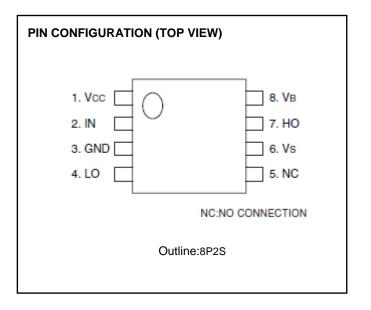
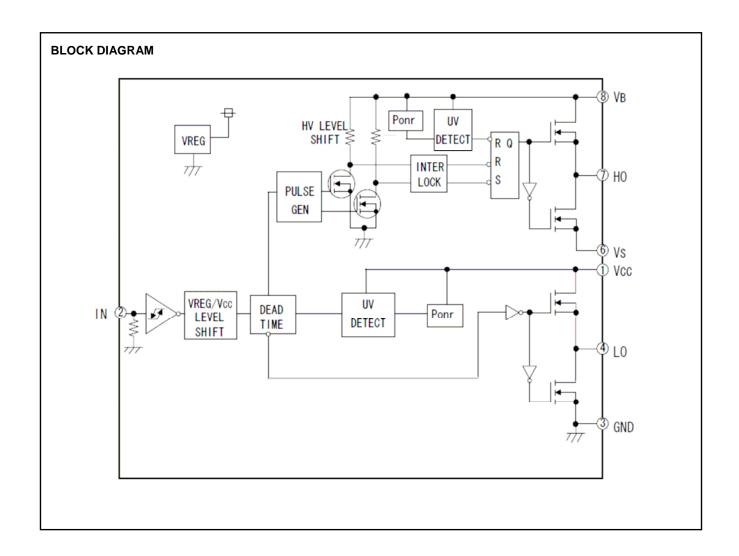
M81734FP

HIGH VOLTAGE HALF BRIDGE DRIVER

DESCRIPTION


M81734FP is high voltage Power MOSFET and IGBT module driver for half bridge applications.


FEATURES

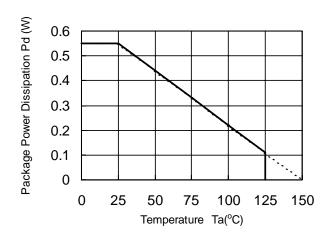
- ●FLOATING SUPPLY VOLTAGE · · · · · · · 600V
- ●OUTPUT CURRENT · · · · · · ±500mA
- **•**SINGLE INPUT TYPE
- •INTERNALLY SET DEADTIME
- •HALF BRIDGE DRIVER
- •UNDERVOLTAGE LOCKOUT
- ●SOP-8 PACKAGE

APPLICATIONS

MOSFET and IGBT module inverter driver for PDP, HID lamp, refrigerator, air-conditioner, washing machine, AC servomotor and general purpose.

HIGH VOLTAGE HALF BRIDGE DRIVER

ABSOLUTE MAXIMUM RATINGS (Ta=25°C unless otherwise specified)


Symbol	Parameter	Test conditions	Ratings	Unit
V_{B}	High Side Floating Supply Absolute Voltage		-0.5 ~ 624	٧
Vs	High Side Floating Supply Offset Voltage		V _B -24 ~ V _B +0.5	V
V_{BS}	High Side Floating Supply Voltage	$V_{BS}=V_{B}-V_{S}$	-0.5 ~ 24	V
V_{HO}	High Side Output Voltage		V_{S} -0.5 ~ V_{B} +0.5	V
V_{CC}	Low Side Fixed Supply Voltage		-0.5 ~ 24	٧
V_{LO}	Low Side Output Voltage		-0.5 ~ Vcc+0.5	V
V _{IN}	Logic Input Voltage		-0.5 ~ Vcc+0.5	V
dV _S /dt	Allowable Offset Voltage Transient		±50	V/ns
Pd	Package Power Dissipation	Ta= 25 °C ,On Board	0.55	W
Kθ	Linear Derating Factor	Ta> 25 °C ,On Board	4.4	mW/°C
Rth(j-c)	Junction-Case Thermal Resistance		50	°C/W
Tj	Junction Temperature		-20 ~ +150	°C
Topr	Operation Temperature		-20 ~ +125	°C
Tstg	Storage Temperature		-40 ~ +150	°C
TL	Solder Heatproof	RoHS Correspondence	255:10s,max 260	°C

