19-5293; Rev 1; 3/11

EVALUATION KIT AVAILABLE

USB Host Charger Identification Analog Switches

General Description

The MAX14566E/MAX14566AE/MAX14566BE are sec-

ond-generation USB devices that combine Hi-Speed

USB analog switches with a USB host charger (dedicated

charger) identification circuit. These devices support both

the latest USB Battery Charging Specification Revision 1.2 including data contact detection and a set resistor bias

for Apple-compliant devices as well as legacy USB D+/D-

short detection using data line pullup. The MAX14566E

has a pMOSFET open-drain control output (CEN) and the MAX14566AE has an nMOSFET open-drain control output

(CEN) to restart the peripheral connected to the USB host.

These devices feature high-performance Hi-Speed USB

switches with low 4pF (typ) on-capacitance and low 4.0Ω

(typ) on-resistance. In addition, the devices feature a single digital input (CB) to switch between pass-through

mode and autodetection charger mode. The USB host charger identification circuit allows a host USB port to

support USB chargers with shorted DP/DM detection

and to provide support for Apple-compliant devices

using a resistor bias on USB data lines. When an Applecompliant device is attached to the port in autodetection

charger mode, the devices supply the voltage to the DP

and DM lines from the internal resistor-divider. If a USB Revision 1.2-compliant device is attached, the devices short DP and DM to allow correct charger detection. The MAX14566BE features an additional digital input (CB1)

These devices have enhanced, high electrostatic discharge (ESD) protection on the DP and DM inputs up

to ±15kV Human Body Model (HBM). All the devices

are available in an 8-pin (2mm x 2mm) TDFN package,

and are specified over the -40°C to +85°C extended

to allow forced charger mode.

temperature range.

Features

- Hi-Speed USB Switching
- Low 4.0pF (typ) On-Capacitance
- + Low 4.0Ω (typ) On-Resistance
- Ultra-Low 0.1Ω (typ) On-Resistance Flatness
- + +2.8V to +5.5V Supply Range
- Ultra-Low 3µA (typ) Supply Current
- Automatic Current-Limit Switch Control
- Automatic USB Charger Identification Circuit
- ◆ ±15kV High ESD HBM Protection On DP/DM
- 2mm x 2mm, 8-Pin TDFN Package
- ♦ -40°C to +85°C Operating Temperature Range

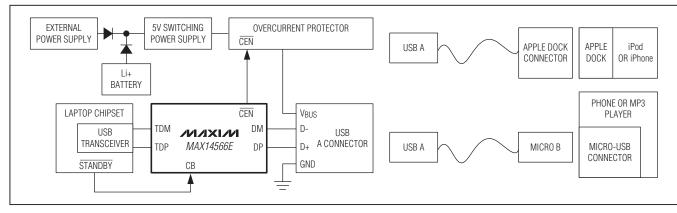
Applications

Laptops

Netbooks

Universal Charger including iPod®/iPhone® Chargers

Ordering Information/ Selector Guide


PART	PIN- PACKAGE	CLS CONTROL	TOP MARK
MAX14566EETA+	8 TDFN-EP*	CEN	ADJ
MAX14566AEETA+	8 TDFN-EP*	CEN	ADK
MAX14566BEETA+	8 TDFN-EP*		BMR

Note: All devices are specified over the -40°C to +85°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

*EP = Exposed pad.

Typical Operating Circuit

iPhone and iPod are registered trademarks of Apple, Inc.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

2,

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

o +6.0V
±30mA
954mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TDFN

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

(VCC = 2.8V to 5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = 5.0V, TA = +25°C.) (Note 2)

