

MAX49918

General Description

The MAX49918 is a high-precision current-sense amplifier (CSA) with an I²C programmable gain option from 10V/V to 200V/V in 8 steps. The multiple programmable gain options offer maximum flexibility for the user to change gain on-the-fly.

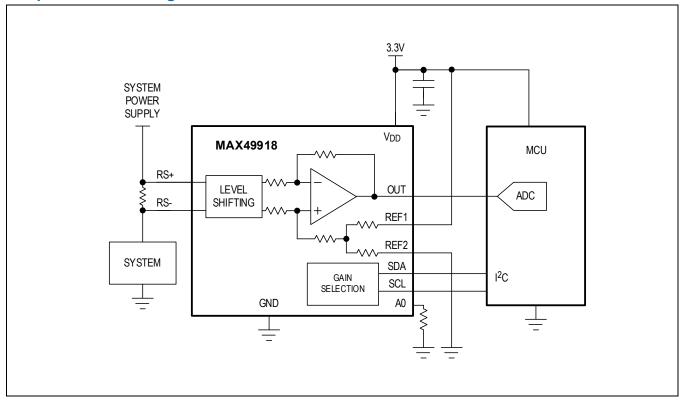
The IC operating input common-mode range from -5V to +70V, with protections that extend down to -6V and up to +80V, thus providing protection against reverse-battery and high-voltage spikes.

The low input offset of $\pm 1\mu V$ (typ) and low gain error of $\pm 0.01\%$ (typ) make this device best-suited for high-precision current measurements.

The IC operates from a supply voltage of +2.7V to +5.5V with a typical quiescent supply at 0.7mA. The device operates over the full -40°C to +125°C temperature range.

The IC features bidirectional current sensing and is offered in a 3mm x 3mm, 10-pin TDFN package.

Applications


- Monitoring Distinct Current Levels
- Using the Same Current-Sense Resistors Across Multiple System Variants
- Requires a Non-Typical Gain Value Due to Sense Resistor Constraints
- H-Bridge Motor and Solenoid Current Sensing
- · Battery Current Monitoring
- High- and Low-Side Precision Current Sensing

Benefits and Features

- Programmable Gain Options through I²C from 10V/V to 200V/V (8 steps)
- ±1µV (typ) Input Offset Voltage for REF1 = REF2 = V_{DD}/2
- ±5μV (typ) Input Offset Voltage for REF1 = V_{DD} and REF2 = GND at Gain = 20V/V
- ±0.01% (typ) Gain Error
- -5V to +70V Input Voltage Range
- -6V to +80V Protective Immunity
- 70kHz, -3dB Bandwidth at Gain = 20V/V
- 145dB DC CMRR
- Rail-to-Rail Output
- 3mm x 3mm, TDFN-10 Package
- -40°C to +125°C Temperature Range

Ordering Information appears at end of data sheet.

Simplified Block Diagram

Absolute Maximum Ratings

RS+ and RS- to GND6V to +80V	Continuous Current into Pins±10mA
RS+ to RS±2V	Continuous Power Dissipation (Multi Layer Board) (T _A =
V _{DD} to GND0.3V to +6V	+70°C, derate 24.4mW/°C above +70°C) 1951.2mW
OUT, REF1, REF2 to GND0.3V to V _{DD} + 0.3V	Operating Temperature Range40°C to +125°C
	Storage Temperature Range65°C to +150°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

10 TDFN

Package Code	T1033+1C
Outline Number	<u>21-0137</u>
Land Pattern Number	<u>90-0003</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	41°C/W
Junction to Case Thermal Resistance (θ_{JC})	9°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Electrical Characteristics