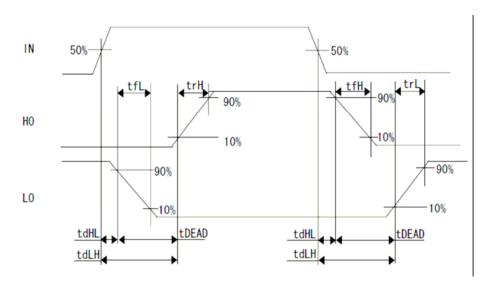
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test conditions	Limits			Unit
Symbol		rest conditions	Min.	Тур.	Max.	Onit
V_B	High Side Floating Supply Absolute Voltage		V _S +10		V _S +20	V
Vs	High Side Floating Supply Offset Voltage	V _B >10V	0	l	500	V
V_{BS}	High Side Floating Supply Voltage	$V_{BS}=V_{B}-V_{S}$	10	-	20	V
V_{HO}	High Side Output Voltage		Vs		V _B	V
V_{CC}	Low Side Fixed Supply Voltage		10	l	20	V
V_{LO}	Low Side Output Voltage	was destinated	0	-	V _{cc}	V
V_{IN}	Logic Input Voltage		0		V_{CC}	V

^{*} For proper operation, the device should be used within the recommended conditions

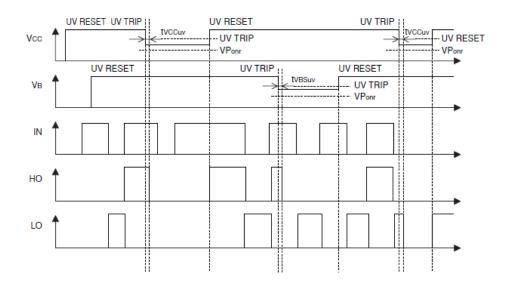
THERMAL DERATING FACTOR CHARACTERISTIC (MAXIMUM RATING)

M81734FP

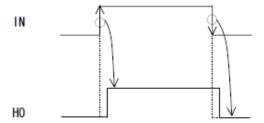

HIGH VOLTAGE HALF BRIDGE DRIVER

ELECTRICAL CHARACTERISTICS (Ta=25°C,V_{CC}=V_{BS}(=V_B-V_S)=15V, unless otherwise specified)

Symbol	Parameter	Took oon diking o		Limits		
Symbol		Test conditions	Min.	Typ.*	Max.	Unit
I _{FS}	Floating Supply Leakage Current	$V_B = V_S = 600V$	_	_	1.0	μА
I _{BS}	V _{BS} Standby Current	IN = 0V	_	0.2	0.5	mA
I _{CC}	V _{CC} Standby Current	IN = 0V	0.2	0.5	0.75	mA
V_{OH}	High Level Output Voltage	$I_O = 0$ mA, LO, HO	13.8	14.4	_	V
V_{OL}	Low Level Output Voltage	I _O = 0mA, LO, HO	_	_	0.1	V
V_{IH}	High Level Input Threshold Voltage		1.6	2.2	2.7	V
V_{IL}	Low Level Input Threshold Voltage		0.8	1.55	2.1	V
I _{IH}	High Level Input Bias Current	$V_{IN} = 3V$	_	15	45	μΑ
I _{IL}	Low Level Input Bias Current	$V_{IN} = 0V$	_	_	1	μА
V_{BSuvr}	V _{BS} Supply UV Reset Voltage		7.0	8.4	9.8	V
V_{BSuvh}	V _{BS} Supply UV Hysteresis Voltage		0.3	0.5	_	V
t _{VBSuv}	V _{BS} Supply UV Filter Time		_	7.5	_	μS
V_{CCuvr}	V _{CC} Supply UV Reset Voltage		7.0	8.4	9.8	V
V_{CCuvh}	V _{CC} Supply UV Hysteresis Voltage		0.3	0.5	_	V
t _{VCCuv}	V _{CC} Supply UV Filter Time		_	7.5	_	μS
I _{OH}	Output High Level Short Circuit Pulsed Current	V _O = 0V, PW < 10μs	_	-500	_	mA
I _{OL}	Output Low Level Short Circuit Pulsed Current	V _O = 15V, PW < 10μs	_	500	_	mA
R _{OH}	Output High Level On Resistance	$I_0 = -200 \text{mA}, R_{OH} = (V_{OH} - V_O)/I_O$	_	30	_	Ω
R _{OL}	Output Low Level On Resistance	$I_{O} = 200 \text{mA}, R_{OL} = V_{O}/I_{O}$	_	12	_	Ω
tDEAD	Dead Time LO Turn-Off to HO Turn-On &	CL = 1000pF between HO-V _S , LO-GND	0.5		1.00	
IDEAD	HO Turn-Off to LO Turn-On	$V_{IN} = 0 \sim 3V$	0.5		1.00	μS
VPonr	Power On Reset Voltage			_	6	V
tPonr(FIL)	Power On Reset Filter Time		300	_	_	ns
t _{dLH}	Turn-On Propagation Delay	CL = 1000pF between HO-V _S , LO-GND $V_{IN} = 0 \sim 3V$	0.6	0.9	1.2	μS
t _{dHL}	Turn-Off Propagation Delay	CL = 1000pF between HO-V _S , LO-GND $V_{IN} = 0 \sim 3V$	0.1	0.15	0.25	μS
t _{rH}	High Side Turn-On Rise Time	CL = 1000pF between HO-V _S	_	75	180	ns
t _{fH}	High Side Turn-Off Fall Time	CL = 1000pF between HO-Vs	_	75	180	ns
t _{rL}	Low Side Turn-On Rise Time	CL = 1000pF between LO-GND	<u> </u>	75	180	ns
t _{fL}	Low Side Turn-Off Fall Time	CL = 1000pF between LO-GND	—	75	180	ns