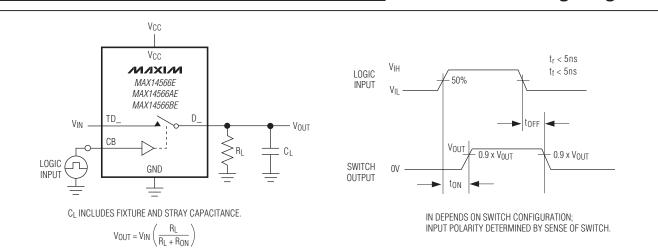
PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
POWER SUPPLY (MAX14566	E/MAX14566AE)						
Power Supply Popgo	Vee	V _{CB} > V _{IH}		2.8		5.5	V
Power-Supply Range	Vcc	VCB = 0V (Note 3)		4.75		5.25	V
			V _{CC} = 3.3V			2	
Supply Current		VCB = VCC	$V_{CC} = 5.5V$			7	
Supply Current	ICC	VCB = 0V	$V_{CC} = 4.75V$		110	200	μA
		ACB = 0A	$V_{CC} = 5.25V$		120	200	
Supply Current Increase	ΔICC	$0 \le V_{CB} \le V_{IL}$ or V	$IH \le VCB \le VCC$			2	μA
POWER SUPPLY (MAX14566	BE)						
Power-Supply Range	Vcc	$V_{CB} = V_{CC}$ and V_{CB1} and $V_{CB1} = 0V$ or $V_{CB1} = V_{CC}$	B1 = VCC or VCB = VCC VCB = 0V and	2.8		5.5	V
		$V_{CB} = 0V$ and $V_{CB1} = 0V$ (Note 3)		4.75		5.25	V
		$V_{CB} = V_{CC}$ and $V_{CB1} = V_{CC}$ or	$V_{CC} = 3.3V$			2	
		$V_{CB} = V_{CC}$ and $V_{CB1} = 0V$	$V_{CC} = 5.5V$			7	μΑ
Supply Current	ICC	$V_{CB} = 0V$ and	$V_{CC} = 4.75V$		110	200	
		VCB1 = 0V	$V_{CC} = 5.25V$		120	200	
		VCB = 0V and VCB1 = VCC	$V_{CC} = 5.0V$ for TYP $V_{CC} = 5.5V$ for MAX		3	7	
	4100	$V_{CB1} = 0V; 0 \le V_{CB} \le V_{IL}$ and $V_{IH} \le V_{CB} \le V_{CC}$ (Note 4)			1		
Supply Current Increase	ΔICC	$V_{CB} = 0V; 0 \le V_{CE}$ and $V_{IH} \le V_{CB1} \le$			1		μA

ELECTRICAL CHARACTERISTICS (continued)

(VCC = 2.8V to 5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = 5.0V, TA = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG SWITCH	·	•				
Analog-Signal Range	V _{DP} ,V _{DM}		0		Vcc	V
On-Resistance TDP/TDM Switch	Ron	$V_{DP} = V_{DM} = 0V$ to V_{CC} , $I_{DP} = I_{DM} = 10$ mA		4.0	6.5	Ω
On-Resistance Match Between Channels TDP/TDM Switch	ΔR _{ON}	$V_{CC} = 5.0V, V_{DP} = V_{DM} = 400mV,$ $I_{DP} = I_{DM} = 10mA$		0.1		Ω
On-Resistance Flatness TDP/ TDM Switch	RFLAT	$V_{CC} = 5.0V$, $V_{DP} = V_{DM} = 0$ to V_{CC} , $I_{DP} = I_{DM} = 10$ mA		0.1		Ω
On-Resistance of DP/DM Short	RSHORT	$V_{CB} = 0V, V_{DP} = 1V, I_{DP} = I_{DM} = 10mA$		40	70	Ω
Off-Leakage Current	ITDPOFF, ITDMOFF	$V_{CC} = 3.6V, V_{DP} = V_{DM} = 0.3V \text{ to } 3.3V,$ $V_{TDP} = V_{TDM} = 3.3V \text{ to } 0.3V, V_{CB} = 0V$	-250		+250	nA
On-Leakage Current	IDPON, IDMON	$V_{CC} = 3.6V$, $V_{DP} = V_{DM} = 3.3V$ to 0.3V, $V_{CB} = V_{CC}$	-250		+250	nA
DYNAMIC PERFORMANCE						
Turn-On Time	ton	VTDP or VTDM = 1.5V, R _L = 300Ω , C _L = $35pF$, Figure 1		20	100	μs
Turn-Off Time	tOFF	VTDP or VTDM = 1.5V, R _L = 300Ω , C _L = $35pF$, Figure 1		1	5	μs
TDP, TDM Switch Propagation Delay	tplh, tphl	$R_L = R_S = 50\Omega$		60		ps
Output Skew	tsk(O)	Skew between DP and DM when connected to TDP and TDM, $R_L = R_S = 50\Omega$, Figure 2		40		ps
TDP, TDM Off-Capacitance	COFF	f = 1MHz		2.0		рF
DP, DM On-Capacitance (Connected to TDP, TDM)	CON	f = 240MHz		4.0	5.5	pF
-3dB Bandwidth	BW	$R_L = R_S = 50\Omega$ (Note 4)		1000		MHz
Off-Isolation	Viso	V_{TDP} , $V_{DP} = 0$ dBm, $R_L = R_S = 50\Omega$, f = 250MHz, Figure 3 (Note 4)		-20		dB
Crosstalk	VCT	V_{TDP} , $V_{DP} = 0$ dBm, $R_L = R_S = 50\Omega$, f = 250MHz, Figure 3 (Note 4)		-25		dB
INTERNAL RESISTORS						
DP/DM Short Pulldown	R _{PD}		335	500	710	kΩ
RP1/RP2 Ratio	RT _{RP}		1.485	1.5	1.515	Ratio
RP1 + RP2 Resistance	R _{RP}		95	126	176	kΩ
RM1/RM2 Ratio	RT _{RM}		0.843	0.85	0.865	Ratio
RM1 + RM2 Resistance	R _{RM}		70	94	132	kΩ
COMPARATORS						
DM1 Comparator Threshold	VDM1F	DM falling	45	46	47	%Vcc
DM1 Comparator Hysteresis				1		%
DM2 Comparator Threshold	VDM2F	DM falling	6.31	7	7.6	%Vcc
DM2 Comparator Hysteresis				1		%
DP Comparator Threshold	VDPR	DP rising	45	46	47	%Vcc

