since the value loaded was $02, the Z bit would be
cleared, and the N bit would be cleared [5]. This information can be
found in Appendix A. Since the other bits in the CCR are not affected by
the LIDA instruction, we have no way of knowing what they should be at
this time, so we put question marks in the unknown positions for now [5].
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 65
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-13. Completed Worksheet

Next, the CPU reads the JSR SUBBY instruction. Temporarily
remember the value $0105, which is the address where the CPU should
come back to after executing the called subroutine. The CPU saves the
low-order half of the return address on the stack; thus, you write $05 [6]
at the location pointed to by the SP ($00FF) and decrement the SP [7]
to $00FE. The CPU then saves the high-order half of the return address
on the stack; you write $01 [8] to $00FE and again decrement the SP [9]
(this time to $00FD). To finish the SR instruction, you load the PC with
$0200 [10], which is the address of the called subroutine.

CONDITION
CODES

 1 1 1 H I N Z C
[5] 1 1 1 ? ? 0 0 ? [15]

1 1 1 ? ? 0 1 ?

0100 A6 02 TOP LDA #$02 LOAD AN IMMEDIATE VALUE
0102 CD 02 00 JSR SUBBY GO DO A SUBROUTINE
0105 B7 02 STA $02 STORE ACCUMULATOR TO PORT C
 “ “ “ “ “
 “ “ “ “ “
 “ “ “ “ “
0200 4A SUBBY DECA DECREMENT ACCUMULATOR
0201 26 FD BNE SUBBY LOOP TILL ACCUMULATOR = 0
0203 81 RTS * * RETURN FROM SUBROUTINE *

STACK
POINTER

[2] $00FF [7]
 $00FE [9]
 $00FD [18]
 $00FE [19]
 $00FF

ACCUMULATOR
 [3] $02 [11]

 $01 [14]
 $00

PROGRAM
COUNTER

[1] $0100 [4]
 $0102 [10]
 $0200 [12]
 $0201 [13]
 $0200 [16]
 $0201 [17]
 $0203 [20]
 $0105

$0002 – PORT C $00 [21]

$00FC
$00FD
$00FE $01 [8]

$00FF $05 [6]

INDEX
REGISTER
M68HC05 Applications Guide — Rev. 4.0

66 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
CPU Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The CPU fetches the next instruction. Since the PC is $0200, the CPU
executes the DECA instruction, the first instruction in the subroutine.
You cross out the $02 in the accumulator column and write the new
value $01 [11]. You also change the PC to $0201 [12]. Because the
DECA instruction changed the accumulator from $02 to $01 (which is not
zero or negative), the Z bit and N bit remain clear. Since N and Z were
already cleared at [5], you can leave them alone on the worksheet.

The CPU now executes the BNE SUBBY instruction. Since the Z bit is
clear, the branch condition is met, and the CPU will take the branch.
Cross out the $0201 under PC and write $0200 [13].

The CPU again executes the DECA instruction. The accumulator is now
changed from $01 to $00 [14] (which is zero and not negative); thus, the
Z bit is set, and the N bit remains clear [15]. The PC advances to the next
instruction [16].

The CPU now executes the BNE SUBBY instruction, but this time the
branch condition is not true (Z is set now), so the branch will not be
taken. The CPU simply falls to the next instruction (the RTS at $0203).
Update the PC to $0203 [17].

The RTS instruction causes the CPU to recover the previously stacked
PC. Pull the high-order half of the PC from the stack by incrementing the
SP to $00FE [18] and by reading $01 from location $00FE. Next, pull the
low-order half of the address from the stack by incrementing SP to
$00FF [19] and by reading $05 from $00FF. The address recovered from
the stack replaces the value in the PC [20].

The CPU now reads the STA $02 instruction from location $0105.
Program flow has returned to the main program sequence where it left
off when the subroutine was called. The STA (direct addressing mode)
instruction writes the accumulator value to the direct address $02
($0002), which is port C on the MC68HC705C8. We can see from the
worksheet that the current value in the accumulator is $00; therefore, all
eight pins of port C would be driven low (provided they are configured as
outputs at this time). Since the original worksheet did not have a place
marked for recording the value of port C, you would make a place and
write $00 there [21].
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 67
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For a larger program, the worksheet would have many more crossed out
values by the time you are done. Playing computer on a worksheet like
this is a good learning exercise, but, as a programmer gains experience,
the process would be simplified.

One of the first simplifications would be to quit keeping track of the PC
because you learn to trust the CPU to take care of this for you. Another
simplification of the worksheet is to stop keeping track of the condition
codes. When a branch instruction which depends on a condition code bit
is encountered, you can mentally work backwards to decide whether or
not the branch should be taken.

Next, the storage of values on the stack would be skipped, although it is
still a good idea to keep track of the SP value because it is fairly common
to have programming errors resulting from incorrect values in the SP. A
fundamental operating principle of the stack is that over a period of time,
the same number of items must be removed from the stack as were put
on the stack. Just as left parentheses must be matched with right
parentheses in a mathematical formula, JSRs and BSRs must be
matched one for one to subsequent RTSs in a program. Errors which
cause this rule to be broken will appear as erroneous SP values while
playing computer.

Even an experienced programmer will play computer occasionally to
solve some difficult problem. The procedure the experienced
programmer would use is much less formal than what was explained
here, but it still amounts to placing yourself in the role of the CPU and
working out what happens as the program is executed.

2.8 On-Chip Peripherals

A peripheral is a block of circuitry which performs some useful function
under control of the CPU. One example of a peripheral is a universal
asynchronous receiver/transmitter (UART), which acts as an interface
between a computer and an asynchronous serial communication link.
The most common example of such a communication link is the RS-232
or RS-422 serial port on a computer. This standard is so universal that
M68HC05 Applications Guide — Rev. 4.0

68 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
On-Chip Peripherals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

almost every personal and mainframe computer made anywhere in the
world has at least one such port.

Before the MCU was developed, a computer designer had to use a
separate UART integrated circuit to include this serial interface function
in a computer. Often a number of other miscellaneous logic gates were
also needed to interface the UART to the CPU buses.

Since the level of integration allows thousands of logic gates to be
included in a single MCU integrated circuit, it is practical to put several
peripherals, including this UART function, on the same chip along with
the CPU and memories. The on-chip serial communications interface
(SCI) in the MC68HC705C8 is a UART-type peripheral.

It is important for the MCU manufacturer to select peripheral functions
that will be useful to many potential users for inclusion on the MCU chip.
This pressure to make on-chip peripherals satisfy the requirements of as
many customers as possible causes the need for user-selectable
options to modify the operation of the on-chip peripherals.

The MC68HC705C8 has control registers, which allow a user to select
which parallel I/O pins will be inputs and which will be outputs. Although
any one application is likely to need only one specific mixture of inputs
and outputs, twenty different applications are likely to need a dozen
collective mixtures. The ability to specify the direction of each I/O pin at
the time of use makes this MCU ideal for many different applications.

Control registers are controlled by the CPU in essentially the same way
as a digital output port. You could think of control/status registers as
internal I/O registers connected to internal logic rather than to MCU pins.
To change the voltage level at an output pin, the CPU writes a digital
value to the address of the output port register. The level (0 or 1) in each
bit of the output port register controls the voltage level on a
corresponding MCU pin. In the case of a control register, the state of a
bit in the control register determines the logic level of an internal control
signal rather than on a pin.

In Section 3. MC68HC705C8 Functional Data of this applications
guide, you will find more complete descriptions of the on-chip
peripherals in the MC68HC705C8.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 69
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.8.1 Serial Communications Interface (SCI)

The SCI system on the MC68HC705C8 is a UART-type asynchronous
serial communications interface. The most common use of this
peripheral is to implement an RS-232 interface to a host computer
system (such as a personal computer). The SCI system can be used to
communicate over relatively long distances.

In normal applications, the CPU simply writes data to a parallel data
register to send a formatted serial character. The SCI peripheral system
takes care of all the details of transforming the data into the proper serial
format, including the addition of start and stop bits required to meet
standards. The transmitter even allows up to two characters to be
queued up for transmission, thus allowing the CPU more time to prepare
additional characters.

The receiver portion of the SCI automatically detects the start of a
character and intelligently samples the incoming serial data to assure
correct reception, even in noisy applications. All activity related to
receiving serial data and converting it to parallel data is performed within
the SCI peripheral logic with no intervention of the CPU. After a
character is received, the CPU simply reads a data byte from a receive
data register.

A number of options are offered to allow various data rates (baud rates),
alternate character formats, and an automatic standby /wakeup feature.
You can choose between software polling or interrupts for detection of
SCI status.

2.8.2 Serial Peripheral Interface (SPI)

The SPI system on the MC68HC705C8 is separate from the SCI system
and is used primarily for communications with standard peripheral logic
chips on the same circuit board as the MCU. A few examples of the chips
that can use SPI are serial-to-parallel and parallel-to-serial shift
registers, A/D peripherals, LCD peripherals, and many others.

The SPI system works like a distributed 16-bit shift register in which half
the shifter is in the MCU (SPI), and the other half is in the peripheral.
When the MCU initiates a transfer, this distributed shifter is rotated eight
M68HC05 Applications Guide — Rev. 4.0

70 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation
On-Chip Peripherals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

bit positions so that the data in the master MCU is effectively exchanged
with the data in the peripheral slave. In some cases, the loop is
incomplete, and data is transferred only from the MCU to the peripheral
or from the peripheral to the MCU.

An SPI system typically consists of a master MCU and one or more slave
peripherals. Other configurations such as two MCUs or multiple master
systems are possible but less common.

The SPI system includes options to select shift rate, master or slave
mode, clock polarity, and phase to allow compatibility with most
synchronous serial peripheral devices from many manufacturers.

2.8.3 16-Bit Timer System

The MC68HC705C8 MCU includes a 16-bit timer system used to
measure time and to produce signals of specific period or frequency.
This system is based on a free-running 16-bit counter, a 16-bit output-
compare register, and a 16-bit input-capture register.

The CPU controls the timing of output signals through the output-
compare mechanism. To schedule an output change to occur at a
specific time (a specific count of the free-running counter), a 16-bit value
corresponding to the desired time is written to the output-compare
register. When the free-running counter matches the value in the output-
compare register, the planned output change occurs.

The CPU detects the time of an event or measures the period of an input
signal with the input-capture mechanism. The CPU can select either
positive or negative edges detected on an MCU pin to trigger the input-
capture mechanism. When the selected edge occurs, the current value
in the free-running counter (which corresponds to the time the edge
occurred), is captured by (transferred to) the input-capture register. The
CPU can later read the value in the input-capture register and determine
the exact time when the edge occurred.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Microcontroller Operation 71
For More Information On This Product,

 Go to: www.freescale.com

Microcontroller Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.8.4 Memory Peripherals

Memory systems are also a form of peripheral. The uses for different
types of memory were discussed earlier, but the logic required to support
these memories was not discussed. ROM and RAM memories are very
straightforward and require no support logic other than address-select
logic to distinguish one location from another.

EPROM (erasable programmable ROM) and EEPROM (electrically
erasable programmable ROM) memories require support logic for
programming (and erasure in the case of EEPROM). The peripheral
support logic in the MC68HC705C8 is like having a PROM programmer
built into the MCU. A control register includes control bits to select
between programming and normal modes and to enable the high-
voltage programming supply.

2.8.5 Other On-Chip Peripherals

There are many other peripherals available on MCUs (see other
members of the M68HC05 Family of MCUs). These other peripherals
include analog-to-digital (A/D) converters, liquid crystal display drivers
(LCD), and vacuum fluorescent display drivers (VFD).
M68HC05 Applications Guide — Rev. 4.0

72 Microcontroller Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

Section 3. MC68HC705C8 Functional Data

3.1 Contents

3.2 Introduction .76

3.3 MCU Description. .77
3.3.1 Hardware Features. .77
3.3.2 Software Features .78
3.3.3 General Description .78

3.4 Pins and Connections. .80
3.4.1 Pin Functions .81
3.4.1.1 VDD and VSS .81
3.4.1.2 VPP. .81
3.4.1.3 IRQ (Maskable Interrupt Request)82
3.4.1.4 RESET .82
3.4.1.5 TCAP .82
3.4.1.6 TCMP. .83
3.4.1.7 OSC1 and OSC2 .83
3.4.1.8 PA7–PA0 .83
3.4.1.9 PB7–PB0 .83
3.4.1.10 PC7–PC0 .85
3.4.1.11 PD5–PD0 and PD7 .85
3.4.2 Typical Basic Connections .85

3.5 On-Chip Memory .87
3.5.1 Memory Types .87
3.5.2 Memory Map .88

3.6 Central Processor Unit .88
3.6.1 Registers .90
3.6.1.1 Accumulator .90
3.6.1.2 Index Register .91
3.6.1.3 Condition Code Register .91
3.6.1.4 Program Counter .93
3.6.1.5 Stack Pointer .94
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 73
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.2 Arithmetic/Logic Unit (ALU) .94
3.6.3 CPU Control .95
3.6.4 Resets .95
3.6.4.1 Power-On Reset .95
3.6.4.2 Computer Operating Properly (COP) Watchdog

Timer Reset .97
3.6.4.3 Clock Monitor Reset. .99

3.7 Addressing Modes .99
3.7.1 Inherent Addressing Mode .101
3.7.2 Immediate Addressing Mode .103
3.7.3 Extended Addressing Mode .104
3.7.4 Direct Addressing Mode .105
3.7.5 Indexed Addressing Modes .108
3.7.5.1 Indexed, No Offset .108
3.7.5.2 Indexed, 8-Bit Offset .110
3.7.5.3 Indexed, 16-Bit Offset .112
3.7.6 Relative Addressing Mode .113
3.7.7 Bit Test and Branch Instructions .115
3.7.8 Instructions Organized by Type .115

3.8 Instruction Set Summary .119

3.9 Interrupts. .128
3.9.1 Software Interrupt (SWI). .129
3.9.2 External Interrupt .131
3.9.3 Timer Interrupt .132
3.9.4 Serial Communications Interface (SCI) Interrupt132
3.9.5 Serial Peripheral Interface (SPI Interrupt132

3.10 Microcontroller Input/Output .133
3.10.1 Parallel I/O .133
3.10.2 Serial I/O .136

3.11 Serial Communications Interface (SCI) 136
3.11.1 SCI Transmitter .137
3.11.2 SCI Receiver .139
3.11.3 Registers .141
3.11.3.1 Baud Rate Register (BAUD) .141
3.11.3.2 Serial Communications Control

Register One (SCCR1) .144
M68HC05 Applications Guide — Rev. 4.0

74 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.11.3.3 Serial Communications Control
Register Two (SCCR2) .144

3.11.3.4 Serial Communications Status
Register (SCSR) .145

3.11.3.5 Serial Communications Data Register (SCDAT)146
3.11.4 Data Formats .147
3.11.5 Hardware Procedures .148
3.11.6 Software Procedures .148
3.11.6.1 Initialization Procedure. .148
3.11.6.2 Normal Transmit Operation .149
3.11.6.3 Normal Receive Operation. .149
3.11.7 SCI Application Example .150

3.12 Synchronous Serial Peripheral Interface (SPI)153
3.12.1 Data Movement .155
3.12.2 Functional Description .156
3.12.3 Pin Descriptions .156
3.12.3.1 Serial Data Pins (MISO, MOSI)156
3.12.3.2 Serial Clock (SCK) .157
3.12.3.3 Slave Select (SS). .158
3.12.4 Registers .158
3.12.4.1 Serial Peripheral Control Register (SPCR) 158
3.12.4.2 Serial Peripheral Status Register (SPSR)160
3.12.4.3 Serial Peripheral Data I/O Register (SPDR) 161

3.13 SPI Application Example .161

3.14 Programmable Timer .163
3.14.1 Functional Description .166
3.14.2 Timer Counter and Alternate Counter Registers 168
3.14.3 Input-Capture Concept .169
3.14.4 Input-Capture Operation. .170
3.14.5 Output-Compare Concept .172
3.14.6 Output-Compare Operation .174
3.14.7 Timer Control Register (TCR) .175
3.14.8 Timer Status Register (TSR) .175
3.14.9 Timer Application Example. .177

3.15 STOP/WAIT Instruction Effects .177
3.15.1 Low Power-Consumption Modes .177
3.15.2 Effects on On-Chip Peripherals .180
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 75
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.15.2.1 Timer Action During Stop Mode.180
3.15.2.2 SCI Action During Stop Mode .180
3.15.2.3 SPI Action During Stop Mode .181
3.15.2.4 Wait Mode Effects .181

3.16 OTPROM/EPROM Programming .182
3.16.1 Erasing .182
3.16.2 Programming .182
3.16.3 Program Register .183
3.16.4 Option Register .184

3.2 Introduction

The MC68HC705C8 microcontroller (MCU) is a member of the
M68HC05 Family of low-cost, single-chip microcontrollers.

The HCMOS technology used on the MC68HC705C8 combines smaller
size and higher speeds with the low power and high noise immunity of
CMOS.

An additional advantage of CMOS is that circuitry is fully static. CMOS
microcontrollers may be operated at any clock rate less than the
guaranteed maximum. This feature may be used to conserve power
since power consumption increases with higher clock frequencies. Static
operation may also be advantageous during product development.

Two software-controlled power-saving modes, WAIT and STOP, are
available to conserve additional power. These modes make the
MC68HC705C8 especially attractive for automotive and battery-driven
applications.
M68HC05 Applications Guide — Rev. 4.0

76 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
MCU Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3 MCU Description

The hardware and software highlights of the MC68HC705C8 are shown
in the following subsections.

3.3.1 Hardware Features

• HCMOS technology

• 8-bit architecture

• Power-saving stop, wait, and data retention modes

• 24 bidirectional I/O lines

• 7 input-only lines

• 2 timer I/O pins

• 2.1 MHz internal operating frequency, 5 volts; 1.0 MHz, 3 volts

• Internal 16-bit timer

• Serial communications interface (SCI) system

• Serial peripheral interface (SPI) system

• Ultraviolet (UV) light EPROM or one-time programmable ROM
(OTPROM)

• Selectable memory configurations

• Computer operating properly (COP) watchdog system

• Clock monitor

• On-chip bootstrap firmware for programming

• Software-programmable external interrupt sensitivity

• External pin, timer, SCI, and SPI interrupts

• Master reset and power-on reset

• Single 3-to 6-volt supply (2-volt data retention mode)

• On-chip oscillator

• 40-pin dual-in-line package

• 44-lead PLCC (plastic leaded chip carrier) package
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 77
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3.2 Software Features

• Upward software compatible with the M146805 CMOS family

• Efficient instruction set

• Versatile interrupt handling

• True bit manipulation

• Addressing modes with indexed addressing for tables

• Memory-mapped I/O

• Two power-saving standby modes

3.3.3 General Description

Figure 3-1 shows the MC68HC705C8 MCU block diagram.

The central processor unit (CPU) contains the 8-bit arithmetic logic unit,
accumulator, index register, condition code register, stack pointer,
program counter, and CPU control logic.

Major peripheral functions are provided on-chip. On-chip memory
systems include bootstrap read-only memory (ROM), programmable
ROM (EPROM or OTPROM), and random-access memory (RAM).

On-chip I/0 devices include an asynchronous serial communications
interface (SCI), a separate serial peripheral interface (SPI), and a 16-bit
programmable timer system.

Self-monitoring circuitry is included on-chip to protect against system
errors. A computer operating properly (COP) watchdog system protects
against software failures. A clock monitor system generates a system
reset if the clock is lost or runs too slow. An illegal opcode detection
circuit provides a non-maskable interrupt if an illegal opcode is detected.
M68HC05 Applications Guide — Rev. 4.0

78 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
MCU Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-1. MC68HC705C8 Microcontroller Block Diagram

EPROM
PROGRAMMING

CONTROL
VPP

OPTION
REGISTER

RAM – 176 BYTES
(UP TO 304 BYTES)

BOOT ROM – 240 BYTES

CPU
CONTROL

ARITHMETIC
LOGIC UNIT

(ALU)

OSCILLATOR DIVIDE
BY 2

POWER

PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0

PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0

PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0

PD7

PD5
PD4
PD3
PD2
PD1
PD0

PO
RT

 D

RESET

IRQ

OSC1

OSC2

VDD

VSS

TCMP

TCAP

EPROM/OTPROM – 7744 BYTES
(144 BYTES CONFIGURABLE)

COP WATCHDOG
AND

CLOCK MONITOR

PROGRAM
REGISTER

SS
SCK

MOSI
MISO

TDO
RDI

BAUD RATE
GENERATOR

SCI

SPI

TIMER SYSTEM

PO
RT

 C

DA
TA

 D
IR

EC
TI

O
N

C

PO
RT

 B

DA
TA

 D
IR

EC
TI

O
N

B

PO
RT

 A

DA
TA

 D
IR

EC
TI

O
N

A

M68HC05 CPU

ACCUMULATOR

INDEX REGISTER

STACK POINTER

PROGRAM COUNTER0 0 0

0 0 0 0 0 1 1

1 1 1 H I N Z C

CPU REGISTERS

CONDITION CODES
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 79
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4 Pins and Connections

The following paragraphs discuss the MCU pin assignments, pin
functions, and basic connections.

Because the MC68HC705C8 is a CMOS device, unused input pins must
be terminated to avoid oscillation, noise, and added supply current. The
preferred method of terminating pins that can be configured for input or
output is with individual pullup or pulldown resistors for each unused pin.

Pin assignments are shown in Figure 3-2 and Figure 3-3.

Figure 3-2. 40-Pin Dual-In-Line Package Pin Assignments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

RESET

IRQ

VPP
PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

VSS

VDD
OSC1

OSC2

TCAP

PD7

TCMP

PD5/SS

PD4/SCK

PD3/MOSI

PD2/MISO

PD1/TDO

PD0/RDI

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7
M68HC05 Applications Guide — Rev. 4.0

80 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Pins and Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-3. 44-Lead PLCC Package Pin Assignments

3.4.1 Pin Functions

The following subsections provide a description of the pin functions.

3.4.1.1 VDD and VSS

Power is supplied to the MCU using these two pins. VDD is power and
VSS is ground. The MCU can operate from a single 5-volt (nominal)
power supply.

3.4.1.2 VPP

The VPP pin is used when programming the one-time programmable
ROM (OTPROM) or EPROM. Programming voltage (14.75 Vdc) is
applied to this pin when programming the PROM. Normally, this pin is
connected to VDD.

CAUTION: Do not connect VPP pin to VSS (GND). It will damage the MCU.

6 5 4 3 2 44 43 42 41 40

PD7

TCMP

PD5/SS

PD4/SCK

PD3/MOSI

PD2/MISO

PD1/TDO

RD0/RDI

PC0

PC1

PC2

PA5

PA4

PA3

PA2

PA1

PA0

PB0

PB1

PB2

PB3

PB4

PA
6

PA
7

V P
P

N
C

IR
Q

R
ES

ET

V D
D

O
SC

1

O
SC

2

TC
AP

N
C

N
C

PB
5

PB
6

PB
7

V S
S

N
C

PC
7

PC
6

PC
5

PC
4

PC
3

18 19 20 21 22 23 24 25 26 27 28

39

38

37

36

35

34

33

32

31

30

29

7

8

9

10

11

12

13

14

15

16

17

1

M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 81
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4.1.3 IRQ (Maskable Interrupt Request)

IRQ is a software programmable option which provides two different
choices of interrupt triggering sensitivity. These options are 1) negative
edge-sensitive triggering only, or 2) both negative edge-sensitive and
level-sensitive triggering.

In the latter case, either a negative edge or a low level input to the IRQ
pin will produce an interrupt. The MCU completes the current instruction
before it responds to the interrupt request. When the IRQ pin goes low,
a small synchronization delay occurs, and a logic one is latched
internally to signify an interrupt has been requested. When the MCU
completes current instruction, the interrupt latch is tested. If the interrupt
latch contains a logic one and the interrupt mask bit (I bit) in the condition
code register is clear, the MCU then begins the interrupt sequence.

If the option is selected to include level-sensitive triggering, then the IRQ
input requires an external resistor to VDD for “wired-OR” operation. See
3.9 Interrupts for more detail concerning interrupts.

3.4.1.4 RESET

The RESET pin is an active-low bidirectional control signal. As an input,
the RESET pin initializes the MCU to a known startup state. As an open-
drain output, the RESET pin indicates an internal MCU failure detected
by the computer operating properly (COP) watchdog timer or clock
monitor circuitry.

This RESET pin is significantly different from the RESET signal used
on other Motorola M68HC05 Family devices. Refer to 3.6.4 Resets and
3.9 Interrupts before designing circuitry to generate or monitor the
RESET signal.

3.4.1.5 TCAP

The TCAP pin provides the input to the input-capture feature for the
on-chip programmable timer system. Refer to input-capture register in
3.14 Programmable Timer.
M68HC05 Applications Guide — Rev. 4.0

82 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Pins and Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4.1.6 TCMP

The TCMP pin provides an output for the output-compare feature
of the on-chip timer system. Refer to output-compare register in
3.14 Programmable Timer.

3.4.1.7 OSC1 and OSC2

The MC68HC705C8 can accept either a crystal, ceramic resonator, or
external input to control the internal oscillator. The internal processor
clock is derived by dividing the oscillator frequency (fosc) by two.

The circuit shown in Figure 3-4(a) is recommended when using a
crystal. The internal oscillator is designed to interface with an AT-cut
parallel resonant quartz crystal or a ceramic resonator up to 4 MHz. The
crystal and components should be mounted as close as possible to the
input pins to minimize output distortion and startup stabilization time.

A ceramic resonator may be used in place of the crystal in cost-sensitive
applications. The circuit in Figure 3-4(a) is recommended when using a
ceramic resonator or a crystal. The manufacturer of the particular
ceramic resonator being considered should be consulted for specific
information.

An external clock may be applied to the OSC1 input with the OSC2 pin
not connected, as shown in Figure 3-4(b).

3.4.1.8 PA7–PA0

These eight I/O lines comprise port A. Each port A pin can be software
programmed to act as an input or output.

3.4.1.9 PB7–PB0

These eight lines comprise port B. Each port B pin can be software
programmed to act as an input or output.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 83
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-4. Oscillator Connections

25 pF

STOP

MC68HC705C8

OSC1 OSC2

10M

XTAL

25 pF

(a) Crystal/Ceramic Resonator Oscillator Connections

STOP

MC68HC705C8

OSC1 OSC2

(b) External Clock Source Connections

UNCONNECTED

EXTERNAL
CMOS CLOCK
M68HC05 Applications Guide — Rev. 4.0

84 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Pins and Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4.1.10 PC7–PC0

These eight lines comprise port C. Each port C pin can be software
programmed to act as an input or output.

3.4.1.11 PD5–PD0 and PD7

These seven lines comprise port D. During power-on or reset, these
seven pins are configured as inputs. When the SPI system is enabled,
four of these lines, MISO/PD2, MOSI/PD3, SCK/PD4, and SS/PD5, are
used by the SPI system. When the SCI receiver is enabled, the PD0/RDI
pin becomes the receive data input to the SCI. When the SCI transmitter
is enabled, the PD1 TDO pin becomes the transmit data output for the
SCI.

3.4.2 Typical Basic Connections

There are MCU basic connections that can be used as the starting point
for any application to minimize the time required to create a prototype
system.

Figure 3-5 is the schematic diagram for a simple MC68HC705C8
system. This circuit can be used as the basis for any MC68HC705C8
application. In most cases, the circuitry for the power supply and
oscillator can be used as shown in this diagram. All unused inputs are
terminated in an appropriate manner.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 85
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-5. Typical Basic Connections

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PD0/RDI

PD1/TDO

PD2/MISO

PD3/MOSI

PD4/SCK

PD5/SS

PD7

TCAP

TCMP

VDD

VSS

OSC1

OSC2

RESET

IRQ

VPP

VDD

SYSTEM
POWER 0.1 µF 4.7 µF

+

10M

4.0 MHz

18 pF 18 pF

VDD VDD

4.7 k
IN

GND

RESET

MC34064

VDD

4.7 k

MC68HC705C8

PULLUP
RESISTORS

RECOMMENDED
FOR

UNUSED
INPUTS

VDD

10 k (TYP)
M68HC05 Applications Guide — Rev. 4.0

86 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5 On-Chip Memory

The MC68HC705C8 memory includes 176 to 304 bytes of random-
access memory (RAM), 240 bytes of read-only memory (ROM), and
7600 to 7744 bytes of programmable memory (EPROM or OTPROM).

3.5.1 Memory Types

RAM means that any word in the memory may be accessed without
having to go through all the other words to get to it. RAM is a volatile form
of memory in that all the memory content is lost when the power is
removed from the chip. RAM contents may be retained by keeping at
least 2 volts on VDD. Power requirements in this standby mode are very
small.

ROM is very similar to RAM except, unlike RAM, it is not possible to
change the contents of ROM after it is manufactured. This type memory
is useful only for storage of information or programs.

The special bootstrap mode allows programs to be downloaded through
the on-chip serial communications interface (SCI) into internal RAM to
be executed. The bootloaded program is used for a variety of tasks such
as loading calibration values into internal EPROM or performing
diagnostics on a finished module.

The MC68HC705C8 on-chip ROM is called the bootloader ROM. This
ROM controls the loading process of the special bootstrap mode.

Erasable programmable ROM (EPROM) is nonvolatile memory that can
be programmed in the field by the user. Nonvolatile memories retain
their contents even when no power is applied. Once it has been
programmed, the EPROM cannot be written into, but it can be read from
as many times as necessary. However, EPROM can be erased by
ultraviolet light and reprogrammed.

OTPROM is the same as EPROM except it can be programmed only
once and cannot be erased.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 87
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5.2 Memory Map

The MC68HC705C8 MCU contains four selectable memory
configurations as shown in Figure 3-7.

The memory configurations are accessed via the option register
($1FDF) RAM0 and RAM1 bits. During reset, the RAM0 and RAM1
control bits are forced to 0. RAM0 and RAM1 bit states determine the
amount of RAM and PROM, which can be selected as follows:

3.6 Central Processor Unit

The MC68HC705C8 CPU is responsible for executing all software
instructions in their programmed sequence for a specific application.

The CPU block diagram is shown in Figure 3-6.

Figure 3-6. M68HC05 CPU Block Diagram

RAM0 RAM1 RAM Bytes PROM Bytes

0 0 176 7744

1 0 208 7696

0 1 272 7648

1 1 304 7600

CPU
CONTROL

ARITHMETIC
LOGIC UNIT

(ALU)

M68HC05 CPU

ACCUMULATOR

INDEX REGISTER

STACK POINTER

PROGRAM COUNTER0 0 0

0 0 0 0 0 1 1

1 1 1 H I N Z C

CPU REGISTERS

CONDITION CODES
M68HC05 Applications Guide — Rev. 4.0

88 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Central Processor Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-7. MC68HC705C8 Memory Map

I/O
32 BYTES

BOOT ROM
VECTORS
16 BYTES

USER PROM
VECTORS
12 BYTES

STACK
64 BYTES

USER PROM
7680 BYTES

RAM
176 BYTES

$001F

$0000

$0020

$004F
$0050

$00BF
$00C0

$00FF
$0100

$1EFF
$1F00

$1FF3
$1FF4

$1FFF

PORT A DATA REGISTER
PORT B DATA REGISTER
PORT C DATA REGISTER

PORT D FIXED INPUT REGISTER
PORT A DATA DIRECTION REGISTER
PORT B DATA DIRECTION REGISTER
PORT C DATA DIRECTION REGISTER

UNUSED
UNUSED
UNUSED

SPI CONTROL REGISTER
SPI STATUS REGISTER
SPI DATA I/O REGISTER

SCI BAUD RATE REGISTER
SCI CONTROL REGISTER 1
SCI CONTROL REGISTER 2

SCI STATUS REGISTER
SCI DATA REGISTER

TIMER CONTROL REGISTER
TIMER STATUS REGISTER

INPUT-CAPTURE REGISTER (HIGH)
INPUT-CAPTURE REGISTER (LOW)

OUTPUT-COMPARE REGISTER (HIGH)
OUTPUT-COMPARE REGISTER (LOW)

TIMER COUNT REGISTER (HIGH)
TIMER COUNT REGISTER (LOW)
ALT. COUNT REGISTER (HIGH)
ALT. COUNT REGISTER (LOW)
EPROM PROGRAM REGISTER

COP RESET REGISTER
COP CONTROL REGISTER

UNUSED

SPI VECTOR (HIGH)
SPI VECTOR (LOW)
SCI VECTOR (HIGH)
SCI VECTOR (LOW)

TIMER VECTOR (HIGH)
TIMER VECTOR (LOW)
IRQ VECTOR (HIGH)
IRQ VECTOR (LOW)
SWI VECTOR (HIGH)
SWI VECTOR (LOW)

RESET VECTOR (HIGH BYTE)
RESET VECTOR (LOW BYTE)

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F

$1FF4
$1FF5
$1FF6
$1FF7
$1FF8
$1FF9
$1FFA
$1FFB
$1FFC
$1FFD
$1FFE
$1FFF

$1FEF

$1FDE
$1FDF

$1FE0

OPTION REGISTER

UNUSED 4 BYTES

BOOT ROM
223 BYTES

UNUSED
16 BYTES

RAM
32 BYTES

RAM0=1

USER
PROM

48 BYTES

RAM0=0

RAM
96 BYTES

RAM1=1 *$015F
$0160

USER
PROM

96 BYTES

RAM1=0 *

$002F

*Refer to 3.16.4 Option Register for an explanation of software-selectable memory configurations.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 89
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.1 Registers

The CPU contains five registers as shown in Figure 3-8. Registers in the
CPU are memories inside the microprocessor (not part of the memory
map).

Figure 3-8. Programming Model

3.6.1.1 Accumulator

The accumulator is an 8-bit general-purpose register used to hold
operands, results of the arithmetic calculations, and data manipulations.
It is also directly accessible to the CPU for nonarithmetic operations. The
accumulator is used during the execution of a program when the
contents of some memory location are loaded into the accumulator.
Also, the store instruction causes the contents of the accumulator to be
stored at some prescribed memory location.

Figure 3-9. Accumulator (A)

1 1 1 H I N Z C

0 7

7 0

0 0 0 PROGRAM COUNTER

0 0 0 0 0 1 1 STACK POINTER

INDEX REGISTER

ACCUMULATOR

12 5

0

0

15 12

7 4 3 2 1

CONDITION CODE REGISTER

A

X

SP

PC

CC

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY
(FROM BIT 3)

0 7

ACCUMULATOR A
M68HC05 Applications Guide — Rev. 4.0

90 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Central Processor Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.1.2 Index Register

The index register is used for indexed modes of addressing or may be
used as an auxiliary accumulator. This 8-bit register can be loaded either
directly or from memory, have its contents stored in memory, or its
contents can be compared to memory.

In indexed instructions, the X register provides an 8-bit value that is
added to an instruction-provided value to create an effective address.
The instruction-provided value can be 0, 1, or 2 bytes long.

Figure 3-10. Index Register (X)

3.6.1.3 Condition Code Register

The condition code register contains five status indicators that reflect the
results of arithmetic and other operations of the CPU. The five flags are
half-carry (H), negative (N), zero (Z), overflow (V), and carry borrow (C).

Figure 3-11. Condition Code Register (CCR)

Half-Carry Bit —H

The half-carry flag is used for binary-coded decimal (BCD) arithmetic
operations and is affected by the ADD or ADC addition instructions.
The H bit is set to a one when a carry occurs between bits 3 and 4. I

INDEX REGISTER X

0 7

1 1 1 H I N Z C

0 7 4 3 2 1

CONDITION CODE REGISTER CC

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 91
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Interrupt Mask Bit — I

The interrupt mask bit disables all maskable interrupt sources when
the I bit is set. Clearing this bit enables the interrupts. When any
interrupt occurs, the I bit is automatically set after the registers are
stacked but before the interrupt vector is fetched.

If an external interrupt occurs while the I bit is set, the interrupt is
latched and processed after the I bit is cleared; therefore, no
interrupts from the IRQ pin are lost because of the I bit being set.

After an interrupt has been serviced, a return from interrupt (RTI)
instruction causes the registers to be restored to their previous
values. Normally, the I bit would be zero after an RTI was executed.
After any reset, I is set and can only be cleared by a software
instruction.

Negative (N)

The N bit is set to one when the result of the last arithmetic, logical, or
data manipulation is negative (bit 7 of the MSB in the result is a logic
one).

The N bit has other uses. By assigning an often-tested flag bit to the
MSB of a register or memory location, you can test this bit simply by
loading the accumulator with the contents of that location.

Zero (Z)

The Z bit is set to one when the result of the last arithmetic, logical, or
data manipulation is zero.

Carry/Borrow (C)

The C bit is used to indicate whether or not there was a carry from an
addition or a borrow as a result of a subtraction. Shift and rotate
instructions operate with and through the carry bit to facilitate multiple
word shift operations. This bit is also affected during bit test and
branch instructions.

The following illustration is an example of the way condition code bits are
affected by arithmetic operations. The H bit is not useful after this
operation because the accumulator was not a valid BCD value before
the operation.
M68HC05 Applications Guide — Rev. 4.0

92 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Central Processor Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.1.4 Program Counter

The program counter is a 13-bit register that contains the address of the
next instruction or instruction operand to be fetched by the processor.

Figure 3-12. Program Counter (PC)

Normally, the program counter advances one memory location at a time
as instructions and instruction operands are fetched.

Jump, branch, and interrupt operations cause the program counter to be
loaded with a memory address other than that of the next sequential
location.

0 7
ACCUMULATOR CONDITION CODES

($FF) BEFORE 1 1 1 0 1 1 0 0

C H I N Z

1 1 1 1 1 1 1 1

0 7
ACCUMULATOR CONDITION CODES

($01) AFTER 1 1 1 1 1 0 0 1

C H I N Z

0 0 0 0 0 0 0 1

ASSUME INITIAL VALUES IN ACCUMULATOR AND CONDITION CODES:

EXECUTE THE FOLLOWING INSTRUCTION:

CONDITION CODES AND ACCUMULATOR REFLECT THE RESULTS OF THE ADD INSTRUCTION:

H – Set because there was a carry from bit 3 to bit 4 of the accumulator.
I – No change.
N – Clear because result is not negative (bit 7 of accumulator is 0).
Z – Clear because result is not zero.
C – Set because there was a carry out of bit 7 of the accumulator.

– – – – AB 02 ADD #2 ADD 2 TO ACCUMULATOR

0 0 0 PROGRAM COUNTER

0 15 12

PC
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 93
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.1.5 Stack Pointer

The stack pointer is a 13-bit register that contains the address of the next
free location on the stack. During an MCU reset or the reset stack pointer
(RSP) instruction, the stack pointer is set to location $00FF.The stack
pointer is then decremented as data is pushed onto the stack and
incremented as data is pulled from the stack.

Figure 3-13. Stack Pointer (SP)

When accessing memory, the seven MSBs of the SP are permanently
set to 0000011. These seven bits are appended to the six LSB bits to
produce an address within the range of $00FF to $00C0. Subroutines
and interrupts may use up to 64 (decimal) locations. If 64 locations are
exceeded, the stack pointer wraps around and loses the previously
stored information. A subroutine call occupies two locations on the stack;
an interrupt uses five locations.

3.6.2 Arithmetic/Logic Unit (ALU)

The arithmetic logic unit (ALU) is used to perform the arithmetic and
logical operations defined by the instruction set.

The various binary arithmetic operations circuits decode the instruction
in the instruction register and set up the ALU for the desired function.
Most binary arithmetic is based on the addition algorithm, and
subtraction is carried out as negative addition. Multiplication is not
performed as a discrete instruction but as a chain of addition and shift
operations within the ALU under control of CPU control logic. The
multiply instruction (MUL) requires 11 internal processor cycles to
complete this chain of operations.

7 0

0 0 0 0 0 1 1 STACK POINTER

12 5

SP
M68HC05 Applications Guide — Rev. 4.0

94 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Central Processor Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.3 CPU Control

The CPU control circuitry sequences the logic elements of the ALU to
carry out the required operations.

3.6.4 Resets

Reset is used to force the MCU system to a known starting address.
Peripheral systems and many control and status bits are also forced to
a known state as a result of reset.

The following four conditions can cause reset in the MC68HC705C8
MCU:

1. External, active-low input signal on the RESET pin.

2. Internal power-on reset (POR) condition.

3. Internal computer operating properly (COP) watchdog system
reset condition.

4. Internal clock monitor reset condition.

3.6.4.1 Power-On Reset

The power-on reset occurs when a positive transition is detected on VDD.
The power-on reset is used strictly for power turn-on conditions and
should not be used to detect any drops in the power supply voltage.
There is no provision for a power-down reset.

The power-on circuitry provides for a 4064 cycle delay from the time that
the oscillator becomes active. If the external RESET pin is low at the end
of the 4064 delay timeout, the processor remains in the reset condition
until RESET goes high.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 95
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following internal actions occur as the result of any MCU reset:

1. All data direction registers are cleared to zero (input).

2. Stack pointer configured to $00FF.

3. I bit in the condition code register to logic one.

4. External interrupt latch cleared.

5. SCI disabled (serial control bits TE = 0 and RE = 0). Other SCI bits
cleared by reset include: TIE, TCIE, RIE, ILIE, RWU, SBK, RDRF,
IDLE, OR, NF, and FE.

6. Serial status bits TDRE and TC set.

7. SCI prescaler and rate control bits SCPO, SCP1 cleared.

8. SPI disable (serial output enable control bit SPE = 0). Other SPI
bits cleared by reset include: SPIE, MSTR, SPIF, WCOL, and
MODF.

9. All serial interrupt enable bits cleared (SPIE, TIE, and TCIE).

10. SPI system configured as slave (MSTR = 0).

11. Timer prescaler reset to zero state.

a. Timer counter configured to $FFFC.

b. Timer output compare (TCMP) bit reset to zero.

c. All timer interrupt enable bits cleared (ICIE, OCIE, and TOIE)
to disable timer interrupts.

d. The OLVL timer bit is also cleared by reset.

12. STOP latch cleared.

13. WAIT latch cleared.

14. Internal address bus forced to restart vector (on exit from reset,
upper byte of program counter is loaded from $1FFE, and lower
byte of program counter is loaded from $1FFF).
M68HC05 Applications Guide — Rev. 4.0

96 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Central Processor Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.4.2 Computer Operating Properly (COP) Watchdog Timer Reset

The COP watchdog timer system is intended to detect software errors.
When the COP is being used, software is responsible for keeping a free-
running watchdog timer from timing out. If the watchdog timer times out,
it is an indication that software is no longer being executed in the
intended sequence; thus, a system reset is initiated.

Since the COP timer relies on the internal bus clock in order to detect a
software failure, a clock monitor is also included to guard against a
failure of the clock. When the COP timer is enabled, the clock monitor
should also be enabled since the COP timer cannot detect failures of the
internal bus clock.

The COP control register ($1E), as shown below, is used to control the
COP watchdog timer and clock monitor functions.