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C \text{ (Note 1))}$

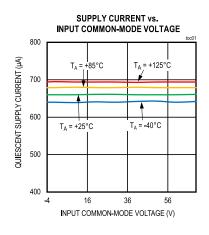
PARAMETER	SYMBOL	COND	CONDITIONS		TYP	MAX	UNITS
POWER SUPPLY CHAR	ACTERISTICS	•					
Supply Voltage	V_{DD}	Guaranteed by PSR	R	2.7		5.5	V
Supply Current	I _{DD}	No loads			0.7	1	mA
Power-Up Time	t _{PWR_UP}	Output settles to 1%			200		μs
CURRENT-SENSE AMPI	LIFIER						
DC CHARACTERISTICS							
Input Protected Common-Mode Range	V _{CM_P}			-6		+80	V
Input Common-Mode Range	V _{CM}	Guaranteed by CMR	R	-5		+70	V
Input Bias Current (Note 2)	I _{RS+} , I _{RS-}				0.5	150	nA
Input Offset Current (Note 2)	I _{RS+} - I _{RS-}				0.1	50	nA
Input Leakage Current (Note 2)	I _{RS+} , I _{RS-}	$V_{DD} = 0V,$ $V_{RS\pm} = 70V$			1	200	nA
		For all gain options	T _A = +25°C		±1	±10	μV
			-40°C ≤ T _A ≤			±50	
Input Offset Voltage	V_{OS}		+125°C T _A = +25°C				
		$V_{REF1} = V_{DD}$	-40°C ≤ T _A ≤		±5	±40	
	V _{REF2} = GND	+125°C			±80		
Input Offset Voltage Drift (<i>Note 2</i>)	TCV _{OS}				50	400	nV/°C
Power Supply Rejection Ratio	PSRR	$2.7V \le V_{DD} \le 5.5V$; -	2.7V ≤ V _{DD} ≤ 5.5V; -40°C ≤ T _A ≤ +125°C		125		dB
Common-Mode Rejection Ratio	CMRR	-5V ≤ V _{CM} ≤ +70V; -		130	145		dB
Reference Voltage Rejection Ratio	RRRR	V _{REF} = 1.5V to 2.5V +125°C	; -40°C ≤ T _A ≤	90	115		dB
Input Capacitance	C _{IN}	RS+, RS- input			4.5		pF
Gain (<i>Note 3</i>)	G	I ² C Programmable			10 20 40 50 80 100 160 200		V/V
Gain Switching Time	t _{GAIN}	Settle within 1% of the 1V final value			25		μs
, , ,			T _A = +25°C		±0.01	±0.1	<u>'</u>
Gain Error	GE	For all gain options	-40°C ≤ T _A ≤ +125°C			±0.2	%
Nonlinearity Error		10mV ≤ V _{SENSE} ≤ 1			0.01		%
Output Resistance	R _{OUT}	$V_{OUT} = V_{DD}/2$, I_{OUT}	= ±500µA		0.3		Ω

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$ (Note 1))

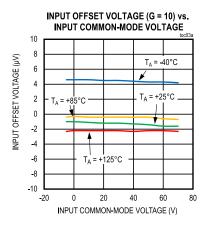
PARAMETER	SYMBOL		ONDITIONS	MIN	TYP	MAX	UNITS	
Output Voltage Swing High	V _{OH}	Source 500µA		V _{DD} - 0.015			V	
Output Voltage Swing Low	V _{OL}	Sink 500µA				15	mV	
Output Voltage Swing High	V _{OH}	No Load	No Load				٧	
Output Voltage Swing Low	V _{OL}	No Load	No Load			4	mV	
Output Short-Circuit Current	I _{SC}	Shorted to either V _{DD} or GND			55		mA	
AC CHARACTERISTICS								
		G = 10V/V	V _{SENSE} = 1V _{PP} /G		75			
		G = 20V/V	V _{SENSE} = 1V _{PP} /G		70			
		G = 40V/V	V _{SENSE} = 1V _{PP} /G		60			
	DW	G = 50V/V	V _{SENSE} = 1V _{PP} /G		55		1	
Signal Bandwidth	BW _{-3dB}	G = 80V/V	V _{SENSE} = 1V _{PP} /G		45		kHz	
		G = 100V/V	V _{SENSE} = 1V _{PP} /G		40		1	
		G = 160V/V	V _{SENSE} = 1V _{PP} /G		30		1	
		G =200V/V	V _{SENSE} = 1V _{PP} /G		25			
Output Slew Rate	SR	2V _{PP} output square wave, centered at V _{DD} /2			0.3		V/µs	
AC Power Supply Rejection Ratio	AC PSRR	f = 200kHz, 100r	f = 200kHz, 100mV _{PP} sine wave		35		dB	
AC Common-Mode Rejection Ratio	AC CMRR	f = 200kHz, 100r	nV _{PP} sine wave		60		dB	
Capacitive Load	C	With 250Ω isolat	ion resistor		20		nF	
Stability	C _{LOAD}	Without any isola	ation resistor		200		pF	
Input Voltage Noise Density	e _n	At 1kHz			100		nV/Hz	
Settling Time (Settling to 0.1%)	t _S	V _{SENSE} steps fro	om -50mV to 50mV		20		μs	
I ² C INTERFACE TIMING	(400kHz I ² C)							
SCL Clock Frequency	f _{SCL}					400	kHz	
START Hold Time	t _{HD:STA}			600			ns	
START Setup Time	t _{SU:STA}	90% of SCL to 9	0% of SDA	600			ns	
Clock Low Period	t _{LOW}			1.3			μs	
Clock High Period	tHIGH			600			ns	
Data Setup Time	t _{SU:DAT}	10% of SDA to 1	0% of SCL	100			ns	
Data Hold Time	t _{HD:DAT}	+	10% of SDA to 10% of SCL			900	ns	
SCL Max Rise and Fall Time	t _R , t _F			0	300		ns	
SDA Max Rise and Fall Time	t _R , t _F				300		ns	
STOP Condition Setup Time	tsu:sto	90% of SCL to 1	0% of SDA	600			ns	