ELECTRICAL CHARACTERISTICS (continued)


(V_{CC} = 2.8V to 5.5V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at V_{CC} = 5.0V, $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DP Comparator Hysteresis				1		%
LOGIC INPUT (CB, CB1)						
CB/CB1 Input Logic-High	VIH		1.4			V
CB/CB1 Input Logic-Low	VIL				0.4	V
CB/CB1 Input Leakage Current	I _{IN}	$\label{eq:VC} \begin{array}{l} V_{CC} = 5.5 V, \mbox{ 0V} \leq V_{CB} \leq V_{IL} \mbox{ or } \\ V_{IH} \leq V_{CB} \leq V_{CC} \end{array}$	-1		+1	μA
CEN/CEN OUTPUTS						
V _{BUS} Toggle Time (MAX14566E/ MAX14566AE)	tvbt	CB = logic 0 to logic 1 or logic 1 to logic 0	0.5	1	2	s
CEN Output Logic-High Voltage		CB = logic 0 to logic 1, I _{SOURCE} = 2mA (MAX14566E only)	V _{CC} - 0.4			V
CEN Output Leakage Current		$V_{CC} = 5.5V, V_{\overline{CEN}} = 0V, \overline{CEN}$ deasserted (MAX14566E only)			1	μA
CEN Output Logic-Low Voltage		CB = logic 0 to logic 1, I _{SINK} = 2mA (MAX14566AE only)			0.4	V
CEN Output Leakage Current		V _{CC} = V _{CEN} = 5.5V, CEN deasserted (MAX14566AE only)			1	μA
ESD PROTECTION						
ESD Protection Level (DP and DM Only)	Vesd	НВМ		±15		kV
ESD Protection Level (All Other Pins)	VESD	НВМ		±2		kV

Note 2: All units are 100% production tested at $T_A = +25^{\circ}$ C. Specifications over temperature are guaranteed by design.

Note 3: The part is operational from +2.8V to +5.5V. However, in order to have the valid Apple resistor-divider network, the V_{CC} supply must stay within the range of +4.75V to +5.25V.

Note 4: Guaranteed by design.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

_Test Circuits/Timing Diagrams (continued)