COPF — Computer Operating Properly Flag

Reading the COP control register clears COPF.
1 = COP or clock monitor reset has occurred
0 = No COP or clock monitor reset has occurred

CME — Clock Monitor Enable

CME is readable and writable at any time.
1 = Clock monitor enabled
0 = Clock monitor disabled

CLOCK MONITOR ENABLE

BIT 7

0 0 0 COPF CME COPE CM1 CM0

6 5 4 3 2 1

0 0 0 [1] 0 0 0 0

BIT 0

COP WATCHDOG TIMER ENABLE

COP SYSTEM FLAG

SELECT COP TIME OUT PERIOD

$1E COPCR

RESET CONDITION

[1] – Cleared on external or POR reset, set on COP or clock monitor fail resets.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 97
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COPE — Computer Operating Properly Enable
1 = COP timeout enabled
0 = COP timeout disabled

CM1 and CM0 — Computer Operating Properly Mode

These two bits are used to select the COP watchdog timeout period
(see Table 3-1).

The actual timeout period is dependent on the system bus clock
frequency, but, for reference purposes, Table 3-1 shows the relationship
between the CM1 and CMO select bits and the COP timeout period for
various system clock frequencies (“E” stands for the system bus clock).
The default reset condition of the COP mode bits (CMI and CM is
cleared, which corresponds to the shortest timeout period.

The COP reset register ($1D) is used to keep the COP watchdog timer
from timing out.

The sequence required to reset the COP watchdog timer is:

1. Write $55 to the COP reset register at location $ID.

2. Write $AA to the same address location.

Both write operations must occur in the correct order prior to timeout, but
any number of instructions may be executed between the two write
operations. The elapsed time between adjacent software reset
sequences must never be greater than the COP timeout period.

BIT 7 6 5 4 3 2 1 BIT 0

$1D COPRR

Table 3-1. COP Timeout Period versus CM1 and CM0

CM1 CM0
E/215

Div.
By

XTAL = 4.0 MHz
E = 2.0 MHz

Timeout

XTAL = 3.5796
E = 1,7897 MHz

Timeout

XTAL = 2.0 MHz
E = 1.0 MHz

Timeout

XTAL = 1.0 MHz
E = 0.5 MHz

Timeout

0 0 1 16.38 ms 18.31 ms 32.77 ms 65.54 ms

0 1 4 65.54 ms 73.24 ms 131.07 ms 262 14 ms

1 0 16 262.14 ms 292.95 ms 524.29 ms 1.048 s

1 1 64 1.048 s 1.172 s 2.097 s 4.194 s
M68HC05 Applications Guide — Rev. 4.0

98 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Upon detection of a timeout condition, the COP watchdog timer (if
enabled by COPE = 1) will cause a system reset to be generated. This
reset is issued to the external system via the bidirectional RESET pin for
four bus cycles.

3.6.4.3 Clock Monitor Reset

When a clock failure is detected by the clock monitor (and CME = 1), a
system reset will be generated.

When CME is set, the clock monitor detects the absence of the internal
bus clock for more than a certain period of time. When CME is cleared,
the clock monitor is disabled, The timeout period is dependent on
processing parameters and will be between 5 and 100 µs. Thus, a bus
clock rate of 200 kHz or more will never cause a clock monitor failure,
and a bus clock rate of 10 kHz or less will definitely cause a clock monitor
reset.

A clock monitor reset is issued to the external system via the
bidirectional RESET pin for four bus cycles. The clock monitor does not
have a separate reset vector.

Special considerations are needed when using the STOP instruction
with the clock monitor. Since the STOP instruction causes the clocks to
be halted, the clock monitor will generate a reset sequence (if enabled
by CME = 1) at the time the STOP instruction is entered.

3.7 Addressing Modes

The power of any computer lies in its ability to access memory. The
addressing modes of the CPU provide that capability. The addressing
modes define the manner in which an instruction is to obtain the data
required for its execution. Because of different addressing modes, an
instruction may access the operand in one of up to six different ways. In
this manner, the addressing modes expand the basic 62 M68HC05
Family instructions into 210 distinct opcodes.

The M68HC05 addressing modes that are used to reference memory
are inherent, immediate, extended, direct, indexed (no offset, 8-bit
offset, and 16-bit offset), and relative. One-and two-byte direct
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 99
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

addressing instructions access all data bytes in most applications.
Extended addressing uses three-byte instructions to reach data
anywhere in memory space. The various addressing modes make it
possible to locate data tables, code conversion tables, and scaling
tables anywhere in the memory space. Short indexed accesses are
single-byte instructions; whereas, the longest instructions (three bytes)
permit accessing tables anywhere in memory.

A general description and examples of the various modes of addressing
are provided in the following paragraphs. The term effective address
(EA) is used to indicate the memory address where the argument for an
instruction is fetched or stored. More details on addressing modes and
a description of each instruction is available in Appendix A. Instruction
Set Details.

The information provided in the program assembly examples uses
several symbols to identify the various types of numbers that occur in a
program. These symbols include:

1. A blank or no symbol indicates a decimal number.

2. A $ immediately preceding a number indicates it is a hexadecimal
number; e.g., $24 is 24 in hexadecimal or the equivalent of 36 in
decimal.

3. A # indicates immediate operand and the number is found in the
location following the opcode. A variety of symbols and
expressions can be used following the character # sign. Since not
all assemblers use the same syntax rules and special characters,
refer to the documentation for the particular assembler that will be
used.

For each addressing mode, an example instruction is explained in detail.
These explanations describe what happens in the CPU during each
processor clock cycle of the instruction. Numbers in square brackets
refer to a specific CPU clock cycle.

Prefix Definition
None Decimal
$ Hexadecimal
@ Octal
% Binary
’ Single ASCII Character
M68HC05 Applications Guide — Rev. 4.0

100 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.7.1 Inherent Addressing Mode

In inherent addressing mode, all information required for the operation is
already inherently known to the CPU, and no external operand from
memory or from the program is needed. The operands (if any) are only
the index register and accumulator. These are always one byte
instructions.

Example Program Listing:
0200 4c INCA Increment accumulator

Execution Sequence:
$0200 $4C [1], [2], [3]

Explanation:
[1] CPU reads opcode $4C — increment accumulator

[2] and [3] CPU reads accumulator value, adds one to it, stores the new
value in the accumulator, and adjusts condition code flag
bits as necessary.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 101
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
inherent addressing mode.

Instruction Mnemonic

Arithmetic Shift Left ASLA,ASLX

Arithmetic Shift Right ASRA,ASRX

Clear Carry Bit CLC

Clear Interrupt Mask Bit CLI

Clear CLRA,CLRX

Complement COMA, COMX

Decrement DECA,DECX

Increment INCA, INCX

Logical Shift Left LSLA,LSLX

Logical Shift Right LSRA, LSRX

Multiply MUL

Negate NEGA,NEGX

No Operation NOP

Rotate Left thru Carry ROLA, ROLX

Rotate Right thru Carry RORA, RORX

Reset Stack Pointer RSP

Return from Interrupt RTI

Return from Subroutine RTS

Set Carry Bit SEC

Set Interrupt Mask Bit SEI

Enable IRQ, Stop Oscillator STOP

Software Interrupt SWI

Transfer Accumulator to Index
Register

TAX

Test for Negative or Zero TSTA,TSTX

Transfer Index Register to
Accumulator

TXA

Enable Interrupt, Halt Processor WAIT
M68HC05 Applications Guide — Rev. 4.0

102 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.7.2 Immediate Addressing Mode

In the immediate addressing mode, the operand is contained in the byte
immediately following the opcode. This mode is used to hold a value or
constant which is known at the time the program is written and which is
not changed during program execution. These are two-byte instructions,
one for the opcode and one for the immediate data byte.

Example Program Listing:
0200 a6 02 LDA #$02 Load accumulator w/ immediate value

Execution Sequence:
$0200 $A6 [1]
$0201 $02 [2]

Explanation:
[1] CPU reads opcode $A6 — load accumulator with the value

immediately following the opcode.

[2] CPU then reads the immediate data $02 from location
$0201 and loads $02 into the accumulator.

The following is a list of all M68HC05 instructions that can use the
immediate addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP

Compare Index Register with Memory CPX

Exclusive OR Memory with Accumulator EOR

Load Accumulator from Memory LIDA

Load Index Register from Memory LDX

Inclusive OR ORA

Subtract with Carry SBC

Subtract SUB
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 103
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.7.3 Extended Addressing Mode

In the extended addressing mode, the address of the operand is
contained in the two bytes following the opcode. Extended addressing
references any location in the MCU memory space including I/O, RAM,
ROM, and EPROM. Extended addressing mode instructions are three
bytes, one for the opcode and two for the address of the operand.

Example Program Listing:
0200 c6 06 e5 LDA $06E5 Load accumulator from extended addr

Execution Sequence:
$0200 $C6 [1]
$0201 $06 [2]
$0202 $E5 [3] and [4]

Explanation:
[1] CPU reads opcode $C6 — load accumulator using extended

addressing mode.

[2] CPU then reads $06 from location $0201. This $06 is
interpreted as the high-order half of an address.

[3] CPU then reads $E5 from location $0202. This $E5 is
interpreted as the low-order half of an address.

[4] CPU internally appends $06 to the $E5 read to form the
complete address ($06E5). The CPU then reads whatever
value is contained in the location $06E5 into the
accumulator.
M68HC05 Applications Guide — Rev. 4.0

104 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
extended addressing mode.

3.7.4 Direct Addressing Mode

The direct addressing mode is similar to the extended addressing mode
except the upper byte of the operand address is assumed to be $00.
Thus, only the lower byte of the operand address needs to be included
in the instruction. Direct addressing allows you to efficiently address the
lowest 256 bytes in memory. This area of memory is called the direct
page and includes on-chip RAM and I/O registers. Direct addressing is
efficient in both memory and time. Direct addressing mode instructions
are usually two bytes, one for the opcode and one for the low-order byte
of the operand address.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP

Compare Index Register with Memory CPX

Exclusive OR Memory with Accumulator EOR

Jump imp

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Inclusive OR ORA

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 105
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example Program Listing:
0200 b6 50 LDA $50 Load accumulator from direct address

Execution Sequence:
$0200 $B6 [1]
$0201 $50 [2] and [3]

Explanation:
[1] CPU reads opcode $B6 — load accumulator using direct

addressing mode.

[2] CPU then reads $50 from location $0201. This $50 is
interpreted as the low-order half of an address. In direct
addressing mode, the high-order half of the address is
assumed to be $00.

[3] CPU internally appends $00 to the $50 read in the second
cycle to form the complete address ($0050). The CPU then
reads whatever value is contained in the location $0050 into
the accumulator.
M68HC05 Applications Guide — Rev. 4.0

106 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the direct
addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Arithmetic Shift Left ASL

Arithmetic Shift Right ASR

Clear Bit in Memory BCLR

Bit Test Memory with Accumulator BIT

Branch if Bit n is Clear BRCLR

Branch if Bit n is Set BIRSET

Set Bit in Memory BSET

Clear CLR

Compare Accumulator with Memory CMP

Complement COM

Compare Index Register with Memory CPX

Decrement DEC

Exclusive OR Memory with Accumulator EOR

Increment INC

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG

Inclusive OR ORA

Rotate Left thru Carry ROL

Rotate Right thru Carry ROR

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB

Test for Negative or Zero TST
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 107
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.7.5 Indexed Addressing Modes

In the indexed addressing mode, the effective address is variable and
depends upon two factors: 1) the current contents of the index (X)
register and 2) the offset contained in the byte(s) following the opcode.
Three types of indexed addressing exist in the MCU: no offset, 8-bit
offset, and 16-bit offset. A good assembler should use the indexed
addressing mode that requires the least number of bytes to express the
offset.

3.7.5.1 Indexed, No Offset

In the indexed, no-offset addressing mode, the effective address of the
instruction is contained in the 8-bit index register. Thus, this addressing
mode can access the first 256 memory locations. These instructions are
only one byte.

Example Program Listing:
0200 f6 LDA ,x Load accumulator from location

pointed to by index reg (no offset)

Execution Sequence:
$0200 $F6 [1], [2], [3]

Explanation:
[1] CPU reads opcode $F6 — load accumulator using indexed,

no offset, addressing mode.

[2] CPU forms a complete address by adding $0000 to the
contents of the index register.

[3] CPU then reads the contents of the addressed location into
the accumulator.
M68HC05 Applications Guide — Rev. 4.0

108 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
indexed, no-offset addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Arithmetic Shift Left ASL

Arithmetic Shift Right ASR

Bit Test Memory with Accumulator BIT

Clear CLR

Compare Accumulator with Memory CMP

Complement COM

Compare Index Register with Memory CPX

Decrement DEC

Exclusive OR Memory with Accumulator EOR

Increment INC

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG

Inclusive OR ORA

Rotate Left thru Carry ROL

Rotate Right thru Carry ROR

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB

Test for Negative or Zero TST
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 109
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.7.5.2 Indexed, 8-Bit Offset

In the indexed, 8-bit offset addressing mode, the effective address is
obtained by adding the contents of the byte following the opcode to the
contents of the index register. This mode of addressing is useful for
selecting the kth element in a "n" element table. To use this mode, the
table must begin in the lowest 256 memory locations, and may extend
through the first 511 memory locations (IFE is the last location which the
instruction may access). Indexed 8-bit offset addressing can be used for
ROM, RAM, or I/O. This is a two-byte instruction with the offset
contained in the byte following the opcode. The content of the index
register (X) is not changed. The offset byte supplied in the instruction is
an unsigned 8-bit integer.

Example Program Listing:
0200 e6 05 LDA $5,x Load accumulator from location

pointed to by index reg (X) + $05

Execution Sequence:
$0200 $E6 [1]
$0201 $05 [2], [3], [4]

Explanation:

[1] CPU reads opcode $E6 — load accumulator using indexed,
8-bit offset addressing mode.

[2] CPU then reads $05 from location $0201. This $05 is
interpreted as the low-order half of a base address. The
high-order half of the base address is assumed to be $00.

[3] CPU will add the value in the index register to the base
address $0005. The results of this addition is the address
that the CPU will use in the load accumulator operation.

[4] The CPU will then read the value from this address and load
this value into the accumulator.
M68HC05 Applications Guide — Rev. 4.0

110 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
indexed, 8-bit offset addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Arithmetic Shift Left ASL

Arithmetic Shift Right ASR

Bit Test Memory with Accumulator BIT

Clear CLR

Compare Accumulator with Memory CMP

Complement COM

Compare Index Register with Memory CPX

Decrement DEC

Exclusive OR Memory with Accumulator EOR

Increment INC

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LIDA

Load Index Register from Memory LDX

Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG

Inclusive OR ORA

Rotate Left thru Carry ROL

Rotate Right thru Carry ROR

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB

Test for Negative or Zero TST
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 111
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.7.5.3 Indexed, 16-Bit Offset

In the indexed, 16-bit offset addressing mode, the effective address is
the sum of the contents of the 8-bit index register and the two bytes
following the opcode. The content of the index register is not changed.
These instructions are three bytes, one for the opcode and two for a 16-
bit offset.

Example Program Listing:
0200 d6 07 00 LDA $0700,x Load accumulator from location

pointed to by index reg (X) + $0700

Execution Sequence:
$0200 $D6 [1]
$0201 $07 [2]
$0202 $00 [3], [4], [5]

Explanation:
[1] CPU reads opcode $D6 — load accumulator using indexed,

16-bit offset addressing mode.

[2] CPU then reads $07 from location $0201. This $07 is
interpreted as the high-order half of a base address.

[3] CPU then reads $00 from location $0202. This $00 is
interpreted as the low-order half of a base address.

[4] CPU will add the value in the index register to the base
address $0700. The results of this addition is the address
that the CPU will use in the load accumulator operation.

[5] The CPU will then read the value from this address and load
this value into the accumulator.
M68HC05 Applications Guide — Rev. 4.0

112 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
indexed, 16-bit offset addressing mode.

3.7.6 Relative Addressing Mode

The relative addressing mode is used only for branch instructions.
Branch instructions, other than the branching versions of bit-
manipulation instructions, generate two machine-code bytes: one for the
opcode and one for the relative offset. Because it is desirable to branch
in either direction, the offset byte is a signed twos-complement offset
with a range of –127 to + 128 bytes (with respect to the address of the
instruction immediately following the branch instruction). If the branch
condition is true, the contents of the 8-bit signed byte following the
opcode (offset) are added to the contents of the program counter to form
the effective branch address; otherwise, control proceeds to the
instruction immediately following the branch instruction.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP

Compare Index Register with Memory CPX

Exclusive OR Memory with Accumulator EOR

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Inclusive OR ORA

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register In Memory STX

Subtract SUB
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 113
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A programmer specifies the destination of a branch as an absolute
address (or label which refers to an absolute address). The Motorola
assembler calculates the 8-bit signed relative offset, which is placed
after the branch opcode in memory.

Example Program Listing:
0200 27 rr BEQ DEST Branch to DEST if Z = 1

(branch if equal or zero)

Execution Sequence:
$0200 $27 [1]
$0201 $rr [2], [3]

Explanation:
[1] CPU reads opcode $27 — branch if Z = 1, (relative

addressing mode).

[2] CPU reads the offset, $rr.

[3] CPU internally tests the state of the Z bit and causes a
branch if Z is set.

The following is a list of all M68HC05 instructions that can use the
relative addressing mode.

Instruction Mnemonic

Branch if Carry Clear BCC

Branch is Carry Set BCS

Branch if Equal BEQ

Branch if Half-Carry Clear BHCC

Branch if Half-Carry Set BHCS

Branch if Higher BHI

Branch if Higher or Same BHS

Branch if Interrupt Line is High BIH

Branch if Interrupt Line is Low BIL

Branch if Lower BLO

Branch if Lower or Same BLS

Branch if Interrupt Mask is Clear BMC

Branch if Minus BMI
M68HC05 Applications Guide — Rev. 4.0

114 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.7.7 Bit Test and Branch Instructions

These instructions use direct addressing mode to specify the location
being tested and relative addressing to specify the branch destination.
This applications guide treats these instructions as direct addressing
mode instructions. Some older Motorola documents call the addressing
mode of these instructions BTB for bit test and branch.

3.7.8 Instructions Organized by Type

Table 3-2 through Table 3-5 show the MC68HC05 instruction set
displayed by instruction type.

Branch if Interrupt Mask Bit is Set BMS

Branch if Not Equal BNE

Branch if Plus BPL

Branch Always BRA

Branch if Bit n is Clear BRCLR

Branch if Bit n is Set BRSET

Branch Never BRN

Branch to Subroutine BSR

Instruction Mnemonic
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 115
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Ta
b

le
 3

-2
. R

eg
is

te
r/

M
em

o
ry

 In
st

ru
ct

io
n

s

A
d

d
re

ss
in

g
 M

o
d

es

Im
m

ed
ia

te
D

ir
ec

t
E

xt
en

d
ed

In
d

ex
ed

(N
o

 O
ff

se
t)

In
d

ex
ed

(8
-B

it
 O

ff
se

t)
In

d
ex

ed
(1

6-
B

it
 O

ff
se

t)

F
u

n
ct

io
n

M
n

em
.

O
p

-
co

d
e

#
B

yt
es

#
C

yc
le

s
O

p
-

co
d

e
#

B
yt

es
#

C
yc

le
s

O
p

-
co

d
e

#
B

yt
es

#
C

yc
le

s
O

p
-

co
d

e
#

B
yt

es
#

C
yc

le
s

O
p

-
co

d
e

#
B

yt
es

#
C

yc
le

s
O

p
-

co
d

e
#

B
yt

es
#

C
yc

le
s

Lo
ad

 A
 fr

om
 M

em
or

y
LD

A
A

6
2

2
B

6
2

3
C

6
3

4
F

6
1

3
E

6
2

4
D

6
3

5

Lo
ad

 X
 fr

om
 M

em
or

y
LD

X
A

E
2

2
B

E
2

3
C

E
3

4
F

E
1

3
E

E
2

4
D

E
3

5

S
to

re
 A

 in
 M

em
or

y
S

T
A

—
—

—
B

7
2

4
C

7
3

5
F

7
1

4
E

7
2

5
D

7
3

6

S
to

re
 X

 in
 M

em
or

y
S

T
X

—
—

—
B

F
2

4
C

F
3

5
F

F
1

4
E

F
2

5
D

F
3

6

A
dd

 M
em

or
y

to
 A

A
D

D
A

B
2

B
B

2
3

C
B

3
4

F
B

1
3

E
B

2
4

D
B

3
5

A
dd

 M
em

or
y

an
d

C
ar

ry
 to

 A
A

D
C

A
9

2
2

B
9

2
3

C
9

3
4

F
9

1
3

E
9

2
4

D
9

3
5

S
ub

tr
ac

t M
em

or
y

S
U

B
A

0
2

2
B

0
2

3
C

0
3

4
F

0
1

3
E

0
2

4
D

0
3

5

S
ub

tr
ac

t M
em

or
y

fr
om

A
 w

ith
 B

or
ro

w
S

B
C

A
2

2
2

B
2

2
3

C
2

3
4

F
2

1
3

E
2

2
4

D
2

3
5

A
N

D
 M

em
or

y
to

 A
A

N
D

A
4

2
2

B
4

2
3

C
4

3
4

F
4

1
3

E
4

2
4

D
4

3
5

O
R

 M
em

or
y

w
ith

 A
O

R
A

A
A

2
2

B
A

2
3

C
A

3
4

F
A

1
3

E
A

2
4

D
A

3
5

E
xc

lu
si

ve
 O

R
 M

em
or

y
w

ith
 A

E
O

R
A

8
2

2
B

8
2

3
C

8
3

4
F

8
1

3
E

8
2

4
D

8
3

5

A
rit

hm
et

ic
 C

om
pa

re
 A

w
ith

 M
em

or
y

C
M

P
A

1
2

2
E

11
2

3
C

1
3

4
F

1
1

3
E

1
2

4
D

1
3

5

A
rit

hm
et

ic
 C

om
pa

re
 X

w
ith

 M
em

or
y

C
P

X
A

3
2

2
B

3
2

3
C

3
3

4
F

3
1

3
E

3
2

4
D

3
3

5

B
it

T
es

t M
em

or
y

w
ith

A
 (

Lo
gi

ca
l C

om
pa

re
)

B
IT

A
5

2
2

B
5

2
3

C
5

3
4

F
5

1
3

E
2

4
D

5
3

5

Ju
m

p
U

nc
on

di
tio

na
l

JM
P

—
—

—
B

C
2

2
C

C
3

3
F

C
1

2
E

C
2

3
D

C
3

4

Ju
m

p
to

 S
ub

ro
ut

in
e

JS
R

—
—

—
B

D
2

5
C

D
3

6
F

D
1

5
E

D
2

6
D

D
3

7

M68HC05 Applications Guide — Rev. 4.0

116 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Ta
b

le
 3

-3
. R

ea
d

/M
o

d
if

y-
W

ri
te

 In
st

ru
ct

io
n

s

A
d

d
re

ss
in

g
 M

o
d

es

In
h

er
en

t
(A

)
In

h
er

en
t

(X
)

D
ir

ec
t

In
d

ex
ed

(N
o

 O
ff

se
t)

In
d

ex
ed

(8
-B

it
 O

ff
se

t)

F
u

n
ct

io
n

M
n

em
.

O
p

-
co

d
e

#
B

yt
es

#
C

yc
le

s
O

p-
co

d
e

#
B

yt
es

#
C

yc
le

s
O

p-
co

d
e

#
B

yt
es

#
C

yc
le

s
O

p-
co

d
e

#
B

yt
es

#
C

yc
le

s
O

p
-

co
d

e
#

B
yt

es
#

C
yc

le
s

In
cr

em
en

t
IN

C
4C

1
3

5C
1

3
3C

2
5

7C
1

5
6C

2
6

D
ec

re
m

en
t

D
E

C
4A

1
3

5A
1

3
3A

2
5

7A
1

5
6A

2
6

C
le

ar
C

LR
4F

1
3

5F
1

3
3F

2
5

7F
1

5
6F

2
6

C
om

pl
em

en
t

C
O

M
43

1
3

53
1

3
33

2
5

73
1

5
63

2
6

N
eg

at
e

2s
 C

om
pl

em
en

t)
N

E
G

40
1

3
50

1
3

30
2

5
70

1
5

60
2

6

R
ot

at
e

Le
ft

T
hr

u
C

ar
ry

R
O

L
49

1
3

59
1

3
39

2
5

79
1

5
69

2
6

R
ot

at
e

R
ig

ht
 T

hr
u

C
ar

ry
R

O
R

46
1

3
56

1
3

36
2

5
76

1
5

66
2

6

Lo
gi

ca
l S

hi
ft

Le
ft

LS
L

48
1

3
58

1
3

38
2

5
78

1
5

68
2

6

Lo
gi

ca
l S

hi
ft

R
ig

ht
LS

R
44

1
3

54
1

3
34

2
5

74
1

5
64

2
6

A
rit

hm
et

ic
 S

hi
ft

R
ig

ht
A

S
H

47
1

3
57

1
3

37
2

5
77

1
5

67
2

T
es

t f
or

 N
eg

at
iv

e
or

 Z
er

o
T

S
T

4D
1

3
5D

1
3

3D
2

4
7D

1
4

6D
2

5

M
ul

tip
ly

M
U

L
42

1
11

—
—

—
—

—
—

—
—

—
—

—
—

B
it

C
le

ar
B

C
LR

—
—

—
—

—
—

S
ee

 N
ot

e
2

5
—

—
—

—
—

—

B
it

S
et

B
S

E
T

—
—

—
—

—
—

S
ee

 N
ot

e
2

5
—

—
—

—
—

—

N
O

T
E

: U
nl

ik
e

ot
he

r
re

ad
y-

m
od

ify
-w

rit
e

in
st

ru
ct

io
ns

, B
C

LR
 a

nd
 B

S
E

T
 u

se
 o

nl
y

di
re

ct
 a

dd
re

ss
in

g.
 R

ef
er

 to
 T

ab
le

 3
-7

 fo
r

m
or

e
de

ta
ile

d
in

fo
rm

at
io

n.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 117
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 3-4. Branch Instructions

Function Mnemonic

Relative Addressing
Mode

Opcode
#

Bytes
#

Cycles

Branch Always BRA 20 2 3

Branch Never BRN 21 2 3

Branch IFF Higher BH1 22 2 3

Branch IFF Lower or Same BLS 23 2 3

Branch IFF Carry Clear BCC 24 2 3

Branch IFF Higher or Same
(Same as BCC)

BHS 24 2 3

Branch IFF Carry Set BCS 25 2 3

Branch IFF Lower
(Same as BCS)

BLO 25 2 3

Branch IFF Not Equal BNE 26 2 3

Branch IFF Equal BEQ 27 2 3

Branch IFF Half-Carry Clear BHCC 28 2 3

Branch IFF Half-Carry Set BHCS 29 2 3

Branch IFF Plus BPL 2A 2 3

Branch IFF Minus BMI 2B 2 3

Branch IFF Interrupt Mask Bit is Clear BMC 2C 2 3

Branch IFF Interrupt Mask Bit is Set BMS 2D 2 3

Branch IFF Interrupt Line is Low BIL 2E 2 3

Branch IFF Interrupt Line is High BIH 2F 2 3

Branch to Subroutine BSR AD 2 6
M68HC05 Applications Guide — Rev. 4.0

118 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.8 Instruction Set Summary

Computers use an operation code or opcode to give instructions to the
CPU. The instruction set for a specific CPU is the set of all opcodes that
the CPU knows how to execute. The CPU in the MC68HC705C8 MCU
can understand 62 basic instructions, some of which have several
variations that require separate opcodes. The IV168HC05 instruction set
includes 210 unique instruction opcodes.

Table 3-5. Control Instructions

Function Mnemonic

Relative Addressing
Mode

Opcode
#

Bytes
#

Cycles

Transfer A to X TAX 97 1 2

Transfer X to A TXA 9F 1 2

Set Carry Bit SEC 99 1 2

Clear Carry Bit CLC 98 1 2

Set Interrupt Mask Bit SEI 9B 1 2

Clear Interrupt Mask Bit CLI 9A 1 2

Software Interrupt SWI 83 1 10

Return from Subroutine RTS 81 1 6

Return from Interrupt RTI 80 1 9

Reset Stack Pointer RSP 9C 1 2

No-Operation NOP 9D 1 2

Stop STOP 8E 1 2

Wait WAIT 8F 1 2
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 119
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 3-6 is an alphabetical listing of the M68HC05 instructions
available to the user. In listing all the factors necessary to program, the
table uses the following symbols.

Condition Code Symbols
H — Half Carry (Bit 4) � — Test and Set if True,
I — Interrupt Mask (Bit 3) (cleared otherwise)
N — Negate (Sign Bit 2) — — Not Affected
Z — Zero (Bit 1) ? — Load CC from Stack
C — Carry/Borrow (Bit 0) 0 — Cleared

1 — Set

Boolean Operators
() — Contents of (i.e., (M) + — (inclusive) OR

 means the contents ⊕ — Exclusive OR
 of memory location — — NOT
 M) – — Negation

← — is loaded with, 'gets' (twos complement)
• — AND x — Multiplication

MPU Registers
A — Accumulator PC — Program Counter
ACCA— Accumulator PCH— PC High Byte
CC— Condition Code Reg. PCL— PC Low Byte
X — Index Register SP — Stack Pointer
M — Any memory location REL— Relative Address (one byte)

Addressing Modes Abbreviation Operands
Inherent INH none
Immediate IMM ii
Direct (for bit DIR dd
 test instructions) dd rr
Extended EXT hh ll
Indexed 0 Offset IX none
Indexed 1-Byte X1 ff
Indexed 2-Byte IX2 ee ff
Relative EL rr

The opcode map is shown in Table 3-7.
M68HC05 Applications Guide — Rev. 4.0

120 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 3-6. Instruction Set Summary (Sheet 1 of 6)

Source
Form Operation Description

Effect on
CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

H I N Z C

ADC #opr
ADC opr
ADC opr
ADC opr,X
ADC opr,X
ADC ,X

Add with Carry A ← (A) + (M) + (C) � — � � �

IMM
DIR
EXT
IX2
IX1
IX

A9
B9
C9
D9
E9
F9

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X

Add without Carry A ← (A) + (M) � — � � �

IMM
DIR
EXT
IX2
IX1
IX

AB
BB
CB
DB
EB
FB

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

AND #opr
AND opr
AND opr
AND opr,X
AND opr,X
AND ,X

Logical AND A ← (A) ∧ (M) — — � � —

IMM
DIR
EXT
IX2
IX1
IX

A4
B4
C4
D4
E4
F4

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X

Arithmetic Shift Left (Same as LSL) — — � � �

DIR
INH
INH
IX1
IX

38
48
58
68
78

dd

ff

5
3
3
6
5

ASR opr
ASRA
ASRX
ASR opr,X
ASR ,X

Arithmetic Shift Right — — � � �

DIR
INH
INH
IX1
IX

37
47
57
67
77

dd

ff

5
3
3
6
5

BCC rel Branch if Carry Bit Clear PC ← (PC) + 2 + rel ? C = 0 — — — — — REL 24 rr 3

BCLR n opr Clear Bit n Mn ← 0 — — — — —

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? C = 1 — — — — — REL 25 rr 3

BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? Z = 1 — — — — — REL 27 rr 3

BHCC rel Branch if Half-Carry Bit Clear PC ← (PC) + 2 + rel ? H = 0 — — — — — REL 28 rr 3

BHCS rel Branch if Half-Carry Bit Set PC ← (PC) + 2 + rel ? H = 1 — — — — — REL 29 rr 3

BHI rel Branch if Higher PC ← (PC) + 2 + rel ? C ∨ Z = 0 — — — — — REL 22 rr 3

BHS rel Branch if Higher or Same PC ← (PC) + 2 + rel ? C = 0 — — — — — REL 24 rr 3

BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 — — — — — REL 2F rr 3

C

b0b7

0

b0b7

C

M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 121
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 — — — — — REL 2E rr 3

BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X

Bit Test Accumulator with Memory Byte (A) ∧ (M) — — � � —

IMM
DIR
EXT
IX2
IX1
IX

A5
B5
C5
D5
E5
F5

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

BLO rel Branch if Lower (Same as BCS) PC ← (PC) + 2 + rel ? C = 1 — — — — — REL 25 rr 3

BLS rel Branch if Lower or Same PC ← (PC) + 2 + rel ? C ∨ Z = 1 — — — — — REL 23 rr 3

BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? I = 0 — — — — — REL 2C rr 3

BMI rel Branch if Minus PC ← (PC) + 2 + rel ? N = 1 — — — — — REL 2B rr 3

BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? I = 1 — — — — — REL 2D rr 3

BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? Z = 0 — — — — — REL 26 rr 3

BPL rel Branch if Plus PC ← (PC) + 2 + rel ? N = 0 — — — — — REL 2A rr 3

BRA rel Branch Always PC ← (PC) + 2 + rel ? 1 = 1 — — — — — REL 20 rr 3

BRCLR n opr rel Branch if Bit n Clear PC ← (PC) + 2 + rel ? Mn = 0 — — — — �

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never PC ← (PC) + 2 + rel ? 1 = 0 — — — — — REL 21 rr 3

BRSET n opr rel Branch if Bit n Set PC ← (PC) + 2 + rel ? Mn = 1 — — — — �

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n opr Set Bit n Mn ← 1 — — — — —

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BSR rel Branch to Subroutine

PC ← (PC) + 2; push (PCL)
SP ← (SP) – 1; push (PCH)

SP ← (SP) – 1
PC ← (PC) + rel

— — — — — REL AD rr 6

Table 3-6. Instruction Set Summary (Sheet 2 of 6)

Source
Form Operation Description

Effect on
CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

H I N Z C
M68HC05 Applications Guide — Rev. 4.0

122 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLC Clear Carry Bit C ← 0 — — — — 0 INH 98 2

CLI Clear Interrupt Mask I ← 0 — 0 — — — INH 9A 2

CLR opr
CLRA
CLRX
CLR opr,X
CLR ,X

Clear Byte

M ← $00
A ← $00
X ← $00
M ← $00
M ← $00

— — 0 1 —

DIR
INH
INH
IX1
IX

3F
4F
5F
6F
7F

dd

ff

5
3
3
6
5

CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP ,X

Compare Accumulator with Memory Byte (A) – (M) — — � � �

IMM
DIR
EXT
IX2
IX1
IX

A1
B1
C1
D1
E1
F1

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

COM opr
COMA
COMX
COM opr,X
COM ,X

Complement Byte (One’s Complement)

M ← (M) = $FF – (M)

A ← (A) = $FF – (A)

X ← (X) = $FF – (X)

M ← (M) = $FF – (M)

M ← (M) = $FF – (M)

— — � � 1

DIR
INH
INH
IX1
IX

33
43
53
63
73

dd

ff

5
3
3
6
5

CPX #opr
CPX opr
CPX opr
CPX opr,X
CPX opr,X
CPX ,X

Compare Index Register with Memory Byte (X) – (M) — — � � �

IMM
DIR
EXT
IX2
IX1
IX

A3
B3
C3
D3
E3
F3

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

DEC opr
DECA
DECX
DEC opr,X
DEC ,X

Decrement Byte

M ← (M) – 1
A ← (A) – 1
X ← (X) – 1
M ← (M) – 1
M ← (M) – 1

— — � � —

DIR
INH
INH
IX1
IX

3A
4A
5A
6A
7A

dd

ff

5
3
3
6
5

EOR #opr
EOR opr
EOR opr
EOR opr,X
EOR opr,X
EOR ,X

EXCLUSIVE OR Accumulator with Memory
Byte

A ← (A) ⊕ (M) — — � � —

IMM
DIR
EXT
IX2
IX1
IX

A8
B8
C8
D8
E8
F8

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

INC opr
INCA
INCX
INC opr,X
INC ,X

Increment Byte

M ← (M) + 1
A ← (A) + 1
X ← (X) + 1
M ← (M) + 1
M ← (M) + 1

— — � � —

DIR
INH
INH
IX1
IX

3C
4C
5C
6C
7C

dd

ff

5
3
3
6
5

Table 3-6. Instruction Set Summary (Sheet 3 of 6)

Source
Form Operation Description

Effect on
CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

H I N Z C
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 123
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JMP opr
JMP opr
JMP opr,X
JMP opr,X
JMP ,X

Unconditional Jump PC ← Jump Address — — — — —

DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff

ff

2
3
4
3
2

JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X

Jump to Subroutine

PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – 1
Push (PCH); SP ← (SP) – 1

PC ← Effective Address

— — — — —

DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff

ff

5
6
7
6
5

LDA #opr
LDA opr
LDA opr
LDA opr,X
LDA opr,X
LDA ,X

Load Accumulator with Memory Byte A ← (M) — — � � —

IMM
DIR
EXT
IX2
IX1
IX

A6
B6
C6
D6
E6
F6

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

LDX #opr
LDX opr
LDX opr
LDX opr,X
LDX opr,X
LDX ,X

Load Index Register with Memory Byte X ← (M) — — � � —

IMM
DIR
EXT
IX2
IX1
IX

AE
BE
CE
DE
EE
FE

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X

Logical Shift Left (Same as ASL) — — � � �

DIR
INH
INH
IX1
IX

38
48
58
68
78

dd

ff

5
3
3
6
5

LSR opr
LSRA
LSRX
LSR opr,X
LSR ,X

Logical Shift Right — — 0 � �

DIR
INH
INH
IX1
IX

34
44
54
64
74

dd

ff

5
3
3
6
5

MUL Unsigned Multiply X : A ← (X) × (A) 0 — — — 0 INH 42 11

NEG opr
NEGA
NEGX
NEG opr,X
NEG ,X

Negate Byte (Two’s Complement)

M ← –(M) = $00 – (M)
A ← –(A) = $00 – (A)
X ← –(X) = $00 – (X)
M ← –(M) = $00 – (M)
M ← –(M) = $00 – (M)

— — � � �

DIR
INH
INH
IX1
IX

30
40
50
60
70

dd

ff

5
3
3
6
5

NOP No Operation — — — — — INH 9D 2

ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X

Logical OR Accumulator with Memory A ← (A) ∨ (M) — — � � —

IMM
DIR
EXT
IX2
IX1
IX

AA
BA
CA
DA
EA
FA

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

Table 3-6. Instruction Set Summary (Sheet 4 of 6)

Source
Form Operation Description

Effect on
CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

H I N Z C

C

b0b7

0

b0b7

C0
M68HC05 Applications Guide — Rev. 4.0

124 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X

Rotate Byte Left through Carry Bit — — � � �

DIR
INH
INH
IX1
IX

39
49
59
69
79

dd

ff

5
3
3
6
5

ROR opr
RORA
RORX
ROR opr,X
ROR ,X

Rotate Byte Right through Carry Bit — — � � �

DIR
INH
INH
IX1
IX

36
46
56
66
76

dd

ff

5
3
3
6
5

RSP Reset Stack Pointer SP ← $00FF — — — — — INH 9C 2

RTI Return from Interrupt

SP ← (SP) + 1; Pull (CCR)
SP ← (SP) + 1; Pull (A)
SP ← (SP) + 1; Pull (X)

SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)

� � � � � INH 80 9

RTS Return from Subroutine
SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)

— — — — — INH 81 6

SBC #opr
SBC opr
SBC opr
SBC opr,X
SBC opr,X
SBC ,X

Subtract Memory Byte and Carry Bit from
Accumulator

A ← (A) – (M) – (C) — — � � �

IMM
DIR
EXT
IX2
IX1
IX

A2
B2
C2
D2
E2
F2

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

SEC Set Carry Bit C ← 1 — — — — 1 INH 99 2

SEI Set Interrupt Mask I ← 1 — 1 — — — INH 9B 2

STA opr
STA opr
STA opr,X
STA opr,X
STA ,X

Store Accumulator in Memory M ← (A) — — � � —

DIR
EXT
IX2
IX1
IX

B7
C7
D7
E7
F7

dd
hh ll
ee ff

ff

4
5
6
5
4

STOP Stop Oscillator and Enable IRQ Pin — 0 — — — INH 8E 2

STX opr
STX opr
STX opr,X
STX opr,X
STX ,X

Store Index Register In Memory M ← (X) — — � � —

DIR
EXT
IX2
IX1
IX

BF
CF
DF
EF
FF

dd
hh ll
ee ff

ff

4
5
6
5
4

SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X

Subtract Memory Byte from Accumulator A ← (A) – (M) — — � � �

IMM
DIR
EXT
IX2
IX1
IX

A0
B0
C0
D0
E0
F0

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

Table 3-6. Instruction Set Summary (Sheet 5 of 6)

Source
Form Operation Description

Effect on
CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

H I N Z C

C

b0b7

b0b7

C

M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 125
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SWI Software Interrupt

PC ← (PC) + 1; Push (PCL)
SP ← (SP) – 1; Push (PCH)

SP ← (SP) – 1; Push (X)
SP ← (SP) – 1; Push (A)

SP ← (SP) – 1; Push (CCR)
SP ← (SP) – 1; I ← 1

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

— 1 — — — INH 83 10

TAX Transfer Accumulator to Index Register X ← (A) — — — — — INH 97 2

TST opr
TSTA
TSTX
TST opr,X
TST ,X

Test Memory Byte for Negative or Zero (M) – $00 — — � � —

DIR
INH
INH
IX1
IX

3D
4D
5D
6D
7D

dd

ff

4
3
3
5
4

TXA Transfer Index Register to Accumulator A ← (X) — — — — — INH 9F 2

WAIT Stop CPU Clock and Enable Interrupts — 0 — — — INH 8F 2

A Accumulator opr Operand (one or two bytes)
C Carry/borrow flag PC Program counter
CCR Condition code register PCH Program counter high byte
dd Direct address of operand PCL Program counter low byte
dd rr Direct address of operand and relative offset of branch instruction REL Relative addressing mode
DIR Direct addressing mode rel Relative program counter offset byte
ee ff High and low bytes of offset in indexed, 16-bit offset addressing rr Relative program counter offset byte
EXT Extended addressing mode SP Stack pointer
ff Offset byte in indexed, 8-bit offset addressing X Index register
H Half-carry flag Z Zero flag
hh ll High and low bytes of operand address in extended addressing # Immediate value
I Interrupt mask ∧ Logical AND
ii Immediate operand byte ∨ Logical OR
IMM Immediate addressing mode ⊕ Logical EXCLUSIVE OR
INH Inherent addressing mode () Contents of
IX Indexed, no offset addressing mode –() Negation (two’s complement)
IX1 Indexed, 8-bit offset addressing mode ← Loaded with
IX2 Indexed, 16-bit offset addressing mode ? If
M Memory location : Concatenated with
N Negative flag � Set or cleared
n Any bit — Not affected

Table 3-6. Instruction Set Summary (Sheet 6 of 6)

