1.Description The UMW MAX485 is low-power transceivers for RS-485 and RS- 422 communication. IC contains one driver and one receiver. The driver slew rates of the MAX485 is not limited, allowing them to transmit up to 2.5Mbps. These transceivers draw between 120µA and 500µA of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit. The MAX485 is designed for half- duplex applications. #### 2.Features - Low Quiescent Current: 300µA - -7V to +12V Common-Mode Input Voltage Range - Three-State Outputs - 30ns Propagation Delays, 5ns Skew - Full-Duplex and Half-Duplex Versions Available - Operate from a Single 5V Supply - Allows up to 32 Transceivers on the Bus - Data rate: 2,5 Mbps - Current-Limiting and Thermal Shutdown for - Driver Overload Protection #### 3.Pinning information ## **4.Absolute Maximum Ratings** | Description | Symbol | Rating | |--|-----------------|-----------------------------------| | Supply Voltage | V | 12V | | Control Input Voltage | V _{cc} | -0.5V to (V _{CC} + 0.5V) | | Driver Input Voltage | DI | -0.5V to (V _{cc} + 0.5V) | | Driver Output Voltage | - A, B | -8V to +12.5V | | Receiver Input Voltage | , A, B | -8V to +12.5V | | Receiver Output Voltage | RO | -0.5V to (V _{CC} +0.5V) | | Continuous Power Dissipation | | T _A =70°C | | 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) | | 727mW | | 8-Pin SO (derate 5.88mW/°C above +70°C) | | 471mW | | Operating Temperature Ranges | | -40°C to +105°C | | Storage Temperature Range | | -65°C to +160°C | | Lead Temperature (soldering, 10sec) | | 300°C | #### **5.Electrical Characteristics** (V_{CC}=5V±5%, $T_A = T_{MIN}$ to $T_{MAX},$ unless otherwise noted.) (Notes 1, 2) | Parameter | Symbol | Conditio | Min | Тур | Max | Units | | |--|------------------|---|----------------------|------|-----|-------|----| | Differential Driver Output (noload) | V _{OD1} | | | | 5 | V | | | Differential Driver Output (with load) | V | R=50Ω (RS-422) | 2 | | | V | | | | V _{OD2} | R=27Ω (RS-485), | Figure 4 | 1.5 | | 5 | V | | Change in Magnitude of Driver Differential | | | | | | | | | Output Voltage for Complementary Output | ΔV_{OD} | R=27Ω or 50Ω, Fig | gure 4 | | | 0.2 | V | | States | | | | | | | | | Driver Common-Mode Output Voltage | V _{oc} | R=27Ω or 50Ω, Fig | gure 4 | | | 3 | V | | Change in Magnitude of Driver Common- | | | | | | | | | Mode Output Voltage for Complementary | ΔV_{OD} | R=27Ω or 50Ω, Fig | | | 0.2 | V | | | Output States | | | | | | | | | Input High Voltage | V _{IH} | DE, DI, RE | 2 | | | V | | | Input Low Voltage | V _{IL} | DE, DI, RE | | | 0.8 | V | | | Input Current | I _{IN1} | DE, DI, RE | | | | ±2 | μA | | Input Current (A, B) | _ | DE=0V | V _{IN} =12V | | | 1 | mA | | input Guirent (A, B) | l _{IN2} | V _{CC} = 0V or 5.25V | V _{IN} =-7V | | | -0.8 | mA | | Receiver Differential Threshold Voltage | V_{TH} | -7V ≤V _{CM} ≤12V | | -0.2 | | 0.2 | V | | Receiver Input Hysteresis | ΔV_{TH} | V _{CM} =0V | | | 70 | | mV | | Receiver Output High Voltage | V _{OH} | I _O =-4mA,V _{ID} =200mV | | 3.5 | | | V | | Receiver Output Low Voltage | V _{OL} | I _O = 4mA, V _{ID} =-200 | | | 0.4 | V | | | Three-State (high impedance) | | 0.41/51/52.41/ | | | | ±1 | μA | | Output Current at Receiver | I _{OZR} | 0.4V≤ V ₀ ≤ 2.4V | | | | ' | μΛ | | Receiver Input Resistance | R _{IN} | -7V≤V _{CM} ≤ 12V | | | | | ΚΩ | ### **6.DC Electrical Characteristics (continued)** (V_{CC}=5V ±5%, $T_A = T_{MIN}$ to $T_{MAX},$ unless otherwise noted.) (Notes 1, 2) | Parameter | Symbol | Conditions | Min | Тур | Max | Units | |---------------------------------|-------------------|--------------------------------------|-----|-----|-----|-------| | | | DE=V _{cc} | | 500 | 900 | | | No-Load supply Current (Note 3) | I _{cc} | RE=0V or V _{cc} | | 300 | 500 | μΑ | | | | DE=0V | | | | μΑ | | Driver Short-Circuit Current | | | | | | | | | I _{OSD1} | -7V≤ V ₀ ≤ 12V (Note 4) | 35 | | 250 | mA | | V _o =High | | | | | | | | Driver Short-Circuit Current | | | | | | | | | I _{OSD2} | -7V≤ V ₀ ≤12V (Note 4) | 35 | | 250 | mA | | V _O =LoW | | | | | | | | Receiver Short-Circuit Curent | I _{OSR} | 0V≤ V _O ≤ V _{CC} | 7 | | 95 | mA | ### 7. Switching Characteristics (V_CC=5V±5%, $T_A = T_{MIN}$ to $T_{MAX},$ unless otherwise noted.) (Notes 1, 2) | Parameter | Symbol | Conditions | Min | Тур | Max | Units | |--|-------------------|--|-----|-----|-----|-------| | Driver input to Output | t _{PLH} | t_{PLH} R_{DIFF} =54 Ω | | 30 | 60 | ns | | Driver input to Output | t _{PHL} | t _{PHL} C _{L1} =C _{L2} =100pF | | | 60 | ns | | Driver Output Skew to Qutput | t _{SKEW} | R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF | | 5 | 10 | ns | | Driver Enable to Output High | t _{zH} | C _L =100pF, S2 closed | | 40 | 70 | ns | | Driver Enable to Output Low | t _{zL} | C _L =100pF, S1 closed | | 40 | 70 | ns | | Driver Disable Time from Low | t _{LZ} | C _L =15pF, S1 closed | | 40 | 70 | ns | | Driver Disable Time from High | t _{HZ} | C _L =15pF, S2 closed | | 40 | 70 | ns | | t _{PLH} - t _{PHL} Differential | t _{SKD} | R_{DIFF} =54 Ω | | 13 | | ns | | Receiver Skew | | C _{L1} =C _{L2} =100pF | | | | | | Receiver Enable to Output LOW | t _{zL} | C _{RL} =15pF,S1 closed | | 20 | 50 | ns | | Receiver Enable to Output High | t _{zH} | C _{RL} =15pF,S2 closed | | 20 | 50 | ns | | Receiver Disable Time from LOW | t _{LZ} | C _{RL} =15pF,S1 closed | | 20 | 50 | ns | | Receiver Disable Time from High | t _{HZ} | C _{RL} =15pF,S2 closed | | 20 | 50 | ns | | Maximum Data Rate | f _{MAX} | | 2.5 | | | Mbps | ### 8. Operation Timing Diagrams of MAX 485 ### 9. Table of MAX 485 Operation | | Т | ransmissio | n | | Rec | eipt | | | |----|--------|------------|---|-----------|-----|--------|-------|----| | | Inputs | | | Outputs X | | Inputs | | | | RE | DE | DI | Z | Y | RE | DE | A-B | RO | | Х | 1 | 1 | 0 | 1 | 0 | 0 | +0.2V | 1 | | Х | 1 | 0 | 1 | 0 | 0 | 0 | -0.2V | 0 | | 0 | 0 | Х | Z | Z | 0 | 0 | open | 1 | | 1 | 0 | Х | Z | Z | 1 | 0 | Х | Z | Notes: X-don't care Z-high resistance ### 10.SOP-8 Package Outline Dimensions #### **DIMENSIONS** (mm are the original dimensions) | Symbol | Α | A 1 | A2 | b | C | D | Е | E1 | e | L | θ | |--------|-------|------------|-------|-------|-------|-------|-------|-------|-------|-------|----| | Min | 1.350 | 0.000 | 1.350 | 0.330 | 0.170 | 4.700 | 3.800 | 5.800 | 1.270 | 0.400 | 0° | | Max | 1.750 | 0.100 | 1.550 | 0.510 | 0.250 | 5.100 | 4.000 | 6.200 | BSC | 1.270 | 8° | ### 11.Ordering information yy: Year Code ww: Week Code | Order Code | Package | Base QTY | Delivery Mode | |---------------|---------|----------|---------------| | UMW MAX485ESA | SOP-8 | 2500 | Tape and reel | #### 12.Disclaimer UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order. When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage. Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks. When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations. This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.