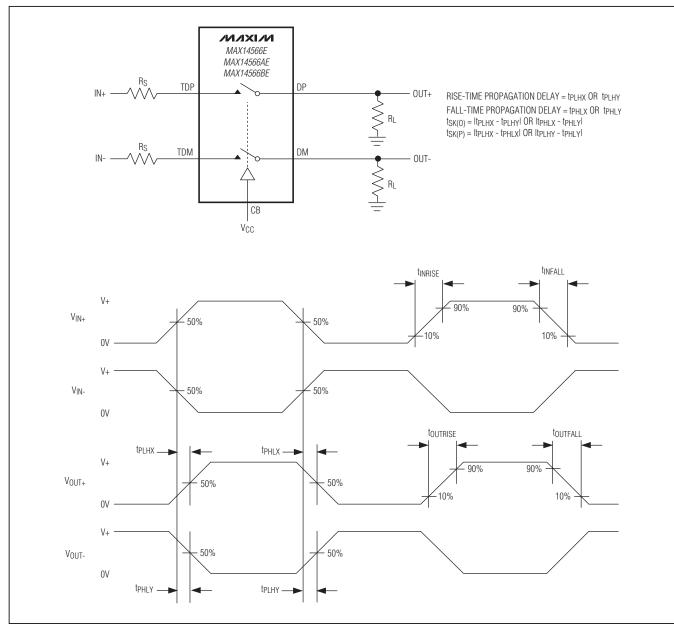


Figure 2. Output Signal Skew

MAX14566E/MAX14566AE/MAX14566BE

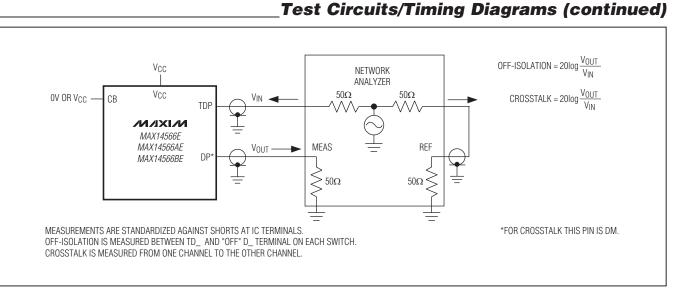
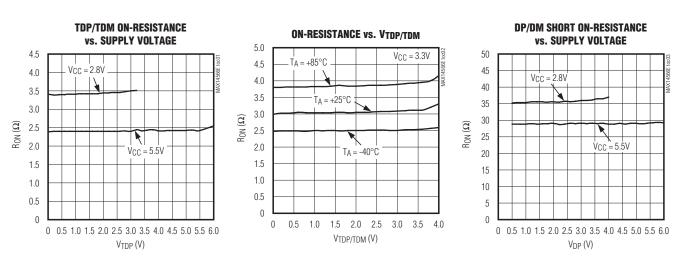
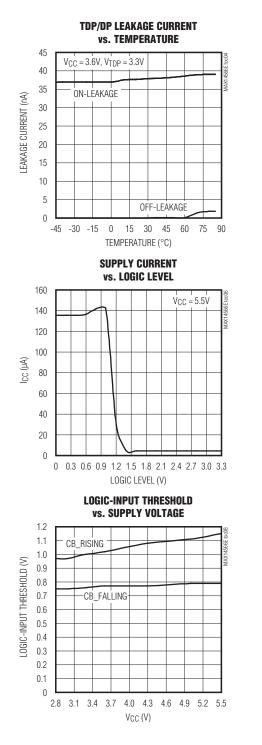
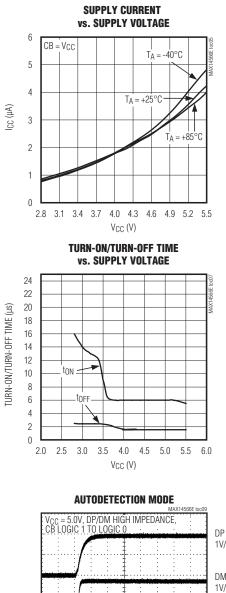
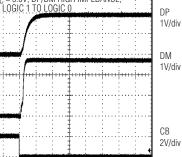



Figure 3. Off-Isolation and Crosstalk

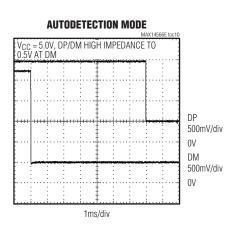

(VCC = 5V, TA = $+25^{\circ}$ C, unless otherwise noted.)

