

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability and ±15kV ESD

General Description

The MAX14531E–MAX14534E high ESD-protected DP3T switches multiplex Hi-Speed (480 Mbps) USB signals, low/full-speed USB signals, and analog signals such as AC-coupled audio or video through any of three channels. These devices combine the low on-capacitance (C_{ON}) and low on-resistance (R_{ON}) necessary for high-performance switching applications in portable electronics, and include an internal negative supply to pass AC-coupled audio signals that swing below ground (down to -2.0V). The MAX14531E–MAX14534E operate from a +2.7V to +5.5V supply.

The MAX14531E–MAX14534E have a shutdown function to reduce supply current and set all channels to high impedance. The MAX14531E–MAX14534E feature a VBUS detection function through the CB0 input to automatically switch to the default USB signal path upon detection of a valid VBUS signal. The MAX14532E/MAX14534E feature internal shunt resistors on audio channels to reduce clicks and pops heard at the output.

The MAX14531E–MAX14534E are available in a spacesaving, 12-bump, 1.5mm x 2.0mm WLP package and operate over the -40°C to +85°C temperature range.

Applications

_Features

- Single +2.7V to +5.5V Supply Voltage
- Low 10µA (typ) Supply Current
- -3dB Bandwidth: 800MHz (typ)
- Low 2Ω (typ) On-Resistance
- 0.05% THD+N
- Internal Shunt Resistor for Click-and-Pop Reduction (MAX14532E/MAX14534E)
- VBUS Detection for Automatic Switch Path Selection
 - +28V Maximum Rated VBUS Detection Input (CB0)
- Space-Saving, 12-Bump, 1.5mm x 2.0mm WLP Package

Cell Phones
MP3 Players
PDAs
Notebook Computers

Ordering Information/Selector Guide

PART	PIN-PACKAGE	SHUNT RESISTORS	CB0 PULLDOWN RESISTOR	TOP MARK
MAX14531EEWC+	12 WLP	NONE	No	AAT
MAX14532EEWC+	12 WLP	UAZ_	Yes	AAU
MAX14533EEWC+*	12 WLP	NONE	Yes	AAV
MAX14534EEWC+*	12 WLP	UAY_/UAZ_	Yes	AAW

Note: All devices are specified over the -40°C to +85°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

*Future product—contact factory for availability.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1. October 10.00 or visit Maxim's website at www.maxim-ic.com.

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability and ±15kV ESD

Figure 2. Output Skew

2

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability and ±15kV ESD

_Test Circuits/Timing Diagrams (continued)

Figure 3. On-Loss, Off-Isolation, and Crosstalk

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability and ±15kV ESD

Detailed Description

The MAX14531E–MAX14534E are high ESD-protected single DP3T switches that operate from a +2.7V to +5.5V supply and are designed to multiplex USB 2.0 Hi-Speed signals and AC-coupled analog signals. These switches combine the low on-capacitance (C_{ON}) and low on-resistance (R_{ON}) necessary for high-performance switching applications. These devices also meet the requirements for USB low-speed and full-speed signaling. The negative signal capability of all three channels allows signals below ground to pass through without distortion.

Analog Signal Levels

The MAX14531E–MAX14534E are bidirectional, allowing UAX_, UAY_, UAZ_, and COM_ to be configured as either inputs or outputs. Note that UAX_, UAY_, and UAZ_ are only protected against ESD up to $\pm 2kV$ (Human Body Model) and may require additional ESD protection if used as outputs. These devices feature a charge pump that generates a negative supply to allow analog signals as low as -2.0V applied to UAX_, UAY_, UAZ_, or COM_. The negative charge pump is only active when the part is enabled (CB0 or CB1 = 1). Connect negative signals to UAX_, UAY_, UAZ_, or COM_ only when the device is enabled.

VBUS Detection

The MAX14531E–MAX14534E feature a VBUS detection input (CB0) that connects COM_ to UAX_ when V_{CB0} exceeds the VBUS detection threshold (V_{VBDET}) (see the *Functional Diagram/Truth Table*). Note that the MAX14531E requires an external pulldown resistor when using this function.

Digital Control Inputs

The MAX14531E–MAX14534E provide control logic inputs, CB0 and CB1, to control the switch position as shown in the *Functional Diagram/Truth Table*. Drive CB_ rail-to-rail to minimize power consumption.

Figure 4. Human Body ESD Test Model

Shutdown Mode

The MAX14531E–MAX14534E feature a shutdown mode to reduce the supply current to less than 1 μ A and place the switches in high impedance. Drive both CB0 and CB1 low to place the devices in shutdown mode (see the *Functional Diagram/Truth Table*.)

Click-and-Pop Suppression

The switched 100Ω shunt resistors on the MAX14532E/ MAX14534E automatically discharge any capacitance at the UAZ_ (MAX14532E) or UAY_ and UAZ_ (MAX14534E) inputs when they are unconnected from COM_ (see the *Functional Diagram/Truth Table*). This reduces audio click-and-pop sounds that may occur when switching to audio sources.

Applications Information

Extended ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2kV$ (Human Body Model) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to $\pm 15kV$ (Human Body Model) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the MAX14531E– MAX14534E continue to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 4 shows the Human Body Model, and Figure 5 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5k\Omega$ resistor.

Figure 5. Human Body Current Waveform

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability and ±15kV ESD

Layout

USB Hi-Speed requires careful PCB layout with 45Ω single-ended/90 Ω differential controlled impedance matched traces of equal lengths. Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.

Power-Supply Sequencing

Package Information

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Apply V_{CC} before applying analog signals, especially if the analog signal is not current limited.

Chip Information

PROCESS: BiCMOS

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
12 WLP	W121A2-1	<u>21-0009</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim is a registered trademark of Maxim Integrated Products, Inc.

_ 5