Source
Form Operation Description

Effect on
CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

H I N Z C
M68HC05 Applications Guide — Rev. 4.0

126 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Ta
b

le
 3

-7
. O

p
co

d
e

M
ap

B
it

 M
an

ip
u

la
ti

o
n

B
ra

n
ch

R
ea

d
-M

o
d

if
y-

W
ri

te
C

o
n

tr
o

l
R

eg
is

te
r/

M
em

o
ry

D
IR

D
IR

R
E

L
D

IR
IN

H
IN

H
IX

1
IX

IN
H

IN
H

IM
M

D
IR

E
X

T
IX

2
IX

1
IX

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

0
5

B
R

S
E

T
0

3
D

IR

5
B

S
E

T
0

2
D

IR

3
B

R
A

2
R

E
L

5
N

E
G

2
D

IR

3
N

E
G

A
1

IN
H

3
N

E
G

X
1

IN
H

6
N

E
G

2
IX

1

5
N

E
G

1
IX

9
R

T
I

1
IN

H

2
S

U
B

2
IM

M

3
S

U
B

2
D

IR

4
S

U
B

3
E

X
T

5
S

U
B

3
IX

2

4
S

U
B

2
IX

1

3
S

U
B

1
IX

0

1
5

B
R

C
LR

0
3

D
IR

5
B

C
LR

0
2

D
IR

3
B

R
N

2
R

E
L

6
R

T
S

1
IN

H

2
C

M
P

2
IM

M

3
C

M
P

2
D

IR

4
C

M
P

3
E

X
T

5
C

M
P

3
IX

2

4
C

M
P

2
IX

1

3
C

M
P

1
IX

1

2
5

B
R

S
E

T
1

3
D

IR

5
B

S
E

T
1

2
D

IR

3
B

H
I

2
R

E
L

11
M

U
L

1
IN

H

2
S

B
C

2
IM

M

3
S

B
C

2
D

IR

4
S

B
C

3
E

X
T

5
S

B
C

3
IX

2

4
S

B
C

2
IX

1

3
S

B
C

1
IX

2

3
5

B
R

C
LR

1
3

D
IR

5
B

C
LR

1
2

D
IR

3
B

L
S

2
R

E
L

5
C

O
M

2
D

IR

3
C

O
M

A
1

IN
H

3
C

O
M

X
1

IN
H

6
C

O
M

2
IX

1

5
C

O
M

1
IX

10
S

W
I

1
IN

H

2
C

P
X

2
IM

M

3
C

P
X

2
D

IR

4
C

P
X

3
E

X
T

5
C

P
X

3
IX

2

4
C

P
X

2
IX

1

3
C

P
X

1
IX

3

4
5

B
R

S
E

T
2

3
D

IR

5
B

S
E

T
2

2
D

IR

3
B

C
C

2
R

E
L

5
L

S
R

2
D

IR

3
LS

R
A

1
IN

H

3
L

S
R

X
1

IN
H

6
LS

R
2

IX
1

5
LS

R
1

IX

2
A

N
D

2
IM

M

3
A

N
D

2
D

IR

4
A

N
D

3
E

X
T

5
A

N
D

3
IX

2

4
A

N
D

2
IX

1

3
A

N
D

1
IX

4

5
5

B
R

C
LR

2
3

D
IR

5
B

C
LR

2
2

D
IR

3
B

C
S

/B
LO

2
R

E
L

2
B

IT
2

IM
M

3
B

IT
2

D
IR

4
B

IT
3

E
X

T

5
B

IT
3

IX
2

4
B

IT
2

IX
1

3
B

IT
1

IX
5

6
5

B
R

S
E

T
3

3
D

IR

5
B

S
E

T
3

2
D

IR

3
B

N
E

2
R

E
L

5
R

O
R

2
D

IR

3
R

O
R

A
1

IN
H

3
R

O
R

X
1

IN
H

6
R

O
R

2
IX

1

5
R

O
R

1
IX

2
LD

A
2

IM
M

3
LD

A
2

D
IR

4
LD

A
3

E
X

T

5
L

D
A

3
IX

2

4
LD

A
2

IX
1

3
LD

A
1

IX
6

7
5

B
R

C
LR

3
3

D
IR

5
B

C
LR

3
2

D
IR

3
B

E
Q

2
R

E
L

5
A

S
R

2
D

IR

3
A

S
R

A
1

IN
H

3
A

S
R

X
1

IN
H

6
A

S
R

2
IX

1

5
A

S
R

1
IX

2
TA

X
1

IN
H

4
S

TA
2

D
IR

5
S

TA
3

E
X

T

6
S

TA
3

IX
2

5
S

TA
2

IX
1

4
S

TA
1

IX
7

8
5

B
R

S
E

T
4

3
D

IR

5
B

S
E

T
4

2
D

IR

3
B

H
C

C
2

R
E

L

5
A

S
L/

LS
L

2
D

IR

3
A

S
LA

/L
S

LA
1

IN
H

3
A

S
LX

/L
S

LX
1

IN
H

6
A

S
L/

L
S

L
2

IX
1

5
A

S
L/

LS
L

1
IX

2
C

LC
1

IN
H

2
E

O
R

2
IM

M

3
E

O
R

2
D

IR

4
E

O
R

3
E

X
T

5
E

O
R

3
IX

2

4
E

O
R

2
IX

1

3
E

O
R

1
IX

8

9
5

B
R

C
LR

4
3

D
IR

5
B

C
LR

4
2

D
IR

3
B

H
C

S
2

R
E

L

5
R

O
L

2
D

IR

3
R

O
LA

1
IN

H

3
R

O
LX

1
IN

H

6
R

O
L

2
IX

1

5
R

O
L

1
IX

2
S

E
C

1
IN

H

2
A

D
C

2
IM

M

3
A

D
C

2
D

IR

4
A

D
C

3
E

X
T

5
A

D
C

3
IX

2

4
A

D
C

2
IX

1

3
A

D
C

1
IX

9

A
5

B
R

S
E

T
5

3
D

IR

5
B

S
E

T
5

2
D

IR

3
B

P
L

2
R

E
L

5
D

E
C

2
D

IR

3
D

E
C

A
1

IN
H

3
D

E
C

X
1

IN
H

6
D

E
C

2
IX

1

5
D

E
C

1
IX

2
C

LI
1

IN
H

2
O

R
A

2
IM

M

3
O

R
A

2
D

IR

4
O

R
A

3
E

X
T

5
O

R
A

3
IX

2

4
O

R
A

2
IX

1

3
O

R
A

1
IX

A

B
5

B
R

C
LR

5
3

D
IR

5
B

C
LR

5
2

D
IR

3
B

M
I

2
R

E
L

2
S

E
I

1
IN

H

2
A

D
D

2
IM

M

3
A

D
D

2
D

IR

4
A

D
D

3
E

X
T

5
A

D
D

3
IX

2

4
A

D
D

2
IX

1

3
A

D
D

1
IX

B

C
5

B
R

S
E

T
6

3
D

IR

5
B

S
E

T
6

2
D

IR

3
B

M
C

2
R

E
L

5
IN

C
2

D
IR

3
IN

C
A

1
IN

H

3
IN

C
X

1
IN

H

6
IN

C
2

IX
1

5
IN

C
1

IX

2
R

S
P

1
IN

H

2
JM

P
2

D
IR

3
JM

P
3

E
X

T

4
JM

P
3

IX
2

3
JM

P
2

IX
1

2
JM

P
1

IX
C

D
5

B
R

C
LR

6
3

D
IR

5
B

C
LR

6
2

D
IR

3
B

M
S

2
R

E
L

4
T

S
T

2
D

IR

3
T

S
TA

1
IN

H

3
T

S
T

X
1

IN
H

5
T

S
T

2
IX

1

4
T

S
T

1
IX

2
N

O
P

1
IN

H

6
B

S
R

2
R

E
L

5
JS

R
2

D
IR

6
JS

R
3

E
X

T

7
JS

R
3

IX
2

6
JS

R
2

IX
1

5
JS

R
1

IX
D

E
5

B
R

S
E

T
7

3
D

IR

5
B

S
E

T
7

2
D

IR

3
B

IL
2

R
E

L

2
S

T
O

P
1

IN
H

2
LD

X
2

IM
M

3
LD

X
2

D
IR

4
LD

X
3

E
X

T

5
L

D
X

3
IX

2

4
LD

X
2

IX
1

3
LD

X
1

IX
E

F
5

B
R

C
LR

7
3

D
IR

5
B

C
LR

7
2

D
IR

3
B

IH
2

R
E

L

5
C

LR
2

D
IR

3
C

L
R

A
1

IN
H

3
C

LR
X

1
IN

H

6
C

LR
2

IX
1

5
C

LR
1

IX

2
W

A
IT

1
IN

H

2
T

X
A

1
IN

H

4
S

T
X

2
D

IR

5
S

T
X

3
E

X
T

6
S

T
X

3
IX

2

5
S

T
X

2
IX

1

4
S

T
X

1
IX

F

IN
H

 =
 In

he
re

nt
R

E
L

=
 R

el
at

iv
e

IM
M

 =
 Im

m
e

di
at

e
IX

 =
 I

nd
ex

ed
, N

o
 O

ffs
e

t
D

IR
 =

 D
ire

ct
IX

1
=

 In
de

xe
d,

 8
-B

it
O

ffs
e

t
E

X
T

 =
 E

xt
en

de
d

IX
2

=
 In

de
xe

d,
 1

6-
B

it
O

ffs
et

0
M

S
B

 o
f O

pc
od

e
in

 H
ex

a
de

ci
m

a
l

L
S

B
 o

f O
p

co
d

e
in

 H
ex

a
de

ci
m

al
0

5
B

R
S

E
T

0
3

D
IR

N
um

be
r

of
 C

yc
le

s
O

pc
od

e
 M

ne
m

on
ic

N
um

be
r

of
 B

yt
es

/A
dd

re
ss

in
g

M
od

e

LS
BM

S
B

L
S

B
M

S
B

LS
B

M
S

B

M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 127
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.9 Interrupts

Systems often require that normal processing be interrupted so that
some external event may be serviced. The MC68HC705C8 may be
interrupted by one of five different methods: any one of four maskable
hardware interrupts (IRQ, SPI, SCI, or timer) and one nonmaskable
software interrupt (SWI). Interrupts such as timer, SPI, and SCI have
several flags which will cause the interrupt. Generally, interrupt flags are
located in read-only status registers; their equivalent enable bits are
located in associated control registers. The interrupt flags and enable
bits are never contained in the same register. If the enable bit is a logic
zero, it blocks the interrupt from occurring but does not inhibit the flag
from being set. Reset clears all enable bits to preclude interrupts during
the reset procedure.

The general sequence for clearing an interrupt is a software sequence
of first accessing the status register while the interrupt flag is set,
followed by a read or write of an associated register. When any of these
interrupts occur and the enable bit is a logic one, normal processing is
suspended at the end of the current instruction execution.

Figure 3-14 shows how interrupts fit into the normal flow of CPU
instructions. Interrupts cause the processor registers to be saved on the
stack and the interrupt mask (I bit) to be set to prevent additional
interrupts. The appropriate interrupt vector then points to the starting
address of the interrupt service routine (refer to Figure 3-15 and
Table 3-8 for vector location). Upon completion of the interrupt service
routine, the RTI instruction (which is normally the last instruction of the
routine) causes the register contents to be recovered from the stack
followed by a return to normal processing.

NOTE: The interrupt mask bit (I bit) will be cleared if, and only if, the
corresponding bit stored in the stack is zero.
M68HC05 Applications Guide — Rev. 4.0

128 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reset and interrupt operations are often discussed together because
they share the common concept of vector fetching to force a new starting
point for further CPU operation. Unlike interrupts, there is no intention to
ever return to whatever the CPU was doing before a reset occurred.

A low on the RESET input pin causes the program to vector to its starting
address specified by the contents of memory location $1FFE and
$1FFF. The I bit in the condition code register is also set. Much of the
MCU is configured (forced) to a known state during reset.

3.9.1 Software Interrupt (SWI)

The software interrupt is an executable instruction. The action of the SWI
instruction is similar to the hardware interrupts. The SWI is executed
regardless of the state of the interrupt mask (I bit) in the condition code
register. The interrupt service routine address is specified by the
contents of memory location $1FFC and $1FFD.

Table 3-8. Vector Address for Interrupts and Reset

Register
Flag

Name
Interrupts

CPU
Interrupt

Vector
Address

N/A N/A Reset RESET $1FFE–$1FFF

N/A N/A Software SWI $1FFC–$1FFD

N/A N/A External interrupt IRQ $1FFA–$1FFB

Timer
Status

ICF
OFC
TOF

Input capture
Output compare
Timer overflow

TIMER $1FF8–$1FF9

SCI
Status

TDRE
TC

RDRF
IDLE
OR

Transmit buffer empty
Transmit complete
Receiver buffer full
Idle line detect
Overrun

SCI $1FF6–$1FF7

SPI
Status

SPIF
MODF

Transfer complete
Mode fault

SPI $1FF4–$1FF5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 129
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-14. Hardware Interrupt Flowchart

CLEAR IRQ
REQUEST LATCH

FROM
RESET

FETCH NEXT
INSTRUCTION

LOAD PC FROM VECTOR:
IRQ: $1FFA, $1FFB

TIMER: $1FF8, $1FF9
SCI: $1FF6, $1FF7
SPI: $1FF4, $1FF5

YES

NO

YES

NO

INTERNAL
SPI INTERRUPT

?

RTI
INSTRUCTION

?

NO

EXECUTE
INSTRUCTION

YES

YES

YES

NO

NO

NO

YES

STACK
PC, X, A, CC

SET I-BIT
IN CC REGISTER

RESTORE REGISTERS
FROM STACK
CC, A, X, PC

INTERNAL
TIMER INTERRUPT

?

INTERNAL
SCI INTERRUPT

?

EXT
IRQ INTERRUPT

?

I-BIT IN
CC REGISTER SET

?

M68HC05 Applications Guide — Rev. 4.0

130 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-15. Interrupt Stacking Order

3.9.2 External Interrupt

If the interrupt mask (I bit) of the condition code register has been
cleared and the external interrupt pin (IRQ) has gone low, then the
external interrupt is recognized. When the interrupt is recognized, the
current state of the CPU is pushed onto the stack and the I bit is set. This
masks further interrupts until the present one is serviced. The interrupt
service routine address is specified by the contents of memory location
$1FFA and $1FFB.

The MC68HC705C8 MCU IRQ pin sensitivity is software programmable.
Either negative edge-and level-sensitive triggering or negative edge-
sensitive triggering are available. The MC68HC705C8 MCU uses the
option register residing at location $1FDF to control the IRQ pin
sensitivity.

1 1 1

0 7

ACCUMULATOR

0 0 0

CONDITION CODES

INDEX REGISTER

PROGRAM COUNTER LOW

PROG COUNTER HIGH

INTERRUPT

UNSTACK

TOWARD LOWER ADDRESSES
(LOWEST STACK ADDRESS IS $00C0)

TOWARD HIGHER ADDRESSES
(HIGHEST STACK ADDRESS IS $00FF)

NOTE:When an interrupt occurs, CPU registers are saved on the stack in
the order PCL, PCH, X, A, CC. On a return from interrupt registers are
recovered from the stack in reverse order.

STACK

RETURN
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 131
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.9.3 Timer Interrupt

There are three different interrupt flags that will cause a timer interrupt
whenever they are set and enabled. These three interrupt flags are
found in the three MSBs of the timer status register (TSR, location $13),
and all three will vector to the same interrupt service routine ($1FF8-
$1FF9).

All interrupt flags have corresponding enable bits (ICIE, OCIE, and
TOIE) in the timer control register (TCR, location $12). Reset clears all
enable bits, thus preventing an interrupt from occurring during the reset
time period. The actual processor interrupt is generated only if the I bit
in the condition code register is also cleared. The general sequence for
clearing an interrupt is a software sequence of accessing the status
register while the flag is set, followed by a read or write of the associated
control register.

3.9.4 Serial Communications Interface (SCI) Interrupt

An interrupt in the SCI occurs when one of the interrupt flag bits in the
serial communications status register is set, provided the I bit in the
condition code register is clear and the enable bit in the serial
communication control register 2 (location $0F) is enabled. Software in
the serial interrupt service routine must determine the priority and cause
of the SCI interrupt by examining the interrupt flags and the status bits
located in the serial communications status register (location $10) The
general sequence for clearing an interrupt is a software sequence of
accessing the status register while the flag is set, followed by a read or
write of the associated control register.

3.9.5 Serial Peripheral Interface (SPI Interrupt

An interrupt in the SPI occurs when one of the interrupt flag bits in the
serial peripheral status register (location $0B) is set, provided the I bit in
the condition code register is clear and the enable bit in the serial
peripheral control register (location $0A) is enabled. The general
sequence for clearing an interrupt is a software sequence of accessing
M68HC05 Applications Guide — Rev. 4.0

132 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Microcontroller Input/Output

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the status register while the flag is set, followed by a read or write of the
associated control register.

3.10 Microcontroller Input/Output

Since inputs to and outputs from the MCU are usually digital (0 to + 5 Vdc
at low power), interface logic is often needed to couple the MCU to
external devices. Interface logic can operate in parallel or serial form.

Parallel interfaces allow I/O data transfer eight bits at a time, to parallel
ports on the MCU. Serial interfaces transfer I/O data one bit at a time
through a serial communications interface (SCI) or serial peripheral
interface (SPI) that are parts of the MCU.

Data transfers between the MCU and external logic are controlled by the
MCU.

NOTE: Tie all unused inputs and I/O ports to an appropriate logic level, either
VDD or VSS.

3.10.1 Parallel I/O

The MC68HC705C8 MCU contains 31 general-purpose parallel I/O pins
arranged in four ports. Ports A, B, and C are 8-bit ports in which the
direction of each pin is programmable by software-accessible registers.
Each 8-bit port has an associated 8-bit data direction register (DDR) as
shown in Figure 3-16, Figure 3-17, and Figure 3-18.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 133
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 Figure 3-16. Port A and Data Direction A Registers

Figure 3-17. Port B and Data Direction B Registers

Figure 3-18. Port C and Data Direction C Registers

BIT 7

DDRA7

6 5 4 3 2 1

0 0 0 0 0 0 0 0

BIT 0

$04 DDRA

RESET CONDITION
(ALL INPUTS)

DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET

$00 PORTA

RESET CONDITION

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PIN NAMES (REF)

BIT 7

DDRB7

6 5 4 3 2 1

0 0 0 0 0 0 0 0

BIT 0

$05 DDRB

RESET CONDITION
(ALL INPUTS)

DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0

PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET

$01 PORTB

RESET CONDITION

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 PIN NAMES (REF)

BIT 7

DDRC7

6 5 4 3 2 1

0 0 0 0 0 0 0 0

BIT 0

$06 DDRC

RESET CONDITION
(ALL INPUTS)

DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0

PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET

$02 PORTC

RESET CONDITION

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 PIN NAMES (REF)
M68HC05 Applications Guide — Rev. 4.0

134 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Microcontroller Input/Output

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Any port A, B, or C pin is configured as an output if its corresponding
DDR bit is set to a logic one. A pin is configured as an input if its
corresponding DDR bit is cleared to a logic zero. At power-on or reset,
all DDRs are cleared, which configure all port A, B, and C pins as inputs.
The DDRs are capable of being written to or being read by the
processor. Refer to Figure 3-19 and Table 3-9. When a port pin is
configured as an output, a read of the data register actually reads the
value of the output data latch and not the I/O pin.

Figure 3-19. Parallel Port I/O Circuitry

Table 3-9. I/O Pin Functions

R/W(1)

1. R/W is an internal signal.

DDR I/O Pin Function

0 0
The I/O pin is in input mode, Data is written into the output
data latch.

0 1
Data is written into the output data latch and output to the
I/O pin.

1 0 The state of the I/O pin is read.

1 1
The I/O pin is in output mode. The output data latch is
read.

DATA DIRECTION
REGISTER

BIT

LATCHED
OUTPUT DATA

BIT

[3]

[1]

[2]

CONNECTIONS
TO INTERNAL

DATA BUS

I/O
PIN

[1] — Output buffer, enables latched output to drive pin when DDR bit is 1 (output).
[2] — Input buffer, enabled when DDR bit is 0 (input).
[3] — Input buffer, enabled when DDR bit is 1 (output).
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 135
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.10.2 Serial I/O

Port D (see Figure 3-20) is a 7-bit fixed-direction input port. The SPI and
SCI systems take control of port D pins when these systems are
enabled. During power-on reset or external reset, all seven pins (PD5-
PDO, PD7) are configured as input ports because all special-function
output drivers are disabled. For example, with the SCI system enabled
(RE = TE = 1), PDO and PD1 inputs will read zero. With the SPI system
disabled (SPE = 0), PD5-PD2 will read the state of the pin at the time of
the read operation.

The SCI function uses two of the pins (PD1-PD0) for its receive data
input (RDI) and transmit data output (TDO); the SPI function uses four of
the pins (PD5-PD2) for its serial data input/output (MISO, MOSI), system
clock (SCK), and slave select (SS), respectively.

Figure 3-20. Port D Fixed Input Port

3.11 Serial Communications Interface (SCI)

SCI is one of two independent serial I/O subsystems in the
MC68HC705C8. The other serial I/O system (called SPI) provides for
high-speed synchronous serial communication to peripherals or other
MCUs. The SCI is a full-duplex UART-type asynchronous system that
can be used for communication between the MCU and a CRT terminal
or a personal computer, or several widely distributed MCUs can use their
SCI subsystems to form a serial communications network.

The SCI uses standard nonreturn-to-zero (NRZ) format (one start bit,
eight or nine data bits, and a stop bit). The most common data format is
eight bits. An on-chip baud rate generator derives standard baud rate

$03 PORTD

PD7 NOT
USED

PA5
SS

PA4
SCK

PA3
MOSI

PA2
MISO

PA1
TDO

PA0
RDI PIN NAMES (REF)

ALTERNATE USE (REF)
SPI SCI
M68HC05 Applications Guide — Rev. 4.0

136 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

frequencies from the MCU oscillator. The SCI transmitter and receiver
are functionally independent but use the same data format and baud
rate. In this applications guide, “baud rate” and “bit rate” are used
synonymously.

SCI Features:

• Two-Wire Serial Interface

• Standard NRZ (mark/space) Format

• Full-Duplex Operation (independent transmit and receive)

• Software Programmable for One of 32 Different Baud Rates

• Software-Selectable Word Length (8-or 9-bit words)

• Separate Transmitter and Receiver Enable Bits

• Communication may be Interrupt Driven

Receiver:

• Receiver Data Register Full Flag

• Error Detect Flags-Framing, Noise, Overrun

• Idle-Line Detect Flag

• Receiver Wakeup Function (idle or address bit)

Transmitter:

• Transmit Data Register Empty Flag

• Transmit Complete Flag (for modem control)

• Break Send

3.11.1 SCI Transmitter

The SCI transmitter block diagram is shown in Figure 3-21. The heart of
the transmitter is the transmit serial shift register near the top of the
figure. Usually, this shift register obtains its data from the write-only
transmit buffer. Data is transferred into the transmit buffer when software
writes to the SCI data register (SCDAT). Whenever data is transferred
into the shifter from the transmit buffer, a zero is loaded into the LSB of
the shifter to act as start bit, and a logic one is loaded into the last bit
position to act as a stop bit. In the case of a preamble, the shifter is
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 137
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

loaded with all ones, including the bit position usually holding the logic
zero start bit. A preamble is loaded each time the transmit enable bit is
written from zero to one. In the case of a send break command, the
shifter is loaded with all zeros, including the last bit position usually
holding the logic one stop bit.

Figure 3-21. SCI Transmitter Block Diagram

TRANSMITTER
CONTROL LOGIC

SCDAT Tx BUFFER

SCCR1 SCI CONTROL 1 SCSR INTERRUPT STATUS

SCCR2 SCI CONTROL 2

R
D

RF

7 L0123456(8)H

10 (11) - BIT Tx SHIFT REGISTER

PIN BUFFER
AND CONTROL

PD1/
TDO

(WRITE ONLY)1X
BAUD RATE

CLOCK

SCI Rx
REQUESTS

SCI INTERRUPT
REQUEST

INTERNAL
DATA BUS

TDRE

TIE

TC

TCIE

FORCE PIN DIRECTION (OUT)

TR
AN

SF
ER

 T
x

BU
FF

ER

SH
IF

T
EN

AB
LE

JA
M

 E
NA

BL
E

PR
EA

M
BL

E
–

JA
M

 1
’s

BR
EA

K
–

JA
M

 0
’s

FEN
F

O
R

ID
LETCTD

R
E

W
AK

E

MT8R
8

SB
K

RW
U

R
E

TEIL
IE

R
IE

TC
IE

TI
E

SI
ZE

 8
/9
M68HC05 Applications Guide — Rev. 4.0

138 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The T8 bit in SCI control register 1 (SCCR1) acts like an extra high-order
bit (ninth bit) of the transmit buffer register. This ninth bit is only used if
the M bit in SCCR1 is set, selecting the 9-bit data character format. The
M bit also controls the length of idle and break characters.

The status flag and interrupt generation logic are shown in Figure 3-21.
The transmit data register empty (TDRE) and transmit complete (TC)
status flags in the SCI status register (SCSR) are automatically set by
the transmitter logic. These two bits can be read at any time by software.
The transmit interrupt enable (TIE) and transmit complete interrupt
enable (TCIE) control bits enable the TDRE and TC flags, respectively,
to generate SCI interrupt requests.

3.11.2 SCI Receiver

The receiver block diagram is shown in Figure 3-22. SCI received data
comes in on the RDI pin, is buffered, and drives the data recovery block.
The data recovery block is actually a high-speed shifter operating at 16
times the bit rate; the main receive serial shifter operates at one times
the bit rate. This higher speed sample rate allows the start-bit leading
edge to be located more accurately than a 1 x clock would allow. The
high-speed clock also allows several samples to be taken within a bit
time so logic can make an intelligent decision about the logic sense of a
bit (even in the presence of noise). The data recovery block provides the
bit level to the main receiver shift register and also provides a noise flag
status indication.

The heart of the receiver is the receive serial shift register. This register
is enabled by the receive enable (RE) bit in the SCI control register 2
(SCCR2). The M bit from the SCCR1 register determines whether the
shifter will be 10 or 11 bits. After detecting the stop bit of a character, the
received data is transferred from the shifter to the SCIDAT, and the
receive data register full (RDRF) status flag is set. When a character is
ready to be transferred to the receive buffer but the previous character
has not yet been read, an overrun condition occurs. In the overrun
condition, data is not transferred, and the overrun (OR) status flag is set
to indicate the error.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 139
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-22. SCI Receiver Block Diagram

÷ 16

SCCR1 SCI CONTROL 1 SCSR INTERRUPT STATUS

SCCR2 SCI CONTROL 2

R
D

RF

7 0123456(8)PIN BUFFERPD0/
RDI

16X
BAUD RATE

CLOCK

SCI Tx
REQUESTS

SCI INTERRUPT
REQUEST

INTERNAL
DATA BUS

FE

N
F

O
R

ID
LE

TCTD
R

E

W
AK

E

MT8

R8

SB
KR
W

U

R
E

TEIL
IE

R
IE

TC
IE

TI
E

RDRF

RIE

IDLE

ILIE

OR

RIE

DATA
RECOVERY

SCDAT Rx BUFFER

ALL ONES

10 (11) - BIT
Rx SHIFT REGISTER

ST
O

P

ST
AR

T

MSB

WAKE-UP
LOGIC RWU

M

(READ ONLY)
M68HC05 Applications Guide — Rev. 4.0

140 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

There are three receiver-related interrupt sources in the SCI. These
flags can be polled by software or, when enabled, cause an SCI interrupt
request. The receive interrupt enable (RIE) control bit enables the RDRF
and OR status flags to generate hardware interrupt requests. The idle
line interrupt enable (ILIE) control bit allows the IDLE status flag to
generate interrupt requests.

3.11.3 Registers

The SCI system includes five registers (BAUD, SCCR1, SCCR2, SCSR,
and SCDAT) and two external pins (TDO and RDI). When the SCI
receiver and or transmitter is enabled, the SCI logic takes control of the
pin buffers for the associated port D pin(s). When the SCI is disabled, the
TDO and RDI pins act as general-purpose inputs.

The main function of each of these registers will be discussed. Normally,
the SCCR1, SCCR2, and BAUD registers would be written once to
initialize and then not used again. An example of the software,
programming procedure is shown later in this section.

3.11.3.1 Baud Rate Register (BAUD)

The BAUD register (see Figure 3-23) is used to select the baud rate for
the SCI system. Both the transmitter and receiver use the same data
format and baud rate, which is derived from the MCU bus rate clock. The
SCP1-SCP0 bits function as a prescaler for the SCR2-SCRO bits.
Together, these five bits provide multiple baud rate combinations for a
given crystal frequency.

Figure 3-23. Baud Rate Register

BIT 7

– – SCP2 SCR2 SCR1 SCR0

6 5 4 3 2 1

0 0 0 0 0 0 0 0

BIT 0

SCI PRESCALER RATE SELECT
DIVIDE INTERNAL

PROCESSOR CLOCK
BY 1, 3, 4, OR 13

SCI RATE SELECT
DIVIDE PRESCALER OUTPUT
BY 1, 2, 4, 8, ...128

$0D BAUD

RESET CONDITION

SCP1 –
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 141
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-24, Table 3-10, and Table 3-11 illustrate the divider chain
used to obtain the baud rate clock (transmit clock). For example, using
a 4-MHz crystal, the internal processor clock is 2 MHz.

NOTE: The divided frequencies shown in Table 3-10 represent baud rates
which are the highest transmit baud rate (Tx) that can be obtained by a
specific crystal frequency and only using the prescaler division. Lower
baud rates may be obtained by providing a further division using the SCI
rate select bits shown below for some representative prescaler outputs.

Figure 3-24. Rate Generator Division

SCP1 – SCP0
PRESCALER

CONTROL
÷ N

SCR2 – SCR0
SCI SELECT

RATE CONTROL
÷ M

FIXED
÷ 16

FIXED
÷ 2

CRYSTAL
FREQUENCY

INTERNAL
PROCESSOR
CLOCK

PRESCALER OUTPUT
(FREQUENCY IS 16 TIMES
THE VALUES IN TABLE 3-4)

RECEIVER CLOCK
(16X BAUD RATE)
(FREQUENCY IS 16 TIMES
THE VALUES IN TABLE 3-6)

TRANSMITTER CLOCK
(1X BAUD RATE)

Table 3-10. Prescaler Baud Rate Frequency Output

SCP Bit Clock(1)

Divided By

Crystal Frequency MHz

1 0 4.194304 4.0 2.4576 2.0 1.8432

0 0 1 131.072 kHz 125.000 kHz 76.80 kHz 62.60 kHz 57.60 kHz

0 1 3 43.691 kHz 41.666 kHz 25.60 kHz 20.833 kHz 19.20 kHz

1 0 4 32.768 kHz 31.250 kHz 19.20 kHz 15.625 kHz 14.40 kHz

1 1 13 10.082 kHz 9600 Hz 5.907 kHz 4800 Hz 4430 Hz

1. The clock in the “Clock Divided By” column is the internal processor clock.
M68HC05 Applications Guide — Rev. 4.0

142 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The SCP1–SCP0 bits in the baud rate register set the division factor
(N in Figure 3-24) for the baud rate divider. Reset clears these bits,
setting the prescaler to divide-by-one.

The SCR2, SCR1, and SCRO bits are used to set the division factor
(M in Figure 3-24) for the baud rate divider. Reset does not affect these
bits.

Example:

From Table 3-11, find the crystal frequency used (in this case,
4 MHz). Next, find 9600 or a binary multiple of 9600. In this example,
you would select the bottom row which corresponds to
SCP1:SCP0 = 1:1 (divide-by-thirteen). Next, find the column in
Table 3-11 that corresponds to 9600 Hz. Find the desired baud rate
in this column. In this example, you would select the top row, which
corresponds to SCR2:SCR1:SCR0 = 0:0:0 (divide-by-one).

NOTE: Table 3-11 illustrates how the SCI select bits can be used to provide
lower transmitter baud rate by further dividing the prescaler output
frequency, The five examples are only representative samples. In all
cases, the baud rates shown are transmit baud rates (transmit clock),
and the receive clock is 16 times higher in frequency than the actual
baud rate.

Table 3-11. Transmit Baud Rate Output

SCR Bits Divided
By

Representative Highest Prescaler Baud Rate Output

2 1 0 131.072 kHz 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz

0 0 0 1 131,072 kHz 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz

0 0 1 2 65,536 kHz 16.384 kHz 38.40 kHz 9600 Hz 4800 Hz

0 1 0 4 32.768 kHz 8.192 kHz 19.20 kHz 4800 Hz 2400 Hz

0 1 1 8 16.384 kHz 4.096 kHz 9600 Hz 2400 Hz 1200 Hz

1 0 0 16 8.192 kHz 2.048 kHz 4800 Hz 1200 Hz 600 Hz

1 0 1 32 4.096 kHz 1.024 kHz 2400 Hz 600 Hz 300 Hz

1 1 0 64 2.048 kHz 512 Hz 1200 Hz 300 Hz 150 Hz

1 1 1 128 1.024 kHz 256 Hz 600 Hz 150 Hz 75 Hz
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 143
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.11.3.2 Serial Communications Control Register One (SCCR1)

The serial communications control register one (SCCR1) shown in
Figure 3-25 includes three bits associated with the optional 9-bit data
format. The WAKE bit is used to select one of two methods of receiver
wakeup. Normal setup for bit M is 0 for 8-bit words. The other register
bits are not used in most systems. In a typical system, this register would
be written to $00 during initialization.

Figure 3-25. Serial Communications Control Register One

3.11.3.3 Serial Communications Control Register Two (SCCR2)

The serial communications control register two (SCCR2) shown in
Figure 3-26 is the main control register for the SCI subsystem. This
register can enable/ disable the transmitter or receiver, enable the
system interrupts, and provide the wakeup enable bit and a “send break
code” bit. The TIE, TCIE, RIE, and ILIE bits are local interrupt enable
controls, which determine whether SCI status flags will be polled or
generate hardware interrupt requests.

Figure 3-26. Serial Communications Control Register Two

NINTH TRANSMIT BIT (IF M=1)

BIT 7

T8

6 5 4 3 2 1

0 0 – 0 0 – – –

BIT 0

NINTH RECEIVE BIT (IF M=1)

$0E SCCR1

RESET CONDITION

R8 M WAKE

WAKEUP METHOD SELECT
0–IDLE LINE 1–ADDRESS MARK

– – ––

SELECT SCI DATA LENGTH
0–8 BITS 1–9 BITS

TRANSMISSION COMPLETE INTERRUPT ENABLE

BIT 7

TCIE

6 5 4 3 2 1

0 0 0 0 0 0 0 0

BIT 0

TRANSMITTER INTERRUPT ENABLE

$0F SCCR2

RESET CONDITION

TIE RIE ILIE TE RE RWU SBK

SEND BREAK

RECEIVER WAKEUP FUNCTION

IDLE LINE INTERRUPT ENABLE

RECEIVER INTERRUPT ENABLE

ENABLE SCI RECEIVER

ENABLE SCI TRANSMITTER
M68HC05 Applications Guide — Rev. 4.0

144 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In a typical system:

TE and RE would be written to one to enable the transmitter and
receiver subsystems.

ILIE, RWU, and SBK would seldom be used and would be written to
zero.

If interrupts were not being used, TIE, TCIE, and RIE would be written
to zero. If interrupts were used, these three bits would be written to
one.

For example, in a system which does not use interrupts, SCCR2 would
be loaded with $0C during initialization.

3.11.3.4 Serial Communications Status Register (SCSR)

The SCI status register (SCSR) in Figure 3-27 contains two transmitter
status flags and five receiver related status flags. The TDRE and RDRF
bits are always used. The TC and IDLE bits are not commonly used.

Figure 3-27. Serial Communications Status Register

The OR, NF, and FE bits should be monitored and may or may not be
used, depending on the type of SCI system. For errors to be corrected,
both the transmitting and receiving device must have a common method
of handling errors.

There are two major types of communication links associated with the
SCI. An example of a direct connection would be an MCU connected to
a personal computer. In this direct connection link OR, NF, and FE errors
are very unlikely and are typically ignored. The second type of link
involves two remote devices where each is connected to a modem. In

TRANSMIT DATA REGISTER EMPTY

BIT 7

TC

6 5 4 3 2 1

1 1 0 0 0 0 0 –

BIT 0

$10 SCSR

RESET CONDITION

TDRE RDRF IDLE OR NF FE –

FRAMING ERROR
NOISE FLAG

RECEIVE DATA REGISTER FULL
TRANSMISSION COMPLETE

OVERRUN
IDLE LINE DETECT
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 145
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

this type of link, errors are more likely and both computers would
typically use a protocol that permits retransmission when an error is
detected.

3.11.3.5 Serial Communications Data Register (SCDAT)

The SCI SCDAT data register (see Figure 3-28) has two functions: it is
the transmit data register when written to and the receive data register
when read. Both the transmitter and receiver are double buffered (see
Figure 3-29), so back-to-back characters can be handled easily even if
the CPU is delayed in responding to the completion of an individual
character.

Figure 3-28. Serial Communications Data Register

Figure 3-29. Double Buffering

BIT 7 6 5 4 3 2 1 BIT 0

$11 SCDAT

RDRF flag set each time new data is
transferred from the serial shift register
to the RDR buffer.

RECEIVE SHIFTER

RDR BUFFER

1 0RDI
PIN

STOP BIT START BIT

PARALLEL DATA
TO CPU DATA BUS

SERIAL DATA IN

RECEIVER

TRANSMIT SHIFTER

TDR BUFFER

1 TDO
PIN

STOP BIT START BIT

PARALLEL DATA
FROM CPU DATA BUS

SERIAL DATA OUT

0

TRANSMITTER

TDRE flag set each time new data is
transferred from the TDR buffer to
the TRANSMIT serial shift register.
M68HC05 Applications Guide — Rev. 4.0

146 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.11.4 Data Formats

The standard NRZ data formats used for communications are shown in
Figure 3-30. The upper portion of this figure shows the normal 8-bit data
format; the lower portion of the figure shows the 9-bit data format. The
9-bit data format is selected by setting the M control bit in SCCR1 to 1.

The basic characteristics of the NRZ format are as follows:

1. A high level indicates a logic one and a low level, a logic zero.

2. The idle line is high prior to message transmission/reception.

3. A start bit (logic zero) is transmitted/received as the first bit of data
in a character.

4. Data is transmitted/received LSB first.

5. The last bit in a character (bit 10 or 11) is a high (stop bit).

6. A break is a low (logic zero) for 10 or 11 bit times.

Figure 3-30. Data Formats

0 2 3 4 5 6 71

START BIT STOP BIT

NEXT START BIT

0 2 3 4 5 6 71 8

[1]

STOP BIT

NEXT START BIT

START BIT

[1] — Control bit ‘M’ selects optional ninth (9) data bit.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 147
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.11.5 Hardware Procedures

Some simple hardware setup is required. A universal standard RS232
cable is used to interconnect the SCI to a CRT terminal or the PC. The
user would usually have to provide an external level shifter buffer
(MC145406) to convert the RS232 (typically ±12 volts) to the 0-5 volt
logic levels used by the MC68HC705C8.

3.11.6 Software Procedures

The following paragraphs and flowcharts discuss software procedures.
These flowcharts illustrate how straightforward normal SCI operations
are.

3.11.6.1 Initialization Procedure

The following list reflects the initialization procedure.

1. Write to BAUD register (SCP1-SCP0, SCR2-SCR0) to set baud
rate.

2. Write to SCCR1 (R8, T8, M, WAKE) to set character length and
choose wakeup method.

3. Write to SCCR2 (TIE, TCIE, RIE, ILIE, TE, RE, RWU, SBK) to en-
able desired interrupt sources. To turn on the transmitter and re-
ceiver, RWU and SBK would be written to zero during initialization.

The following is a reference list of interrupt enable control bits versus the
interrupt source(s) they enable:

Enable Flags Interrupt Source Names

TIE TDRE Transmit data register empty

TCIE TC Transmit complete

RIE RDRF, OR Receive data register full, overrun

ILIE IDLE Idle line detect
M68HC05 Applications Guide — Rev. 4.0

148 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.11.6.2 Normal Transmit Operation

Refer to Figure 3-31, a flowchart of the normal transmit operation.

Figure 3-31. SCI Normal Transmit Operation Flowchart

3.11.6.3 Normal Receive Operation

Refer to Figure 3-32, a flowchart of the normal receive operation.

Figure 3-32. SCI Normal Receive Operation Flowchart

SENDATA BRCLR 7, SCSR, SENDATA

STA SCDAT

RTS

TDRE = 1
?

YES

NO

WRITE DATA
TO SCDAT

FLOWCHART MNEMONIC PROGRAM

START
SUBROUTINE

RETURN FROM
SUBROUTINE

RDRF = 1
?

YES

NO

READ DATA
FROM SCDAT

FLOWCHART

GETDATA BRCLR 5, SCSR, GETDATA

LDA SCDAT

RTS

MNEMONIC PROGRAM

START
SUBROUTINE

RETURN FROM
SUBROUTINE
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 149
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.11.7 SCI Application Example

Figure 3-33 is an example software program for communication
between the SCI of the MCU and a dumb terminal. The MCU will receive
(read) an ASCII character that was sent by the dumb terminal. The MCU
will then translate the 8-bit binary character representing the ASCII
character into two ASCII characters.

When this translation is completed, the MCU will transmit a <CR >, line
feed, a $ sign and the two characters that represent the original
hexadecimal equivalent of the received character back to the terminal.
The program then waits for another character.

In practice, the following would occur:

You type a number/character on the keyboard. It goes from the
terminal to the MCU over the SCI receiver. Use the example of the
letter “A”.

The program translates “A” to “4” and “1”, then sends CR, line feed,
$, 4, and 1, to the SCI transmitter.

When the transmission is complete, the program goes back to the top
for another keyboard number/character to be sent over the SCI
receiver.

Table 3-12 is a chart of the ASCII-hexadecimal code conversion.
M68HC05 Applications Guide — Rev. 4.0

150 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Serial Communications Interface (SCI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 3-12. ASCII-Hexadecimal Code Conversion

ASCII Character Set (7-Bit Code)

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ’ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S C s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS ' < L V l

D CR GS - = M] m }

E SO RS . > N Ÿ n ~

F SI US / / 0 — o DEL

MS Dig.