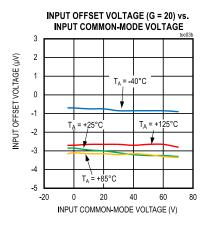
 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$ (Note 1))

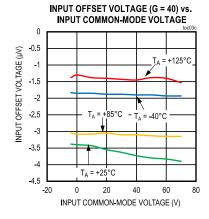
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
DC LOGIC CHARACTER	DC LOGIC CHARACTERISTICS (SDA, SCL, A0)							
Input Voltage High	V _{IH}		70			% of V _{DD}		
Input Voltage Low	V _{IL}				30	% of V _{DD}		
Output Voltage Low	V _{OL}				0.4	V		
Input Capacitance	C _{IN}			3		pF		

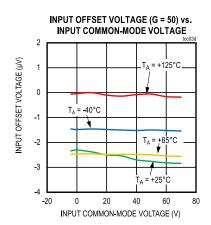

Note 1: All devices are 100% production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

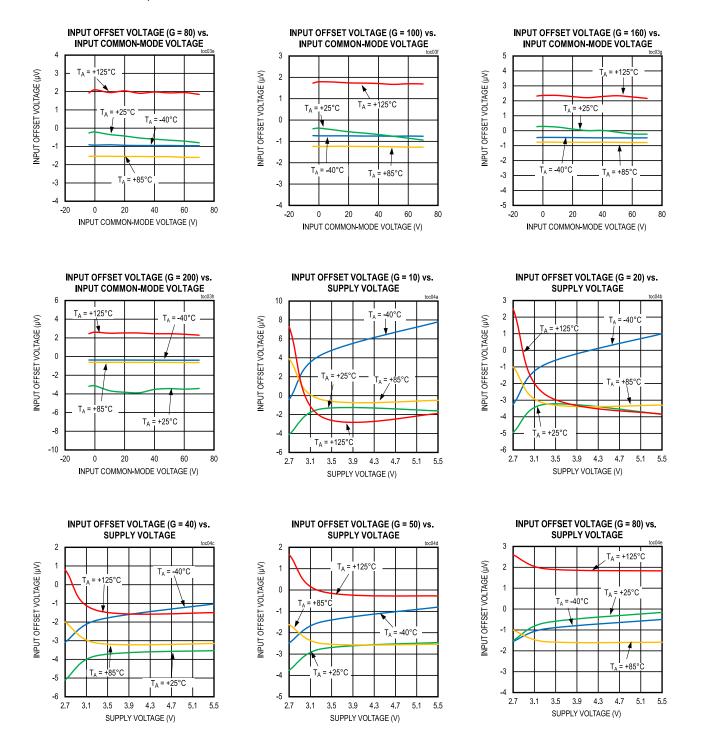

Note 2: Guaranteed by design and bench characterization.

