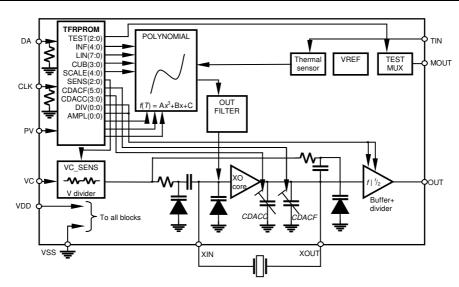


This is preliminary information on a new product under development. Micro Analog Systems Oy reserves the right to make any changes without notice.

MAS6282 IC FOR 6.50 – 40.00 MHz VCTCXO

- Min. Supply Voltage 2.6 V
- Max. Frequency 40 MHz
- True Sine Wave Output
- Frequency Stability ±2.0 ppm
- Suitable for Ultra Small VCTCXO
- Very Low Phase Noise


DESCRIPTION

The MAS6282 is an integrated circuit well suited to build VCTCXO for mobile communication. Temperature calibration is achieved in three calibration temperatures only. The trimming is done through a serial bus and the calibration information is stored in an internal PROM. This means no rework for trimming is needed. To build a VCTCXO only a crystal is required in addition to MAS6282. The compensation method is fully analog, working continuously without generating any steps or other interference. Output is true sine wave resulting in lower harmonics than with clipped sine wave output.

FEATURES

- Very small size
- Minimum Vdd 2.6V
- No voltage reference capacitor needed
- Programmable VC-sensitivity
- Divider option selectable by a PROM bit
- Output peak voltage (amplitude) option selectable by a PROM bit

BLOCK DIAGRAM

APPLICATIONS

- VCTCXO for mobile phones
- VCTCXO for other applications

PIN DESCRIPTION

Pin Description MAS6282A	Symbol	x-coordinate	y-coordinate
Crystal/Varactor Oscillator Input	XIN	185	1229
Power Supply Voltage	VDD	436	1229
Serial Bus Data Input	DA	1071	1229
Serial Bus Clock Input	CLK	1342	1229
Buffer Output	OUT	1612	1229
Voltage Control Input	VC	209	152
Crystal Oscillator Output	XOUT	477	152
Temperature Output	TIN	780	152
Programming Input	PV	1071	152
Test Multiplexer Output	MOUT	1335	152
Power Supply Ground	VSS	1612	152

Note: Because the substrate of the die is internally connected to GND, the die has to be connected to GND or left floating. Please make sure that GND is the first pad to be bonded. Pick-and-place and all component assembly are recommended to be performed in ESD protected area.

Note: Pad coordinates are measured from the left bottom corner of the chip to the center of the pads. The coordinates may vary depending on sawing width and location, however, distances between pads are accurate. **Note:** Test Multiplexer Output is for testing only and must not be connected in module.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit	Note
Supply Voltage	$V_{DD} - V_{SS}$	-0.3	5.5	V	
Input Voltage	V _{IN}	V _{SS} -0.3	V _{DD} + 0.3	V	1)
Power Dissipation	P _{MAX}		20	mW	2)
Storage Temperature	T _{ST}	-55	150	°C	
ESD Rating; HBM		±2		kV	3)
Latchup Current Limit	I _{LUT}	±100		mA	

Note: Stresses beyond the values listed may cause a permanent damage to the device. The device may not operate under these conditions, but it will not be destroyed

Note 1: Not valid for programming pin PV

Note 2: Value depends on a thermal resistance of the used packade

Note 3: In pins XIN and XOUT maximum ESD rating is 1 kV.

RECOMMENDED OPERATION CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Note
Supply voltage	V _{DD}		2.6	2.8	4.0	V	
Supply current	I _{CC}	Vdd = 2.8 V, f _c =26 MHz		1.3		mA	
Supply current	I _{CC}	$Vdd = 2.8 V, f_c = 40 MHz$		1.5		mA	
Operating temperature	T _{OP}		-40		+85	°C	
Crystal load capacitance	CL			8		pF	1)
Crystal pulling sensitivity	S		18		30	ppm/pF	
Crystal Rs	R _S			20	50	Ω	