LS Dig.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 151
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* Simple 68HC05 SCI Program Example *
**

000d BRATE EQU $0D -,-,SCP1,SCP0;-,SCR2,SCR1,SCR0
000e SCCR1 EQU $0E R8,T8,-,M;WAKE,-,-,-
000f SCCR2 EQU $0F TIE,TCIE,RIE,ILIE;TE,RE,RWU,SBK
0011 SCDAT EQU $11 Read-RDR; Write-TDR
0010 SCSR EQU $10 TDRE,TC,RDRF,IDLE;OR,NF,FE,-

00a0 TEMP EQU $A0 One byte temp storage location
00a1 TEMPHI EQU $A1 Upper byte changed to ASCII
00a2 TEMPLO EQU $A2 Lower byte changed to ASCII

0500 ORG $500 Program will start at $0500

0500 a6 30 INITIAL LDA #%00110000 Begin initialization
0502 b7 0d STA BRATE Baud rate to 4800 @2MHz Xtal
0504 a6 00 LDA #%00000000 Set up SCCR1
0506 b7 0e STA SCCR\1 Store in SCCR1 register
0508 a6 0c LDA #%00001100 Set up SCCR2
050a b7 0f STA SCCR2 Store in SCCR2 register
050c cd 05 43 START JSR GETDATA Checks for receive data
050f b7 a0 STA TEMP Store received ASCII data in temp
0511 a4 0f AND #$OF Convert LSB of ASCII char to hex
0513 aa 30 ORA #$30 $3(LSB) = "LSB"
0515 al 39 CMP #$39 3A-3F need to change to 41-46
0517 23 02 BLS ARN1 Branch if 30-39 OK
0519 ab 07 ADD #7 Add offset
051b b7 a2 ARN1 STA TEMPLO Store LSB of hex in TEMPLO
051d b6 a0 LDA TEMP Read the original ASCII data
051f 44 LSRA Shift right 4 bits
0520 44 LSRA
0521 44 LSRA
0522 44 LSRA
0523 aa 30 ORA #$30 ASCII for N is $3N (N = 0-9)
0525 al 39 CMP #$39 3A-3F need to change to 41-46
0527 23 02 BLS ARN2 Branch if 30-39
0529 ab 07 ADD #7 Add offset
052b b7 a1 ARN2 STA TEMPHI MS nibble of hex to TEMPHI
052d a6 0d LDA #$0D Load hex value for "<CR > "
052f ad 18 BSR SENDATA Carriage return
0531 a6 0a LDA #$0A Load hex value for "<LF > "
0533 ad 14 BSR SENDATA Line feed
0535 a6 24 LDA #’$ Load hex value for "$"
0537 ad 10 BSR SENDATA Print dollar sign
0539 b6 al LDA TEMPHI Get high half of hex value
053b ad Oc BSR SENDATA Print
053d b6 a2 LDA TEMPLO Get low half of hex value
053f ad 08 BSR SENDATA Print
0541 20 c9 BRA START Branch back to start

*** Get an SCI character, return w/ it in A
0543 0b 10 fd GETDATA BRCLR 5,SCSR,GETDATA RDRF = 1 ?
0546 b6 11 LDA SCDAT OK, get
0548 81 RTS ** Return from GETDATA **

*** Send an SCI character, call sub w/ it in A
0549 0f 10 fd SENDATA BRCLR 7,SCSR,SENDATA TDRE = 1 ?
054c b7 11 STA SCDAT OK, send
054e 81 RTS ** Return from SENDATA **

Figure 3-33. SCI Application Example Program
M68HC05 Applications Guide — Rev. 4.0

152 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Synchronous Serial Peripheral Interface (SPI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.12 Synchronous Serial Peripheral Interface (SPI)

The SPI subsystem included in the MC68HC705C8 allows the MCU to
communicate with peripheral devices. Peripheral devices can be as
simple as an ordinary TTL shift register or as complex as a complete
subsystem such as an LCD display driver or an A/D converter
subsystem. The SPI system is flexible enough to interface directly with
numerous standard product peripherals from several manufacturers.

SPI is an added feature for those applications that require more inputs
and outputs than there are parallel I/O pins on the MCU. SPI offers a
very easy way to expand the I/O function while using a minimum number
of MCU pins. The SPI block diagram is shown in Figure 3-34.

SPI features are as follows:

• Full-duplex, three-wire synchronous transfers

• Master or slave operation

• 1.05 MHz (maximum) master bit frequency

• 2.1 MHz (maximum) slave bit frequency

• Four programmable master bit rates

• Programmable clock polarity and phase

• End of transmission interrupt flag

• Write-collision flag protection

An SPI subsystem can operate under software control in either complex
or simple system configurations:

• One master MCU and several slave MCUs

• Several MCUs interconnected in a multimaster system

• One master MCU and one or more slave peripherals

The majority of all applications use one MCU device as the master. This
master initiates and controls the transfer of data to or from one or more
slave peripheral devices that receive or supply the data being
transferred. Slaves can read data from or transfer data to the master only
after the master instructs an action to occur. This system configuration
will be discussed in this applications guide.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 153
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-34. SPI Block Diagram

SPI STAUS REGISTER SPI CONTROL REGISTER

INTERNAL PROCESSOR
CLOCK

SP
R

1

CP
HA

CP
O

L

M
ST

R

SP
E

SP
IEM

O
D

F

W
C

O
L

SP
IF

CLOCK
LOGIC

MSTR

SPI CONTROL

SP
R

0

SPE

MSB LSB

8-BIT SHIFT REGISTER

READ DATA BUFFER

DIVIDER

÷ 2 ÷ 4 ÷ 16 ÷ 32

SELECT
SPI CLOCK (MASTER)

SP
R

0

SP
R

1

M
ST

R

SP
E

SPI INTERRUPT
REQUEST

INTERNAL
DATA BUS

S

M

M

S

S

M

PIN
CONTROL

LOGIC

SS/
PD5

SCK/
PD4

MOSI/
PD3

MISO/
PD2

CLOCK
M68HC05 Applications Guide — Rev. 4.0

154 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Synchronous Serial Peripheral Interface (SPI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.12.1 Data Movement

There is no need to specify the direction of data movement for each
transfer because the master simultaneously transmits and receives
serial data on separate pins every transfer. When an SPI transfer
occurs, an 8-bit character is shifted out on one data pin while a different
8-bit character is simultaneously shifted in on a second data pin (see
Figure 3-35). Another way to think of this is that an 8-bit shift register in
the master and another in the slave are connected as a circular 16-bit
shift register. When a transfer occurs, this distributed shift register is
shifted eight bit positions so the characters in the master and slave are
effectively exchanged.

Many simple slave devices are designed to only receive data from a
master or only supply data to a master. For example, a serial-to-parallel
shift register can act as an 8-bit output port. An MCU configured as a
master SPI device would initiate a transfer to send an 8-bit data value to
the shift register. Since the shift register does not send any data to the
master, the master would simply ignore whatever it received as a result
of that transmission.

Figure 3-35. Shift Register Operation

SPI SHIFT REGISTER

RECEIVE BUFFER

SPI SHIFT REGISTER

RECEIVE BUFFER

MC68HC705C8MC68HC705C8

MASTER DEVICE SLAVE DEVICE

MOSI

MISO

SCK

SS
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 155
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.12.2 Functional Description

Four I/O pins located at port D are associated with SPI data transfers.
They are the serial clock (SCK-PD4), the master in/slave out (MISO-
PD2) data line, the master out/slave in (MOSI-PD3) data line, and the
active-low slave select (SS-PD5). When the SPI system is not utilized,
the four pins (SS, SCK, MISO, and MOSI) are configured as general-
purpose inputs (PD5, PD4, PD3, and PD2).

In a master configuration, the master start logic receives an input from
the CPU (in the form of a write to the SPI data register) and originates
the serial clock (SCK) based on the internal processor clock. This clock
is also used internally to control the state controller as well as the 8-bit
shift register. Data is parallel loaded into the 8-bit shift register (during
the CPU write to SPDR) and then shifted out serially to the MOSI pin for
application to the serial input line of the slave device(s). At the same
time, data is applied serially from a slave device through the MISO pin to
the 8-bit shift register. After the eighth shift in a transfer, data is parallel
transferred to the read buffer where it is available to the internal data bus
during a CPU read cycle. The SPIF status flag is used by the master and
slave devices to indicate when a transfer is complete.

3.12.3 Pin Descriptions

The four I/O pins are discussed in the following paragraphs.

3.12.3.1 Serial Data Pins (MISO, MOSI)

The master-in slave-out (MISO) and master-out slave-in (MOSI) data
pins are used for transmitting and receiving data serially: MSB first, LSB
last. When the SPI is configured as a master, MISO is the master data
input line and MOSI is the master data output line. In the master device,
the MSTR control bit (bit 4 of the serial peripheral control register) is set
to a logic one (by the program) to allow the master device to output data
on its MOSI pin. When the SPI is configured as a slave, these pins
reverse roles; MISO becomes the slave data output line and MOSI
becomes the slave data input line.
M68HC05 Applications Guide — Rev. 4.0

156 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Synchronous Serial Peripheral Interface (SPI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The timing diagram of Figure 3-36 shows the relationship between data
and clock (SCK). As shown in Figure 3-36, four possible timing
relationships may be chosen by using control bits CPCL and CPHA.
Setting CPCL is equivalent to putting an inverter in series with the clock
signal. CPHA selects one of two fundamentally different clocking
protocols to allow the SPI system to communicate with virtually any
synchronous serial peripheral device.

Figure 3-36. Data/Clock Timing Diagram

3.12.3.2 Serial Clock (SCK)

SCK is used to synchronize the movement of data both in and out of the
device through the MOSI and MISO pins. The SCK pin is an output when
the SPI is configured as a master and an input when the SPI is
configured as a slave. When the SPI is configured as a master, the SCK
signal is derived from the internal MCU bus clock. When the master
initiates a transfer, eight clock cycles are automatically generated on the
SCK pin. In both the master and slave SPI devices, data is shifted on one
edge of the SCK signal and sampled on the opposite edge, where data
is stable. Two bits (SPR0 and SPR1) in the SPCR (location $0A) of the
master device select the clock rate. Both master and slave devices must
be programmed to similar timing modes for proper data transfers, as
controlled by the CPOL and CPHA bits in the SPCR.

BIT 1BIT 2BIT 3BIT 4BIT 5BIT 6 LSB ?

BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSBBIT 6?

MSB

MSB

SCK (CPOL = 0)

SCK (CPOL = 1)

SS (SLAVES)

DATA OUTPUT
(CPHA = 1)

SAMPLE INPUT

SAMPLE INPUT

DATA OUTPUT
(CPHA = 0)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 157
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.12.3.3 Slave Select (SS)

The SS pin behaves differently on master devices than on slave devices.
On a slave, this pin is used to enable the SPI slave for a transfer. On a
master, the SS pin is normally pulled high externally.

3.12.4 Registers

Three registers in the SPI provide control, status, and data storage
functions. These registers include the serial peripheral control register
(location $0A), serial peripheral status register (location $0B), and serial
peripheral data I/O register (location $0C).

3.12.4.1 Serial Peripheral Control Register (SPCR)

In most systems, this register (Figure 3-37) is written only once shortly
after reset to initialize the SPI system.

Figure 3-37. Serial Peripheral Control Register

The SPCR bits have the following functions:

SPIE
0 = SPI interrupts are disabled (the most common configuration).
1 = SPI interrupt requests are enabled if SPIF and/or MODF is set

to one.

BIT 7

MSTR CPHA SPR1 SPR0

6 5 4 3 2 1

0 0 – 0 0 0 0 0

BIT 0

SPI MASTER BIT RATE

$0A SPCR

RESET CONDITION

SPIE SPE – CPOL

CLOCK PHASE (BASIC PROTOCOL)

CLOCK POLARITY
MASTER (1) OR SLAVE (0) MODE SELECT

SPI SYSTEM ENABLE
SPI INTERRUPT ENABLE
M68HC05 Applications Guide — Rev. 4.0

158 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Synchronous Serial Peripheral Interface (SPI)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SPE
0 = SPI system is turned off.
1 = SPI system is turned on.

MSTR
0 = SPI is configured as a slave.
1 = SPI is configured as a master.

CPOL
0 = Active-high clocks selected, SCK idles low.
1 = Active-low clocks selected, SCK idles high.

(This bit is used in conjunction with the clock phase control bit to
produce the desired clock-data relationship between master and
slave.)

CPHA

The clock phase bit, in conjunction with the CPOL bit, controls the
relationship between the data on the MISO and MOSI pins and the
clock produced or received at the SCK pin. CPHA selects one of two
fundamentally different clocking protocols to allow the SPI system to
communicate with virtually any synchronous serial peripheral device.

SPR1/SPRO

These two serial peripheral rate bits select one of four bit rates to be
used as SICK if the device is a master; they have no effect in the slave
mode.

SPR1 SPRO

Internal
Processor

Clock
Divided By

Frequency if
XTAL

is 4.0 MHz

Frequency if
XTAL

is 2 MHz

0 0 2 1.0 MHz 500.0 kHz

0 1 4 500.0 kHz 250.0 kHz

1 0 16 125.0 kHz 62.50 kHz

1 1 32 62.5 kHz 31.25 kHz
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 159
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.12.4.2 Serial Peripheral Status Register (SPSR)

This read-only register (Figure 3-38) contains status flags which indicate
the completion of an SPI transfer and the occurrence of certain SPI
system errors. The flags are automatically set by the SPI events; the
flags are cleared by automatic software sequences and upon reset. In
the majority of all systems, only the SPIF status bit is important.

Figure 3-38. Serial Peripheral Status Register

The bits in this register have the following functions:

SPIF

When set to one, the serial peripheral data transfer flag bit notifies the
user that a data transfer between the MCU and an external peripheral
device has been completed. The transfer of data is initiated by the
master device writing to its serial peripheral data register. SPIF is
automatically cleared by reading SPSR with SPIF set, followed by an
access of the SPI data register.

WCOL

The write-collision status bit notifies the user that an attempt was
made to write to the serial peripheral data register while a data
transfer with an external peripheral device was in progress. The
transfer continues uninterrupted, and the write will be unsuccessful.

MODF

This flag is set if the SS signal goes to its active-low level while the
SPI is configured as a master (MSTR = 1). In normal systems, this
would never be possible.

BIT 7

MODF

6 5 4 3 2 1

0 0 – 0 – – – –

BIT 0

$0B SPSR

RESET CONDITION

SPIF WCOL – – – – –

MODE FAULT
WRITE COLLISION

SPI TRANSFER COMPLETE
M68HC05 Applications Guide — Rev. 4.0

160 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
SPI Application Example

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.12.4.3 Serial Peripheral Data I/O Register (SPDR)

The SPDR (Figure 3-39) in the master MCU device is used to transmit
data to and receive data from the slave device. Only a write to this
register in a master will initiate transmission/reception of data. The data
is then loaded directly into the 8-bit shift register where eight bits are
shifted out on the MOSI pin to the slave while another eight bits are
simultaneously shifted in on the MISO pin to the 8-bit shift register. At the
completion of data transmission, the SPIF status bit is set. A write or
read of the SPDR, after reading SPSR with SPIF set, will clear SPIF.

Figure 3-39. Serial Peripheral Data I/O Register

3.13 SPI Application Example

The example application and program are similar to the one shown in
2.6 Programming except the SPI function will be added.

A switch is connected to an input pin. When the switch is closed, the
program will send data out to a peripheral device using the SPI function
and will cause an LED connected to an output pin to light for about one
second and then go out.

The peripheral device used in this application is an MC74HC595 serial-
to-parallel shift register. Hardware setup, the SPI control register, and
the software program will be discussed briefly.

Figure 3-33 shows the hardware connections for the SPI application
example. The SPI signals at the left of the diagram come from the PGMR
board (an M68HC05 PGMR, available from a Motorola distributor) or
directly from the MC68HC705C8. The shift register outputs (QA-QH of
the MC74HC595) will be monitored with an oscilloscope. In this
example, the MISO line is not used. The shifter is selected by the
general-purpose output PC3 (but could have been driven by any
general-purpose output). The SS pin of the MC68HC705C8 is an input
in master mode and must be tied high.

BIT 7 6 5 4 3 2 1 BIT 0

$0C SPDR
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 161
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-40. SPI Application Example Diagram

To initialize the SPI function, the SPCR (SPIE, SPE, —, MSTR, CPOL,
CPHA, SPR1, SPR0) bits need to be written. For this application, the
SPCR was initialized with %01010000 or $50.

SPIE = 0 No interrupts involved in this application.

SPE = 1 Enable the SPI system.

— = 0 Don't care bit.

MSTR = 1 MC68HC705C8 is the master.

CPOL = 0 Selects clock rest at low value.

CPHA = 0 MC74HC595 accepts data at rising clock edge

SPR1 = 0 Internal processor clock divide by two.

SPR0 = 0 (Shift rate = 500 kHz for a 2-MHz crystal).

+5V

GND

PARALLEL
OUTPUTS

SYSTEM
POWER 0.1 µF

VDD VDD

SCK

ENABLE

32

33

25

34 10

14

11

12

SS RESET

PD3/MOSI

PD4/SCK

PC3

SERIAL IN

SHIFT CLK

LAT CLK

OUT EN

FROM
PGMR BOARD

OR
MC68HC705C8

MC74HC595

15

1

2

3

4

5

6

7

9

VDDVSS

8 16

SERIAL TO PARALLEL
SHIFT REGISTER

MOSI

SQH

MONITOR
W/SCOPE

QA

QB

QC

QD

QE

QF

QG

QH

13

VDD
M68HC05 Applications Guide — Rev. 4.0

162 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Programmable Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The SPCR needs to be initialized once. For each transfer, there is a four-
step sequence:

1. Enable the slave. In this example the PC3 general-purpose output
provides the enable signal to the MC74HC595 peripheral.

2. Write data to SPDR to initiate the transfer.

3. Wait for SPIF. The slave cannot be disabled until the transfer is
finished.

4. Disable the slave.

The flowchart and mnemonics for the SPI application example are
shown in Figure 3-41.

Assume this application program has been assembled and downloaded
to an MC68HC705C8. You can test this program by using an
oscilloscope connected to the MC74HC595 parallel data outputs (pins 1-
7 and 15). The program is arranged to increment the 8-bit parallel bit
value each time the switch is pressed. Figure 3-42 is the complete listing
for the SPI application example program.

3.14 Programmable Timer

The programmable timer can be used for many purposes, including input
waveform measurements, while simultaneously generating an output
waveform. The architecture of the main timer is primarily a software
driven system. Software can be written for measuring pulse widths and
frequencies, for controlling timer output signals, or for timing delays.

The programmable timer is based on a 16-bit free-running counter
preceded by a prescaler that divides the internal processor clock by four.
A timer overflow function allows software to extend its timing capability
beyond the range of 16 bits. All activities of the timer are referenced to
this one free-running counter so all timer functions have a known
relationship to each other. From the MCU viewpoint, physical time is
represented by the count in this free-running counter and the counter
can be read at any time “to tell what time it is.”
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 163
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-41. SPI Application Example Flowchart

SWITCH
STILL CLOSED

INITIALIZE SPI & SET SPIVAL=0

SWITCH
CLOSED

?

BEGIN

YES

NO

YES

NO

SET INITIAL CONDITIONS:
PORT C = ALL OUTPUTS

DATA PATTERN 1110 0000 TO PORT

DELAY TO DEBOUNCE

SEND DATA VIA SPI

DISABLE 74HC595

TURN ON LED
FOR 1 SECOND

DELAY TO DEBOUNCE

FLOWCHART

INIT LDA #$FF
STA DDRC
LDA #$E0
STA PORTC

CLR SPIVAL
LDA #%01010000
STA SPCR

TOP LDA PORTB
BPL TOP

JSR DLY50

BCLR 3, PORTC

LDA SPIVAL
STA SPDR

INC SPIVAL

HERE BRCLR 7, SPSR, HERE

BSET 3, PORTC

BCLR 6, PORTC
LDA #20

DLYLP JSR DLY50
DECA
BNE DLYLP
BSET 6, PORTC

OFFLP BRSET 7, PORTB,
OFFLP

MNEMONIC PROGRAM

ENABLE 74HC595

INCREMENT ‘SPIVAL’

DONE
(SPIF=1)

?

YES

NO
M68HC05 Applications Guide — Rev. 4.0

164 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Programmable Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* Simple 68HC05 SPI Program Example *

0001 PORTB EQU $01 Direct address of port B (sw)
0002 PORTC EQU $02 Direct address of port C (LED)
0005 DDRB EQU $05 Data direction control, port B
0006 DDRC EQU $06 Data direction control, port C
000a SPCR EQU $0A SPIE,SPE,-,MSTR;CPOL,CPHA,SPR1,SPR0
000b SPSR EQU $0B SPIF,WCOL,-,MODF;-,-,-,-
000c SPDR EQU $0C SPI Data Register

009e SPIVAL EQU $9E One byte RAM storage location
009f TEMP1 EQU $9F One byte temp storage location

0250 ORG $250 Program will start at $0250

0250 a6 ff INIT LDA #$FF Begin initialization
0252 b7 06 STA DDRC Set port C to act as outputs

* Port B is configured as inputs by default from reset.
0254 a6 e8 LDA #$E8 Red & grn LED & beep off, SPI EN off
0256 b7 02 STA PORTC Turn off red LED

* Some pins of port C (my board) happen to be connected
* to devices which don’t apply to this example program.
* The $E8 pattern turns off my stuff & turns off red LED

0258 3f 9e CLR SPIVAL Start with 0
025a a6 50 LDA #%01010000 SPE, MSTR, norm lo fast clk
025c b7 0a STA SPCR Initialize SPI control reg

025e b6 01 TOP LDA PORTB Read sw at MSB of Port B
0260 2a fc BPL TOP Loop till MSB = 1 (Neg trick)
0262 cd 02 86 JSR DLY50 Delay about 50 mS to debounce

0265 17 02 BCLR 3,PORTC Drive select of 74HC595 low
0267 b6 9e LDA SPIVAL Current data to send to SPI
0269 b7 0c STA SPDR Send SPI data
026b 3c 9e INC SPIVAL Add one to current SPI value
026d 0f Ob fd HERE BRCLR 7,SPSR,HERE Wait for SPIF to set
0270 16 02 BSET 3,PORTC Drive select of 74HC595 hi

0272 1d 02 BCLR 6,PORTC Turn on LED (bit-6 to zero)
0274 a6 14 LDA #20 Decimal 20 assembles to $14
0276 cd 02 86 DLYLP JSR DLY50 Delay 50 mS
0279 4a DECA Loop counter for 20 loops
027a 26 fa BNE DLYLP 20 times (20-19,19-18,.1-0)
027c 1c 02 BSET 6,PORTC Turn LED back off
027e 0e 01 fd OFFLP BRSET 7,PORTB,OFFLP Loop here till sw off
0281 cd 02 86 JSR DLY50 Debounce release
0284 20 d8 BRA TOP Look for next sw closure

Figure 3-42. SPI Application Example Program
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 165
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The input-capture function can be used to automatically record (latch)
the time when a selected transition was detected. The output-compare
function can be used to generate output signals or for timing program
delays.

3.14.1 Functional Description

The timer features are as follows:

• 16-Bit Free-Running Counter with Prescaler

• Overflow Flag to Extend Timing Range

• 16-Bit Output-Compare Register

• 16-Bit Input-Capture Register

• Three Interrupt Sources

The block diagram of the timer is shown in Figure 3-43.

The programmable timer capabilities are provided by using ten
addressable 8-bit registers and two external pins, output level (TCMP)
and edge input (TCAP). The 10 registers are as follows:

Counter High Register, location $18

Counter Low Register, location $19

Alternate Counter High Register, location $1A

Alternate Counter Low Register, location $1B

Input-Capture High Register, location $14

Input-Capture Low Register, location $15

Output-Compare High Register, location $16

Output-Compare Low Register, location $17

Timer Control Register (TCR), location $12

Timer Status Register (TSR), location $13

Because the timer has a 16-bit architecture, the counter and alternate
counter, input-capture, and output-compare values are represented by
two 8-bit registers. The two 8-bit registers contain the high and low byte
of each timer function value (see Figure 3-44).
M68HC05 Applications Guide — Rev. 4.0

166 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Programmable Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-43. Programmable Timer Block Diagram

LATCH

TIMER CONTROL REGISTER

TO
F

TCAP
PIN

FIXED
DIVIDE BY

4

O
CF

IC
F

O
C

IE

IC
IE

EDGE
SELECT

AND
DETECT

PIN
CONTROL

LOGIC

TCMP
PIN

INTERNAL PROCESSOR
CLOCK

(XTAL ÷ 2)

TIMER
INTERRUPT
REQUEST

INTERNAL
DATA BUS

TIMER STATUS REGISTER

TO
IE

O
LV

L

IE
DG

015 78

015 78

015 78

= ?

O
VE

R
FL

O
W

16-BIT OUTPUT-COMPARE REGISTER

16-BIT COMPARATOR

16-BIT TIMER COUNTER

16-BIT INPUT-CAPTURE REGISTER

LSB BUFFER
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 167
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-44. 16-Bit Counter Reads

Generally, accessing the low byte of a specific timer function allows full
control of that function; however, an access of the high byte inhibits that
specific timer function until the low byte is also accessed. A read from
the MSB causes the LSB to be latched at the next sequential address.

NOTE: Set the I bit in the condition code register while manipulating both the
high-and low-byte register of a specific timer function. This prevents
interrupts from occurring between the time that the high and low bytes
are accessed.

A description of each register and the external pins is given in the
following paragraphs.

3.14.2 Timer Counter and Alternate Counter Registers

The 16-bit free-running counter or counter register starts from a count of
$0000 as the MCU is coming out of reset and then counts up
continuously. When the maximum count is reached ($FFFF), the counter
rolls over to a count of $0000, sets an overflow flag, and continues to
count up. As long as the MCU is running in a normal operating mode,
there is no way to reset, change, or interrupt the counting of this counter.
This counter, which may be read at any time to “tell what time it is,” is
always a read-only register.

The prescaler gives the timer a resolution of 2.0 µs if the MCU crystal is
4 MHz (internal processor clock is 2.0 MHz). Including “0”, the counter

015 78

INTERTNAL DATA BUS

READ COUNTER
HIGH BYTE

READ COUNTER
LOW BYTE

[1]

[1] LSB latch is normally transparent, becomes latched when high byte of counter is read,
and becomes transparent again when low byte of counter is read.

INTERNAL DATA BUS

COUNTER HIGH BYTE COUNTER LOW BYTE

LSB LATCH
M68HC05 Applications Guide — Rev. 4.0

168 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Programmable Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

repeats every 65,536 counts ($FFFF-65,535). Because the free-running
counter is preceded by a fixed divide-by-four prescaler, the value in the
free-running counter repeats every 262,144 internal processor clock
cycles.

The double-byte free-running counter can be read from either of two
locations $18-$19 or $1A-$1B. These registers are called the counter
register and the counter alternate register, respectively.

NOTE: Normally, a timer read is made from the counter alternate register unless
the read sequence is intended to clear the timer overflow flag.

If a read of the free-running counter register first addresses the most
significant byte ($18), it causes the least significant byte ($19) to be
transferred to a buffer. This buffer value remains fixed after the first
most-significant-byte read, even if the user reads the most significant
byte several times. This buffer is accessed when reading the free-
running counter register least significant byte ($19), thus completing a
read sequence of the total 16-bit counter value. The same read
sequence applies to the counter alternate register. A read sequence
containing only a read of the least significant byte of the free-running
counter ($19) will receive the count value at the time of the read.

NOTE: In reading either the free-running counter or counter alternate register, if
the most significant byte is read, the least significant byte must also be
read to complete the sequence.

3.14.3 Input-Capture Concept

The input-capture function is a fundamental element of the
MC68HC705C8 timer architecture. Input-capture functions are used to
record the time at which some external event occurred. This is
accomplished by latching the contents of the free-running counter when
a selected edge is detected at the related timer input pin (edge input-
TCAP pin). The time at which the event occurred is saved in the input
capture register (16-bit latch). Although it may take an undetermined
variable amount of time to respond to the event, software can tell exactly
when the event occurred.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 169
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

By recording the times for successive edges on an incoming signal,
software can determine the period and/or pulse width of the signal. To
measure a period, two successive edges of the same polarity are
captured. To measure a pulse width, two alternate polarity edges are
captured. For example, to measure the pulse width for a high-going
pulse, capture the time at a rising edge and subtract this time from the
time captured for the subsequent falling edge.

When the period or pulse width is known to be less than a full 16-bit
counter overflow period, the measurement is very straightforward. The
counter repeats every 65,536 timer clocks, which is equivalent to
262,144 internal processor clock cycles. For period or pulse widths that
extend over the full 16-bit counter period, write software to keep track of
the overflows of the 16-bit counter. Examples where measurement of a
period or pulse width would be used are the period of a pendulum swing
or the AC line frequency (to distinguish between 50 and 60 Hz).

Another important use for the input-capture function is to establish a time
reference. In this case, an input-capture function is used in conjunction
with an output-compare function. For example, suppose an application
requires an output signal to be activated a certain number of clock cycles
after detecting an input event (edge). The input-capture function would
be used to record the time at which the edge occurred. A number
corresponding to the desired delay would be added to this captured
value and stored in the output-compare register. Since both input
captures and output compares are referenced to the same 16-bit
counter, the delay can be controlled to the resolution of the free-running
counter, independent of software latencies. (An example of this use
would be to fire a spark plug “n” microseconds after a timing pulse is sent
from the engine flywheel.)

3.14.4 Input-Capture Operation

The input capture function includes a 16-bit latch, input edge detection
logic, and interrupt generation logic. The latch captures the current value
of the free-running counter when a selected edge is detected at the
corresponding timer input pin. The edge detection logic includes a
control bit (IEDG), which enables the user's software to select the
M68HC05 Applications Guide — Rev. 4.0

170 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Programmable Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

polarity of edge(s) that will be recognized. The interrupt generation logic
includes a status flag to indicate that an edge has been detected and a
local interrupt enable bit to determine whether or not the corresponding
input-capture function will generate a hardware interrupt request. See
Figure 3-45.

Figure 3-45. Input-Capture Operation

The two 8-bit registers (locations $14-most significant byte and $15-least
significant byte) comprising the 16-bit input-capture register are read-
only and are used to latch the value of the free-running counter after a
defined transition is sensed by the corresponding input-capture edge
detector. The level transition which triggers the counter transfer is
defined by the input edge bit (IEDG in the timer control register).

The free-running counter contents are transferred to the input-capture
register on each proper signal transition, regardless of whether the input-
capture flag (ICF) is set or clear. There is an uncertainty about the exact
value latched due to the resolution of the counter and synchronization
delays. The input-capture register always contains the free-running
counter value, which corresponds to the most recent input capture.
Reset does not affect the contents of the input-capture register.

015 78

REQUEST A TIMER
INTERRUPT

EDGE SELECT
AND DETECT

TCAP
PIN

IEDG

ICIE

ICF STATUS FLAG

LATCH
015

IEDG = 0 FOR FALLING EDGES
IEDG = 1 FOR RISING EDGES

COUNTER HIGH BYTE COUNTER LOW BYTE

16-BIT INPUT-CAPTURE LATCH
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 171
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.14.5 Output-Compare Concept

The output-compare function is also a fundamental element of the
MC68HC705C8 timer architecture. Output-compare functions are used
to program an action to occur at a specific time (i.e., when the 16-bit
counter reaches a specific value). The value in the output-compare
register is compared with the value of the free-running counter on every
fourth bus cycle. When the output-compare register matches the counter
value, an output is generated, which sets an output compare status flag
and transfers the level of the OLVL bit to the TCMP output pin (see
Figure 3-46).

Change the values in the output-compare register and the output level
bit after each successful comparison to control an output waveform or to
establish a new elapsed timeout.

An interrupt can also accompany a successful output compare if the
corresponding interrupt enable bit (OCIE) is set.

Figure 3-46. Output-Compare Operation

015 78

REQUEST A TIMER
INTERRUPT

PIN CONTROL
LOGIC

TCMP
PIN

OLVL

OCIE

OCF STATUS FLAG

= ?
015

OLVL = 1 TO FORCE TCMP
PIN HIGH ON VALID COMPARE

015 78

OLVL = 0 TO FORCE TCMP
PIN TO 0 ON VALID COMPARE

LOCAL INTERRUPT
MASK (ENABLE)

COUNTER HIGH BYTE COUNTER LOW BYTE

16-BIT COMPARATOR

16-BIT OUTPUT-COMPARE REGISTER
M68HC05 Applications Guide — Rev. 4.0

172 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Programmable Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

One of the easiest uses for an output-compare function is to produce a
pulse of a specific duration. First, a value corresponding to the leading
edge of the pulse is written to the output-compare register. The output
compare is configured to automatically set the TCMP output either high
or low, depending on the polarity of the pulse being produced. After this
compare occurs, the output compare is reprogrammed to automatically
change the output pin back to its inactive level at the next compare. A
value corresponding to the width of the pulse is added to the original
output-compare register value, and this result is written to the output-
compare register. Since the pin-state changes occur automatically at
specific values of the free-running counter, the pulse width can be
controlled accurately (to the resolution of the free-running counter)
independent of software latencies. By repeating the actions for
generating pulses, you can generate an output signal of a specific
frequency and duty cycle.

Another use of the output-compare function is to generate a specific
delay. For example, suppose you want to produce a 1 millisecond delay
to time programming of an EPROM byte. First, go through the initial
programming steps to the point where the programming supply has been
enabled (EPGM bit has been written to one). Now, read the current value
of the main timer counter and add a number corresponding to 1
millisecond (XTAL = 2 MHZ, INT CLK = 1 MHz, 1 timer count = 4 µs;
thus, 1 ms = 250 decimal = $FA). Write this sum to the output-compare
register so that an output compare will occur when the counter gets to
this value.

In this example, the actual EPROM programming time started just before
the current time was read from the counter and ended after responding
to the output compare and turning off EPGM. The small delays for setting
up the output compare and the latency for responding to the output
compare were not considered because they only make the EPROM
programming time longer by a few microseconds. As you become a
more advanced user of output-compare functions, you will learn how to
correct these details, although it is often not necessary.

NOTE: This program would have to run from RAM since the EPROM is not
usable during programming.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 173
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.14.6 Output-Compare Operation

The output-compare register is a 16-bit register composed of two 8-bit
registers at locations $16 (most significant byte) and $17 (least
significant byte). The contents of the output-compare register are
compared with the contents of the free-running counter once during
every four internal processor clocks. If a match is found, the output-
compare flag (OCF) bit is set, and the output level (OLVL) bit is clocked
(by the output-compare circuit pulse) to the TCMP pin.

After a processor write cycle to the most significant byte of the output-
compare register ($16), the output-compare function is inhibited until the
least significant byte ($17) is also written. You must write to both bytes
(locations) if the most significant byte is written first.

Because neither the output-compare flag (OCF bit) or output-compare
register is affected by reset, take care when initializing the output-
compare function with software. The following procedure is
recommended:

1. Write to the high byte of the output-compare register to inhibit fur-
ther compares until the low byte is written.

2. Read the timer status register to clear the CCF bit if it is already
set.

3. Write to the low byte of the output-compare register to enable the
output-compare function.

The purpose of this procedure is to prevent the OCF bit from being set
between the writes to the high and low halves of the 16-bit output-
compare register. A software example follows:

B7 16 STA OCMPHI Inhibit output compare

B6 13 LIDA TSR Clear OCF bit if set

BF 17 STX OCMPLO Ready for next compare
M68HC05 Applications Guide — Rev. 4.0

174 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
Programmable Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.14.7 Timer Control Register (TCR)

The timer control register (see Figure 3-47) is an 8-bit read/write register
containing five control bits. Three of these bits control interrupts
associated with the three flag bits found in the timer status register. The
other two bits control 1) which edge is significant to the input-capture
edge detector (i.e., negative or positive) and 2) the next value to be
clocked to the TCMP output pin in response to a successful output
compare.

The TCMP pin is forced low during external reset and stays low until a
valid compare changes it to a high.

Figure 3-47. Timer Control Register

3.14.8 Timer Status Register (TSR)

The timer status register (see Figure 3-48) is an 8-bit register with three
read-only bits that indicate the following status information:

1. A selected transition has occurred at the edge input (TCAP) pin
with an accompanying transfer of the free-running counter
contents to the input-capture register.

2. A match has been found between the free-running counter and the
output-compare register.

3. A free-running counter transition from $FFFF to $0000 has been
sensed (timer overflow).

OUTPUT-COMPARE INTERRUPT ENABLE

BIT 7

OCIE IEDG OLVL

6 5 4 3 2 1

0 0 0 0 0 0 U 0

BIT 0

TIMER OVERFLOW INTERRUPT ENABLE

INPUT-CAPTURE INTERRUPT ENABLE

OUTPUT-COMPARE LEVEL

$12 TCR

RESET CONDITION

ICIE 0TOIE 0 0

INPUT-CAPTURE EDGE
0–FALLING 1–RISING
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 175
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-48. Timer Status Register

ICF

The input-capture flag (ICF) is set when a proper edge has been
sensed by the input-capture detector. It is cleared by a processor
access of the timer status register (with lCF set) followed by
accessing the low byte ($15) of the input-capture register.

OCF

The output-compare flag (OCF) is set when the output-compare
register contents matches the contents of the free-running counter.
OCF is cleared by accessing the timer status register (with OCF set)
and then accessing the low byte ($17) of the output-compare register.

TOF

The timer overflow flag (TOF) bit is set by a transition of the free-
running counter from $FFFF to $0000. It is cleared by accessing the
timer status register (with TOF set) and then accessing the least
significant byte ($19) of the free-running counter.

NOTE: The counter alternate register contains the same value as the free-
running counter but reading the alternate register does not clear TOF;
therefore, this alternate register should be used to read the timer counter
in all cases except when intending to clear TOF. This will avoid the
possibility of the TOF being unintentionally cleared.

OUTPUT-COMPARE FLAG

BIT 7

OCF

6 5 4 3 2 1

0 0 0 0 0 0 0 0

BIT 0

TIMER OVERFLOW FLAG

INPUT-CAPTURE FLAG

$13 TSR

RESET CONDITION

ICF 0TOF 0 0 0 0
M68HC05 Applications Guide — Rev. 4.0

176 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
STOP/WAIT Instruction Effects

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.14.9 Timer Application Example

Figure 3-49 shows an example program to produce a 10-second delay
after the timer counter is read. In this case, the timer counter and the
output-compare functions are used in the software program.

The two key programming instructions that you should note are 1) the
read and/or write instructions at the alternate counter and output-
compare registers and 2) the addition of 16-bit numbers.

3.15 STOP/WAIT Instruction Effects

The STOP and WAIT instructions put the MC68HC705C8 MCU into low
power-consumption modes. These instructions also affect the
programmable timer, the SCI, and the SPI systems. A STOP/WAIT
flowchart is shown in Figure 3-50.

3.15.1 Low Power-Consumption Modes

The STOP instruction places the MC68HC705C8 in its lowest power-
consumption mode. In the STOP mode, the internal oscillator is turned
off, causing all internal processing to be halted. During the stop mode,
the I bit in the condition code register is cleared to enable external
interrupts. All other registers and memory remain unaltered, and all I/O
lines remain unchanged. This state continues until an external interrupt
(IRQ) or RESET is sensed, at which time the internal oscillator is turned
on. The external interrupt or reset causes the program counter to vector
to memory location $1FFA and $1FFB or $1FFE and $1FFF. These
locations contain the starting address of the interrupt or reset service
routine, respectively.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 177
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* Simple 68HC05 Timer Program Example *
**

0006 DDRC EQU $06 Data direction control, port C
0002 PORTC EQU $02 Direct address of port C (LED)
0016 OCMPHI EQU $16 Output compare high reg.
0017 OCMPLO EQU $17 Output compare low reg.
0013 TSR EQU $13 ICF,OCF,TOF,0;0,0,0,0
00a0 TENSEC EQU SAO Used to count 39 out compares
00a1 TEMP EQU $Al One byte temp for 16 bit OCMP add

0350 ORG $350
0350 a6 40 INIT LDA #%01000000 Make DDR bit for LED a one
0352 b7 06 STA DDRC So Red LED pin is an output
0354 a6 40 BEGIN LDA #%01000000 Port C bit 6 is red LED
0356 b8 02 EOR PORTC Toggle red LED on PGMR board
0358 b7 02 STA PORTC Red LED will change every 10 Sec
035a a6 27 LDA #39 10 sec = 38 rev + 9,632 ticks
035c b7 a0 STA TENSEC Counter for timer out compares

**

* For XTAL = 2MHz (Int proc. clk = lMHz) Timer + 4 makes 1 count = 4µS *
* Counter rolls from $FFFF to 0 every 65,536 counts (262.144 mS) *
* 10 Sec + 262.144 mS = 38 revs of timer & 9,632 counts remainder *
* 10 Sec = 2,500,000 counts @ 4µS/count. 38 * 65,536 = 2,490,368 *
* 2,500,000-2,490,368 = 9632. 9632 (decimal) = $25A0 *
* *
* To time 10 Sec, read initial count, add 9632 (remainder count) *
* store to out compare reg ("schedule a compare"). When OCF flag = 1 *
* clear it & next compare will occur when timer counts 65,536 counts *
* count the first compare plus 3B more compares (full revs). *
**

035e a6 a0 LDA #$A0 Lower half hex equiv of 9632
0360 bb 17 ADD OCMPLO Low half of a 16 bit add
0362 b7 al STA TEMP Temp. store until OCMPHI is added
0364 a6 25 LDA #$25 Upper half hex equiv of 9632
0366 b9 16 ADC OCMPHI High half of 16 bit add (w/ carry)
0368 b7 16 STA OCMPHI Update OCMP hi
036a b6 al LDA TEMP Get previous saved OCMP low
036c b7 17 STA OCMPLO Update OCMP lo after OCMP hi

* You add low half first due to possible carry, then add high byte *
* including any carry (ADC). You should update out compare high *
* byte first to avoid an erroneous compare value (compare lockout *
* after OCMPHI till OCMPLO prevents this potential problem. *

036e Oc 13 fd LOOP BRCLR 6,TSR,LOOP Checks for out comp. flag
0371 b6 17 LDA OCMPLO To clear OCF flag
0373 3a a0 EC TENSEC Ten seconds count down
0375 26 f7 BNE LOOP Loop until 10 sec done
0375 20 db BRA BEGIN Repeat so PC6 toggles /10 Sec

Figure 3-49. Timer Application Example Program
M68HC05 Applications Guide — Rev. 4.0

178 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
STOP/WAIT Instruction Effects

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-50. STOP/WAIT Flowchart

The WAIT instruction also places the MC68HC705C8 in a low power-
consumption mode, but the wait mode consumes somewhat more power
than the STOP mode. In the wait mode, all CPU processing is stopped;
however, the internal clock, the programmable timer, SPI and SCI
systems (if enabled) remain active. During the wait mode, the I bit in the
condition code register is cleared to enable all interrupts. All other
registers and memory remain unaltered, and all parallel I/O lines remain
unchanged. This state continues until any interrupt or reset is sensed. At

RESET
?

STOP

YES

NO

STOP OSCILLATOR
AND ALL CLOCKS

SET I BIT
IN CC REGISTER

EXT
IRQ INTERRUPT

?

YES

NO

RESET
?

YES

OSCILLATOR ACTIVE
TIMER, SCI, AND SPI

CLOCKS ACTIVE
CPU CLOCKS STOPPED

RESTART
CPU CLOCK

TURN ON OSCILLATOR
DELAY TO STABILIZE

YES

(1) FETCH RESET VECTOR OR
(2) SERVICE INTERRUPT

A. SAVE CPU REGS ON STACK
B. SET I BIT IN CC REGISTER
C. VECTOR TO INTERRUPT SERVICE ROUTINE

EXT
IRQ INTERRUPT

?

INTERNAL
TIMER INTERRUPT

?

INTERNAL
SCI INTERRUPT

?

INTERNAL
SPI INTERRUPT

?

NO

NO

NO

NO

NO

YES

YES

WAIT

YES
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 179
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

this time, the program counter is loaded with the interrupt vector at
memory location $1FF4-$1FFF, which contains the starting address of
the interrupt or reset service routine.