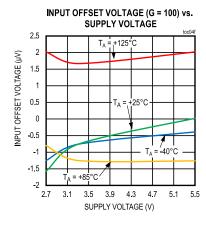

Note 3: Gain is calculated based on two points measurements: V_{SENSE1} and V_{SENSE2}. V_{SENSE1} = -1V/Gain and V_{SENSE2} = 1V/Gain.

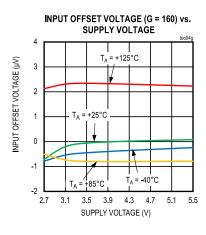

Typical Operating Characteristics

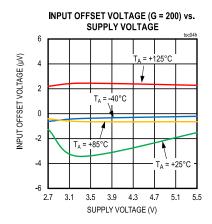

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

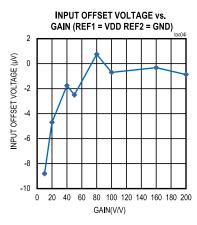


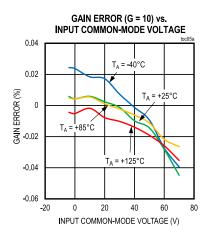


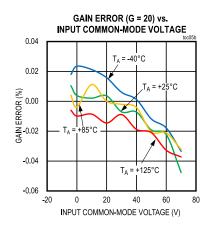


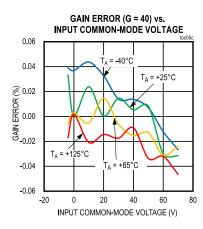


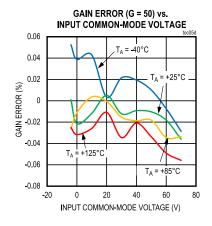

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

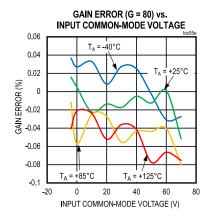


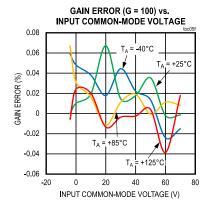

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

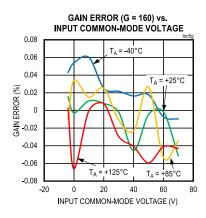


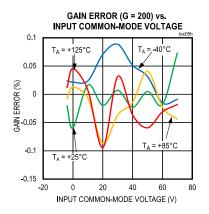


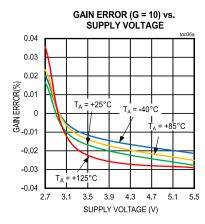


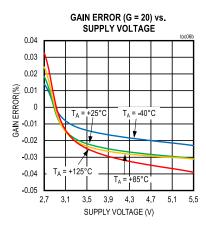


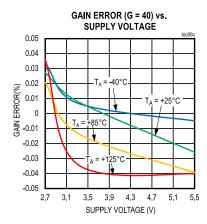


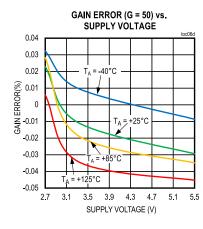


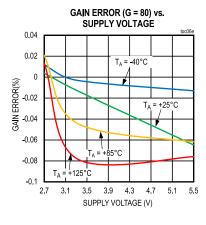


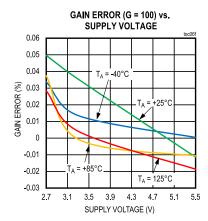


