COS/MOS INTEGRATED CIRCUITS

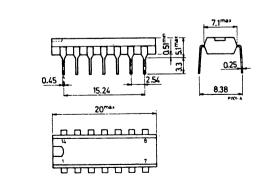
PRELIMINARY DATA

7-STAGE DIVIDER

- LOW POWER DISSIPATION
- LOW OUTPUT IMPEDANCE ON BOTH HIGH AND LOW STATE
- WIDE SUPPLY VOLTAGE RANGE: 5 to 15V
- HIGH NOISE IMMUNITY
- INPUTS FULLY PROTECTED

The M738/M740/M741/M747 are integrated circuits constructed in COS/MOS technology for use as frequency dividers in electronic organs. All the devices consist of 7 stages of binary division connected to give five divider blocks for the M741/M747 and four divider blocks for the M738/M740. The information transfer occurs on the positive going edge of the clock, for M740 and M747, and the negative going edge of the clock for M738/M741, and each output features a symmetrical impedance buffer (300 α typ. at V_{DD} = 10V). They are available in 14 lead dual in-line plastic package.

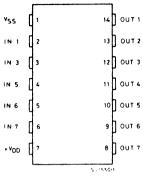
ABSOLUTE MAXIMUM RATINGS*


V _{DD} **	Supply voltage	-0.5 to	15	٧
V ₁	Input voltage (at any pin)	-0.5 to V	_{DD} +0.5	V
Ptot	Total power dissipation (per package)		200	mW
Tstg	Storage temperature	-65 to	150	°C
Top	Operating temperature	-40 to	85	°C

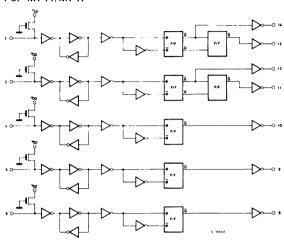
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DRDERING NUMBERS: M 7XX B1 for dual in-line plastic package

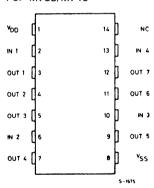
MECHANICAL DATA


Dimensions in mm

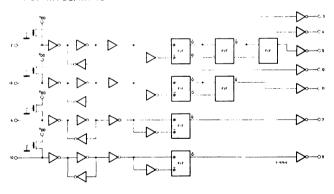
^{*} All voltages values are refered to V_{SS} pin voltage.


CONNECTION DIAGRAMS

For M741/M747



FUNCTIONAL DIAGRAMS


For M741/M747

For M738/M740

For M738/M740

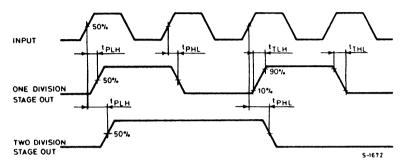
RECOMMENDED OPERATING CONDITIONS

	Parameter	V _{DD} (V)	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage		5		15	٧
VI	Input voltage		-0.5	VDI	D+0.5	٧
Top	Operating temperature		-40		85	°C
tw	Width of clock pulse (high or low)	5 10		200 100		ns

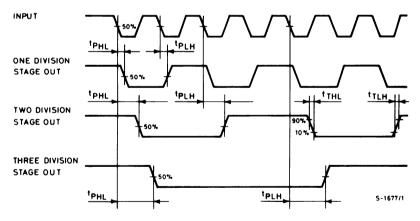
		Test conditions			Values									
	Parameter	v _o (v)	v _o	v _{DD}	-40° C		25° C			85° C			Unit	
				Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.		
I _{CCL}	Quiescent supply current	V _i =V _{DD}		5			5			5			300	μА
		' "		10			10			10			600	
				15			50			50			2000	
V OH	High level output voltage	1 ₀ = 0		5	4.99			4.99			4.95			
				10	9.99			9.99			9.95			7 v 1
				15	14.99			14.99			14.95			1
VOL	Low level output voltage	1 ₀ = 0		5			0.01			0.01			0.05	
				10			0.01			0.01			0.05] v
				15			0.01			0.01			0.05	1
OL	Output drive current N-channel		0.5	5	0.5			0.5	0.8		0.45			
			0.5	10	1			1	1.6	:	0.95		1	mA :
		1	0.5	15	1.6			1.6	2.5		1.55		1	1
Юн	Output drive current P-channel		4.5	5	-0.5			-0.5	-0.8		-0.45		i	mA
			9.5	10	-1			-1	-1.6		-0.95			
			14.5	15	-1.6			-1.6	-2.5	!	-1.55			1
l _{IL}	Input current	V _i = 0		15				3	30	100				μΑ
ин	Input current	V _i =V _{DD}		15			1			1			1	μА

DYNAMIC ELECTRICAL CHARACTERISTICS (Tamp = 25°C)

	Parameter		Test conditions		Values			Unit
	raranneter			$V_{DD}(V)$	Min.	Тур.	Max.	Juni
¢p∟H, ≹PHL	f	1 division stage outputs	C _L = 15 pF on all outputs see timing diagram	5			500	ns
				10			250	
		2 division stage outputs		5			1000	
				10			500	
		3 division		5			1500	
		stage outputs		10			750	l '''
t _{TLH} , t _{THL}	Output transition time			5			500	ns
				10			250] '''
f _{max}	Maximum toggle frequ	ency	C ₁ = 15 pF	5	0.6	2.5		мнг
			on all outputs	10	2	5		IWITZ
•	Cross talk immunity le	vel				70		dB
Cı	Input capacitance					5		pF


Send a frequency of 20 kHz to input V_{11} charge output V_{O1} with 5 k Ω and 15 pF, measure the level of the 10 kHz frequency present at all outputs.

Cross talk level = $20 \log \frac{V_{O1} (10 \text{ kHz})}{V_{OX} (10 \text{ kHz})}$.


With the exception of $V_{\rm OL}$, the output where the 10 kHz signal is greatest is $V_{\rm OX}$. This operation is repeated for all the inputs.

TIMING DIAGRAM

For M740/M747

For M738/M741