3.15.2 Effects on On-Chip Peripherals

The STOP instruction causes the oscillator to be turned off, which halts
all internal CPU processing as well as the operation of the
programmable timer, SCI, and SPI. The oscillator starts again when an
external interrupt (IRQ) or RESET occurs.

3.15.2.1 Timer Action During Stop Mode

When the MCU enters the STOP mode, the timer counter stops counting
(the internal processor clock is stopped). It remains at that particular
count value until an interrupt or reset occurs. If the interrupt is an external
low on the IRQ pin, the counter resumes from its stopped value as if
nothing had happened. If a reset occurs, the counter is forced to $FFFC.

3.15.2.2 SCI Action During Stop Mode

When the MCU enters the STOP mode, the baud rate generator driving
the receiver and transmitter is stopped, which halts all SCI activity.

If the STOP instruction is executed during a transmitter transfer, that
transfer is halted. When the STOP mode is exited, that particular
transmission resumes if the exit is the result of a low input to the IRQ pin.
Since the STOP mode interferes with SCI character transmission, make
sure that the SCI transmitter is idle when the STOP instruction is
executed.

If the receiver is receiving data when the STOP instruction is executed,
received data sampling is stopped (baud rate generator stops), and the
remainder of the data is lost. The stop mode should not be used while
SCI characters are being received.
M68HC05 Applications Guide — Rev. 4.0

180 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
STOP/WAIT Instruction Effects

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.15.2.3 SPI Action During Stop Mode

When the MCU enters the stop mode, the bit rate generator driving the
SPI stops, halting all master mode SPI operation. Thus, the master SPI
is unable to transmit or receive data. If the STOP instruction is executed
during an SPI transfer, that transfer is halted until the MCU exits the stop
mode (if the exit resulted from a logic low on the IRQ pin). If the STOP
mode is exited by a reset, then the appropriate control/status bits are
cleared, and the SPI is disabled.

If the device is in the slave mode when the STOP instruction is executed,
the slave SPI will still operate. It can still accept data and clock
information in addition to transmitting its own data back to a master
device. At the end of a transmission with a slave SPI in the STOP mode,
no flags are set until a logic low IRQ input results in an MCU “wake up.”

When the MCU enters the STOP mode, all enabled output drivers (TDO,
TCMP, MISO, MOSI, and SCK ports) remain active. Any sourcing
currents from these outputs will be part of the total supply current
required by the device.

3.15.2.4 Wait Mode Effects

When the MCU enters the wait mode, the CPU clock is halted. All CPU
action is suspended; however, the timer, SCI, and SPI systems remain
active. An interrupt from the timer, SCI, or SPI (in addition to a logic low
on the IRQ or RESET pins) will cause the processor to resume normal
processing.

The wait mode power consumption depends on how many systems are
active. The power consumption will be greatest when all the systems
(timer, TCMP, SCI, and SPI) are active. The power consumption will be
least when the SCI and SPI systems are disabled (timer operation
cannot be disabled in the wait mode). If a nonreset exit from the wait
mode is performed (e.g., timer overflow interrupt exit), the state of the
remaining systems will be unchanged. If a reset exit from the wait mode
is performed, all systems revert to the (disabled) reset state.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 181
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.16 OTPROM/EPROM Programming

The OTPROM or EPROM programming technique is used to load a user
program into the MC68HC705C8 MCU OTPROM or EPROM. This type
of programming is accomplished via a bootstrap mode of operation.

3.16.1 Erasing

MC68HC705C8 EPROM MCUs are erased by exposure to a high-
intensity ultraviolet (UV) light with a wavelength of 2537 angstrom. The
recommended dose (UV intensity x exposure time) is 15 Ws/cm2. UV
lamps should be used without shortwave filters, and the EPROM MCU
should be positioned about one inch from the UV lamps.

MC68HC705C8 one-time programmable ROM (OTPROM) MCUs are
shipped in an erased state and are packaged in an opaque plastic
package; thus, erasing operations cannot be performed on OTPROM
MCUs.

3.16.2 Programming

Programming operations are controlled by software-accessible control
bits. The software program which programs the internal
EPROM/OTPROM is located in either the on-chip bootstrap ROM or
internal RAM.

The first programming method uses a program in the bootstrap ROM to
read information from an external 8K by 8 EPROM and to program this
information into the on-chip EPROM/OTPROM. The external EPROM is
connected to I/O port pins of the MC68HC705C8. In this programming
method, information to be programmed into the internal
EPROM/OTPROM is first programmed into the external EPROM using
an industry-standard PROM programmer.

A second programming method allows user programs developed on a
personal computer to be downloaded to the MC68HC705C8 for
programming into the on-chip EPROM/OTPROM. This method
eliminates the extra steps needed to program a separate 8K by 8
EPROM. A small program that runs on the personal computer is
M68HC05 Applications Guide — Rev. 4.0

182 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
OTPROM/EPROM Programming

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

available through the Motorola FREEWARE bulletin board service (BBS)
and can be downloaded for the price of the phone call. This method is
explained in Section 4. Applications.

Both methods described for programming the on-chip
EPROM/OTPROM ultimately use a software program running in the
MCU that is being programmed. The programming software uses the
program register (PROG) to control the EPROM programming process.

3.16.3 Program Register

The program register (see Figure 3-51) is used for PROM programming.

Figure 3-51. Program Register

LAT

Prior to a PROM write operation, set the latch (LAT) bit. This enables
the PROM data and address buses to be latched for programming a
PROM location. Reset clears the LAT bit. When the LAT bit is cleared,
PROM data and address buses are unlatched for normal CPU
operations. This bit, which is both readable and writable, must be
cleared to allow PROM read operations.

PGM

When the program (PGM) bit is set, VPP power is applied to the

PROM for programming mode of operation. Reset clears the PGM bit.
This bit, which is readable, is only writable when the LAT bit is set. If
the LAT bit is cleared, the PGM bit cannot be set.

BIT 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0

BIT 0

PROGRAMMING POWER
0–OFF 1–ON

LATCH CONTROL

$1C PROG

RESET CONDITION

0 0 00 LAT PGM0 0
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 183
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.16.4 Option Register

The option register (see Figure 3-52) is used to select memory
RAM/ROM configurations, enable PROM security, and select the MCU
IRQ pin sensitivity.

Figure 3-52. Option Register

RAM0

The RAM0 bit determines the amount and type of memory in the
$0020-$005F area.

0 = 48 bytes of PROM ($0020-$005F)
1 = 32 bytes of RAM ($0030-$005F)

When RAM is selected by RAM0 = 1, the 16 bytes from $0020-$002F
are unused. This bit is readable and writable at all times, allowing
selection of the desired memory configuration during program
execution. Reset clears the RAM0 bit.

RAM1

The RAM1 bit determines the type of memory in the $0100-$015F
area.

0 = 96 bytes of PROM
1 = 96 bytes of RAM

This bit is readable and writable at all times, allowing selection of the
desired memory configuration during program execution. Reset
clears the RAM1 bit.

BIT 7

RAM1 IRQ

6 5 4 3 2 1

0 0 0 0 PROM MOTOROLA 1 0

BIT 0

$1FDF OPTION

RESET CONDITION

RAM0 0 –0 SEC 0

SELECT IRQ SENSITIVITY
1–EDGE & LEVEL 0–EDGE ONLY

MOTOROLA USE ONLY (1 OR 0)
EPROM SECURITY
BIT IMPLEMENTED IN EPROM/OTPROM

SELECT MEMORY TYPE IN $0100–$015F AREA
0–96 BYTES PROM 1–96 BYTES RAM

SELECT MEMORY TYPE IN $0020–$004F AREA
0–48 BYTES PROM 1–32 BYTES RAM
M68HC05 Applications Guide — Rev. 4.0

184 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data
OTPROM/EPROM Programming

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEC

The SEC bit is implemented as a PROM bit. During PROM
programming, the SEC bit is set to enable the security feature (to
disable the bootloader). This bit is normally cleared (security
disabled) for an OTPROM device. For an EPROM device, clearing is
accomplished by exposing the EPROM to UV light until the SEC bit is
erased.

Bit 2

Factory use (logic one or logic zero).

IRQ

When the IRQ bit is set (logic one), the IRQ pin is negative edge and
level sensitive. When the IRQ bit is cleared (logic zero), the IRQ pin
is negative edge sensitive. Reset sets the IRQ bit. The IRQ bit can
only be written once following each reset.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA MC68HC705C8 Functional Data 185
For More Information On This Product,

 Go to: www.freescale.com

MC68HC705C8 Functional Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Applications Guide — Rev. 4.0

186 MC68HC705C8 Functional Data MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

Section 4. Applications

4.1 Contents

4.2 Introduction .187

4.3 Hardware Development Methods .189

4.4 Software Development Methods. .191
4.4.1 Freeware .193
4.4.2 Third-Party Software .194

4.5 Thermostat Project Details .196
4.5.1 Hardware Details .197
4.5.2 Project Programming .200

4.2 Introduction

This section discusses the development of an application (home
thermostat project) based on a microcontroller. A typical MCU
application involves hardware development, software development, and
mechanical development. Though separate to some degree, all
elements must work together as a system; thus, everyone working on
the project should be somewhat familiar with the requirements of each
element.

The principles of systematic project management, including planning,
review, prototyping, and testing, still apply. Although genius and unusual
creativity are assets to a microcontroller designer, they are not a
requirement. The majority of MCU applications result from simple
systematic development. Due to the nature of MCUs, applications based
on an MCU often include noteworthy features that cannot be found on
similar products which do not use an MCU.

In this applications guide, we assume some knowledge of the traditional
mechanical and electrical aspects of a project. What is new is the
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 187
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

software program that allows the MCU to perform the desired functions
of the application. On-chip peripherals that can be configured and
controlled by program instructions are also a new concept.

When residential electricity became common, house plans required
additional pages to document the location of switches and outlets. The
idea of how electricity went from one place to another was foreign to the
architects of the day. A new system of symbols and conventions had to
be developed.

MCU-based application projects are essentially the same as mechanical
or discrete logic projects except for the addition of software
programming. Software programming is not entirely an added design
task because the programmable nature of an MCU simplifies the
hardware aspects of the project.

The normal order of events in MCU-based projects is as follows:

1. Proposal — A marketing and/or design group proposes
preliminary requirements of a project to satisfy customer demand.

2. Specification — This step defines limits of operation but should not
identify internal components, preventing selection of the most
cost-effective solution to a problem.

3. Breadboarding — This procedure is primarily a hardware activity
although some software is normally required to verify the accuracy
of the hardware design.

4. Software Development — This step involves planning and
implementation of software programs. The programmer must
know how the system is electrically interfaced to components
outside the MCU because software programs control the
operation of these external components.

5. System Integration — This procedure involves putting together
finished (preliminary) software and hardware.

6. Testing — This step is a design verification process.

In practice, the steps occur in parallel to some degree, and some
changes normally occur during the development which impact all of the
steps. In this applications guide, we assume you are familiar with
M68HC05 Applications Guide — Rev. 4.0

188 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Hardware Development Methods

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

traditional design methods; therefore, we will only discuss how MCU-
based methods differ from traditional methods.

The first area of difference is in the hardware design where the flexibility
of the software-driven MCU simplifies the connection of external
circuitry. Signal polarity and timing are easily controlled by software to
match the needs of external components. The hardware design consists
of connecting peripheral devices to general-purpose I/O lines and of
checking the ability of software to control the connected devices.

The second and most significant area of difference between MCU-based
projects and discrete logic projects is the area of software development.
The preparation of programs replaces the development of complex logic
circuits. Instead of laboring over complex wire-wrapped breadboards
with an oscilloscope, the programmer sits at a computer terminal and
develops sets of computer instructions.

4.3 Hardware Development Methods

When a project has been selected, determine what hardware will be
required for the final design (input and output devices and power supply)
and what hardware can be used to make the prototype (substitutions
such as potentiometers for temperature sensors).

Two approaches can be used to develop a hardware circuit
(breadboarding) for a system based on an M68HC05 MCU. You can use
an M68HC05 PGMR board, or you can wire a complete circuit on
another board with a socket for the MCU. The PGMR board approach is
the fastest since the basic wiring to the MCU is already done. The
complete circuit with a socket for the MCU has the advantage of not
having to worry about interference between PGMR board functions and
application requirements.

Since the PGMR board is also used to program information into the
EPROM in the MCU, there are a few areas where some conflict may
occur between the planned application and components on the PGMR
board. The areas are small and usually easy to avoid. For example, the
port D pins of the MCU are connected to switches on the PGMR board.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 189
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To use these pins, you would turn off the switches so that there is no
conflict with the components of your application.

Also the PGMR board can be used with other members of the M68HC05
Family to increase your development choices. In addition to the
MC68HC705C8 8K EPROM device, the PGMR can also operate with
the MC68HC805C4 4K EEPROM device. Each of these devices
supports a slightly different approach to development.

With the EPROM approach (MC68HC705C8), you would write a
software program, transfer this program into the EPROM in the MCU,
and reset the MCU to execute the program. When you discover a
mistake or want to make a change, you remove the MCU from the
PGMR board and erase the EPROM with an ultraviolet (UV) light source.
After the MCU is erased, you can program the modified program into it
and continue debugging (finding errors).

After a program is developed with a windowed EPROM, you can
program the working software program into any of several OTP MCUs
for use in your finished products. The OTP MCU is identical to the
windowed device used for development, except that it is packaged in a
less expensive plastic package. Since this plastic package is opaque,
you cannot erase the on-chip EPROM after it has been programmed.

The MC68HC805C4 has 4 Kbytes of electrically erasable PROM
(EEPROM), which allows easier erasure of programs during
development (EEPROM does not have to be erased with UV light). In
most other respects this MCU is the same as the MC68HC705C8
OTPROM MCU. Thus, programs can be developed with the
MC68HC805C4 and later programmed into less expensive
MC68HC705C8 OTP MCUs for production quantities.

Motorola produces a line of low-cost (about $500) evaluation boards
(EVMs) which can be used for high-speed interactive development. To
use this development approach, you would build a prototype of your
system with a socket where the MCU will go. Instead of an MCU, you
would connect the EVM into this socket. The EVM emulates the actions
of a real MCU but allows visibility into the internal activities of the MCU.
M68HC05 Applications Guide — Rev. 4.0

190 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Software Development Methods

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Some of the possible uses for an EVM include examination and
modification of memory locations, executing a user program until a
certain instruction is found, or looking at a program in mnemonic form.
You can also trace individual instructions and look at the contents of
registers and memory before and after executing each instruction.

4.4 Software Development Methods

The development of programs for MCU-based systems requires the use
of slightly different techniques from those used with hardware-based
systems. MCU-based systems are programmed with instructions which
control the MCU; whereas, hardware-based systems are programmed
by changing wired connections. This section describes program
development techniques for MCU-based systems.

A program is a series of instructions for the MCU. The program gives the
MCU alternatives to transact, depending on what it learns as the result
of executing previous instructions.

For instance, to determine if a thermostat should operate the
compressor or the heater, we might program it as follows:

1. Read the existing temperature.

2. Read the desired temperature setting.

3. Compare these two readings.

4. If existing is less than desired, operate heater.

5. If existing is more than desired, operate compressor.

To write a program, you can draw a flowchart to show the decision
process that must be performed to accomplish a specific task.
Flowcharts are not always necessary; sometimes a list of steps will do,
depending upon the application complexity.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 191
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In general, programming requires planning and developing rules,
algorithms, flow charts. Programs evolve by repeating the following
steps several times:

1. Generate the source file (the program in mnemonic form).
A development station (usually a personal computer) is used to
generate a text file. This text file, the source of the data to be run
by the MCU, is called the "source program." This text file is for the
convenience of the programmer since the MCU understands only
8-bit bytes of encoded information. This text representation makes
it easier to develop the program. Previously, programs for
computers had to be in binary form, the native code of the
computer.

2. Translate the source file.
The text file is then translated into a binary object file (or S-record
encoded object file) by an assembler. This assembler program
runs on the development station, not on the MCU. The assembler
does not usually directly generate the final binary file (i.e., the
object code or executable file for the MCU) since this file has to be
transferred from the development station to the MCU. The transfer
process can create errors from external electrical noise. Motorola
has a file transfer form which encodes the MCU object file into
ASCII data with a checksum for error detection. This encoding is
referred to as Motorola "S-records" or "S1-S9" records.

3. Transfer the object file into the MCU.
The final step in developing MCU-based systems is to transfer the
S-record or binary file (the MCU program) to the MCU itself. We
can take the binary or S-record file and send it to program an
external EPROM in an EPROM programmer; send it to an
EPROM programmer to program the MCU directly (not all EPROM
programmers support this); or send the file to the MCU in
bootstrap mode and have the MCU program itself. In all cases, the
S-record file is used and is translated to binary during the
programming process so the MCU can use the object file.
M68HC05 Applications Guide — Rev. 4.0

192 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Software Development Methods

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.1 Freeware

Motorola has an electronic bulletin board system (BBS) dedicated to
support Motorola microprocessor units (MPUs) and microcontroller units
(MCUs). "Freeware," the name for this BBS, is on-line 24 hours a day,
except when system maintenance is required. The following is a sample
of the available freeware topics:

8-Bit MCUs

16-and 32-Bit MPUs

Evaluation Boards (EVBs) and Evaluation Modules (EVMs)

Development Systems (HDS-200 and HDS-300)

IBM-PC Software Tools (assemblers, etc.)

Conference and Special Interest Groups

To use the BBS, you need to obtain the following hardware and software
items:

1. A 1200/2400 baud modem

2. A terminal or personal computer (PC) with communications
software (e.g. Kermit, ProComm, etc.)

3. A telephone line

Use the following procedure to log onto the freeware line:

1. Set systems character format to 8-bit, no parity, 1 stop bit.

2. Dial (512) 891-3733 or (512) 891-FREE.

3. A series of questions will appear. Enter the requested information
to log on. You are now a registered user.

4. Follow the menus for the desired functions (e.g., download,
upload, mail, conferences, etc). On-line help is also available.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 193
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.2 Third-Party Software

Many third-party vendors sell assemblers to translate mnemonic text
files into machine-readable files. These assemblers are similar to the
free assembler available on the Freeware BBS except that the third-
party assemblers offer additional features.

One common feature is the ability to use macros. Macros are sets of
instructions used repeatedly in a program. A set of instructions can be
typed into the program, declared as a macro, and be given a name.
When this set of instructions is needed again, you would type the name
of the macro where an instruction mnemonic would normally go. The
assembler recognizes the macro name and inserts the previously
defined set of instructions at that point into the machine-readable object
file. Macros improve programmer productivity and often improve the
readability of the assembly-language listing.

A simulator is a software program that runs on a personal computer (or
other computer system). The simulator emulates the behavior of an
MCU in the same way you would play computer (see 2.7.2 Playing
Computer). Although a simulator does not operate as fast as the actual
MCU, it does operate much faster than you could play computer.

In a typical simulator, the computer screen will display windows showing
current and recent contents of memory and registers as well as the
condition of I/O pins and peripheral systems. These displays help a
programmer understand the operation of a program under development
better than the other methods of software development.

A simulator can show internal conditions that are not visible from outside
the MCU. In other development methods, the programmer has to
deduce this information indirectly. Two disadvantages of the simulator
approach are operating speed and accuracy of emulation. In terms of
speed, the simulator runs much slower than a real MCU would (although
this is often fast enough so the programmer does not notice any
problems). Since simulators are based on a software emulation of
specified MCU operation, there can be subtle differences between the
way the simulator behaves and the way a real MCU behaves. Ideally,
these differences are small enough not to be significant; in reality, the
differences sometimes cause problems.
M68HC05 Applications Guide — Rev. 4.0

194 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Software Development Methods

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A compiler is similar to an assembler, but it translates a higher level
language into a machine-readable object file (rather than translating
mnemonic assembly language). One common high-level language
is "C."

The object of programming in C or some other high-level language
instead of assembly language is to improve productivity and to avoid
learning the assembly language of several different MCUs. The compiler
translates the high-level language instructions into a machine-readable
object file for a particular MCU.

The greatest disadvantage of using a high-level language and a
compiler is the significant inefficiency introduced in translating to the
MCU machine language. The degree of inefficiency depends on the
power of the MCU instruction set and the task being performed. The
M68HC05 has a relatively small instruction set compared to a mainframe
or personal computer; thus, it is difficult and inefficient to use C language
instructions in this MCU.

The inefficiency of using C language instructions also affects timing of
I/O operations. For some applications where very fine control of timing is
important, it is better to use assembly language than to use C. Inefficient
programs also require more memory to perform a task.

For many applications, the speed of the CPU is so great compared to the
requirements of the application that the inefficiencies of high-level
language are unimportant. Present-day MCUs often have enough on-
chip memory so that program size may be unimportant, Using high-level
language with the M68HC05 is not recommended in most cases.
However, at least one good C compiler is available for the M68HC05. If
you want to use high-level languages for Motorola MCUs, you can get a
list of names and addresses of third-party vendors and products from a
local Motorola representative or by calling the freeware BBS.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 195
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5 Thermostat Project Details

The major steps for the project to be developed are as follows:

1. Select the application-in this case, a home thermostat.

2. Define the functions desired for the thermostat.

a. Read/display existing indoor/outdoor temperature

b. Enter/display desired indoor/outdoor temperature

c. Enter/display time of day

d. Select heating or cooling

e. Operate heater or compressor

3. Determine the hardware required based on the functions.

a. A microcontroller (MC68HC705C8)

b. Temperature sensing devices

c. A/D converters (MC145041)

d. Keypad

e. Display

f. Relays/relay drivers

g. Audible alarm device

h. Pullup resistors

i. Bypass capacitors

j. Power supply

k. Circuit board

4. Develop simple programs to test the hardware circuits. Develop
the main program for the desired functions. The program(s) to be
written for this project are as follows:

a. A program to test the audible alarm

b. A program to test the display

c. A program to test the display and keypad

d. A program to test the basic software organization
M68HC05 Applications Guide — Rev. 4.0

196 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The programs written for this thermostat application will be written in
assembly language on a PC using the MCU instruction set commands.
An assembler program contained in the PC memory will translate the
programs into machine language — i.e., a series of binary codes of "0"
and "1" which the MCU understands. This code will be put into the
OTPROM or EPROM to be debugged.

4.5.1 Hardware Details

The best way to learn about MCUs is to try this application example
thermostat project and develop additional projects in your area of
interest. Even if you choose not to duplicate this thermostat project, you
can still benefit from studying the documentation in this example.

Figure 4-1 is the schematic diagram for the thermostat project. For
development, the MC68HC705C8 is being replaced by the M68HC05
PGMR board. In this schematic diagram, only the I/O circuitry is shown.
To see the other MCU connections, refer to the schematic diagram of the
PGMR board in the Programmer Board User’s Manual included with the
PGMR board.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 197
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-1. Thermostat Project Schematic Diagram

D0
D1
D2
D3
D4
D5
D6
D7
R/W
RS
E

VDD

VO

VSS

LCD DISPLAY MODULE
20 CHARACTERS X 2 LINES

2

3

1

20 k
POT CONTRAST/

VIEW ANGLE

VDD11
10
9
8
7
6
5
4

12
13
14
15

16
17
18
19

28
27
26
25
24
23
22
21

37

35

29
30
31
32
33
34

36

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3

PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

TCAP

TCMP

PD0/RDI
PD1/TDO

PD2/MISO
PD3/MOSI
PD4/SCK

PD5/SS

PD7

A

10 k

10 k

10 k

B

C

ENT

3

6

9

>

2

5

8

0

1

4

7

<

4 X 4 KEYPAD
PIEZO

BEEPER
VDD

9

16

15

14
8

0.1

0.1

0.1 µF

COOL

HEAT

FAN

24VAC
RETURN

OUT

IN

VDD

10 k
POT

0.1

0.1 µF

AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
AN8
AN9

AN10

DOUT
DIN
SCK
CS
VRH

VAG

7
8
9

10
11
12
13
14
5
4
6

16
17
18
15
14

131.0 µµF

1 k

MC145041
SERIAL A/D

10 k

10 k

10 k

10 k

10 k

10 k

VDD

MC68HC705C8
(PGMR BOARD)

3/7 MC1413

1

2

3

10 k
POT1

2
3
4
5
6
7
8
9
11
12
M68HC05 Applications Guide — Rev. 4.0

198 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

During development, it was convenient to use potentiometers rather
than temperature sensors because doing so allowed us to simulate
temperature changes. In the final application, we would use an actual
temperature sensor such as that shown in Figure 4-2.

Figure 4-2. Precision Temperature Sensing Circuit

The LCD display is used to show the keypad entries of time-of-day, the
temperature limits, the current temperature, and the selection of heating
or cooling operation. The keypad can be a 4x4 array or larger. An audible
alarm can be used along with the display, if desired.

The project parts list is shown in Table 4-1. Only the parts not commonly
available are listed.

0.1 µF

2 k

VDD

LM34C
0.01 µF

10 k

LM324

TO A/D
INPUT

+

–
1

2

3

30 k

Table 4-1. Thermostat Project Parts List

Item and Description(1) Suggested Source

LCD Display Module — 20 Characters by 2 Lines Digi-Key Wholesale, OP220-ND

Keypad — 4 by 4 Matrix of Momentary Push-Button Switches Any

Piezo Beeper — Solid State Buzzer Radio Shack, 273-060A

A/D Converter — Serial Interface to SPI
Motorola — Special Functions
MC145041

Relay Driver — Translates 0-5 V MCU Signals to High Current Inductive
Load Drive

Motorola — Interface
MC1413 or ULN2003

Relays — Coil 5 V, Contacts 24 VAC 1A SPST (Minimum) Radio Shack, 275-243 or Other

Op-Amp — For Precision Temp Sensor Circuits QUAD Op-Amp Motorola — Linear, LM324

Precision Temperature Sensor — TO-92 Pkg National Semiconductor, LM34C

1. This is only a partial parts list. Parts commonly found in lab stock are not shown.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 199
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.2 Project Programming

Figure 4-3 through Figure 4-6 (MCU port summary information) act as
a handy reference to the software programmer in the thermostat project.
These figures summarize the most important information needed by the
programmer.

Figure 4-3. Port A Summary

BIT 7

DDRA7

6 5 4 3 2 1

1
OUT

BIT 0

$04 DDRA

INIT TO $FF
(ALL OUTPUTS)

DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

$00 PORTA

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PIN NAMES (REF)

1
OUT

1
OUT

1
OUT

1
OUT

1
OUT

1
OUT

1
OUT

LCD
DATA 7

4

14

5

13

6

12

7

11

8

10

9

9

10

8

11

7

THERMOSTAT
FUNCTION

MCU PIN NUMBER

LCD PIN NUMBER

SEE PORT C FOR LCD SIGNALS – E, RS, AND R/W

LCD
DATA 6

LCD
DATA 5

LCD
DATA 4

LCD
DATA 3

LCD
DATA 2

LCD
DATA 1

LCD
DATA 0
M68HC05 Applications Guide — Rev. 4.0

200 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-4. Port B Summary

Figure 4-5. Port C Summary

19 18 17 16 15 14 13 12 MCU PIN NUMBER

A

10 k

10 k

10 k

B

C

ENT

3

6

9

>

2

5

8

0

1

4

7

<

4 X 4 KEYPAD

10 k

BIT 7

DDRB7

6 5 4 3 2 1

0
IN

BIT 0

$05 DDRB

INIT TO $0F
(HALF IN, HALF OUT)

DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0

$01 PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 PIN NAMES (REF)

0
IN

0
IN

0
IN

1
OUT

1
OUT

1
OUT

1
OUT

BOT
ROW

THERMOSTAT
FUNCTION

TOP
ROW

LEFT
COL

RIGHT
COLINPUTS OUTPUTS< > ><

BIT 7

DDRC7

6 5 4 3 2 1

1
OUT

BIT 0

$06 DDRC

INIT TO $FF
(ALL OUTPUTS)

DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0

$02 PORTC

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 PIN NAMES (REF)

1
OUT

1
OUT

1
OUT

1
OUT

1
OUT

1
OUT

1
OUT

FAN
RELAY

21 22 23 24 25 26

6

27

4

28

5

THERMOSTAT
FUNCTION

MCU PIN NUMBER

LCD PIN NUMBER

FOR DEVELOPMENT USE LOW TRUE (TO LIGHT LEDs ON PGMR BOARD)
FOR FINAL SWITCH TO HIGH TRUE

HEAT
RELAY

COOL
RELAY

BEEP A/D
SEL*

LCD
E

LCD
RS

LCD
R/W

LOW TRUE SELECT TO SERIAL A/D
 TRANSFER

0–QUIET 1–BEEP

RED
LED

GREEN
LED
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 201
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-6. Port D Summary

After selecting major components and completing a preliminary
hardware design, plan and begin writing software programs. You first
write small programs that exercise the basic parts of the project. This
procedure will expose any problems in the hardware design and will help
you learn details of controlling major external peripherals.

Begin your project with a very simple program such as that shown in the
assembler listing of Figure 2-9. Assembler Listing. You can easily
modify the program to suit the keypad switches rather than wiring a
switch as called for in the Figure 2-9. Assembler Listing example.
Also, you can modify the program to control the beeper rather than the
red LED.

This first small program is meant to be very simple because you want to
perform a crude check of the setup, as opposed to testing your
programming ability. The simple example is not likely to have any
significant programming problems.

Next, write a short program to check the LCD display. It is important to
understand the operation of major elements, such as this display, before
attempting a large program. Since there are so many possible causes of
complete failure in a large program, you will have difficulty determining
the source of your problems.

$03 PORTD

PD7 NO
PIN

PD5
SS

PD4
SCK

PD3
MOSI

PD2
MISO

PD1
TDO

PD0
RDI PIN NAMES (REF)

36 34 33 32 31

S6

30

RS-232

29

R-S232

THERMOSTAT
FUNCTION

MCU PIN NUMBER

PGMR BOARD

TO AVOID INTERFERENCE WITH
THERMOSTAT APPLICATION

PULL
UP

A/D
SCK

A/D
DIN

A/D
DOUT

SPI SCI ALTERNATE USE (REF)

S5S4S3

– – –

ON OFF OFF OFF
M68HC05 Applications Guide — Rev. 4.0

202 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-7 is a flowchart of the display checkout program. Figure 4-8 is
the listing for this small program. Two subroutines (WCTRL and WDAT)
were written to simplify operations with the LCD display. These
subroutines will eventually become part of the final application program.

When this thermostat project was developed, the programs were not
correct at first because the data sheet for the LCD display module was
imprecise. The purpose of the small checkout programs is to work out
these minor problems before beginning the large application program.

Application example programs shown in this applications guide can be
tried in an MC68HC705C8 in one of two ways, depending upon their
size.

For small programs (less than 176 bytes), you can download the
example program to RAM (in the area $0051–$00FF) and execute it
without programming any EPROM (so you don't have to erase EPROM
to try another). To use this method, you must ORG your program at
$0050 and the first byte must be the size of your example. The following
procedure will provide the needed size byte.

1. Replace your ORG statement with the following two lines . . .

ORG $50
START FCB END-START

2. After the last line in your program put . . .

END EQU *
3. Assemble the example program and make sure it ends at or

before $00FF.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 203
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-7. Display Checkout Flowchart

If the example program is too large to fit in the 176 bytes of RAM ($0050
to $00FF), you will have to program the example into EPROM and
provide a reset vector. To provide a reset vector for a program example
that begins with the label "BEGIN", put the following two lines at the end
of your program:

ORG $1FFE
FDB BEGIN

NOTE: The example programs provided do not include a size byte or a reset
vector; you will have to add whichever is appropriate for your situation.

NEXT LETTER A,B,C...S,T

EQUAL ‘T’
?

TRYLCD

‘DLP’

NO

WRITE DATA TO LCD

WRITE CONTROL WORDS TO
INITIALIZE LCD MODULE

$01 – CLEAR
$02 – HOME

$38 – FUNCTION SET
$0E – DISPLAY ON/CURSOR OFF

$06 – ENTRY MODE

INITIALIZE MCU HARDWARE
(PORTS AND DDR REGISTERS)

STOP

START WITH ASCII ‘A’

YES
M68HC05 Applications Guide — Rev. 4.0

204 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* TRYLCD — LCD Check out program *
* Initialize LCD module and display ABCDEF ... S *
**

* Register Equates

0000 PORTA EQU $00 LCD display data
0001 PORTB EQU $01 Keypad Row4,3,2,1;Col1,2,3,4
0002 PORTC EQU $02 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0004 DDRA EQU $04 Data direction, Port A (all output)
0005 DDRB EQU $05 Direction, Port B (7-4in,3-0out)
0006 DDRC EQU $06 Data direction, Port C (all output)

* RAM Equates

009e TEMPA EQU $9E One byte temp storage location
009f TEMPX EQU $9F One byte temp storage location

0100 ORG $100

* Set Port data patterns and directions
0100 a6 e8 TRYLCD LDA #$E8 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0102 b7 02 STA PORTC Initial Thermostat control values
0104 a6 ff LDA #$FF
0106 b7 04 STA DDRA Port A all outputs
0108 b7 06 STA DDRC Port C all outputs

* LCD display peripheral needs to be initialized

010a a6 01 LDA #$01
010c cd 01 2f JSR WCTRL Clear
010f a6 02 LDA #$02
0111 cd 01 2f JSR WCTRL Home
0114 a6 38 LDA #$38
0116 cd 01 2f JSR WCTRL Function Set-8-bit,2-1ine,5x7
0119 a6 Oc LDA #$OC
011b cd 01 2f JSR WCTRL Display on, Cursor off
01le a6 06 LDA #$06
0120 cd 01 2f JSR WCTRL Entry mode-Inc addr, no shift

0123 a6 41 LDA #’A ASCII 'A'
0125 cd 01 49 DLP JSR WDAT Display a character
0128 4c INCA To next ASCII character
0129 al 54 CMP #’T Go ABCDEFGHIJKLMNOPQRS & stop
012b 26 f8 BNE DLP Loop till T
012d 20 fe HERE BRA HERE Stop

Figure 4-8. Display Checkout Program Listing (Sheet 1 of 2)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 205
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* WCTRL — Write control word to LCD peripheral *
* Enter with control word in accumulator *
* Return with original value of X *
* Delay-4.5mS if A = $01 or $02 else delay ~ 120µS *

012f bf 9f WCTRL STX TEMPX Save X
0131 b7 00 STA PORTA Write control word to LCD
0133 14 02 BSET 2,PORTC E -> 1
0135 15 0 2 BCLR 2,PORTC E -> 0
0137 ae 14 LDX #20 20*6-*1µS/~= 120µS
0139 5a L120U DECX Delay loop ~ 120µS
013a 26 fd BNE L120U 20-19,19-18 ... 1-0
013c al 02 CMP #$02 Commands $01 & $02 req extra delay
013e 22 06 BHI ARN5M If command > $02 skip long delay
0140 cd 01 48 L5M JSR ANRTS JSR + RTS TAKES 12~ (just want delay)
0143 5a DECX TAKES 3-(X = 0 -> 1 on first pass)
0144 26 fa BNE L5M 3~ Loop 256*18~ *1µS/∼= 4.608mS Delay
0146 be 9f ARN5M LDX TEMPX Restore X
0148 81 ANRTS RTS ** RETURN **

* WDAT — Write data word to LCD peripheral *
* Enter with data word in accumulator *
* Return with original values of X & A *
* Delay ~ 120µS after data write *

0149 bf 9f WDAT STX TEMPX Save X
014b b7 9e STA TEMPA Save A
014d b7 00 STA PORTA Write data word to LCD
014f 12 02 BSET 1,PORTC RS -> 1
0151 14 02 BSET 2,PORTC E -> 1
0153 15 02 BCLR 2,PORTC E -> 0
0155 13 02 BCLR 1,PORTC RS -> 0
0157 ae 14 LDX #20 20*6-*1µS/ ~= 120µS
0159 5a L120 DECX Delay loop ~ 120µS
015a 26 fd BNE L120 20-19,19-18 ... 1-0
015c b6 9e LDA TEMPA Restore A
015e be 9f LDX TEMPX Restore X
0160 81 RTS ** RETURN **

Figure 4-8. Display Checkout Program Listing (Sheet 2 of 2)
M68HC05 Applications Guide — Rev. 4.0

206 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Since we now understand the LCD display, we can use the display to
check out the keypad interface. To read a keypad key, we must
recognize a key closure, delay to allow debounce, and decode the
position (row/column) of the key. This is an example of how the MCU can
simplify the hardware design. Software can be used to debounce the
keys rather using complicated hardware circuits. Software also allows
many switches to be wired in a row/column matrix so fewer I/O lines are
needed.

The flowchart in Figure 4-9 shows how keypad keys are detected.
Figure 4-10 is a listing of the keypad checkout program.

A real-time loop structure was chosen for the thermostat project main
program. This basic structure can be used for many applications. The
timing of the main loop determines the delays between activities in the
complete application program.

A real time-of-day clock can easily be developed using the main loop
time and simple software counters. Figure 4-11 is the flowchart for this
basic loop structure. The complete listing for the thermostat project is
included at the end of this section.

After a reset, there are a series of instructions to initialize ports,
peripheral systems, and software variables. After this initialization, the
main loop is entered and repeated continuously as long as power is
applied.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 207
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-9. Keypad Checkout Flowchart

ANY KEY
?

KEYTRY

‘ANYK’

NO

DELAY 50mS (DEBOUNCE)

GET ROW/COL PATTERN FROM
TABLE AND DRIVE COLUMNS

INIT MCU HARDWARE (PORTS)

YES

POINT AT LAST TABLE ENTRY

ROW
MATCH

?

NO

YES

NEXT TABLE ENTRY
(POINTER = POINTER – 2)

ANY KEY
?

NO

READ ASCII FROM TABLE AND
DISPLAY ON LCD 1ST ROW LEFT

DELAY 50mS (DEBOUNCE)

NO

YES

YES

END
OF TABLE

? ‘FOUND’

‘TILRLS’

‘KYLOOP’
M68HC05 Applications Guide — Rev. 4.0

208 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* KEYTRY — Try out keypad debounce and decode software *
* Detect and debounce keys. When a key found *
* change it to ASCII and display on LCD *
* Debounce release of key and look for more *

* Register Equates

0000 PORTA EQU $00 LCD display data
0001 PORTB EQU $01 Keypad Row4,3,2,1;Coll,2,3,4
0002 PORTC EQU $02 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0004 DDRA EQU $04 Data direction, Port A (all output)
0005 DDRB EQU $05 Direction, Port B (7-4in,3-0out)
0006 DDRC EQU $06 Data direction, Port C (all output)

* RAM Equates

009d KEYVAL EQU $9D Keypad key (ASCII)
009e TEMPA EQU $9E One byte temp storage location
009f TEMPX EQU $9F One byte temp storage location

0100 ORG $100

* Set Port data patterns and directions
0100 a6 e8 INIT LDA #$E8 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0102 b7 02 STA PORTC Initial Thermostat control values
0104 4f CLRA Row3,2,1,0;Coll,2,3,4
0105 b7 01 STA PORTB All cols initially off
0107 4a DECA to $FF
0108 b7 04 STA DDRA Port A all outputs
010a b7 06 STA DDRC Port C all Outputs
010c a6 Of LDA #$0F Rows = in, Cols = outs
010e b7 05 STA DDRB Port B half ins, half outs

* LCD display peripheral needs to be initialized

0110 a6 01 LDA #$01
0112 cd 01 93 JSR WCTRL Clear
0115 a6 02 LDA #$02
0117 cd 01 93 JSR WCTRL Home
011a a6 38 LDA #$38
011c cd 01 93 JSR WCTRL Function Set-8-bit,2-line,5X7
Ollf a6 Oc LDA #$0C
0121 cd 01 93 JSR WCTRL Display on, Cursor off
0124 a6 06 LDA #$06
0126 cd 01 93 JSR WCTRL Entry mode-Inc addr, no shift

** END of INITIALIZATION ********************************

Figure 4-10. Keypad Checkout Program Listing (Sheet 1 of 2)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 209
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0129 a6 0f KEYTRY LDA #$OF
012b b7 01 STA PORTB Turn on all cols
012d b6 01 ANYK LDA PORTB Reads rows in upper 4
012f a4 f0 AND #$F0 Mask away cols
0131 27 fa BEQ ANYK Loop till a key is found
0133 cd 01 65 JSR DLY50 Debounce key
0136 ae le LDX #30 Pointer to last pair in KYTBL
0138 d6 01 73 KYLOOP LDA KYTBL,X Get row/col pattern
013b b7 01 STA PORTB Drive cols
013d bl 01 CMP PORTB Check for row & col match
013f 27 06 BEQ FOUND If = ; key found
0141 5a DECX Point to next pair of entries
0142 5a DECX in KYTBL
0143 2a f3 BPL KYLOOP Loop if more entries
0145 20 e2 BRA KEYTRY Key gone; start over
0147 d6 01 74 FOUND LDA KYTBL + 1,X Get key equiv from table
014a b7 9d STA KEYVAL Save for now
014c a6 80 LDA #$80 Left end of 1st row
014e cd 01 93 JSR WCTRL Position entry point
0151 b6 9d LDA KEYVAL Get the ASCII key value
0153 cd 01 ad JSR WDAT Display the key
0156 a6 0f LDA #$0F
0158 b7 01 STA PORTB Turn on all cols
015a b6 01 TILRLS LDA PORTB Reads rows in upper 4
015c a4 f0 AND #$F0 Mask away cols
015e 26 fa BNE TILRLS Loop till no key pressed
0160 cd 01 65 JSR DLY50 Debounce release
0163 20 c4 BRA KEYTRY Look for another key

* Keypad Correspondance Table
* 1st entry of each pair is Row/Col bit pattern
* 2nd entry of each pair is ASCII equiv of key
* COL # -> 1 2 3 4
* v v v v
* ROW 1 -> 1 2 3 A
* ROW 2 -> 4 5 6 B
* ROW 3 -> 7 8 9 C
* ROW 4 -> < 0 > !

0173 18 31 KYTBL FCB $18,’1 Row 1, Col 1 (Top Left)
0175 28 34 FCB $28,’4 Row 2, Col 1
0177 48 37 FCB $48,’7 Row 3, Col 1
0179 88 3c FCB $88,’< Row 4, Col 1
017b 14 32 FCB $14,’2 Row 1, Col 2
017d 24 35 FCB $24,’5 Row 2, Col 2
017f 44 38 FCB $44,’8 Row 3, Col 2
0181 84 30 FCB $84,’0 Row 4, Col 2
0183 12 33 FCB $12,’3 Row 1, Col 3
0185 22 36 FCB $22,’6 Row 2, Col 3
0187 42 39 FCB $42,’9 Row 3, Col 3
0189 82 3e FCB $82,’> Row 4, Col 3
018b 11 41 FCB $11,’A Row 1, Col 4
018d 21 42 FCB $21,’B Row 2, Col 4
018f 41 43 FCB $41,’C Row 3, Col 4
0191 81 21 FCB $81,’! Row 4, Col 4 (Bot Right)

Figure 4-10. Keypad Checkout Program Listing (Sheet 2 of 2)
M68HC05 Applications Guide — Rev. 4.0

210 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-11. Main Program Flowchart

OCF
FLAG SET

?