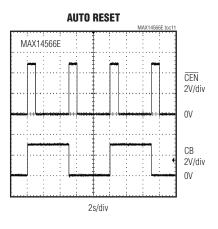



Typical Operating Characteristics

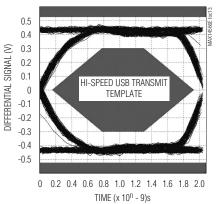
Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

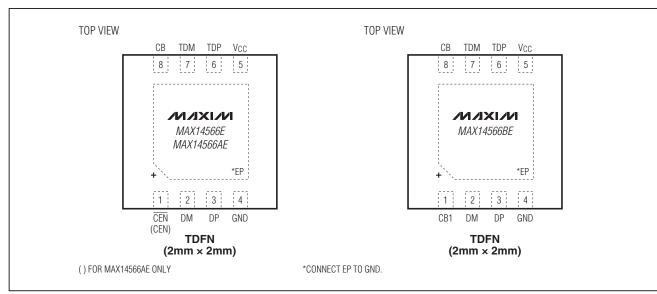




10µs/div

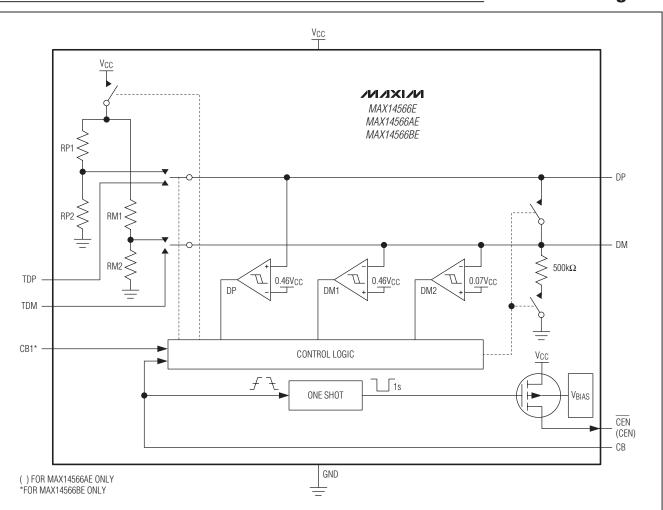

Typical Operating Characteristics (continued)

(V_{CC} = 5V, T_A = +25°C, unless otherwise noted.)



AUTO RESET MAX14566AE **USB EYE DIAGRAM**

_Pin Configuration



_Pin Description

	PIN		NAME	FUNCTION	
MAX14566E	MAX14566AE	MAX14566BE	NAME	FUNCTION	
_	1		CEN	nMOSFET Open-Drain Output, Current-Limit Switch (CLS) Control Output. If CB changes from logic 0 to logic 1 or from logic 1 to logic 0, CEN is low for 1s (typ).	
1			CEN	Active-Low pMOSFET Open-Drain Output, Current-Limit Switch (CLS) Control Output. If CB changes from logic 0 to logic 1 or logic 1 to logic 0, CEN is high for 1s (typ).	
	—	1	CB1	Switch Control Bit. See Table 2.	
2	2	2	DM	USB Connector D- Connection	
3	3	3	DP	USB Connector D+ Connection	
4	4	4	GND	Ground	
5	5	5	VCC	Power Supply. Connect a 0.1µF capacitor between VCC and GND as close as possible to the device.	
6	6	6	TDP	Host USB Transceiver D+ Connection	
7	7	7	TDM	Host USB Transceiver D- Connection	
8	8	8	СВ	Switch Control Bit. See Table 1. CB = logic 0, charger mode CB = logic 1 (PM), pass-through mode active, DP/DM connected to TDP/TDM	
_	_	_	EP	Exposed Pad. Connect EP to ground. Do not use EP as the only ground connection.	

MAX14566E/MAX14566AE/MAX14566BE

Functional Diagram

Detailed Description

The MAX14566E/MAX14566AE/MAX14566BE are Hi-Speed USB analog switches that support USB hosts to identify the USB port as a charger port when the USB host is in a low-power mode and cannot enumerate USB devices. These devices feature high-performance Hi-Speed USB switches with low 4pF (typ) on-capacitance and low 4 Ω (typ) on-resistance. DP and DM can handle signals between 0V and 6V with any supply voltage.

Resistor-Dividers

All the devices feature an internal resistor-divider for biasing data lines to provide support for Apple-compliant devices. When these devices are not operated with the resistor-divider, they disconnect the resistor-dividers from the supply voltage to minimize supply current requirements. The resistor-dividers are not connected in pass-through mode.