^{*} Typ. is not specified.

INPUT/OUTPUT TIMING DIAGRAM



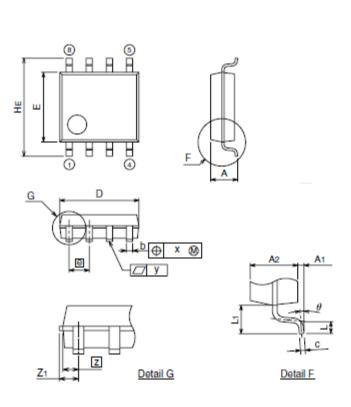
FUNCTION TIMING DIAGRAM

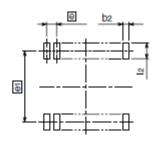
- 1. HO has positive logic with reference to IN. LO has negative logic with reference to IN.
- 2. Output signal (HO) is triggered by the edge of input signal.

3. Logic During UV(V_{CC}, V_{BS}) Error

Error Signal	НО	LO
UV error (V _{cc})	HO is locked at "L" level as long as UV error for V_{CC} is detected. After V_{CC} UV reset level, the lock for HO is removed following an "L" state of the IN signal, and then HO responds to the input. $(V_{CC}>V_{BS})$	LO is locked at "L" level as long as UV error for V_{CC} is detected. After V_{CC} exceeds V_{CC} UV reset level, the lock for LO is removed and responds to IN signal.
UV error (V _{BS})	HO is locked at "L" level as long as UV error for V_{BS} is detected. After V_{BS} UV reset level, the lock for HO is removed following an "L" state of the IN signal, and then HO responds to the input.	LO is independent of $V_{\mbox{\scriptsize BS}}$ to respond to IN.

^{*}IF UV error for V_{CC} is detected when HO is in "H" level and the falling speed of V_{CC} is exceeds 0.03V/ μ s, the off signal for HO might not be transmitted from low side to high side and then HO stays "H".


^{*}If supply voltage drops lower than VPonr, output becomes "L" not after tVccuv or tVBSuv but after tPonr(FIL).


4. Supply start up sequence

Please start up V_{CC} supply and V_{BS} supply in that order, and, please shut down V_{BS} supply and V_{CC} supply in that order. Please start up V_{CC} supply and V_{BS} supply with gentle slope. If you start up supply with sharp slope, there is some possibility that HO or LO outputs "H" for a moment.

If V_{CC} supply is less than 10V(outside of RECOMMENDED OPERATING CONDITIONS), there is some possibility that output does not change in response to input. Please evaluate carefully about supply start up or restart after shut down in your application systems.

PACKAGE OUTLINE

Recommended Mount Pad

Symbol	Dimension in Millimeters				
Symbol	Min	Nom	Max		
Α	_	_	1.9		
A1	0.05	_	_		
A2	-	1.5	-		
q	0.35	0.4	0.5		
С	0.13	0.15	0.2		
D	4.8	5.0	5.2		
E	4.2	4.4	4.6		
0	_	1.27	_		
HE	5.9	6.2	6.5		
Г	0.2	0.4	0.6		
L1	ı	0.9	-		
Z	1	0.595	-		
Z1	-	-	0.745		
X	-	-	0.25		
у	-	-	0.1		
θ	0°	_	10°		
b2	-	0.76	_		
91	_	5.72	_		
2	1.27	_	_		