MAIN

NO

SCHEDULE NEXT OCF
TO OCCUR IN 50mS

(AND CLEAR OCF FLAG)

YES

TIC = TIC +1

TIC = 20
?

NO

YES

CLEAR TIC TO ZERO

1) UPDATE TIME AND DAY

2) SERVICE KEYPAD

3) SERVICE BEEPER

4) CHECK FOR USER ENTRY

5) SERVICE A/D TEMP SENSORS

6) UPDATE HVAC OUTPUTS

7) SERVICE LCD DISPLAY

‘ARNC1’

MEASURE 50mS INTERVALS

MODULE 20 COUNTER TO COUNT 50mS ‘TICs’
TIC COUNTS 0, 1, 2...18, 19, 0 ETC.
TWENTY 50mS TICs EQUAL 1 SECOND

MAJOR TASK SUBPROGRAMS (MODULES).
EACH IS CALLED ONCE PER 50mS THOUGH
A SUBPROGRAM MAY DECIDE TO DO LITTLE OR
NOTHING DEPENDING ON THE STATE OF
VARIABLES SUCH AS TIC
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 211
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 1 of 21

**
* MC68HC705C8 Example Development Project *
* A Home Thermostat with indoor/outdoor *
* temperature and time-of-day *
* *
* This example uses an LCD display, a 4x4 *
* keypad, a piezo beeper, and an MC145041 *
* serial A/D converter. *
* *
* Software is configured in a real-time *
* loop and demonstrates timing techniques *
* and program modularity principles. *
* *
* The project is complete enough to show *
* the development process but is not *
* intended to be a finished product. *
**
* Register Equates

0000 PORTA EQU $00 LCD display data
0001 PORTB EQU $01 Keypad Row4,3,2,1;Coll,2,3,4
0002 PORTC EQU $02 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0003 PORTD EQU $03 in,-,SS*,SCK;MOSI,MISO,TxD,RxD
0004 DDRA EQU $04 Data direction, Port A (all output)
0005 DDRB EQU $05 Data direction, Port B (7-4in,3-0out)
0006 DDRC EQU $06 Data direction, Port C (all output)
000a SPCR EQU $0A SPIE,SPE,-,MSTR;CPOL,CPHA,SPR1,SPR0
000b SPSR EQU $0B SPIF,WCOL,-,MODF;-,-,-,-
000c SPDR EQU $0C SPI Data
000d BAUD EQU $0D -,-,SCP1,SCP0;-,SCR2,SCR1,SCR0
000e SCCR1 EQU $0E R8,T8,-,M;WAKE,-,-,-
000f SCCR2 EQU $0F TIE,TCIE,RIE,ILIE;TE,RE,RWU,SBK
0010 SCSR EQU $10 TDRE,TC,RDRF,IDLE;OR,NF,FE,-
0011 SCDR EQU $11 SCI Data
0011 RDR EQU $11 SCI Receive Data (same as SCDR)
0011 TDR EQU $11 SCI Transmit Data (same as SCDR)
0012 TCR EQU $12 ICIE,OCIE,TOIE,0;0,0,IEGE,OLVL
0013 TSR EQU $13 ICF,OCF,TOF,0; 0,0,0,0
0014 ICAP EQU $14 Input Capture Reg (Hi-$14, Lo-$15)
0016 OCMP EQU $16 Output Compare Reg (Hi-$16, Lo-$17)
0018 TCNT EQU $18 Timer Count Reg (Hi-$18, Lo-$19)
001a ALTCNT EQU $1A Alternate Count Reg (Hi-$1A, Lo-$1B)

* RAM Equates

00a0 ORG $A0
* Using ’A6 to debug and monitor uses lower RAM

00a0 TEMPA RMB 1 One byte temp storage location
00a1 TEMPX RMB 1 One byte temp storage location
00a2 TIC RMB 1 50mS Tics 00-19 20 Tics = 1 Sec
00a3 SEC RMB 1 Current Time Seconds 00-59

M68HC05 Applications Guide — Rev. 4.0

212 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 2 of 21

00a4 BCDEQ RMB 1 BCD equivalent of ENTRY
* it’s easier to roll in new digits to a BCD buffer vs binary.

* Next 7 entries are accessed by indexed addressing
* using a 1 byte
* offset from ENTRY. The offset is MODE (in X) and the value at
* ENTRY,X is the value that is subject to change in the selected
* mode.

00a5 ENTRY RMB 1 Binary value being entered by user
00a6 HR RMB 1 Current Time Hour 1-12 (binary)
00a7 MIN RMB 1 Current Time Minute 00-59 (binary)
00a8 AMPM RMB 1 Current Time AM = 0, PM = 1
00a9 DAY RMB 1 Day of Wk 1 = Sun ... 7 = Sat
00aa HVACM RMB 1 HVAC Equipment Mode

* Modes 0 Off
* 1 Heat
* 2 Cool
* 3 Fan Only

00ab GOAL RMB 1 Goal temp. setting (+)
* End of values accessed by offset from ENTRY

00ac INTMP RMB 1 Current Indoor Temperature (+)
00ad OUTMP RMB 1 Current Outdoor Temperature (+/–)

00ae ASC100 RMB 1 ASCII hundreds digit (-,<sp > ,1, or 2)
00af ASC10 RMB 1 ASCII tens digit (0 thru 9)
00b0 ASC1 RMB 1 ASCII ones digit (0 thru 9)

00b1 MODE RMB 1 Current Mode (for user interfce)

* Modes 0 Inactive; display shows current time/temp/etc.
* 1 Set Time HR
* 2 Set Time MIN
* 3 Set Time AM/PM
* 4 Set Time DAY
* 5 Set HVAC Mode-Off, Heat, Cool, Fan Only
* 6 Set Target Temperature

00b2 HVACON RMB 1 0 = off, 1 = on (running now)
00b3 KEYVAL RMB 1 Keypad key (ASCII) or debounce state
00b4 BEEPM RMB 1 Beeper request

* 2 = > single 100mS beep, 8 => double beep, 26 => 1 sec beep

00b5 ACTIMR RMB 1 Activity timer
* Set = 60 sec on key, decrement 1/sec, if 0 mode reverts to 0

00b6 ENTFLG RMB 1 New entry flag, 0-new 1-old
* Entries default to current value when new. If user enters
* a single digit the tens digit is cleared. If user enters
* more digits they shift in from rt. so new digit is 1's, old
* 1's becomes 10's, and old 10's falls off left (lost).
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 213
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 3 of 21

0100 ORG $0100 Program will start at $0100
* $0100 is the start of EPROM in the ’705C8

* Initialization done at reset & on detection of some errors

0100 9c INIT RSP Reset stack pointer to $FF

* Set Port data patterns and directions

0101 a6 e8 LDA #$E8 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0103 b7 02 STA PORTC Initial values for Thermostat controls
0105 4f CLRA Row3,2,1,0;Coll,2,3,4
0106 b7 01 STA PORTB All cols initially off
0 1 0 8 4a DECA to $FF
0109 b7 04 STA DDRA Port A all outputs
OlOb b7 06 STA DDRC Port C all outputs
010d a6 Of LDA #$0F Rows = in, Cols = outs
010f b7 05 STA DDRB Port B half ins, half outs

* Set up SPI to talk to ext serial A/D converter MC145041

**
** CAUTION !! S3 thru S6 on PGMR Board can conflict with SPI
**

0111 b6 03 WAITSW LDA PORTD wait ’till S3-on, S4, S5, S6-off
0113 a4 3C AND #$3C only care about S3,thru S6
0115 al 20 CMP *$20 S3-on, S4, S5, S6-off ?
0117 26 f8 BNE WAITSWIf not wait till they are

* Previous 4 lines only needed for development on PGMR board

0119 a6 50 LDA #$50 SPIE,SPE,-,MSTR;CPOL,CPHA,SPR1,SPR0
011b b7 0a STA SPCR SPI on as Master, 2µS norm low clock

* SCI not used in this application
* Timer output compare used to time 50mS loop

Olld 4f CLRA ICIE,OCIE,TOIE,0;0,0,IEGE,OLVL
Olle b7 12 STA TCR no timer interrupts or pins used

* LCD display peripheral needs to be initialized

0120 a6 01 LDA *$01
0122 cd 06 20 JSR WCTRL Clear
0125 a6 02 LDA #$02
0127 cd 06 20 JSR WCTRL Home
012a a6 38 LDA #$38
012c cd 06 20 JSR WCTRL Function Set-8-bit,2-line,5X7
012f a6 Oc LDA #$0C
0131 cd 06 20 JSR WCTRL Display on, Cursor off
0134 a6 06 LDA #$06
0136 cd 06 20 JSR WCTRL Entry mode- Inc addr, no shift
M68HC05 Applications Guide — Rev. 4.0

214 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 4 of 21

* set time to 12:00 AM SUN
0139 3f a2 CLR TIC Init 50mS counter
013b 3f a3 CLR SEC Init seconds to 0
013d a6 Oc LDA #12 Hr = 12
013f b7 a6 STA HR
0141 3f a7 CLR MIN Min-00
0143 3f a8 CLR AMPM AM (AMPM-0)
0145 a6 01 LDA #1 Sun-1,Sat-7
0147 b7 a9 STA DAY Day = Sunday

0149 3f bl CLR MODE Set user interface to inactive
014b 3f b3 CLR KEYVAL Say no key closed
014d 3f b4 CLR BEEPM Set beeper request to off
014f 3f b2 CLR HVACON Indicate HVAC Equip not running now
0151 3f aa CLR HVACM Set HVAC Equip mode to off
0153 a6 48 LDA #72
0155 b7 ab STA GOAL Set default goal temp to 72°F

* END of INITIALIZATION **
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 215
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 5 of 21

* MAIN — Beginning of main program loop *
* Loop is executed once every 50mS (exactly) *
* A pass through all major task routines takes *
* less than 50mS and then time is wasted until *
* the output compare flag gets set (every 50mS). *
* When an output compare triggers, the flag is *
* cleared & 12500 is added to the compare r *
* so the next trigger will occur in exactly 50mS *
* (12500*4µS/cnt = 50mS).(Xtal = 2MHz, bus = 1MHz) *
* *
* The variable TIC keeps track of 50mS periods *
* when TIC increments from 19 to 20 it is cleared *
* to 0 and seconds are incremented. *

* The keypad is checked every 50mS pass and a new *
* closure or release is not acted upon until the *
* pass after it is first seen. This acts as a *
* switch debounce. *

* The display is updated only when seconds change. *
* Display call is at bottom of main loop so any *
* change caused by a key is reflected in the *
* display update. *
* Temperature readings are only taken once/sec *

0157 Od 13 fd MAIN BRCLR 6,TSR,MAIN Loop here till OCF flag set
015a b6 17 LDA OCMP + 1 Low byte of OC register
015c ab d4 ADD #$D4 Low half of 12500
015e b7 a0 STA TEMPA Save till high half calculated
0160 b6 16 LDA OCMP High byte of OC register
0162 a9 30 ADC #$30 High half of 12500 (+ carry)
0164 b7 16 STA OCMP Update OC reg
0166 b6 a0 LDA TEMPA Get low half of updated value
0168 b7 17 STA OCMP + 1 Update low half of OC reg

* OC now = old OC + 12500, and OCF flag is clear
016a b6 a2 LDA TIC Get current TIC value
016c 4c INCA TIC = TIC + 1
016d b7 a2 STA TIC Update TIC
016f al 14 CMP #20 20th TIC ?
0171 25 02 BLO ARNCI If not, skip next clear
0173 3f a2 CLR TIC Clear TIC on 20th

* End of synchronization to 50mS TIC; Run main tasks and
* branch back to main within 50mS. Sync OK as long as
* no 2 consecutive passes take more than 100mS.

0175 cd 01 8c ARNC1 JSR TIME Update time-of-day & day-of-week
0178 cd 01 c9 JSR KYPAD Check/service keypad
017b cd 02 16 JSR BEEP Update Beeper
017e cd 02 2f JSR USER User Interface to set time, temp,etc.
0181 cd 03 09 JSR A2D Check Temp Sensors
0184 cd 03 34 JSR HVAC Update Heat/Air Cond Outputs
0187 cd 03 9d JSR LCD Update LCD display
018a 20 cb BRA MAIN Back to Top & wait for next TIC

** END of Main Loop **
M68HC05 Applications Guide — Rev. 4.0

216 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 6 of 21

* TIME — Update Time-of-day & Day-of-week *
* If TIC not = 0, just skip whole routine *
* When SEC rolls 59 -> 0, inc MIN *
* When MIN rolls 59 -> 0, inc HR *
* When HR rolls 11 -> 12, change AMPM 1 -> 0 or 0 -> 1 *
* When AMPM chgs 1 -> 0, inc DAY *
* When DAY rolls 7 -> 8, set to 1 (Sun) *

018c TIME EQU Update Time-of-day & Day-of-week
018c 3d a2 TST TIC Check for TIC = zero
018e 26 38 BNE XTIME If not; just exit
0190 3c a3 INC SEC SEC = SEC + 1
0192 a6 3c LDA #60
0194 b1 a3 CMP SEC Did SEC -> 60 ?
0196 26 30 BNE XTIME If not; just exit
0198 3f a3 CLR SEC Seconds rollover
019a 3c a7 INC MIN MIN = MIN + 1
019c b1 a7 CMP MIN A still 60; MIN = 60 ?
019e 26 28 BNE XTIME If not; just exit
01a0 3f a7 CLR MIN Minutes rollover
01a2 3c a6 INC HR HR = HR + 1
01a4 b6 a6 LDA HR For comparisons
01a6 a1 0d CMP #13 HR = 13 ?
01a8 26 06 BNE ARNS1 If not; skip
01aa a6 01 LDA #1
O1ac b7 a6 STA HR Set HR = 1
O1ae 20 18 BRA XTIME Exit
01b0 al 0c ARNS1 CMP #12 HR = 12 ?
01b2 26 14 BNE XTIME If not; just exit
01b4 b6 a8 LDA AMPM
01b6 a8 01 EOR #%00000001 Invert Am/Pm bit
01b8 b7 a8 STA AMPM 0 = AM, 1 = PM
01ba 26 Oc BNE XTIME If not AM now; just exit
Olbc 3c a9 INC DAY DAY = DAY + 1
01be b6 a9 LDA DAY
01c0 a1 08 CMP #8 Day rollover ?
01c2 26 04 BNE XTIME If not; just exit
01c4 a6 01 LDA #1
01c6 b7 a9 STA DAY Set Day to 1 (SUN)
01c8 81 XTIME RTS ** RETURN from TIME **
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 217
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 7 of 21

**
* KYPAD — Check for & decode keys *
* KEYVAL indicates ASCII equivalent of key or *
* debounce status as follows *
* $00 — no key pressed, look for any closure *
* $01 — key closed 50mS ago (debounce), decode now *
* $20 — $7F-key found, debounced, & decoded (not seen) *
* $FE — key recognized by some task, wait for release *
* $FF — key released 50mS ago (debounce release) *
**

01c9 KYPAD EQU Check for & decode keys
01c9 b6 b3 LDA KEYVAL KEYVAL indicates what to do
O1cb 26 Oe BNE CHK401 If not 0; Check for $01
O1cd a6 Of LDA #$0F
O1cf b7 01 STA PORTB Turn on all cols
O1d1 b6 01 LDA PORTB Reads rows in upper 4
0ld3 a4 f0 AND #$F0 Mask away cols
01d5 27 3e BEQ XKYPAD Exit if no key
01d7 3c b3 INC KEYVAL To $01
01d9 20 3a BRA XKYPAD Exit, key will be decoded in 50mS
O1db a1 01 CHK401 CMP #$01 KEYVAL = $01 ?
O1dd 26 1c BNE CHK4FE If not 0; Check for $FE
Oldf ae 1e LDX #30 Pointer to last pair in KYTBL
Olel d6 06 00 KYLOOP LDA KYTBL,X Get row/col pattern
01e4 b7 01 STA PORTB Drive cols
01e6 b1 01 CMP PORTB Check for row & col match
01e8 27 06 BEQ FOUND If = ; key found
Olea 5a DECX Point to next pair of entries
Oleb 5a DECX in KYTBL
Olec 2a f3 BPL KYLOOP Loop if more entries
Olee 3f b3 CLR KEYVAL No key found; set KEYVAL = 0
01f0 d6 06 01 FOUND LDA KYTBL+1,XGet key equiv from table
01f3 b7 b3 STA KEYVAL $20 ≤ KEYVAL ≤ $7F
01f5 a6 02 LDA #2
01f7 b7 b4 STA BEEPM Request beep as feedback
01f9 20 1a BRA XKYPAD Exit
Olfb a1 fe CHK4FE CMP #$FE KEYVAL = $FE ?
01fd 26 10 BNE CHK4FF If not check for $FF
Olff a6 0f LDA #$0F
0201 b7 01 STA PORTB Turn on all cols
0203 b6 01 LDA PORTB Reads rows in upper 4
0205 a4 f0 AND #$F0 Mask away cols
0207 26 0c BNE XKYPAD Exit if key still closed
0209 a6 ff LDA #$FF
020b b7 b3 STA KEYVAL Set KEYVAL = $FF
020d 20 06 BRA XKYPAD & Exit
020f a1 ff CHK4FF CMP #$FF KEYVAL = $FF ?
0211 26 02 BNE XKYPAD If not; exit
0213 3f b3 CLR KEYVAL Set KEYVAL = $00
0215 81 XKYPAD RTS ** RETURN from KYPAD **
M68HC05 Applications Guide — Rev. 4.0

218 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 8 of 21

* BEEP — Update audible beeper *
* Single 100mS beep on key closure (feedback) *
* Beep (100mS/on, 200off, 100on) entry accepted *
* Beep 1 second to indicate entry error *

0216 BEEP EQU Update audible beep
0216 b6 b4 LDA BEEPM BEEPM indicates what to do
0218 26 04 BNE ACTIV Branch if beeper active
021a 19 02 BCLR 4,PORTC Turn off beeper
021c 20 10 BRA XBEEP & Exit

021e 3a b4 ACTIV DEC BEEPM Times beeps

* Accumulator has undecremented version of BEEPM
* Beeper should be on unless BEEPM is between 3 and 6

0220 al 03 CMP #3
0222 25 08 BLO BPRON If <3 turn beeper on
0224 al 06 CMP #6
0226 22 04 BHI BPRON If >6 turn beeper on
0228 19 02 BCLR 4,PORTC Turn beeper off
022a 20 02 BRA XBEEP & Exit
022c 18 02 BPRON BSET 4,PORTC Turn beeper on
022e 81 XBEEP RTS ** RETURN from BEEP **
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 219
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 9 of 21

**
* USER – User Interface to set time, temp, etc. *
* Variable named MODE identifies current user function *
* 0 - Inactive; display shows current time/temp/etc. *
* 1 - Set Time HR *
* 2 - Set Time MIN *
* 3 - Set Time AM/PM *
* 4 - Set Time DAY *
* 5 - Set HVAC Mode – Off, Heat, Cool, Fan Only *
* 6 - Set Target Temperature *
* MODE reverts to O-inactive if no keys for 1 min *
* To activate modes press A until desired value *
* to be changed is blinking. Next enter desired *
* setting numbers and press enter (!). *
* Current program does not use <, > ,B, or C keys. *
**

022f USER EQU User Interface to set time, temp,etc.
022f 3d a3 TST SEC Seconds = 0 ?
0231 26 Oa BNE CHKEY If not, skip ACTIMR
0233 3a b5 DEC ACTIMR Decrement activity timer
0235 26 02 BNE ARMCLR No activity for 1 minute
0237 3f b1 CLR MODE Force to inactive
0239 2a 02 ARMCLR BPL CHKEY Did ACTIMR roll neg ?
023b 3f b5 CLR ACTIMR If so clear it
023d b6 b3 CHKEY LDA KEYVAL Get key value
023f a1 20 CMP #$20 Ignore key if <$20 or > $7F
0241 25 04 BLO XUSER2 Exit if <$20
0243 a1 7f CMP #$7F ? > $7F is invalid
0245 23 03 BLS VALKEY Valid
0247 CC 02 baXUSER2 JMP XUSER May be too far to branch

* valid key has been detected

024a ae 3c VALKEY LDX #60 60 seconds
024c bf b5 STX ACTIMR Set to timeout in 1 min.
024e a1 41 CMP #'A KEYVAL = A ?
0250 27 52 BEQ NXTMOD Advance to next setting
0252 a1 30 CMP #'0 ASCII 0
0254 25 33 BLO TRYENT Branch if < 0
0256 al 39 CMP #'9 ASCII 9
0258 22 2f BHI TRYENT BRANCH IF > 9
025a 3d b6 TST ENTFLG First # in entry ?
025c 26 06 BNE NOFST Skip if not
025e 3f a5 CLR ENTRY Clear ENTRY
0260 3f a4 CLR BCDEQ & its BCD equivalent
0262 3c b6 INC ENTFLG 0 -> 1 (NO LONGER lst)
0264 48 NOFST ASLA Get hex 0-9 in left nibble
0265 48 ASLA
0266 48 ASLA
0267 48 ASLA nnnn 0000 & BCDEQ = xxxx yyyy
M68HC05 Applications Guide — Rev. 4.0

220 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 10 of 21

0268 48 ASLA Roll new digit into BCD
0269 39 a4 ROL BCDEQ Equiv of ENTRY
026b 48 ASLA With 4 double byte
026c 39 a4 ROL BCDEQ left shifts
026e 48 ASLA
026f 39 a4 ROL BCDEQ
0271 48 ASLA
0272 39 a4 ROL BCDEQ BCDEQ now = yyyy nnnn
0274 b6 a4L DA BCDEQ
0276 a4 Of AND #$0F Mask off 10’s
0278 b7 a5 STA ENTRY Temp save 1’s
027a b6 a4 LDA BCDEQ Get BCD again
027c 44 LSRA Right justify 10’s
027d 44 LSRA
027e 44 LSRA
027f 44 LSRA
0280 ae 0a LDX #10
0282 42 MUL A <-10 * BCD 10’s
0283 bb a5A DD ENTRY Add in ones
0285 b7 a5 STA ENTRY Now binary equiv of BCDEQ
0287 20 2d BRA KEYFE Acknowledge key and leave
0289 a1 21 TRYENT CMP #’! Enter key ?
028b 26 29 BNE KEYFE If not, Ack key & leave
028d cd 02 bb JSR CHKPNT Check for legal entry

* On return N-bit indicates legal (Positive) & X points
* at applicable value to be changed (HR,MIN,AMPM,DAY etc.)

0290 2a Oc BPL LEGENTB ranch if legal
0292 e6 a5 LDA ENTRY,X Get current value
0294 b7 a5 STA ENTRY Revert to current (legal) value
0296 3f b6 CLR ENTFLG So next # treated as first
0298 a6 la LDA #26 26 * 50mS = 1.3 sec
029a b7 b4 STA BEEPM Beep 1S/200mS-off/100mS-on
029c 20 18 BRA KEYFE Acknowledge entry attempt
029e e7 a5 LEGENT STA ENTRY,X Update value being set
02a0 a6 08 LDA #8 100mS-on/200mS-off/100mS-on
02a2 b7 b4 STA BEEPM Double beep
02a4 3c b1 NXTMOD INC MODE Adv to next setting
02a6 b6 b1 LDA MODE Check for past 6
02a8 a1 07 CMP #7 <7?
02aa 25 02 BLO NOCLR If OK skip clear
02ac 3f b1 CLR MODE Rollover to 0
02ae be b1 NOCLR LDX MODE use as index to current
02b0 e6 a5 LDA ENTRY,X Get current value of entry
02b2 b7 a5 STA ENTRY Use current as default setting
02b4 3f b6 CLR ENTFLG Indicate next # is 1st
02b6 a6 fe KEYFE LDA #$FE
02b8 b7 b3 STA KEYVAL Acknowledge key closures
02ba 81 XUSER RTS ** RETURN from USER **
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 221
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 11 of 21

* CHKPNT — a utility subroutine used by USER routine
* Checks for entry within legal limits which
* depend on value being changed. HR = 1-12, MIN = 0-59
* and so on. If legal, N bit will be 0 (Positive).
* On return A has enrty value (or $FF if illegal)
* and X points at value to be changed. ENTRY,X
* may be used to access value to be changed.

02bb b6 a5 CHKPNT LDA ENTRY For compares to chk limits
02bd be bl LDX MODE For compares & as return pointer
02bf a3 01 CPX #1 Set HR ?
02c1 26 08 BNE TRI2 If not
02c3 al 01 CMP #1 <1?
02c5 25 04 BLO TRI2 illegal (will ripple through)
02c7 al Oc CMP #12 1-12 ?
02c9 23 3b BLS OKENT Valid HR entry
02cb a3 02 TRI2 CPX #2 Set MIN ?
02cd 26 07 BNE TRI3 If not
02cf 4d TSTA <0?
02d0 2b 04 BMI TRI3 illegal (will ripple through)
02d2 a1 3b CMP #59 0-59 ?
02d4 23 30 BLS OKENT Valid MIN entry
02d6 a3 03 TRI3 CPX #3 Set AMPM ?
02d8 26 07 BNE TRI4 If not
02da 4d TSTA <0?
02db 2b 04 BMI TRI4 illegal (will ripple through)
02dd a1 01 CMP #1 0 or 1 ?
02df 23 25 BLS OKENT Valid AMPM entry
02el a3 04 TRI4 CPX #4 Set DAY ?
02e3 26 08 BNE TRI5 If not
02e5 al 01 CMP #1 <1?
02e7 25 04 BLO TRI5 illegal (will ripple through)
02e9 a1 07 CMP #7 1-7 ?
02eb 23 19 BLS OKENT Valid DAY entry
02ed a3 05 TRI5 CPX #5 Set HVAC Mode ?
02ef 26 07 BNE TRI6 If not
02f1 4d TSTA <0?
02f2 2b 04 BMI TRI6 illegal (will ripple through)
02f4 a1 03 CMP #3 0-3 ?
02f6 23 Oe BLS OKENT Valid HVACM entry
02f8 a3 06 TRI6 CPX #6 Set GOAL Temp ?
02fa 26 08 BNE BADENT Illegal entry
02fc al 32 CMP #50 <50°F ?
02fe 25 04 BLO BADENT illegal
0300 al 63 CMP #99 < or = 99°F ?
0302 23 02 BLS OKENT Valid goal temp
0304 a6 ff BADENT LDA #$FF A negative value to set N
0306 b7 a5 OKENT STA ENTRY Sets/or clears N
0308 81 RTS ** Return from CHKPNT

* !!! There is more to this exit than is obvious. X = MODE
* so X points at entry to be changed HR,MIN,AMPM,DAY,HVACM,GOAL
* A has entry (or $FF if it was illegal). After return N-bit
* of CCR indicates whether entry was OK or not.
* STA ENTRY was used to make N bit reflect sign of ENRTY
* rather than the result of a compare.
M68HC05 Applications Guide — Rev. 4.0

222 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 12 of 21

* A2D — Check temp. sensors (via SPI and MC145041) *
* If TIC = 0, send addr 0 ignore return data *
* If TIC = 1, send addr 1 return data is ch.0 val *
* If TIC = 2, send addr 2 return data is ch.1 val *
* If TIC > 2, skip A2D routine *
* To compensate for sensor & op-amp offset, A/D result *
* will be modified by subtracting an offset constant *

0309 A2D EQU * Check temp. sensors
0309 b6 a2 LDA TIC If Tic = 0, 1, or 2 write to SPI
030b a1 02 CMP #2
030d 22 24 BHI XA2D If Tic > 2; Exit
030f 48 ASIA Move TIC # 0-2 to upper nibble
0310 48 ASLA
0311 48 ASLA
0312 48 ASLA 4 bit left shift
0313 3d 0b TST SPSR Reads SPIF (part of SPIF clear)
0315 17 02 BCLR 3,PORTC Drive low true SA/D CE* to 0
0317 b7 0c STA SPDR Initiates a transfer

* Requests conversion of next channel and returns data
* from previous channel Ch.0 = Indoor Ch.1 = 0utdoor

0319 0f 0b fd SPIFLP BRCLR 7,SPSR,SPIFLP Wait for SPI Xfer complete
031c 16 02 BSET 3,PORTC Drive low true SA/D CE* to 1
031e b6 a2 LDA TIC If 0-Exit, 1 or 2 Read A/D data
0320 27 11 BEQ XA2D 0 so exit
0322 b6 0c LDA SPDR Get A/D data
0324 02 a2 07 BRSET 1,TIC,ADCH1 If Tic = 2, data is Ch.1
0327 c0 06 ea SUB OFF0 A/D Ch.0; subtract offset
032a b7 ac STA INTMP update indoor temperature
032c 20 05 BRA XA2D & Exit
032e c0 06 eb ADCH1 SUB OFF1 A/D Ch.1; subtract offset
0331 b7 ad STA OUTMP Update outdoor temperature
0333 81 XA2D RTS ** RETURN From A2D **
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 223
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 13 of 21

**
* HVAC — Update Fan, Heat, and Cool outputs *
* Low-true outputs will be buffered to drive 24VAC *
* relay coils in HVAC equipment.(high true in final) *
* Heat and Cool requests should not permit short- *
* cycle (ie a min delay is required between changes) *
* Once Heat or Cool requested, do not turn off for *
* at least 30 sec. Also enforce 30 sec. minimum *
* off time to restart. *
* Allow ± 1° around target temp as hysteresis. *
* HVACM = 0 — Off, 1 — Heat, 2 — Cool, 3 — Fan Only *
**

0334 HVAC EQU Update Fan, Heat, and Cool outputs
0334 b6 a3 LDA SEC Exit unless sec = 0 or 30
0336 27 04 BEQ DOHVAC 0 so do HVAC
0338 al le CMP #30
033a 26 60 BNE XHVAC Exit if not 0 or 30
033c b6 aa DOHVAC LDA HVACM 0-off, 1-heat, 2-cool, 3-fan
033e 26 08 BNE HM1Q If not 0 go see if 1
0340 b6 02 LDA PORTC Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0342 aa e0 ORA #$EO Set fan, heat, cool all high (off)
0344 b7 02 STA PORTC Update port
0346 20 54 BRA XHVAC & Exit
0348 a1 01 HM1Q CMP #1 Check for mode 1-heat
034a 26 23 BNE HM2Q If not go see if 2
034c 1a 02 BSET 5rPORTC Turn off cool output
034e b6 ab LDA GOAL Get target temp
0350 0c 02 0d BRSET 6,PORTC,HONQ If not; see if it should be

* Heat on; turn off when indoor temp > goal + 1
0353 4c INCA Goal + 1 for hysteresis
0354 b1 ac CMP INTMP GOAL + 1 < INTMP ? Turn off ?
0356 24 44 BHS XHVAC NO; just leave
0358 Ic 02 BSET 6,PORTC Turn off heat
035a le 02 BSET 7,PORTC Turn off fan
035c 3f b2 CLR HVACON Turn off flag to indicate off
035e 20 3c BRA XHVAC Then leave

* Heat off; turn on when indoor temp < goal-1
0360 4a HONQ DECA Goal-1 for hysteresis
0361 bl ac CMP INTMP GOAL-1 > INTMP ? Turn on ?
0363 23 37 BLS XHVAC NO; just leave
0365 lf 02 BCLR 7,PORTC Turn on fan
0367 ld 02 BCLR 6,PORTC Turn on heat
0369 a6 01 LDA #1
036b b7 b2 STA HVACON Set flag to indicate on
036d 20 2d BRA XHVAC Then leave
036f a1 02 HM2Q CMP #2 Check for mode 2-cool
0371 27 08 BEQ HCOOL Branch if cool mode 2
0373 1f 02 BCLR 7,PORTC Turn on fan
0375 1c 02 BSET 6,PORTC Turn off heat
0377 la 02 BSET 5,PORTC Turn off cool
0379 20 21 BRA XHVAC Then leave
037b lc 02 HCOOL BSET 6,PORTC Turn off heat output
037d b6 ab LDA GOAL Get target temp
037f 0a 02 0d BRSET 5,PORTC,CONQ If not; see if it should be
M68HC05 Applications Guide — Rev. 4.0

224 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 14 of 21

* Cool on; turn off when indoor temp < goal-1
0382 4c INCA Goal-1 for hysteresis
0383 b1 ac CMP INTMP GOAL-1 > INTMP ? Turn off ?
0385 23 15 BLS XHVAC NO; just leave
0387 1a 02 BSET 5,PORTC Turn off cool
0389 1e 02 BSET 7,PORTC Turn off fan
038b 3f b2 CLR HVACON Turn off flag to indicate off
038d 20 0d BRA XHVAC Then leave

* Cool off; turn on when indoor temp > goal + 1
038f 4a CONQ DECA Goal + 1 for hysteresis
0390 b1 ac CMP INTMP GOAL + 1 < INTMP ? Turn on ?
0392 24 08 BHS XHVAC NO; just leave
0394 1f 02 BCLR 7,PORTC Turn on fan
0396 1b 02 BCLR 5,PORTC Turn on cool
0398 a6 01 LDA #1
039a b7 b2 STA HVACON Set flag to indicate on
039c 81 XHVAC RTS ** RETURN from HVAC **

* LCD-LCD Display Update *
* If value is being set now, display ENTRY rather than *
* the current value and flash it like time colon. *
* Flash time colon if time not being set now (else:on) *
* Update current time if time not being set now *
* Update HVAC active ’*’ unless HVAC mode being set now *
* Flash value to set if user is changing a setting *

039d LCD EQU * LCD Display Update
039d a6 80 LDA #$80 Left end of lst row
039f cd 06 20 JSR WCTRL Position entry point
03a2 b6 a2 LDA TIC 50mS periods 0-19
03a4 27 09 BEQ TICO Only update once/sec
03a6 al 0a CMP #10 TIC = 10 at mid second
03a8 26 08 BNE XLCD If not 0 or 10, just leave
03aa cd 03 b3 JSR BLINKR Blanks colon or value being set
03ad 20 03 BRA XLCD Exit
03af cd 04 0f TIC0 JSR DSPLAY Update the LCD display
03b2 81 XLCD RTS ** RETURN from LCD **
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 225
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 15 of 21

* Following subroutines support the LCD main task

03b3 BLINKR EQU * Blink colon or user entry
03b3 be b1 LDX MODE Mode 0 ?
03b5 26 07 BNE CIF1 If not see if mode 1
03b7 a6 82 LDA #$82 Cursor position of colon
03b9 cd 06 20 JSR WCTRL Send cursor position to LCD
03bc 20 4b BRA SP1 Send 1 ASCII space and leave
03be 5a CIF1 DECX Mode 1 ?
03bf 26 07 BNE CIF2 If not see if mode 2
03c1 a6 80 LDA #$80 Cursor position of HR
03c3 cd 06 20 JSR WCTRL Send cursor position to LCD
03c6 20 3c BRA SP2 Send 2 ASCII spaces and leave
03c8 5a CIF2 DECX mode 2 ?
03c9 26 07 BNE CIF3 If not see if mode 3
03cb a6 83 LDA #$83 Cursor position of MIN
03cd cd 06 20 JSR WCTRL Send cursor position to LCD
03d0 20 32 BRA SP2 Send 2 ASCII spaces and leave
03d2 5a CIF3 DECX mode 3 ?
03d3 26 07 BNE CIF4 If not see if mode 4
03d5 a6 86 LDA #$86 Cursor position of AMPM
03d7 cd 06 20 JSR WCTRL Send cursor position to LCD
03da 20 2d BRA SP1 Send 1 ASCII space and leave
03dc 5a CIF4 DECX Mode 4 ?
03dd 26 07 BNE CIF5 If not see if mode 5
03df a6 88 LDA #$88 Cursor position of DAY
03e1 cd 06 20 JSR WCTRL Send cursor position to LCD
03e4 20 16 BRA SP4 Send 4 ASCII spaces and leave
03e6 5a CIF5 DECX Mode 5 ?
03e7 26 07 BNE MUSTB6 If not, mode must be 6
03e9 a6 c0 LDA #$C0 Cursor position of HVAC Mode
03eb cd 06 20 JSR WCTRL Send cursor position to LCD
03ee 20 07 BRA SP5 Send 5 ASCII spaces and leave
03f0 a6 c6 MUSTB6 LDA #$C6 Must be mode 6
03f2 cd 06 20 JSR WCTRL Cursor position of Goal Temp
03f5 20 0d BRA SP2 Send 2 ASCII spaces and leave
03f7 a6 20 SP5 LDA #$20 ASCII space <sp>
03f9 cd 06 3a JSR WDAT Send a space to LCD
03fc a6 20 SP4 LDA #$20 ASCII space <sp>
03fe cd 06 3a JSR WDAT Send a space to LCD
0401 cd 06 3a JSR WDAT Send a space to LCD
0404 a6 20 SP2 LDA #$20 ASCII space <sp>
0406 cd 06 3a JSR WDAT Send a space to LCD
0409 a6 20 SP1 LDA #$20 ASCII space <sp>
040b cd 06 3a JSR WDAT Send a space to LCD
040e 81 RTS ** RETURN from BLINKR **
M68HC05 Applications Guide — Rev. 4.0

226 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 16 of 21

* DSPLAY — Writes full 40 character display of current *
* system conditions to the LCD display peripheral *
* Following is a typical LCD display ... *
* 1 2 : 0 0 A S U N I N 7 5 ° F *
* O F F 7 2 ° 0 U T 1 0 2 ° F *

040f a6 00 DSPLAY LDA #$00 Left end of lst line on LCD
0411 cd 06 20 JSR WCTRL Position entry point
0414 be b1 LDX MODE Use for mode compares
0416 b6 a6 LDA HR
0418 a3 01 CPX #1 Mode = HR set ?
041a 26 02 BNE AE1 Skip if not 1
041c b6 a5 LDA ENTRY Use ENTRY rather than HR
041e cd 06 a6 AE1 JSR CNVERT Convert HRs to ASCII
0421 cd 06 56 JSR SHOW2 Display as 2 digits
0424 a6 3a LDA #': ASCII colon
0426 cd 06 3a JSR WDAT To LCD
0429 b6 a7 LDA MIN
042b a3 02 CPX #2 Mode = MIN set ?
042d 26 02 BNE AE2 Skip if not 2
042f b6 a5 LDA ENTRY Use ENTRY rather than MIN
0431 cd 06 a6 AE2 JSR CNVERT Convert MINs to ASCII
0434 cd 06 56 JSR SHOW2 Display as 2 digits
0437 a6 20 LDA #$20 ASCII <Sp>
0439 cd 06 3a JSR WDAT <Sp> to LCD
043c b6 a8 LDA AMPM Current AMPM indicator
043e a3 03 CPX #3 Mode = AMPM set ?
0440 26 02 BNE AE3 Skip if not 3
0442 b6 a5 LDA ENTRY Use ENTRY rather than AMPM
0444 4d AE3 TSTA Check for AM (0)
0445 26 04 BNE ITSPM If not its PM
0447 a6 41 LDA #'A ASCII A
0449 20 02 BRA SHOWAP Display A for AM
044b a6 50 ITSPM LDA #,P If it wasn't AM
044d cd 06 3a SHOWAP JSR WDAT Show A or P
0450 a6 20 LDA #$20 ASCII <Sp>
0452 cd 06 3a JSR WDAT To LCD
0455 a6 fc LDA #-4 Offset from MDAY
0457 a3 04 CPX #4 Mode = DAY set ?
0459 26 04 BNE AE4 Skip if not 4
045b be a5 LDX ENTRY Use ENTRY rather than DAY
045d 20 02 BRA DAYLP Print Entry day
045f be a9 AE4 LDX DAY DAY = 1 to 7
0461 ab 04 DAYLP ADD #4 Advance pointer to next MDAY entry
0463 5a DECX 1 -> 0 or n -> (n-1)
0464 26 fb BNE DAYLP Loop till X = 0 (A will = 4*DAY)
0466 97 TAX Move offset to X
0467 d6 06 8a SHODAY LDA MDAY,X Get next char
046a a1 04 CMP #4 End of message ?
046c 27 06 BEQ DUNDAY If done printing day
046e cd 06 3a JSR WDAT Send char to LCD
0471 5c INCX Point at next char
0472 20 f3 BRA SHODAY Loop till $04 found
0474 5f DUNDAY CLRX Loop index
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 227
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 17 of 21

0475 d6 06 80 LPSIN LDA MSINS,X Get next ASCII char
0478 cd 06 3a JSR WDAT Loop prints ‘ IN '
047b 5c INCX
047c a3 05 CPX #5
047e 26 f5 BNE LPSIN Loop till 5 chars
0480 b6 ac LDA INTMP Indoor temp
0482 cd 06 a6 JSR CNVERT Convert to ASCII
0485 cd 06 56 JSR SHOW2 Display as 2 digits
0488 cd 06 5f JSR LCDDF Display '°F'
048b a6 c0 LDA #$C0 Left end of 2nd line
048d cd 06 20 JSR WCTRL Reposition entry point
0490 a6 20 LDA #$20 ASCII <sp >
0492 3d b2 TST HVACON Heat/cool running ?
0494 27 02 BEQ ARNAST If not go around asterisk
0496 a6 2a LDA #'* ASCII asterisk
0498 cd 06 3a ARNAST JSR WDAT Show <sp > or *
049b 5f CLRX Message offset from MHVAC
049c b6 b1 LDA MODE Get Mode in A
049e a1 05 CMP #5 Mode = HVACM set ?
04a0 26 04 BNE AE5 Skip if not 5
04a2 b6 a5 LDA ENTRY Use ENTRY rather than HVACM
04a4 20 02 BRA AE5B
04a6 b6 aa AE5 LDA HVACM HVAC mode
04a8 27 0e AE5B BEQ HVD If HVACM = 0 display 'OFF '
04aa ae 06 LDX #6 Offset to 'HEAT '
04ac a1 01 CMP #1 Heat mode ?
04ae 27 08 BEQ HVD If so; display
04b0 ae 0c LDX #12 Offset to 'COOL '
04b2 a1 02 CMP #2 Cool mode ?
04b4 27 02 BEQ HVD If so; display
04b6 ae 12 LDX #18 Offset to 'FAN ' (must be)
04b8 d6 06 68 HVD LDA MHVAC,X
04bb a1 04 CMP #4 End of message ?
04bd 27 06 BEQ DUNHVD If so, skip ahead
04bf cd 06 3a JSR WDAT Else display nxt char
04c2 5c INCX Point at next
04c3 20 f3 BRA HVD Continue loop
04c5 b6 ab DUNHVD LDA GOAL Goal temp setting
04c7 be bl LDX MODE Get mode in X
04c9 a3 06 CPX #6 Mode = GOAL set ?
04cb 26 02 BNE AE6 Skip if not 6
04cd b6 a5 LDA ENTRY Use ENTRY rather than GOAL
04cf cd 06 a6 AE6 JSR CNVERT Convert to ASCII
04d2 cd 06 56 JSR SHOW2 Display as 2 digits
04d5 cd 06 5f JSR LCDDF Display '°F'
04d8 5f CLRX Loop index
04d9 d6 06 85 LPSOT LDA MSOUT,X Get message character
04dc cd 06 3a JSR WDAT Send to LCD
04df 5c INCX Nxt char of ' OUT '
04e0 a3 05 CPX #5 Check for done
04e2 26 f5 BNE LPSOT Loop for 5 characters
04e4 b6 ad LDA OUTMP Outdoor temp
04e6 cd 06 a6 JSR CNVERT Convert to ASCII
04e9 cd 06 52 JSR SHOW3 Display as 3 digits
04ec cd 06 5f JSR LCDDF Display '°F'
04ef 81 RTS ** RETURN from DSPLAY **
M68HC05 Applications Guide — Rev. 4.0

228 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 18 of 21

0600 ORG $0600 Temp ORG to get subs away from main

* SUBROUTINES & CONSTANT TABLES *

* Keypad Correspondance Table
* 1st entry of each pair is Row/Col bit pattern
* 2nd entry of each pair is ASCII equiv of key

* COL # -> 1 2 3 4
* v v v v
* This is layout of keypad
* ROW 1 -> 1 2 3 A
* ROW 2 -> 4 5 6 B
* ROW 3 -> 7 8 9 C
* ROW 4 -> < 0 > !