Switch Control

The MAX14566E/MAX14566AE feature a single digital input, CB, for mode selection (Table 1). Connect CB to a logic-level low voltage for autodetection charger mode (AM). See the *Autodetection* section for more information. Connect CB to a logic-level high voltage for normal high-speed pass-through mode (PM). The MAX14566BE features dual digital inputs, CB and CB1, for mode selection (Table 2). Connect CB to a logic-level high for normal high-speed pass-through mode (PM). Connect CB to a logic-level high for normal high-speed pass-through mode (PM).

with CB1. Connect CB1 to a logic-level low for auto mode (AM) or connect CB1 to a logic-level high for forced dedicated-charger mode (FM).

Autodetection

All the devices feature autodetection charger mode for dedicated chargers and USB masters. CB must be set low to activate autodetection charger mode.

In autodetection charger mode, the MAX14566E monitors the voltages at DM and DP to determine the type of the device attached. If the voltage at DM is +2.3V (typ) or higher and the voltage at DP is +2.3V (typ) or lower, the voltage stays unchanged.

If the voltage at DM is forced below the +2.3V (typ) threshold, the internal switch disconnects DM and DP

from the resistor-divider and DP and DM are shorted together for dedicated charging mode.

If the voltage at DP is forced higher than the +2.3V (typ) threshold, the internal switch disconnects DM and DP from the resistor-divider and DP and DM are shorted together for dedicated charging mode.

Once the charging voltage is removed, the short between DP and DM is disconnected for normal operation.

Automatic Peripheral Reset

The MAX14566E/MAX14566AE feature automatic currentlimit switch control output. This feature resets the peripheral connected to V_{BUS} in the event the USB host switches to or from standby mode. \overline{CEN}/CEN provide a 1s (typ) pulse on the rising or falling edge of CB (Figures 4, 5, and 6).

Table 1. Digital Input State (MAX14566E/MAX14566AE)

СВ	MODE	DP/DM	COMMENT	INTERNAL RESISTOR-DIVIDER
0	AM	Autodetection Circuit Active	Auto Mode	Connected
1	PM	Connected to TDP/TDM	USB Traffic Active	Not Connected

Table 2. Digital Input State (MAX14566BE)

СВ	CB1	MODE	STATUS	
0	0	AM	Auto Mode	
0	1	FM	Forced Dedicated-Charger Mode: DP/DM Shorted	
1	Х	PM	Pass-Through (USB) Mode: Connect DP/DM to TDP/TDM	

X = Don't care.