Note 1: CDACF = 32 and CDACC = 8

ELECTRICAL CHARACTERISTICS

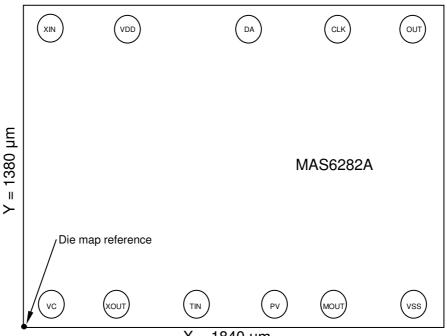
Parameter		Symbol	Min	Тур	Max	Unit	Note
Crystal frequency range	for MAS6282	f _c	13.00		40.00	MHz	1)
Voltage control range		V _C	0	1.3	VDD	V	
Voltage control sensitivit	ty (SENS=7)	V _{CSENS}		10		ppm/V	2)
Frequency vs. supply vo	ltage	dfo			±0.2	ppm	3)
Frequency vs. load char	ige	dfo			±0.2	ppm	4)
Output voltage (10 kΩ	10 pF)	V _{out}	0.6	0.8/1.0		Vpp	5)
Power Consumption		Р			8	mW	8)
Harmonic distortion				-25		dBc	
Compensation range ±2.0 ppm		T _C	-30		85	°C	
Compensation range linear part		a1	-0.7		0.0	ppm/K	
Compensation inflection point		INF	20.5		36	°C	
Compensation range cu	bic part	a3		95		ppm ² /K ³	
Fine compensation CDA	CF (6 Bit)	C _{XOUT}	C10		C10 + 0.95	pF	6)
Coarse compensation C	DACC (4 Bit)	C _{XOUT}	C20		C20 + 6.75	pF	6)
Start-up time		T _{START}		2		ms	
	@ 10Hz	 φ _n			-90	dBc/Hz	
	@ 100Hz				-113		
Phase noise	@ 1kHz				-136		7)
	@ 10kHz				-148		
	@ 100kHz				-155		

Note 1: Frequency division by two is selected by PROM bit DIV: 0=no division, 1=div by 2 Thus IC output frequency range is 6.5 MHz – 40 MHz.

Note 2: Depending on crystal pulling

Note 3: VDD±5%

Note 4: R=10 kΩ±10%, C=10 pF±10%

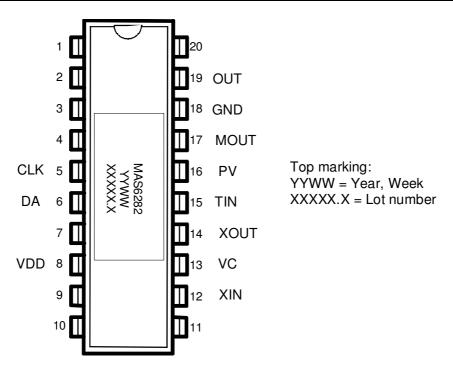

Note 5: 0.8 V / 1.0 V output is selected by PROM bit AMPL: 0=0.8 Vpp, 1=1.0Vpp

Note 6: Typically C10 = 3.1 pF at CDACF=0, CDACC=0

Note 7: Not measured in production testing; guaranteed by design

Note 8: Max power consumption is 8 mW when V_{DD} is 4V

X = 1840 µm


Note 1: MAS6282 pads are round with 80 μ m diameter at opening.

Note 2: Pins CLK and DA can either be connected to VSS or left floating, pin PV can either be connected to VSS or left floating and pin TIN must be left floating in VCTCXO module end-user application.

Note 3: Die map reference is the actual left bottom corner of the sawn chip.

Note 4: See coordinates in pin description on page 2.

SAMPLES IN SBDIL 20 PACKAGE

ORDERING INFORMATION

Product Code	Product	Package	Comments
MAS6282A1TG00	IC for 6.5MHz to 40MHz VCTCXO	EWS Tested wafers 215 μm	Die Size 1.840 x 1.380 mm

Contact Micro Analog Systems Oy for other wafer thickness options.

The formation of product code

Product name	Design version	Package type	Delivery format	
MAS6282	A1	TG = 215 µm thick EWS tested wafer	00 = bare wafer	

LOCAL DISTRIBUTOR

MICRO ANALOG SYSTEMS OY CONTACTS

Micro Analog Systems Oy	Tel. (09) 80 521
Kamreerintie 2, P.O. Box 51	Tel. Int. +358 9 80 521
FIN-02771 Espoo, FINLAND	Telefax +358 9 805 3213
http://www.mas-oy.com	Email: info@mas-oy.com

NOTICE

Micro Analog Systems Oy reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Micro Analog Systems Oy assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Micro Analog Systems Oy makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.