* Port B layout is ...
* R4,R3,R2,R1; C1,C2,C3,C4 R’s = ins, C’s = outs
*

0600 18 31 KYTBL FCB $18,’1 Row 1, Col 1 (Top Left)
0602 28 34 FCB $28,’4 Row 2, Col 1
0604 48 37 FCB $48,’7 Row 3, Col 1
0606 88 3c FCB $88,’< Row 4, Col 1
0608 14 32 FCB $14,’2 Row 1, Col 2
060a 24 35 FCB $24,’5 Row 2, Col 2
060c 44 38 FCB $44,’8 Row 3, Col 2
060e 84 30 FCB $84,’0 Row 4, Col 2
0610 12 33 FCB $12,’3 Row l, Col 3
0612 22 36 FCB $22,’6 Row 2, Col 3
0614 42 39 FCB $42,’9 Row 3, Col 3
0616 82 3e FCB $82,’> Row 4, Col 3
0618 11 41 FCB $11,’A Row 1, Col 4
061a 21 42 FCB $21,’B Row 2, Col 4
061c 41 43 FCB $41,’C Row 3, Col 4
061e 81 21 FCB $81,’! Row 4, Col 4 (Bot Right)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 229
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 19 of 21

* WCTRL — Write control word to LCD peripheral *
* Enter with control word in accumulator *
* Return with original value of X *
* Delay-4.5mS if A = $01 or $02 else delay ~ 120µS *

0620 bf al WCTRL STX TEMPX Save X
0622 b7 00 STA PORTA write control word to LCD
0624 14 02 BSET 2,PORTC E -> 1
0626 15 02 BCLR 2,PORTC E -> 0
0628 ae 14 LDX #20 20*6~ *1µS/∼= l20µS
062a 5a L120U DECX Delay loop ~ 120µS
062b 26 fd BNE L120U 20-19,l9-18 ... 1-0
062d al 02 CMP #$02 Commands $01 & $02 req extra delay
062f 22 06 BHI ARN5M If command > $02 skip long delay
0631 cd 06 39 L5M JSR ANRTS JSR + RTS TAKES 12~ (just want delay)
0634 5a DECX TAKES 3-(X = 0 -> 1 on first pass)
0635 26 fa BNE L5M 3~Loop 256*l8~*1µS/~=4.608mS Delay
0637 be a1 ARN5M LDX TEMPX Restore X
0639 81 ANRTS RTS RETURN

* WDAT — Write data word to LCD peripheral *
* Enter with data word in accumulator *
* Return with original values of X & A *
* Delay ~ 120µS after data write *

063a bf a1 WDAT STX TEMPX Save X
063c b7 a0 STA TEMPA Save A
063e b7 00 STA PORTA Write data word to LCD
0640 12 02 BSET l,PORTC RS -> 1
0642 14 02 BSET 2,PORTC E -> 1
0644 15 02 BCLR 2,PORTC E -> 0
0646 13 02 BCLR 1,PORTC RS -> 0
0648 ae 14 LDX #20 20*6~*1µS/∼= 120µS
064a 5aL120 DECX Delay loop ~120µS
064b 26 fd BNE L120 20-19,19-18 ... 1-0
064d b6 a0 LDA TEMPA Restore A
064f be al LDX TEMPX Restore X
0651 81 RTS ** RETURN **
M68HC05 Applications Guide — Rev. 4.0

230 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Applications
Thermostat Project Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 20 of 21

* SHOW3 — Display 3 ASCII chars on LCD *
* ASC100, ASC10; ASC1 *
* SHOW - Display 2 ASCII chars on LCD *
* ASC10; ASC1 *

0652 b6 ae SHOW3 LDA ASC100 Get ASCII 100's digit
0654 ad e4 BSR WDAT Send to LCD
0656 b6 af SHOW2 LDA ASC10 Get ASCII 10's digit
0658 ad e0 BSR WDAT Send to LCD
065a b6 bo IDA ASC1 Get ASCII 1's digit
065c ad dc BSR WDAT Send to LCD
065e 81 RTS ** RETURN **

* LCDDF-Display °F on LCD *

065f a6 df LCDDF LDA #$DF Get ASCII degrees symbol
0661 ad d7 BSR WDAT Send to LCD
0663 a6 46 LDA #’F Get ASCII capitol F
0665 ad d3 BSR WDAT Send to LCD
0667 81 RTS ** RETURN

* Normal LCD display format ...
* H H : M M A D A Y I N 1 0 0 ° F
*_H E A T 7 2 °_0 U T - 2 2 ° F
* 1st line of display is $00 (left)-$13
* 2nd line of display is $40-$53

* Miscellaneous LCD message segments (Used in DSPLAY sub)
0668 4f 46 46 20 20 MHVAC FCC 'OFF These 4 messages accessed by
066d 04 FCB $04 X offset from MHVAC. $04 is
066e 48 45 41 54 20 FCC 'HEAT used to mark the end of a string
0673 04 FCB $04
0674 43 4f 4f 4c 20 FCC 'COOL
0679 04 FCB $04
067a 46 41 4e 20 20 FCC 'FAN
067f 04 FCB $04
0680 20 20 49 4e 20 MSINS FCC IN
0685 20 4f 55 54 20 MSOUT FCC OUT
068a 53 55 4e MDAY FCC 'SUN' These messages accessed by
068d 04 FCB $04 xoffset from MDAY. $04 is
068e 4d 4f 4e FCC 'MON' used to mark the end of a string
0691 04 FCB $04
0692 54 55 45 FCC 'TUE'
0695 04 FCB $04
0696 57 45 44 FCC 'WED'
0699 04 FCB $04
069a 54 48 55 FCC 'THU'
069d 04 FCB $04
069e 46 52 49 FCC 'FRI'
06al 04 FCB $04
06a2 53 41 54 FCC 'SAT'
06a5 04 FCB $04
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Applications 231
For More Information On This Product,

 Go to: www.freescale.com

Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing — Thermostat Example Sheet 21 of 21

* CNVERT — Convert a binary value to ASCII *
* Enter with binary value in A *
* Result stored in ASC100, ASC10, ASC1 *
* ASC100 (100's digit) defaults to blank (<sp >) *
* but could be 1 or minus (-) depending on valu *
* ASC10 and ASC1 digits default to zeros *
* Result can be-99 through 127. *

06a6 b7 a0 CNVERT STA TEMPA Save original binary value
06a8 a6 20 LDA #$20 ASCII <sp >
06aa b7 ae STA ASC100 Tenative 100's digit
06ac a6 30 LDA #'0 ASCII zero
06ae b7 af STA ASC10 Tenative 10's
06b0 b7 b0 STA ASC1 Tenative 1's
06b2 b6 a0 LDA TEMPA Get value to convert
06b4 2a 19 BPL CVPOS Branch if value positive
06b6 a6 2d LDA #'- ASCII minus sign
06b8 b7 ae STA ASC100
06ba b6 a0 LDA TEMPA Get orig value again
06bc 3c af LP10S INC ASC10 Loop to find 10's digit
06be ab 0a ADD #10 Trial addition
06c0 2b fa BMI LP10S Loop till addition fails
06c2 27 25 BEQ XVERT If 0 conversion done; exit
06c4 3a af DEC ASC10 Too far; back up
06c6 a0 0a SUB #10 Now between-9 & -1
06c8 40 NEGA Change to positive
06c9 bb b0 ADD ASC1 Add to 1's digit
06cb b7 b0 STA ASC1 Update RAM location
06cd 20 1a BRA XVERT Conversion done; exit

06cf a1 64 CVPOS CMP #100 Value > 100 ?
06dl 25 08 BLO LPAS10 If less; skip 100's
06d3 a6 31 LDA #'1
06d5 b7 ae STA ASC100 Put ASCII 1 in 100's
06d7 b6 a0 LDA TEMPA Get value again
06d9 a0 64 SUB #100 Take 100 away
06db 3c af LPAS10 INC ASC10 Increments 10's
06dd a0 0a SUB #10 Trial subtraction
06df 2a fa BPL LPAS10 Loop till trial sub fails
06el 3a af DEC ASC10 Too far
06e3 ab 0a ADD #10 Add back, now 0-9
06e5 bb b0 ADD ASC1 Add to ASCII 1's
06e7 b7 b0 STA ASC1 Update RAM location
06e9 81 XVERT RTS ** RETURN from CNVERT **

* A/D Offsets to compensate sensors
* Analog temp = (A/D reading)-(Offset)

06ea 3c OFF0 FCB 60 Offset correction for sensor 1
06eb 3c OFF1 FCB 60 Offset correction for sensor 2

1ffe ORG $1FFE Reset vector address
1ffe 01 00 FDB INIT Reset vector
M68HC05 Applications Guide — Rev. 4.0

232 Applications MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

Appendix A. Instruction Set Details

A.1 Contents

A.2 Introduction .235

A.3 M68HC05 Instruction Set .237
ADC — Add with Carry. 238
ADD — Add without Carry . 239
AND — Logical AND . 240
ASL — Arithmetic Shift Left . 241
ASR — Arithmetic Shift Right . 242
BCC — Branch if Carry Clear. 243
BCLR n — Clear Bit in Memory . 244
BCS — Branch if Carry Set . 245
BEQ — Branch if Equal . 246
BHCC — Branch if Half Carry Clear. 247
BHCS — Branch if Half Carry Set 248
BHI — Branch if Higher . 249
BHS — Branch if Higher or Same 250
BIH — Branch if Interrupt Pin is High 251
BIL — Branch if Interrupt Pin is Low 252
BIT — Bit Test Memory with Accumulator 253
BLO — Branch if Lower . 254
BLS — Branch if Lower or Same 255
BMC — Branch if Interrupt Mask is Clear 256
BMI — Branch if Minus. 257
BMS — Branch if Interrupt Mask is Set 258
BNE — Branch if Not Equal . 259
BPL — Branch if Plus. 260
BRA — Branch Always. 261
BRCLR n — Branch if Bit n is Clear 262
BRN — Branch Never . 263
BRSET n — Branch if Bit n is Set 264
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 233
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSET n — Set Bit in Memory . 265
BSR — Branch to Subroutine. 266
CLC — Clear Carry Bit . 267
CLI — Clear Interrupt Mask Bit . 268
CLR — Clear . 269
CMP — Compare Accumulator with Memory. 270
COM — Complement . 271
CPX — Compare Index Register with Memory 272
DEC — Decrement. 273
EOR — Exclusive-OR Memory with Accumulator 274
INC — Increment . 275
JMP — Jump . 276
JSR — Jump to Subroutine . 277
LDA — Load Accumulator from Memory 278
LDX — Load Index Register from Memory 279
LSL — Logical Shift Left. 280
LSR — Logical Shift Right . 281
MUL — Multiply Unsigned . 282
NEG — Negate . 283
NOP — No Operation. 284
ORA — Inclusive-OR . 285
ROL — Rotate Left thru Carry . 286
ROR — Rotate Right thru Carry. 287
RSP — Reset Stack Pointer. 288
RTI — Return from Interrupt. 289
RTS — Return from Subroutine . 290
SBC — Subtract with Carry . 291
SEC — Set Carry Bit . 292
SEI — Set Interrupt Mask Bit . 293
STA — Store Accumulator in Memory 294
STOP — Enable IRQ, Stop Oscillator 295
STX — Store Index Register X in Memory. 296
SUB — Subtract . 297
SWI — Software Interrupt . 298
TAX — Transfer Accumulator to Index Register 299
TST — Test for Negative or Zero 300
TXA — Transfer Index Register to Accumulator 301
WAIT — Enable Interrupt, Stop Processor. 302
M68HC05 Applications Guide — Rev. 4.0

234 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.2 Introduction

This section contains complete detailed information for all M68HC05
instructions. The instructions are arranged in alphabetical order with the
instruction mnemonic set in larger type for easy reference.

The nomenclature listed below is used in the following definitions:

(a) Operators
() = Contents of Register or Memory Location Shown inside

Parentheses
← = Is Loaded with (read: "gets")
↑ = Is Pulled from Stack
↓ = Is Pushed onto Stack
• = Boolean AND
+ = Arithmetic Addition (Except Where Used as Inclusive-OR

in Boolean Formula)
⊕ = Boolean Exclusive-OR
X = Multiply
: = Concatenate
– = Negate (Twos Complement)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 235
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(b) CPU Registers
ACCA = Accumulator
CCR = Condition Code Register
X = Index Register
PC = Program Counter
PCH = Program Counter, Higher Order (Most Significant) 8 Bits
PCL = Program Counter, Lower Order (Least Significant) 8 Bits
SP = Stack Pointer

(c) Memory and Addressing
M = A memory location or absolute data, depending on

addressing mode
Rel = Relative offset (i.e., the twos-complement number stored

in the last byte of machine code corresponding to a branch
instruction)

(d) Condition Code Register (CCR) bits
H = Half Carry, Bit 4
I = Interrupt Mask, Bit 3
N = Negative Indicator, Bit 2
Z = Zero Indicator, Bit 1
C = Carry/Borrow, Bit 0

(e) Bit status BEFORE execution
(n = 7, 6, 5, . . . 0)
An = Bit n of ACCA
X n = Bit n of X
Mn = Bit n of M

(f) Bit status AFTER execution
Rn = Bit n of the result (n = 7, 6, 5, . . . 0)

(g) CCR activity summary figure notation
— = Bit not affected
0 = Bit forced to zero
1 = Bit forced to one
� = Bit set or cleared according to results of operation
M68HC05 Applications Guide — Rev. 4.0

236 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(h) Machine coding notation
dd = Low-order 8 bits of a direct address $0000-$00FF (high

byte assumed to be $0000)
ee = Upper 8 bits of 16-bit offset
ff = Lower 8 bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
hh = High-order byte of 16-bit extended address
ll = Low-order byte of 16-bit extended address
rr = Relative offset

(i) Source form notation
(opr) = Operand (one or two bytes depending on address mode)
(rel) = Relative offset used in branch and bit manipulation

instructions

A.3 M68HC05 Instruction Set

The following pages contain complete detailed information for all
M68HC05 instructions. The instructions are arranged in alphabetical
order with the instruction mnemonic set in larger type for easy reference.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 237
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADC Add with Carry ADC

Operation ACCA ← (ACCA) + (M) + (C)

Description Adds the contents of the C bit to the sum of the contents of ACCA and
M and places the result in ACCA.

Condition Codes
and Boolean
Formulae

H A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 � — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ADC (opr) IMM A9 ii 2

ADC (opr) DIR B9 dd 3

ADC (opr) EXT C9 hh ll 4

ADC, X IX F9 3

ADC (opr),X IX1 E9 ff 4

ADC (opr),X IX2 D9 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

238 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADD Add without Carry ADD

Operation ACCA ← (ACCA) + (M)

Description Adds the contents of M to the contents of ACCA and places the result in
ACCA.

Condition Codes
and Boolean
Formulae

H A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 � — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ADD (opr) IMM AB ii 2

ADD (opr) DIR BB dd 3

ADD (opr) EXT CB hh ll 4

ADD,X IX FB 3

ADD (opr),X IX1 EB ff 4

ADD (opr),X IX2 DB ee ff 5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 239
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AND Logical AND AND

Operation ACCA ← (ACCA) • (M)

Description Performs the logical AND between the contents of ACCA and the
contents of M and places the result in ACCA. (Each bit of ACCA after the
operation will be the logical AND of the corresponding bits of M and of
ACCA before the operation.)

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

AND (opr) IMM A4 ii 2

AND (opr) DIR B4 dd 3

AND (opr) EXT C4 hh ll 4

AND,X IX F4 3

AND (opr),X IX1 E4 ff 4

AND (opr),X IX2 D4 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

240 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASL Arithmetic Shift Left ASL
(Same as LSL)

Operation

Description Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded
with a zero. The C bit in the CCR is loaded from the most significant bit
of ACCA, X, or M.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C b7
Set if, before the shift, the MS B of the shifted value was set; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

C b7 – – – – – – b0 0

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ASLA INH (A) 48 3

ASLX INH (X) 58 3

ASL (opr) DIR 38 dd 5

ASL, X IX 78 5

ASL (opr),X IX1 68 ff 6
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 241
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASR Arithmetic Shift Right ASR

Operation

Description Shifts all of ACCA, X, or M one place to the right. Bit 7 is held constant.
Bit 0 is loaded into the C bit of the CCR. This operation effectively divides
a twos-complement value by two without changing its sign. The carry bit
can be used to round the result.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C b0
Set if, before the shift, the LSB of the shifted value was set; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

Cb7 – – – – – – b0

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ASRA INH (A) 47 3

ASRX INH (X) 57 3

ASR (opr) DIR 37 dd 5

ASR, X IX 77 5

ASR (opr),X IX1 67 ff 6
M68HC05 Applications Guide — Rev. 4.0

242 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCC Branch if Carry Clear BCC
(Same as BHS)

Operation PC ← (PC) + $0002 + Rel if (C) = 0

Description Tests the state of the C bit in the CCR and causes a branch if C is clear.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BCC (rel) REL 24 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 243
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR n Clear Bit in Memory BCLR n

Operation Mn ← 0

Description Clear bit n (n = 7, 6, 5,...0) in location M. All other bits in M are
unaffected. M can be any RAM or I/O register address in the $0000 to
$00FF area of memory (i.e., direct addressing mode is used to specify
the address of the operand).

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BCLR 0,(opr) DIR (bit 0) 11 dd 5

BUR 1,(opr) DIR (bit 1) 13 dd 5

BCLR 2,(opr) DIR (bit 2) 15 dd 5

BCLR 3,(opr) DIR (bit 3) 17 dd 5

BCLR 4,(opr) DIR (bit 4) 19 dd 5

BUR 5,(opr) DIR (bit 5) 1B dd 5

BUR 6,(opr) DIR (bit 6) 1D dd 5

BCLR 7,(opr) DIR (bit 7) 1F dd 5
M68HC05 Applications Guide — Rev. 4.0

244 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCS Branch if Carry Set BCS
(Same as BLO)

Operation PC ← (PC) + $0002 + Rel if (C) = 1

Description Tests the state of the C bit in the CCR and causes a branch if C is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BCS (rel) REL 25 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 245
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BEQ Branch if Equal BEQ

Operation PC ← (PC) + $0002 + Rel if (Z) = 1

Description Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Following a CMP or SUB instruction, BEQ will cause a branch if the
arguments were equal.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BEQ (rel) REL 27 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

246 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHCC Branch if Half Carry Clear BHCC

Operation PC ← (PC) + $0002 + Rel if (H) = 0

Description Tests the state of the H bit in the CCR and causes a branch if H is clear.
This instruction is used in algorithms involving BCD numbers.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHCC (rel) REL 28 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 247
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHCS Branch if Half Carry Set BHCS

Operation PC ← (PC) + $0002 + Rel if (H) = 1

Description Tests the state of the H bit in the CCR and causes a branch if H is set.
This instruction is used in algorithms involving BCD numbers. See BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHCS (rel) REL 29 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

248 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHI Branch if Higher BHI

Operation C ← (PC) + $0002 + Rel if (C) + (Z) = 0
i.e., if (ACCA) > (M) (unsigned binary numbers)

Description Causes a branch if both C and Z are cleared. If the BHl instruction is
executed immediately after execution of a CMP or SUB instruction, the
branch will occur if the unsigned binary number in ACCA was greater
than the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHI (rel) REL 22 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 249
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHS Branch if Higher or Same BHS
(Same as BCC)

Operation PC ← (PC) + $0002 + Rel if (C) = 0
i.e., if (ACCA) ≥ (M) (unsigned binary numbers)

Description If the BHS instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number
in ACCA was greater than or equal to the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHS (rel) REL 24 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

250 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BIH Branch if Interrupt Pin is High BIH

Operation PC ← (PC) + $0002 + Rel if IRQ = 1

Description Tests the state of the external interrupt pin and causes a branch if the
pin is high.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BIH (rel) REL 2F rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 251
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BIL Branch if Interrupt Pin is Low BIL

Operation PC ← (PC) + $0002 + Rel if IRQ = 0

Description Tests the state of the external interrupt pin and causes a branch if the
pin is low.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BIL (rel) REL 2E rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

252 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BIT Bit Test Memory with Accumulator BIT

Operation (ACCA) • (M)

Description Performs the logical AND comparison of the contents of ACCA and the
contents of M. and modifies the condition codes accordingly. Neither the
contents of ACCA or M are altered. (Each bit of the result of the AND
would be the logical AND of the corresponding bits of ACCA and M).

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BIT (opr) IMM A5 ii 2

BIT (opr) DIR B5 dd 3

BIT (opr) EXT C5 hh ll 4

BIT,X IX F5 3

BIT (opr),X IX1 E5 ff 4

BIT (opr),X IX2 D5 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 253
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLO Branch if Lower BLO
(Same as BCS)

Operation PC ← (PC) + $0002 + Rel if (C) = 1
i.e., if (ACCA) < (M) (unsigned binary numbers)

Description

If the BLO instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number
in ACCA was less than the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BLO (rel) REL 25 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

254 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLS Branch if Lower or Same BLS

Operation PC ← (PC) + $0002 + Rel if [(C) + (Z)] = 1
i.e., if (ACCA) ≤ (M) (unsigned binary numbers)

Description Causes a branch if (C is set) or (Z is set). If the BLS instruction is
executed immediately after execution of a CMP or SUB instruction, the
branch will occur if the unsigned binary number in ACCA was less than
or equal to the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BLS (rel) REL 23 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 255
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMC Branch if Interrupt Mask is Clear BMC

Operation PC ← (PC) + $0002 + Rel if I = 0

Description Tests the state of the I bit in the CCR and causes a branch if I is clear
(i.e., if interrupts are enabled). See BRA instruction for further details of
the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BMC (rel) REL 2C rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

256 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMI Branch if Minus BMI

Operation PC ← (PC) + $0002 + Rel if (N) = 1

Description Tests the state of the N bit in the CCR and causes a branch if N is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BMI (rel) REL 2B rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 257
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMS Branch if Interrupt Mask is Set BMS

Operation PC ← (PC) + $0002 + Rel if (I) = 1

Description Tests the state of the I bit in the CCR and causes a branch if I is set (i.e.,
if interrupts are disabled).

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BMS (rel) REL 2D rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

258 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BNE Branch if Not Equal BNE

Operation PC ← (PC) + $0002 + Rel if (Z) = 0

Description Tests the state of the Z bit in the CCR and causes a branch if Z is clear.
Following a compare or subtract instruction, BEQ will cause a branch if
the arguments were not equal.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BNE (rel) REL 26 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 259
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BPL Branch if Plus BPL

Operation PC ← (PC) + $0002 + Rel if (N) = 0

Description Tests the state of the N bit in the CCR and causes a branch if N is clear.

See BRA instruction for details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BPL (rel) REL 2A rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

260 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRA Branch Always BRA

Operation PC ← (PC) + $0002 + Rel

Description Unconditional branch to the address given by the foregoing formula, in
which Rel is the relative offset stored as a twos-complement number in
the last byte of machine code corresponding to the branch instruction.
PC is the address of the opcode for the branch instruction.

The source program specifies the destination of any branch instruction
by its absolute address, either as a numerical value or as a symbol or
expression which can be numerically evaluated by the assembler. The
assembler calculates the relative address, Rel, from the absolute
address and the current value of the location counter.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRA (rel) REL 20 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 261
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRCLR n Branch if Bit n is Clear BRCLR n

Operation PC ← (PC) + $0003 + Rel if bit n of M = 0

Description Tests bit n (n = 7, 6, 5, ... 0) of location M and branches if the bit is clear.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory (i.e., direct addressing mode is used to specify the address
of the operand).

The C bit is set to the state of the bit tested. When used along with an
appropriate rotate instruction, BRCLR n provides an easy method for
performing serial to parallel conversions.

Condition Codes
and Boolean
Formulae

C Set if Mn = 1; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRCLR 0,(opr),(rel) DIR (bit 0) 01 dd rr 5

BRCLR 1,(opr),(rel) DIR (bit 1) 03 dd rr 5

BRCLR 2,(opr),(rel) DIR (bit 2) 05 dd rr 5

BRCLR 3,(opr),(rel) DIR (bit 3) 07 dd rr 5

BRCLR 4,(opr),(rel) DIR (bit 4) 09 dd rr 5

BRCLR 5,(opr),(rel) DIR (bit 5) OB dd rr 5

BRCLR 6,(opr),(rel) DIR (bit 6) OD dd rr 5

BRCLR 7,(opr),(rel) DIR (bit 7) OF dd rr 5
M68HC05 Applications Guide — Rev. 4.0

262 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRN Branch Never BRN

Operation PC ← (PC) + $0002

Description Never branches. In effect, this instruction can be considered as a
two-byte NOP (no operation) requiring three cycles for execution. Its
inclusion in the instruction set is to provide a complement for the BRA
instruction. The instruction is useful during program debug to negate the
effect of another branch instruction without disturbing the offset byte.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

The following table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRN (rel) REL 21 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 263
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRSET n Branch if Bit n is Set BRSET n

Operation PC ← (PC) + $0003 + Rel if bit n of M = 1

Description Tests bit n (n = 7, 6, 5, 0) of location M and branches if the bit is set. M
can be any RAM or I/O register address in the $0000 to $00FF area of
memory (i.e., direct addressing mode is used to specify the address of
the operand).

The C bit is set to the state of the bit tested. When used along with an
appropriate rotate instruction, BRSET n provides an easy method for
performing serial to parallel conversions.

Condition Codes
and Boolean
Formulae

C Set if Mn = 1; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — ↕Þ

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRSET 0,(opr),(rel) DIR (bit 0) 00 dd rr 5

BRSET 1,(opr),(rel) DIR (bit 1) 02 dd rr 5

BRSET 2,(opr),(rel) DIR (bit 2) 04 dd rr 5

BRSET 3,(opr),(rel) DIR (bit 3) 06 dd rr 5

BRSET 4,(opr),(rel) DIR (bit 4) 08 dd rr 5

BRSET 5,(opr), (rel) DIR (bit 5) 0A dd rr 5

BRSET 6,(opr),(rel) DIR (bit 6) 0C dd rr 5

BRSET 7,(opr),(rel) DIR (bit 7) 0E dd rr 5
M68HC05 Applications Guide — Rev. 4.0

264 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSET n Set Bit in Memory BSET n

Operation Mn ← 1

Description Set bit n (n = 7, 6, 5 . . . 0) in location M. All other bits in M are unaffected.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory (i.e., direct addressing mode is used to specify the address
of the operand).

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BSET 0,(opr) DIR (bit 0) 10 dd 5

BSET 1, (opr) DIR (bit 1) 12 dd 5

BSET 2,(opr) DIR (bit 2) 14 dd 5

BSET 3, (opr) DIR (bit 3) 16 dd 5

BSET 4,(opr) DIR (bit 4) 18 dd 5

BSET 5,(opr) DIR (bit 5) 1A dd 5

BSET 6, (opr) DIR (bit 6) 1C dd 5

BSET 7,(opr) DIR (bit 7) 1E dd 5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 265
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSR Branch to Subroutine BSR

Operation PC ← (PC) + $0002 Advance PC to return address
↓ (PCL); SP ← (SP)–$0001 Push low-order return onto stack
↓ (PCL); SP ← (SP)–$0001 Push high-order return onto stack
PC ← (PC) + Rel Load PC with start address of

requested subroutine

Description The program counter is incremented by two from the opcode address,
(i.e., so it points to the opcode of the next instruction which will be the
return address). The least significant byte of the contents of the program
counter (low-order return address) is pushed onto the stack. The stack
pointer is then decremented by one. The most significant byte of the
contents of the program counter (high-order return address) is pushed
onto the stack. The stack pointer is then decremented by one. A branch
then occurs to the location specified by the branch offset.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BSR (rel) REL AD rr 6
M68HC05 Applications Guide — Rev. 4.0

266 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLC Clear Carry Bit CLC

Operation C bit ← 0

Description Clears the C bit in the CCR. CLC may be used to set up the C bit prior
to a shift or rotate instruction involving the C bit.

Condition Codes
and Boolean
Formulae

C 0

Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — 0

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CLC INH 98 2
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 267
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLI Clear Interrupt Mask Bit CLI

Operation I bit ← 0

Description Clears the interrupt mask bit in the CCR. When the I bit is clear,
interrupts are enabled. There is a one E-clock cycle delay in the clearing
mechanism for the I bit so that, if interrupts were previously disabled, the
next instruction after a CLI will always be executed, even if there was an
interrupt pending prior to execution of the CLI instruction.

Condition Codes
and Boolean
Formulae

I 0

Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 0 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CLI INH 9A 2
M68HC05 Applications Guide — Rev. 4.0

268 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLR Clear CLR

Operation ACCA ← $00 or: M ← $00 or: X ← $00

Description The contents of ACCA, M, or X are replaced with zeros.

Condition Codes
and Boolean
Formulae

I 0
Cleared

Z 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — 0 1 —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CLRA INH (A) 4F 3

CLRX INH (X) 5F 3

CLR (opr) DIR 3F dd 5

CLR, X IX 7F 5

CLR (opr),X IX1 6F ff 6
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 269
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMP Compare Accumulator with Memory CMP

Operation (ACCA) – (M)

Description Compares the contents of ACCA to the contents of M and sets the
condition codes, which may be used for arithmetic and logical
conditional branching. The contents of both ACCA and M are
unchanged.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if absolute value of the contents of memory is larger than the ab-
solute value of the accumulator; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CMP (opr) IMM A1 ii 2

CMP (opr) DIR B1 dd 3

CMP (opr) EXT C1 hh ll 4

CMP,X IX F1 3

CMP (opr),X IX1 E1 ff 4

CMP (opr),X IX2 D1 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

270 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COM Complement COM

Operation ACCA ← (ACCA) = $FF – (ACCA) or: M ← (M) = $FF – (M) or:
X ← X = $FF – (X)

Description Replaces the contents of ACCA, X, or M with its ones complement.
(Each bit of the contents of ACCA, X, or M is replaced with the
complement of that bit.)

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � 1

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

COMA INH (A) 43 3

COMX INH (X) 53 3

COM (opr) DIR 33 dd 5

COM, X IX 73 5

COM (opr),X IX1 63 ff 6
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 271
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPX Compare Index Register with Memory CPX

Operation (X) – (M)

Description Compares the contents of the index register with the contents of memory
and sets the condition codes, which may be used for arithmetic and
logical branching. The contents of both ACCA and M are unchanged.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C IX7 • M7 + M7 • R7 + R7 • IX7
Set if the absolute value of the contents of memory is larger than the
absolute value of the index register; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

I CPX (opr) IMM A3 ii 2

CPX (opr) DIR B3 dd 3

CPX (opr) EXT C3 hh ll 4

CPX,X IX F3 3

CPX (opr),X IX1 E3 ff 4

CPX (opr),X IX2 D3 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

272 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DEC Decrement DEC

Operation ACCA ← (ACCA) – $01 or: M ← (M) – $01 or: X ← (X)-$01

Description Subtract one from the contents of ACCA, X, or M.

The N and Z bits in the CCR are set or cleared according to the result of
this operation. The C bit is in the CCR is not affected; therefore, the only
branch instructions that are useful following a DEC instruction are BEQ,
BNE, BPL, and BMI.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing Modes
Machine Code, and
Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

DECA NH (A) 4A 3

DECX INH (X) 5A 3

DEC (opr) DIR 3A dd 5

DEC, X IX 7A 5

DEC (opr),X IX1 6A ff 6

(DEX is recognized by the Assembler as being equivalent to DECX)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 273
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR Exclusive-OR Memory with Accumulator EOR

Operation ACCA ← (ACCA) ⊕ (M)

Description Performs the logical exclusive-OR between the contents of ACCA and
the contents of M and places the result in ACCA. (Each bit of ACCA after
the operation will be the logical exclusive-OR of the corresponding bits
of M and ACCA before the operation.)

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

EOR (opr) IMM A8 ii 2

EOR (opr) DIR B8 dd 3

EOR (opr) EXT C8 hh ll 4

EOR,X IX F8 3

EOR (opr),X IX1 E8 ff 4

EOR (opr),X IX2 D8 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

274 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INC Increment INC

Operation ACCA ← (ACCA) + $01 or: M ← (M) + $01 or: X ← (X) + $01

Description Add one to the contents of ACCA, X, or M.

The N and Z bits in the CCR are set or cleared according to the results
of this operation. The C bit in the CCR is not affected; therefore, the only
branch instructions that are useful following a INC instruction are BEQ,
BNE, BPL, and BMI.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

INCA INH (A) 4C 3

INCX INH (X) 5C 3

INC (opr) DIR 3C dd 5

INC, X IX 7C 5

INC (opr),X IX1 6C ff 6

(INX is recognized by the Assembler as being equivalent to INCX)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 275
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JMP Jump JMP

Operation PC ← Effective Address

Description A jump occurs to the instruction stored at the effective address. The
effective address is obtained according to the rules for EXTended,
DIRect, or INDexed addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

JMP (opr) DIR BC dd 2

JMP (opr) EXT CC hh ll 3

JMP, X IX FC 2

JMP (opr), X IX1 EC ff 3

JMP (opr),X IX2 DC ee ff 4
M68HC05 Applications Guide — Rev. 4.0

276 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSR Jump to Subroutine JSR

Operation PC ← (PC) + n n = 1, 2, 3 depending on address mode
↓ (PCL); SP ← SP – $0001 Push low-order return address onto stack
↓ (PCH); SP ← SP – $0001 Push high-order return address onto

stack
PC ← Effective Addr Load PC with start address of

requested subroutine

Description The program counter is incremented by n so that it points to the opcode
of the instruction that follows the JSR instruction (n = 1, 2, or 3 depending
on the addressing mode). The PC is then pushed onto the stack, eight
bits at a time, least significant byte first. Unused bits in the program
counter high byte are stored as ones on the stack. The stack pointer
points to the next empty location on the stack. A jump occurs to the
instruction stored at the effective address. The effective address is
obtained according to the rules for EXTended, DIRect, or INDexed
addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

JSR (opr) DIR BD dd 5

JSR (opr) EXT CD hh ll 6

JSR, X IX FD 5

JSR (opr), X IX1 ED ff 6

JSR (opr),X IX2 DD ee ff 7
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 277
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDA Load Accumulator from Memory LDA

Operation ACCA ← (M)

Description Loads the contents of memory into the accumulator. The condition
codes are set according to the data.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LDA (opr) IMM A6 ii 2

LDA (opr) DIR B6 dd 3

LDA (opr) EXT C6 hh ll 4

LDA,X IX F6 3

LDA (opr),X IX1 E6 ff 4

LDA (opr),X IX2 D6 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

278 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDX Load Index Register from Memory LDX

Operation X ← (M)

Description Loads the contents of the specified memory location into the index
register. The condition codes are set according to the data.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LDX (opr) IMM AE ii 2

LDX (opr) DIR BE dd 3

LDX (opr) EXT CE hh ll 4

LDX,X IX FE 3

LDX (opr),X IX1 EE ff 4

LDX (opr),X IX2 DE ee ff 5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 279
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSL Logical Shift Left LSL
(Same as ASL)

Operation

Description Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded
with zero. The C bit in the CCR is loaded from the most significant bit of
ACCA, X, or M.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C b7
Set if, before the shift, the MSB of ACCA or M was set; cleared oth-
erwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

C b7 – – – – – – b0 0

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LSLA INH (A) 48 3

LSLX INH (X) 58 3

LSL (opr) DIR 38 dd 5

LSL, X IX 78 5

LSL (opr),X IX1 68 ff 6
M68HC05 Applications Guide — Rev. 4.0

280 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR Logical Shift Right LSR

Operation

Description Shifts all bits of ACCA, X, or M one place to the right. Bit 7 is loaded with
zero. Bit 0 is shifted into the C bit.

Condition Codes
and Boolean
Formulae

N 0
Cleared.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C b0
Set if, before the shift, the LSB of ACCA, X, or M was set; cleared oth-
erwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

Cb7 – – – – – – b00

H I N Z C

1 1 1 — — 0 � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LSRA INH (A) 44 3

LSRX INH (X) 54 3

LSR (opr) DIR 34 dd 5

LSR, X IX 74 5

LSR (opr),X IX1 64 ff 6
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 281
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MUL Multiply Unsigned MUL

Operation X:A ← X x A

Description Multiplies the eight bits in the index register by the eight bits in the
accumulator to obtain a 16-bit unsigned number in the concatenated
index register and accumulator. After the operation, X contains the upper
8 bits of the 16-bit result.

Condition Codes
and Boolean
Formulae

H 0
Cleared

C 0
Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 0 — — — 0

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

MUL INH 42 11
M68HC05 Applications Guide — Rev. 4.0

282 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEG Negate NEG

Operation ACCA ← – (ACCA); or: X ← – (X); or: M ← – (M)

Description Replaces the contents of ACCA, X, or M with its twos complement. Note
that the value $80 is left unchanged.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise. The C bit will be set in all cases except when the contents
of ACCA, X, or M (prior to the NEG operation) is $00.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

NEGA INH (A) 40 3

NEGX INH (X) 50 3

NEG (opr) DIR 30 dd 5

NEG, X IX 70 5

NEG (opr),X IX1 60 ff 6
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 283
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOP No Operation NOP

Description This is a single-byte instruction that causes only the program counter to
be incremented. No other registers are affected.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

NOP INH 9D 2
M68HC05 Applications Guide — Rev. 4.0

284 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORA Inclusive-OR ORA

Operation ACCA ← (ACCA) + (M)

Description Performs the logical inclusive-OR between the contents of ACCA and
the contents of M and places the result in ACCA. Each bit of ACCA after
the operation will be the logical inclusive-OR of the corresponding bits of
M and of ACCA before the operation.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ORA (opr) IMM AA ii 2

ORA (opr) DIR BA dd 3

ORA (opr) EXT CA hh ll 4

ORA,X IX FA 3

ORA (opr),X IX1 EA ff 4

ORA (opr),X 1X2 DA ee ff 5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 285
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROL Rotate Left thru Carry ROL

Operation

Description Shifts all bits of ACCA, X, or M one place to the left. Bit 0 is loaded from
the C bit. The C bit is loaded from the MSB of ACCA, X, or M. The rotate
instructions include the carry bit to allow extension of the shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value left one
bit, the sequence {ASL LOW, ROL MID, ROL HIGH} could be used
where LOW, MID, and HIGH refer to the low-order, middle, and
high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C b7
Set if, before the rotate, the MSB of ACCA or M was set; cleared oth-
erwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

C b7 – – – – – – b0 C

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ROLA INH (A) 49 3

ROLX INH (X) 59 3

ROL (opr) DIR 39 dd 5

ROL, X IX 79 5

ROL (opr),X IX1 69 ff 6
M68HC05 Applications Guide — Rev. 4.0

286 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROR Rotate Right thru Carry ROR

Operation

Description Shift all bits of ACCA, X, or M one place to the right. Bit 7 is loaded from
the C bit. The rotate operations include the carry bit to allow extension of
the shift and rotate operations to multiple bytes. For example, to shift a
24-bit value right one bit, the sequence {LSR HIGH, ROR MID, ROR
LOW} could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C b0
Set if, before the rotate, the LSB of ACCA, X, or M was set; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

Cb7 – – – – – – b0C

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RORA INH (A) 46 3

RORX INH (X) 56 3

ROR (opr) DIR 36 dd 5

ROR, X IX 76 5

ROR (opr),X IX1 66 ff 6
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 287
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RSP Reset Stack Pointer RSP

Operation SP ← $00FF

Description Resets the stack pointer to the top of the stack.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RSP INH 9C 2
M68HC05 Applications Guide — Rev. 4.0

288 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTI Return from Interrupt RTI

Operation SP ← (SP) + $0001; ↑ CCR Restore CCR from stack
SP ← (SP) + $0001; ↑ ACCA Restore ACCA from stack
SP ← (SP) + $0001; ↑ X Restore X from stack
SP ← (SP) + $0001; ↑ PCH Restore PCH from stack
SP ← (SP) + $0001; ↑ PCL Restore PCL from stack

Description The condition codes, accumulator, the index register, and the program
counter are restored to the state previously saved on the stack. The 1-bit
will be reset if the corresponding bit stored on the stack is zero.

Condition Codes
and Boolean
Formulae

Set or cleared according to the byte pulled from the stack.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 � � � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RTI INH 80 9
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 289
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTS Return from Subroutine RTS

Operation SP ← (SP) + $0001; ↑ PCH Restore PCH from stack
SP ← (SP) + $0001; ↑ PCL Restore PCL from stack

Description The stack pointer is incremented by one. The contents of the byte of
memory that is pointed to by the stack pointer is loaded into the
high-order byte of the program counter. The stack pointer is again
incremented by one. The contents of the byte of memory at the address
now contained in the stack pointer is loaded into the low-order 8 bits of
the program counter.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RTS INH 81 6
M68HC05 Applications Guide — Rev. 4.0

290 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBC Subtract with Carry SBC

Operation ACCA ← (ACCA) – (M) – (C)

Description Subtracts the contents of M and the contents of C from the contents of
ACCA and places the result in ACCA.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if absolute value of the contents of memory plus previous carry is
larger than the absolute value of the accumulator; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SBC (opr) IMM A2 ii 2

SBC (opr) DIR B2 dd 3

SBC (opr) EXT C2 hh ll 4

SBC,X IX F2 3

SBC (opr),X IX1 E2 ff 4

SBC (opr),X IX2 D2 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 291
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEC Set Carry Bit SEC

Operation C bit ← 1

Description Sets the C bit in the CCR. SEC may be used to set up the C bit prior to
a shift or rotate instruction that involves the C bit.

Condition Codes
and Boolean
Formulae

C 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — 1

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SEC INH 99 2
M68HC05 Applications Guide — Rev. 4.0

292 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEI Set Interrupt Mask Bit SEI

Operation I bit ← 1

Description Sets the interrupt mask bit in the CCR. The microprocessor is inhibited
from servicing interrupts while the I bit is set.