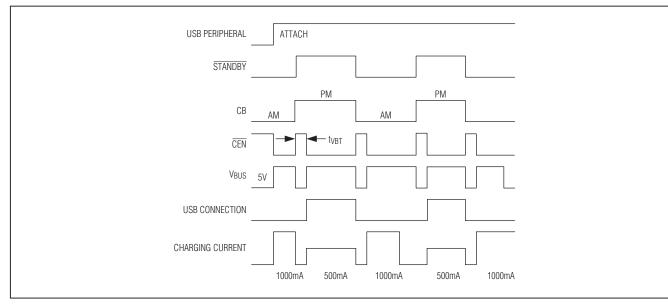


Figure 4. MAX14566E Peripheral Reset Timing Diagram

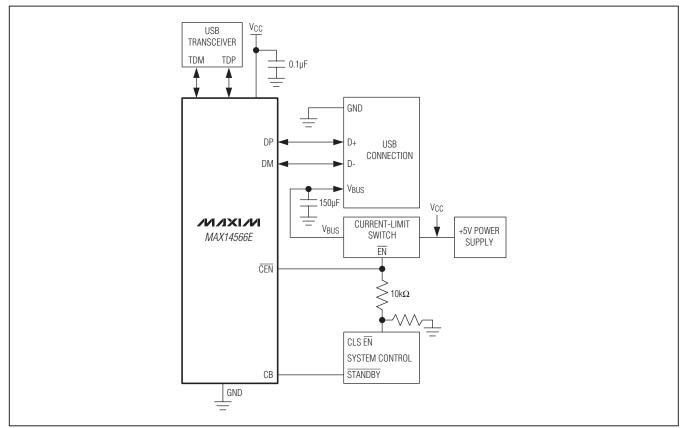


Figure 5. MAX14566E Peripheral Reset Applications Diagram

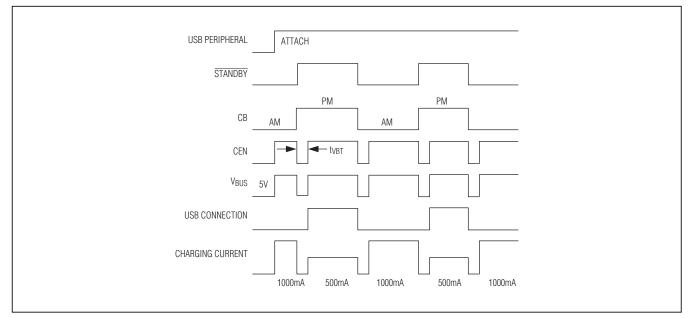


Figure 6. MAX14566AE Peripheral Reset Timing Diagram

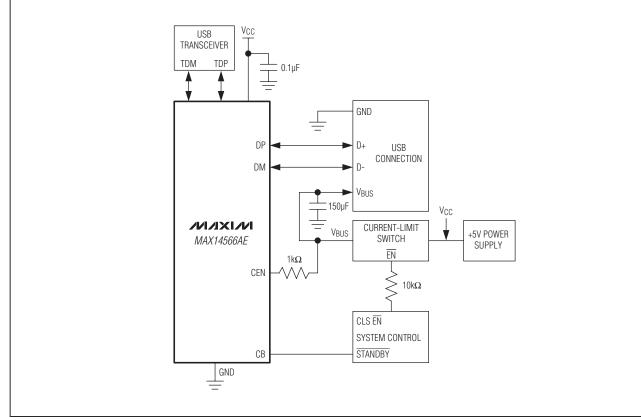


Figure 7. MAX14566AE VBUS Discharge Circuit

Bus Voltage Discharge

The MAX14566AE automatic current-limit switch control output can be used to discharge the V_{BUS} during V_{BUS} reset. When the system controls the current-limit switch for V_{BUS} toggle, the output capacitor can be discharged slowly depending upon the load. If fast discharge of the V_{BUS} capacitor is desired, the CEN output can be used to achieve the fast discharge as shown in Figure 7.

Data Contact Detect

All the devices support USB devices that require detecting the USB data lines prior to charging. When a USB Revision 1.2-compliant device is attached, the USB data lines DP and DM are shorted together. The short remains until it is detected by the USB device. This feature guarantees appropriate charger detection if a USB Revision 1.2-compliant device is attached. The autodetection charger mode is activated after the data contact detect is established. CB must be set low to activate data contact detect.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Extended ESD Protection (Human Body Model)

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2kV$ (HBM) encountered during handling and assembly. DP and DM are further protected against ESD up to $\pm 15kV$ (HBM) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the device continues to function without latchup (Figure 8).

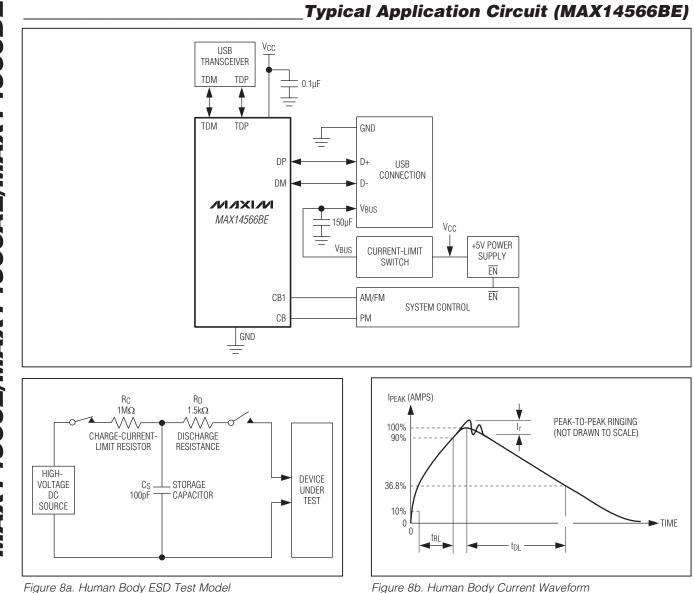


Figure 8a. Human Body ESD Test Model

Chip Information

PROCESS: BICMOS

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
8 TDFN-EP	T822+1	<u>21-0168</u>	<u>90-0064</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/10	Initial release	—
1	3/11	Changed the USB Battery Charging Specification Revision 1.1 to Revision 1.2	1, 13

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

15