Condition Codes
and Boolean
Formulae

I 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 1 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SEI INH 9B 2
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 293
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STA Store Accumulator in Memory STA

Operation M ← (ACCA)

Description Stores the contents of ACCA in memory. The contents of ACCA remain
unchanged.

Condition Codes
and Boolean
Formulae

N A7
Set if MSB of result is set; cleared otherwise.

Z A7 • A6 • A5 • A4 • A3 • A2 • A1 • A0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

STA (opr) DIR B7 ii 4

STA (opr) EXT C7 hh ll 5

STA,X IX F7 4

STA (opr),X IX1 E7 ff 5

STA (opr),X IX2 D7 ee ff 6
M68HC05 Applications Guide — Rev. 4.0

294 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STOP Enable IRQ, Stop Oscillator STOP

Description Reduces power consumption by eliminating all dynamic power
dissipation. This results in: 1) timer prescaler cleared, 2) timer interrupts
disabled, 3) timer interrupt flag cleared, 4) external interrupt request
enabled, and 5) oscillator inhibited.

When the RESET or IRQ input goes low, the oscillator is enabled, a
delay of 1920 processor clock cycles is initiated allowing the oscillator to
stabilize, the interrupt request vector or reset vector is fetched, and the
service routine is executed, depending on which signal was applied.

External interrupts are enabled following the STOP command.

Condition Codes
and Boolean
Formulae

I 0
Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 0 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

STOP INH 8E 2
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 295
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STX Store Index Register X in Memory STX

Operation M ← (X)

Description Stores the contents of X in memory. The contents of X remain
unchanged.

Condition Codes
and Boolean
Formulae

N X7
Set if MSB of result is set; cleared otherwise.

Z X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

STX (opr) DIR BF ii 4

STX (opr) EXT CF hh ii 5

STX,X IX FF 4

STX (opr),X IX1 EF ff 5

STX (opr),X IX2 DF ee ff 6
M68HC05 Applications Guide — Rev. 4.0

296 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUB Subtract SUB

Operation ACCA ← (ACCA) – (M)

Description Subtracts the contents of M from the contents of ACCA and places the
result in ACCA.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
The C bit (carry flag) in the condition code register gets set if the ab-
solute value of the contents of memory is larger than the absolute val-
ue of the accumulator, cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � �

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SUB (opr) IMM A0 ii 2

SUB (opr) DIR B0 dd 3

SUB (opr) EXT C0 hh ll 4

SUB,X IX F0 3

SUB (opr),X IX1 E0 ff 4

SUB (opr),X IX2 D0 ee ff 5
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 297
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SWI Software Interrupt SWI

Operation PC ← (PC) + $0001 Advance PC to return address
↓ (PCL); SP ← (SP) – $0001 Push low-order return address

onto stack
↓ (PCH); SP ← (SP) – $0001 Push high-order return address

onto stack
↓ (X); SP ← (SP) – $0001 Push index register onto stack
↓ (ACCA); SP ← (SP) – $0001 Push accumulator onto stack
↓ (CCR); SP ← (SP) – $0001 Push CCR onto stack
I bit ← 1
PCH ← ($xFFC) Vector fetch (x = 1 or 3 depending on
PCL ← ($xFFD) M68HC05 device)

Description The program counter is incremented by one. The program counter,
index register, and accumulator are pushed onto the stack. The CCR
bits are then pushed onto the stack, with bits H, I, N, Z, and C going into
bit positions 4-0 and bit positions 7, 6, and 5 containing ones. The stack
pointer is decremented by one after each byte of data is stored on the
stack. The interrupt mask bit is then set. The program counter is then
loaded with the address stored in the SWI vector (located at memory
locations n-0002 and n-0003, where n is the address corresponding to a
high state on all lines of the address bus). The address of the SWI vector
can be expressed as $xFFC:$xFFD, where x is 1 or 3 depending on the
M68HC05 device being used. This instruction is not maskable by the I
bit.

Condition Codes
and Boolean
Formulae

I 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 1 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SWI INH 83 10
M68HC05 Applications Guide — Rev. 4.0

298 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TAX Transfer Accumulator to Index Register TAX

Operation X ← (ACCA)

Description Loads the index register with the contents of the accumulator. The
contents of the accumulator are unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

TAX INH 97 2
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 299
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TST Test for Negative or Zero TST

Operation (ACCA) – $00 or: (X) – $00 or: (M) – $00

Description Sets the condition codes N and Z according to the contents of ACCA, X,
or M. The contents of ACCA, X, and M are not altered.

Condition Codes
and Boolean
Formulae

N M7
Set if the MSB of the contents of ACCA, X, or M is set; cleared oth-
erwise.

Z M7 • M6 • M5 • M4 • M3 • M2 • M1 • M0
Set if the contents of ACCA, X, or M is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — � � —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

TSTA INH (A) 4D 3

TSTX INH (X) 5D 3

TST (opr) DIR 3D dd 4

TST,X IX 7D 4

TST (opr),X IX1 6D ff 5
M68HC05 Applications Guide — Rev. 4.0

300 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
M68HC05 Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXA Transfer Index Register to Accumulator TXA

Operation ACCA ← (X)

Description Loads the accumulator with the contents of the index register. The
contents of the index register are not altered.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

TXA INH 9F 2
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Instruction Set Details 301
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WAIT Enable Interrupt, Stop Processor WAIT

Description Reduces power consumption by eliminating most dynamic power
dissipation. The timer, the timer prescaler, and the on-chip peripherals
continue to operate because they are potential sources of an interrupt.
Wait causes enabling of interrupts by clearing the I bit in the CCR and
stops clocking of processor circuits.

Interrupts from on-chip peripherals may be enabled or disabled by local
control bits prior to execution of the WAIT instruction.

When the RESET or IRQ input goes low or when any on-chip system
requests interrupt service, the processor clocks are enabled, and the
reset, IRQ, or other interrupt service request is processed.

Condition Codes
and Boolean
Formulae

I 0
Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 0 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

WAIT INH 8F 2
M68HC05 Applications Guide — Rev. 4.0

302 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Applications Guide — M68HC05

Appendix B. Review Questions

B.1 Contents

B.2 Introduction .303

B.3 Review Questions. .304

B.4 Review Questions, Answers, and Explanations318

B.2 Introduction

The 50 review questions presented are based directly on the text of this
applications guide. These review questions are repeated with the proper
answers, indicating the portion of text from which the information was
obtained.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 303
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3 Review Questions

1. The instruction set of a CPU is

O A. a software program written by an end user.

O B. the same for all computers.

O C. determined by the wiring within the CPU.

O D. the data sheet for a microprocessor.

2. Which numbering system offers the best compromise between the
needs of a CPU and those of a human?

O A. Binary

O B. Octal

O C. Decimal

O D. Hexadecimal

3. A specific 8-bit value in a computer memory can mean different
things depending on its context. The value could be a number, a
code representing an alphabetic character, a code for an
instruction (opcode), etc. The hexadecimal value $42 could be
interpreted by an MC68HC705C8 to mean any of the following
things except one. Choose the one answer which is not likely to be
a correct interpretation of the value $42.

O A. The opcode for the MUL (multiply) instruction.

O B. The decimal value 66.

O C. The address of an on-chip control register.

O D. The letter “B”.

4. Which of the following items requires the most memory bits?

O A. The BCD representation of 125.

O B. The binary representation of 254.

O C. The ASCII representation of the letter “A”.

O D. The binary equivalent of the octal number 758.
M68HC05 Applications Guide — Rev. 4.0

304 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5. How many 8-bit memory locations would be needed to hold the
ASCII representation of the name “FRED”?

O A. 16

O B. 4

O C. 7

O D. 2

6. Which of these CPU registers in the MC68HC705C8 contains the
most bits?

O A. The accumulator (A)

O B. The index register (X)

O C. The condition code register (CCR)

O D. The program counter (PC)

7. Which CPU register in the MC68HC705C8 would most likely point
to the next instruction that the CPU will execute?

O A. The accumulator (A)

O B. The index register (X)

O C. The stack pointer (SP)

O D. The program counter (PC)

8. During execution of a subroutine, where would the CPU save the
return address? All except one of the following address pairs is
incorrect due to improper memory type or address.

O A. $1FFE,1FFF

O B. $00EC,00ED

O C. $00AE,00AF

O D. $015E,015F

9. How many different opcodes correspond to the LDA (load
accumulator) instruction?

O A. 1

O B. 3

O C. 6

O D. 16
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 305
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10. In the following partial listing, what 8-bit value or code is present in
memory location $0193?

 018C TIME EQU * Update Time-of-day
 018c 3d a2 TST TIC Check for TIC = zero
 018e 26 38 BNE XTIME If not; just exit
 0190 3c a3 INC SEC SEC = SEC + 1
 0192 a6 3c LDA #60
 0194 bl a3 CMP SEC Did SEC -> 60 ?

O A. $A2

O B. $3C

O C. $93

O D. $01

11. The following instruction reads the current value of the 8-bit
variable “TIC” and internally tests for a negative or zero value. At
what physical address is the variable “TIC” located?

 018c 3d a2 TST TIC Check for TIC = zero

O A. $01 A2

O B. $018D

O C. $31DA2

O D. $00A2

12. After executing the following sequence of instructions, what value
will be in the accumulator?

 BEGIN LDA #$80
 BPL LABEL
 INCA
 LABEL DECA
 DECA

O A. $7E

O B. $7F

O C. $80

O D. $81
M68HC05 Applications Guide — Rev. 4.0

306 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13. After executing the following instruction sequence from “START” to
“END”, what value will be in memory location $00FF?

 0100 9C START RSP Reset SP to $00FF
 0101 cd 02 00 JSR SUB Call SUB
 0104 cd 02 00 JSR SUB Call SUB again
 0107 9d END NOP Done
 " " " " " "
 0200 81 SUB RTS Just Return

O A. $00

O B. $01

O C. $04

O D. $07

14. What frequency crystal would be used on an MC68HC705C8 to
get a 500 ns internal processor clock?

O A. 1.0 MHz

O B. 2.0 MHz

O C. 4.0 MHz

O D. 8.0 MHz

15. For an MC68HC705C8 with a 4.0-MHz crystal, what amount of
time corresponds to a single count of the 16-bit timer?

O A. 500 ns

O B. 1.0 µs

O C. 2.0 µs

O D. 4.0 µs

16. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest
baud rate available for the SCI (UART-type serial interface)?

O A. 131.072 kbaud

O B. 125 kbaud

O C. 19.2 kbaud

O D. 9600 baud
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 307
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

17. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest
master mode bit rate available for the SPI (synchronous serial
peripheral interface)?

O A. 1 Mbit/sec

O B. 500 kbits/sec

O C. 250 kbits/sec

O D. 125 kbits/sec

18. How many bit times are there in one SCI character frame?

O A. 8

O B. 9

O C. 10

O D. 10 or 11

19. To assure an orderly startup, reset forces the CPU to begin
executing instructions in a predictable, repeatable way. Which of
the following statements best describes how the CPU proceeds
from reset?

O A. The CPU fetches the instruction from $1FFF and executes
it.

O B. The CPU loads the program counter (PC) with the address
$1FFE and begins executing instructions.

O C. The CPU begins executing instructions starting at address
$0000.

O D. The CPU loads the program counter (PC) with the address
stored at $1FFE,1FFF and then begins executing
instructions starting at that address.

20. To change the SCI baud rate, what address would you write to?

O A. $000D

O B. $000E

O C. $0D00

O D. $100E
M68HC05 Applications Guide — Rev. 4.0

308 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

21. The half-carry bit (H) in the condition code register (CCR)

O A. is used in rounding results of arithmetic operations.

O B. indicates that the MSB of the accumulator is 1.

O C. may be used to adjust the results of BCD add operations.

O D. indicates a borrow occurred during a subtract operation.

22. In an MC68HC705C8 system which uses no interrupts, what is the
maximum possible nesting depth for subroutines (without causing
errors)? If one subroutine called a second subroutine, that would
be a nesting depth of 2.

O A. 2

O B. 32

O C. 64

O D. 128

23. Which of the following on-chip systems would be used to detect
problems with the oscillator?

O A. Power-on reset

O B. COP watchdog timer

O C. Clock monitor

O D. IRQ interrupt

24. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 a6 05 LDA #$05 Read value into A

O A. $0005

O B. $0102

O C. $0103

O D. $a605
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 309
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

25. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 b6 05 LDA $05 Read value into A

O A. $0005

O B. $0102

O C. $0103

O D. $b605

26. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 c6 01 00 LDA TOP Read value into A

O A. $0003

O B. $01 00

O C. $0103

O D. $0104
M68HC05 Applications Guide — Rev. 4.0

310 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

27. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 f6 LDA 0,X Read value into A

O A. $0000

O B. $0002

O C. $0003

O D. $0102

28. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 e6 03 LDA SAM,X Read value into A

O A. $0002

O B. $0003

O C. $0005

O D. $0105
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 311
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

29. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 d6 14 00 LDA LARRY,X Read value into A

O A. $0002

O B. $1400

O C. $1402

O D. $1600

30. After executing the following instruction sequence from “START” to
“END,” what value will be in the stack pointer (SP)?

 0100 9C START RSP Reset SP to $00FF
 0101 cd 02 00 JSR SUB Call SUB
 0104 cd 02 00 JSR SUB Call SUB again
 0107 9d END NOP Done
 " " " " " "
 0200 81 SUB RTS Just Return

O A. $0200

O B. $00FB

O C. $00FD

O D. $00FF

31. A microcontroller is

O A. the CPU part of a digital binary computer.

O B. the same thing as a microprocessor.

O C. any system that includes an MCU integrated circuit.

O D. a computer system including a CPU, memory, and
peripherals on a single I.C.
M68HC05 Applications Guide — Rev. 4.0

312 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

32. After executing the following instruction sequence from “TOP” to
“BOT”, what values will be in locations $00A0 and $00A1,
respectively?

 0100 a6 f3 TOP LDA #%11110011 Initial value
 0102 b7 a0 STA $A0 For $00A0
 0104 a6 81 LDA #%10000001 Initial value
 0106 b7 a1 STA $A1 For $00A1
 0108 38 a1 ASL $A1 Comment left off
 010a 39 a0 ROL $A0 intentionally
 010c 38 a1 ASL $A1
 010e 39 a0 ROL $A0
 0110 9d BOT NOP

O A. $00A0;00A1 = 11110011 10000001

O B. $00A0;00A1 = 11001100 00000100

O C. $00A0;00A1 = 11001110 00000111

O D. $00A0;00A1 = 11001110 00000100

Refer to the following four program listings to answer questions 33
through 38. These programs demonstrate four different ways to
generate pulses at port A bit 0 of an MC68HC705C8. All four programs
assume that port A has been configured as outputs by the data direction
register (DDRA) equal $FF.

 0100 a6 01 PROG1 LDA #$01 [2] Pattern for bit 0 high
 0102 b7 00 STA $00 [4] Write to port A
 0104 a6 00 LDA #$00 [2] Pattern for bit 0 low
 0106 b7 00 STA $00 [4] Write to port A
 0108 20 f6 BRA PROG1 [3] Repeat loop

 continuously

 0100 10 00 PROG2 BSET 0,$00 [5] Set port A bit 0
 0102 11 00 BCLR 0,$00 [5] Clear port A bit 0
 0104 20 fa BRA PROG2 [3] Repeat loop

 continuously

 0100 a6 01 PROG3 LDA #$01 [2] Pattern for bit 0 high
 0102 5f CLRX [3] Pattern for bit 0 low
 0103 b7 00 LOOP3 STA $00 [4] Write to port A
 0105 bf 00 STX $00 [4) Write to port A
 0107 20 fa BRA LOOP3 [3] Repeat loop

 continuously

 0100 b6 00 PROG4 LDA $00 [3] Read present port A data
 0102 a8 01 EOR #$01 [2] Form new port A pattern
 0104 b7 00 STA $00 [4] Write to port A
 0106 20 f8 BRA PROG4 [3] Repeat loop

 continuously
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 313
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

33. Which of the four programs requires the fewest bytes of program
memory?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4

34. Which of the four programs produces the shortest pulse width
(logic one at the pin)?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4

35. Which of the four programs produces the longest period?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4

36. Sometimes it is important to change the level on a pin without
disturbing values in the CPU accumulator and other CPU registers.
Which of the four programs uses no CPU registers other than the
program counter (PC)?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4

37. Which of the four programs produces a square wave (equal high
and low times)?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4
M68HC05 Applications Guide — Rev. 4.0

314 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

38. Some instructions affect only a single bit in a memory location
while others affect all bits in a memory location. Which two of the
four programs do not make any assumptions about other bits in
port A?

O A. PROG1 & PROG2

O B. PROG2 & PROG4

O C. PROG3 & PROG4

O D. PROG4 & PROG1

39. On an MC68HC705C8, which of the following pins is an input-only
pin?

O A. RESET

O B. Port D bit 4/SCK

O C. Port D bit 7

O D. Port A bit 7

40. What does the following sequence of instructions do?
 0100 a6 08 START LDA #$08 Comments left off

 intentionally
 0102 b7 le STA $1E
 0104 8e STOP

O A. Reset the COP watchdog timer and return to normal
program.

O B. Force a hardware RESET.

O C. Store a value $08 in RAM and stop processing.

O D. Enables the clock monitor and the COP watchdog timer.

41. For the four following addresses, which one would not allow you to
read back an arbitrary value which you just wrote to that address?

O A. $0004

O B. $0050

O C. $00FF

O D. $1000
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 315
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

42. For an MC68HC705C8, which of the four following addresses
would be the best address to store a product serial number and a
variable which changed once a second? Refer to the Figure 3-7.
MC68HC705C8 Memory Map of the applications guide.

O A. $0000

O B. $002F

O C. $00FF

O D. $015F

43. If you discovered an incorrect value in a memory location as you
were starting volume production, which of the following memory
types would require the longest time to correct the error?

O A. RAM

O B. ROM

O C. EPROM

O D. EEPROM

44. A microcontroller includes

O A. a central processor unit (CPU).

O B. memory.

O C. I/O devices.

O D. all of the above.

45. A central processor unit (CPU)

O A. is part of a microcontroller (MCU).

O B. is a complete computer system.

O C. contains memory and I/O devices.

O D. contains an MCU.

46. A memory is said to be volatile if it forgets its contents when power
is removed for long periods of time. Which of the following memory
types is volatile?

O A. ROM

O B. RAM

O C. EPROM

O D. EEPROM
M68HC05 Applications Guide — Rev. 4.0

316 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

47. An EPROM memory is normally erased by

O A. software instructions.

O B. infrared light.

O C. ultraviolet light.

O D. application of high voltage.

48. To program the OPTION register on the MC68HC705C8

O A. program all bits as if they were EPROM.

O B. program all bits as if they were RAM.

O C. program one bit like RAM and the rest of the bits as if they
were EPROM.

O D. program one bit like EPROM and the rest of the bits as if
they were RAM.

49. In the MC68HC705C8, bit manipulation instructions (BSET and
BCLR)

O A. can be used to access any on-chip I/O register or RAM
location in the $0000 through $00FF area of memory.

O B. can be used to access any location in the 8K-byte memory
map.

O C. can be used only with indexed addressing modes.

O D. can be used to access any on-chip RAM location.

50. Which of the following statements best describes what happens
during an SPI data transfer between two MC68HC705C8 MCUs?

O A. A slave device transfers an 8-bit character to a master
device.

O B. A master device transfers an 8-bit character to a slave
device.

O C. A master and a slave exchange 8-bit data characters.

O D. A master device sends a start bit, 8 data bits, and a stop bit
to a slave.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 317
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.4 Review Questions, Answers, and Explanations

The questions that seem to give the most trouble are 40, 35, and 13 in
that order. The problem on 35 is that it is a tricky question. The loop in
PROG4 must be executed twice to make one period on the port pin. On
40, some persons who got the wrong answer seemed to be tricked by
the indirect nature of this operation and chose D, thinking it was the
closest thing to a correct answer. Almost all those who got 35 wrong
chose A, which has the longest loop time but not the longest period. The
majority of those who missed 13 seemed to think that the RAM locations
in the stack are cleared as values are recovered from the stack during a
return from subroutine — this assumption is incorrect. A few others got
the stacking order reversed. The key to getting 13 right was to play
computer very carefully.

1. The instruction set of a CPU is

O A. a software program written by an end user.

O B. the same for all computers.

=> C. determined by the wiring within the CPU. (See 2.3 Number
Systems and 2.4 Computer Codes.)

O D. the data sheet for a microprocessor.

2. Which numbering system offers the best compromise between the
needs of a CPU and those of a human?

O A. Binary

O B. Octal

O C. Decimal

=> D. Hexadecimal

See 2.3 Number Systems and 2.4 Computer Codes. A few engineers
who were around in the days of the PDP-8 or work a lot with
minicomputers that still carry on the octal tradition may argue about this
answer. The text 2.4 Computer Codes and modern microcontroller data
sheets explain why hexadecimal is the best choice.
M68HC05 Applications Guide — Rev. 4.0

318 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3. A specific 8-bit value in a computer memory can mean different
things depending on its context. The value could be a number, a
code representing an alphabetic character, a code for an
instruction (opcode), etc. The hexadecimal value $42 could be
interpreted by an MC68HC705C8 to mean any of the following
things except one. Choose the one answer which is not likely to be
a correct interpretation of the value $42.

O A. The opcode for the MUL (multiply) instruction.
(See Appendix A. Instruction Set Details.)

O B. The decimal value 66. (See Table 2-1. Decimal, Binary,
and Hexadecimal Equivalents.)

=> C. The address of an on-chip control register.
O D. The letter “B”. (See Table 3-12. ASCII-Hexadecimal Code

Conversion.)

By elimination, the correct response is answer C. Looking at the memory
map (see Figure 3-7. MC68HC705C8 Memory Map) you would find that
address $42 is a RAM or PROM location; whereas, all on-chip control
registers (except OPTION at $1 FDF) are in the area from $0000 to $001
F.

4. Which of the following items requires the most memory bits?
=> A. The BCD representation of 125. (0001 0010 0101 or 12 bits)

O B. The binary representation of 254. (1111 1110 or 8 bits)

O C. The ASCII representation of the letter “A”, (1000001 or 0100
0001, 7 or 8 bits)

O D. The binary equivalent of the octal number 758. (111 101 or
6 bits)

See 2.3 Number Systems and 2.4 Computer Codes.

5. How many 8-bit memory locations would be needed to hold the
ASCII representation of the name “FRED”?

O A. 16

=> B. 4 (See 2.4 Computer Codes. Each ASCII character takes
one byte.)

O C. 7

O D. 2
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 319
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6. Which of these CPU registers in the MC68HC705C8 contains the
most bits?

O A. The accumulator (A)

O B. The index register (X)

O C. The condition code register (CCR)

=> D. The program counter (PC)

See Figure 2-2. M68HC05 CPU Registers. The PC is 13 or 16 bits,
depending on whether or not you count the upper three bits that are
fixed. A and X are 8 bits each, and CCR is 5 or 8 (again depending on
whether or not you count the upper three bits that are fixed).

7. Which CPU register in the MC68HC705C8 would most likely point
to the next instruction that the CPU will execute?

O A. The accumulator (A)

O B. The index register (X)

O C. The stack pointer (SP)

=> D. The program counter (PC) (see 2.4.3 CPU Registers)

8. During execution of a subroutine, where would the CPU save the
return address? All except one of the following address pairs is
incorrect due to improper memory type or address.

O A. $1FFE,1FFF

=> B. $00EC,00ED
O C. $00AE,00AF

O D. $015E,015F

See 3.6.1.5 Stack Pointer and 2.7.1.4 Subroutine Calls and Returns
if you need help understanding subroutine calls.
M68HC05 Applications Guide — Rev. 4.0

320 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9. How many different opcodes correspond to the LDA (load
accumulator) instruction?

O A. 1

O B. 3

=> C. 6 (see Appendix A. Instruction Set Details for a detailed
description of the LDA instruction and 2.6.4 Assembler
Listing)

O D. 16

10. In the following partial listing, what 8-bit value or code is present in
memory location $0193?

 018C TIME EQU Update Time-of-day
 018c 3d a2 TST TIC Check for TIC = zero
 018e 26 38 BNE XTIME If not; just exit
 0190 3c a3 INC SEC SEC = SEC + 1
 0192 a6 3c LDA #60
 0194 bl a3 CMP SEC Did SEC -> 60 ?

O A. $A2

=> B. $3C (see 2.6.4 Assembler Listing and 2.6.5 CPU View of
a Program)

O C. $93

O D. $01

11. The following instruction reads the current value of the 8-bit
variable “TIC” and internally tests for a negative or zero value. At
what physical address is the variable “TIC” located?

 018c 3d a2 TST TIC Check for TIC = zero

O A. $01A2

O B. $018D

O C. $3DA2

=> D. $00A2 (see 3.7.4 Direct Addressing Mode)
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 321
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12. After executing the following sequence of instructions, what value
will be in the accumulator?

 BEGIN LDA #$80
 BPL LABEL
 INCA
 LABEL DECA
 DECA

O A. $7E

=> B. $7F
O C. $80

O D. $81

The first instruction loads A with the immediate value $80 (which is
negative). The second instruction will not branch because the N
condition code flag is set. The CPU then increments A (to $81), then
decrements A (to $80), and finally decrements A again (to $7F).

13. After executing the following instruction sequence from “START” to
“END”, what value will be in memory location $00FF?

 0100 9C START RSP Reset SP to $00FF
 0101 cd 02 00 JSR SUB Call SUB
 0104 cd 02 00 JSR SUB Call SUB again
 0107 9d END NOP Done
 " " " " " "
 0200 81 SUB RTS Just Return

O A. $00

O B. $01

O C. $04

=> D. $07

See 2.7.2 Playing Computer; see also 2.4.4 Memory Uses. In the
course of executing this program segment, the CPU would call a
subroutine (and store the return address at $00FF and $00FE), then
return from the subroutine (which causes the return address to be
recovered from the stack and the stack pointer to end up pointing at
$00FF again). When the second subroutine call is executed, the return
address (now $0107) is saved on the stack at $00FF and $00FE (with
the $07 at $00FF). The second return from subroutine causes this return
address to be read from the stack. Since no other value is stored to
location $00FF during this program, $07 will still be there at the end of
the sequence.
M68HC05 Applications Guide — Rev. 4.0

322 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

14. What frequency crystal would be used on an MC68HC705C8 to
get a 500 ns internal processor clock?

O A. 1.0 MHz

O B. 2.0 MHz

=> C. 4.0 MHz (see 3.4.1.7 OSC1 and OSC2 or Figure 3-24.
Rate Generator Division)

O D. 8.0 MHz

15. For an MC68HC705C8 with a 4.0-MHz crystal, what amount of
time corresponds to a single count of the 16-bit timer?

O A. 500 ns

O B. 1.0 µs

=> C. 2.0 µs (see Figure 3-43. Programmable Timer Block
Diagram and 3.14.2 Timer Counter and Alternate
Counter Registers)

O D. 4.0 µs

16. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest
baud rate available for the SCI (UART-type serial interface)?

O A. 131.072 kbaud

=> B. 125 kbaud (see top entry in 4.0 column of Table 3-10.
Prescaler Baud Rate Frequency Output)

O C. 19.2 kbaud

O D. 9600 baud

17. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest
master mode bit rate available for the SPI (synchronous serial
peripheral interface)?
=> A. 1 Mbit/sec (see table in 3.12.4.1 Serial Peripheral Control

Register (SPCR))

O B. 500 kbits/sec

O C. 250 kbits/sec

O D. 125 kbits/sec

Only a master SPI device produces a serial clock. As a slave, the fastest
bit rate the SPI can accept would be the crystal frequency divided by 2
(or 2 MHz for a 4-MHz crystal).
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 323
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

18. How many bit times are there in one SCI character frame?

O A. 8

O B. 9

O C. 10

=> D. 10 or 11 (see Figure 3-30. Data Formats)

Don’t forget to count the start and stop bit times.

19. To assure an orderly startup, reset forces the CPU to begin
executing instructions in a predictable repeatable way. Which of
the following statements best describes how the CPU proceeds
from reset?

O A. The CPU fetches the instruction from $1FFF and executes
it.

O B. The CPU loads the program counter (PC) register with the
address $1FFE and begins executing instructions.

O C. The CPU begins executing instructions starting at address
$0000.

=> D. The CPU loads the program counter (PC) with the address
stored at $1FFE,1FFF and then begins executing
instructions starting at that address.

See 2.4.3 CPU Registers. Think about the other three answers; you
should see that they do not make sense.

20. To change the SCI baud rate, what address would you write to?
=> A. $000D

O B. $000E

O C. $0D00

O D. $100E

See memory map Figure 2-4. Typical Memory Map or Figure 3-7.
MC68HC705C8 Memory Map, or see Figure 3-23. Baud Rate
Register. See also 2.4.5 Memory Maps.
M68HC05 Applications Guide — Rev. 4.0

324 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

21. The half-carry bit (H) in the condition code register (CCR)

O A. is used in rounding results of arithmetic operations.
(describes the C bit)

O B. indicates that the MSB of the accumulator is 1. (describes
the N bit)

=> C. may be used to adjust the results of BCD add operations.
O D. indicates a borrow occurred during a subtract operation.

(describes the C bit)

See Figure 3-11. Condition Code Register (CCR) and 2.4.1
Computer Memory.

22. In an MC68HC705C8 system which uses no interrupts, what is the
maximum possible nesting depth for subroutines (without causing
errors)? If one subroutine called a second subroutine, that would
be a nesting depth of 2.

O A. 2

=> B. 32 (see Figure 3-13. Stack Pointer (SP))
O C. 64

O D. 128

Remember that each subroutine call uses two 8-bit memory locations to
store the return address.

23. Which of the following on-chip systems would be used to detect
problems with the oscillator?

O A. Power-on reset

O B. COP watchdog timer

=> C. Clock monitor (see 3.6.4.2 Computer Operating Properly
(COP) Watchdog Timer Reset and 3.6.4.3 Clock Monitor
Reset)

O D. IRQ interrupt
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 325
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

24. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 a6 05 LDA #$05 Read value into A

O A. $0005

O B. $0102

=> C. $0103 (see 3.7.2 Immediate Addressing Mode)
O D. $a605

25. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 b6 05 LDA $05 Read value into A

=> A. $0005 (see 3.7.4 Direct Addressing Mode)

O B. $0102

O C. $0103

O D. $b605
M68HC05 Applications Guide — Rev. 4.0

326 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

26. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 c6 01 00 LDA TOP Read value into A

O A. $0003

=> B. $01 00 (see 3.7.3 Extended Addressing Mode)
O C. $0103

O D. $0104

Although this instruction sequence has no practical use, it would
assemble and function. The value loaded into A would be $AE (the
opcode of the LDX-immediate instruction). If you were not familiar with
the use of labels, you could have looked at the machine code C6 01 00.
The C6 indicates the extended addressing mode variation of the LDA
instruction and 0100 is the address of the operand that would be loaded
into A.

27. In the following instruction sequence a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 f6 LDA 0,X Read value into A

O A. $0000

=> B. $0002 (see 3.7.5.1 Indexed, No Offset)
O C. $0003

O D. $0102

At the time the LDA 0,X instruction is executed, X contains $02 due to
the previous instruction.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 327
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

28. In the following instruction sequence a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit value
 0100 ORG $100 Set program starting point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 e6 03 LDA SAM,X Read value into A

O A. $0002

O B. $0003

=> C. $0005 (see 3.7.5.2 Indexed, 8-Bit Offset)
O D. $0105

Don’t forget to add the current value of X ($02) to the value SAM ($03).

29. In the following instruction sequence, a value is read into the
accumulator. From what address is this value being read? (It may
be helpful to look at the machine code as well as the mnemonic
instructions.)

 0003 SAM EQU $03 SAM equal an 8-bit value
 1400 LARRY EQU $1400 LARRY equal a 16-bit

 value
 0100 ORG $100 Set program starting

 point
 0100 ae 02 TOP LDX #$02 Initialize index register
 0102 d6 14 00 LDA LARRY,X Read value into A

O A. $0002

O B. $1400

=> C. $1402 (see 3.7.5.3 Indexed, 16-Bit Offset)
O D. $1600

Don’t forget to add the current value of X ($02) to the value LARRY
($1400).
M68HC05 Applications Guide — Rev. 4.0

328 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

30. After executing the following instruction sequence from “START” to
“END”, what value will be in the stack pointer (SP)?

 0100 9C START RSP Reset SP to $00FF
 0101 cd 02 00 JSR SUB Call SUB
 0104 cd 02 00 JSR SUB Call SUB again
 0107 9d END NOP Done
 " " " " "
 0200 81 SUB RTS Just Return

O A. $0200

O B. $00FB

O C. $00FD

=> D. $00FF

This is a variation of the exercise in 2.7.1.4 Subroutine Calls and
Returns and Figure 2-11. Subroutine Call Sequence. During
execution the stack pointer will have the values
FF-FE-FD-FE-FF-FE-FD-FE-FF.

31. A microcontroller is

O A. the CPU part of a digital binary computer.

O B. the same thing as a microprocessor.

O C. any system that includes an MCU integrated circuit.

=> D. a computer system including a CPU, memory, and
peripherals on a single I.C.

See Section 2. Microcontroller Operation and 1.3 Definitions.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 329
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

32. After executing the following instruction sequence from “TOP” to
“BOT”, what values will be in locations $00A0 and $00A1,
respectively?

 0100 a6 f3 TOP LDA #%11110011 Initial value
 0102 b7 a0 STA $A0 For $00AO
 0104 a6 81 LDA #%10000001 Initial value
 0106 b7 a1 STA $A1 For $00A1
 0108 38 a1 ASL $A1 Comment left off
 010a 39 a0 ROL $A0 intentionally
 010c 38 a1 ASL $A1
 010e 39 a0 ROL $A0
 0110 9d BOT NOP

O A. $00A00;00A1 = 11110011 10000001

O B. $00A00;00A1 = 11001100 00000100

O C. $00A00;00A1 = 11001110 00000111

=> D. $00A00;00A1 = 11001110 00000100

See ASL and ROL instruction definitions in Appendix A. Instruction
Set Details. Play computer to see how this sequence works. This is a
16-bit version of the multibyte shift sequence described in the ROL
instruction description.

Refer to the following four program listings to answer questions 33
through 38. These programs demonstrate four different ways to
generate pulses at port A bit 0 of an MC68HC705C8. All four programs
assume that port A has been configured as outputs by the data direction
register (DDRA) equal $FF.

 0100 a6 01 PROG1 LDA #$01 [2] Pattern for bit 0 high
 0102 b7 00 STA $00 [4] Write to port A
 0104 a6 00 LDA #$00 [2] Pattern for bit 0 low
 0106 b7 00 STA $00 [4] Write to port A
 0108 20 f6 BRA PROG1 [3] Repeat loop

 continuously

STA $00 BRA
PROG1

STA $00LDA
#$01

PROCESSOR
CLOCK (INT)

PA0
PIN

PROG1
PULSE

HIGH = 6~
PERIOD = 15~

LDA
#$01

LDA
#$00

STA $00
M68HC05 Applications Guide — Rev. 4.0

330 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0100 10 00 PROG2 BSET 0,$00 [5] Set port A bit 0
0102 11 00 BCLR 0,$00 [5] Clear port A bit 0
0104 20 fa BRA PROG2 [3] Repeat loop

 continuously

0100 a6 01 PROG3 LDA #$01 [2] Pattern for bit 0
 high

0102 5f CLRX [3] Pattern for bit 0
 low

0103 b7 00 LOOP3 STA $00 [4] Write to port A
0105 bf 00 STX $00 [4) Write to port A
0107 20 fa BRA LOOP3 [3] Repeat loop

 continuously

BSET 0, $00 BRA
PROG2

PROCESSOR
CLOCK (INT)

PA0
PIN

PROG2
PULSE

HIGH = 5~
PERIOD = 13~

BCLR 0, $00 BSET 0, $00

PULSE
HIGH = 4~

BRA
PROG3

STA $00 STX $00

PROCESSOR
CLOCK (INT)

PA0
PIN

PROG3
PERIOD = 11~

LDA
#$01

CLRX BRA
PROG3

STA $00STX $00
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 331
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0100 b6 00 PROG4 LDA $00 [3] Read present port
 A data

0102 a8 01 EOR #$01 [2] Form new port A
 pattern

0104 b7 00 STA $00 [4] Write to port A
0106 20 f8 BRA PROG4 [3] Repeat loop

 continuously

33. Which of the four programs requires the fewest bytes of program
memory?

O A. PROG1 (10)

=> B. PROG2 (6)
O C. PROM (9)

O D. PROG4 (8)

34. Which of the four programs produces the shortest pulse width
(logic one at the pin)?

O A. PROG1 (6)

O B. PROG2 (5)

=> C. PROM (4)
O D. PROG4 (12)

35. Which of the four programs produces the longest period?

O A. PROG1 (15)

O B. PROG2 (13)

O C. PROG3 (11)

=> D. PROG4 (24) (Notice the loop executes twice to make a
single period.)

BRA
PROG4

LDA $00 STA $00 LDA $00 STA $00 BRA
PROG4

LDA $00 EOR
#$01

STA $00EOR
#$01

EOR
#$01

PROCESSOR
CLOCK (INT)

PA0
PIN

PROG4
PULSE HIGH = 12~

PERIOD = 24~
M68HC05 Applications Guide — Rev. 4.0

332 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

36. Sometimes it is important to change the level on a pin without
disturbing values in the CPU accumulator and other CPU registers.
Which of the four programs uses no CPU registers other than the
program counter (PC)?

O A. PROG1 (uses A)

=> B. PROG2 (BSET and BCLR use no CPU registers)
O C. PROG3 (uses A and X)

O D. PROG4 (uses A)

37. Which of the four programs produces a square wave (equal high
and low times)?

O A. PROG1 (6/9)

O B. PROG2 (5/8)

O C. PROM (4/7)

=> D. PROG4 (12/12)

38. Some instructions affect only a single bit in a memory location;
whereas, others affect all bits in a memory location. Which of the
four programs does not make any assumptions about other bits in
port A?

O A. PROG1 & PROG2

=> B. PROG2 & PROG4
O C. PROG3 & PROG4

O D. PROG4 & PROG1

Programs 1 and 3 force bits 7 through 1 of port A to zero; programs 2
and 4 affect only bit 0.

39. On an MC68HC705C8, which of the following pins is an input-only
pin?

O A. RESET

O B. Port D bit 4/SCK

=> C. Port D bit 7 (see Figure 3-1. MC68HC705C8
Microcontroller Block Diagram)

O D. Port A bit 7
This question was intended to emphasize that reset is not an input-only
pin.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 333
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

40. What does the following sequence of instructions do?
 0100 a6 08 START LDA #$08 Comments left off

 intentionally
 0102 b7 le STA $1E
 0104 8e STOP

O A. Reset the COP watchdog timer and return to normal
program.

=> B. Force a hardware RESET. (see 3.6.4.3 Clock Monitor
Reset)

O C. Store a value $08 in RAM and stop processing.

O D. Enables the clock monitor and the COP watchdog timer.

This question was intended to show a way to force a reset with software,
which may be useful in some applications, This question also reinforces
important aspects of the clock monitor system and the STOP instruction.

41. For the four following addresses, which one would not allow you to
read back an arbitrary value which you just wrote to that address?

O A. $0004

O B. $0050

O C. $00FF

=> D. $1000 (see Figure 3-7. MC68HC705C8 Memory Map)

$0050 and $00FF are RAM addresses and can obviously be read back
after being written. $0004 is the data direction register for port A (see
3.10.1 Parallel I/O).

42. For an MC68HC705C8, which of the four following addresses
would be the best address to store a product serial number and a
variable which changed once a second? Refer to the memory map
on page 46.

O A. $0000

O B. $002F

O C. $00FF

=> D. $015F (see description of RAM1 in 3.16.4 Option Register)

This question was intended to point out that the RAM1 control bit in the
OPTION control register can be controlled by software to alternately
M68HC05 Applications Guide — Rev. 4.0

334 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

enable RAM or PROM during normal operation. The result is that both
the RAM and the PROM are usable, although software is required to
choose which is active at any particular time. You could enable the
PROM and program a serial number into location $015F before shipping
a product. You could turn on the PROM during startup to read the serial
number, then change RAM1 to enable the RAM to use the RAM located
at $015F as the storage location for a software variable.

43. If you discovered an incorrect value in a memory location as you
were starting volume production, which of the following memory
types would require the longest time to correct the error?

O A. RAM (RAM values can be changed in a single bus cycle or
about 1 µs)

=> B. ROM (ROM changes require several weeks because new
parts must be manufactured.)

O C. EPROM (EPROM takes several minutes of exposure to UV
light to erase.)

O D. EEPROM (EEPROM can be changed in tens of
milliseconds). See 1.5 Computer Systems Description
and 4.3 Hardware Development Methods.

44. A microcontroller includes

O A. a central processor unit (CPU).

O B. memory.

O C. I/O devices.

=> D. all of the above. (see 1.3 Definitions)

45. A central processor unit (CPU)
=> A. is part of a microcontroller (MCU). (see 1.3 Definitions)

O B. is a complete computer system.

O C. contains memory and I/O devices.

O D. contains an MCU.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 335
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

46. A memory is said to be volatile if it forgets its contents when power
is removed for long periods of time. Which of the following memory
types is volatile?

O A. ROM

=> B. RAM
O C. EPROM

O D. EEPROM See 1.5 Computer Systems Description and
4.3 Hardware Development Methods.

47. An EPROM memory is normally erased by

O A. software instructions.

O B. infrared light.

=> C. ultraviolet light. (see 1.5 Computer Systems Description)
O D. application of high voltage.

48. To program the OPTION register on the MC68HC705C8

O A. program all bits as if they were EPROM.

O B. program all bits as if they were RAM.

O C. program one bit like RAM and the rest of the bits as if they
were EPROM.

=> D. program one bit like EPROM and the rest of the bits as if
they were RAM. (see 3.16.4 Option Register)

49. In the MC68HC705C8, bit manipulation instructions (BSET and
BCLR)
=> A. can be used to access any on-chip I/O register or RAM

location in the $0000 through $00FF area of memory.

O B. can be used to access any location in the 8K-byte memory
map.

O C. can be used only with indexed addressing modes.

O D. can be used to access any on-chip RAM location.

See the description of BSET and BCLR in Appendix A. Instruction Set
Details.
M68HC05 Applications Guide — Rev. 4.0

336 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Review Questions
Review Questions, Answers, and Explanations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

50. Which of the following statements best describes what happens
during an SPI data transfer between two MC68HC705C8 MCUs?

O A. A slave device transfers an 8-bit character to a master
device.

O B. A master device transfers an 8-bit character to a slave
device.

=> C. A master and a slave exchange 8-bit data characters.
O D. A master device sends a start bit, 8 data bits, and a stop bit

to a slave.

See 3.12.1 Data Movement.
M68HC05 Applications Guide — Rev. 4.0

MOTOROLA Review Questions 337
For More Information On This Product,

 Go to: www.freescale.com

Review Questions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Applications Guide — Rev. 4.0

338 Review Questions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

M68HC05AG/D

For More Information On This Product,

 Go to: www.freescale.com