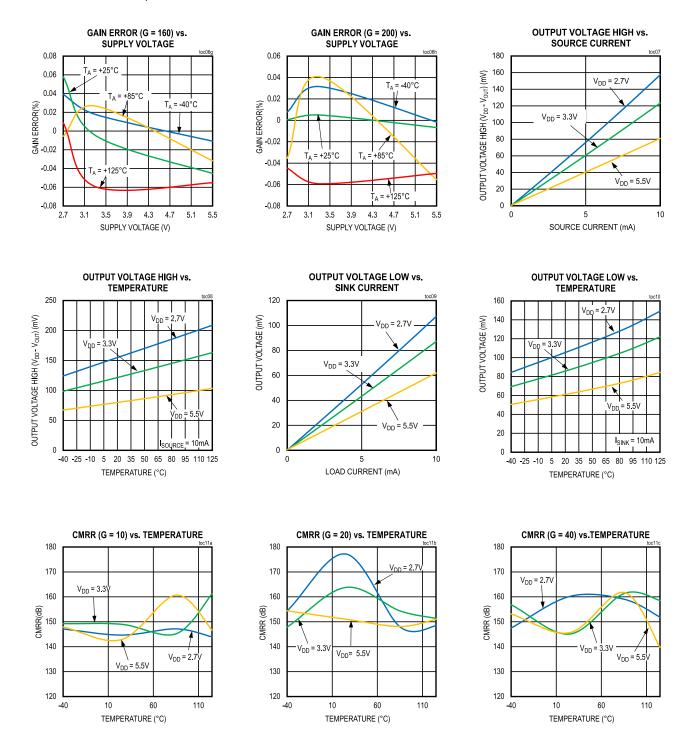

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

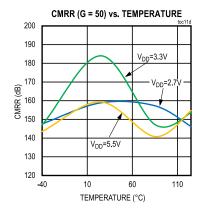


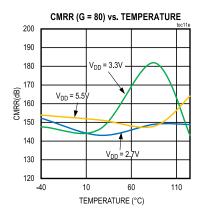


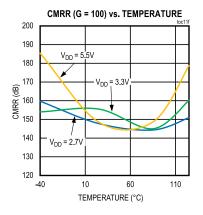


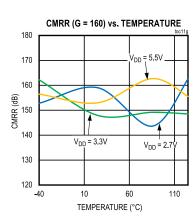


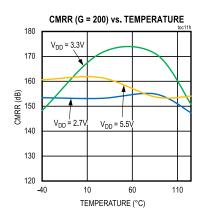


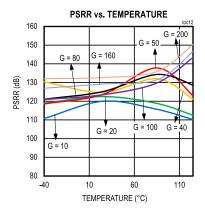


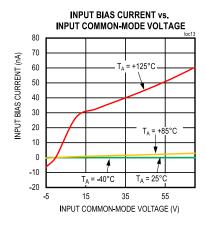


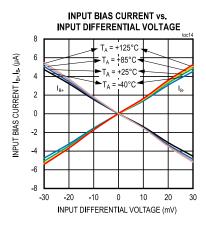

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

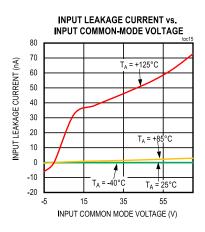


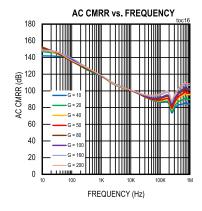

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

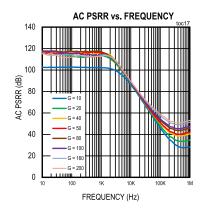


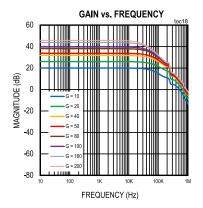


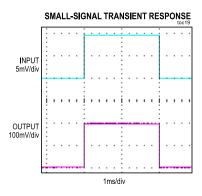


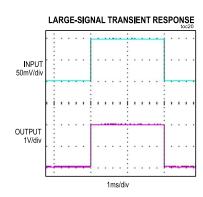


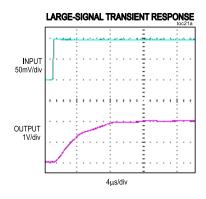


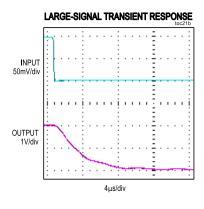


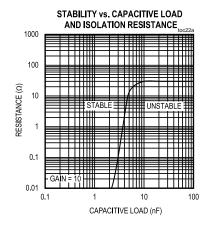


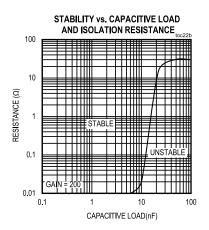


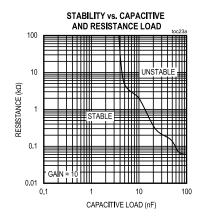

 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

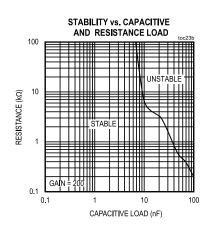


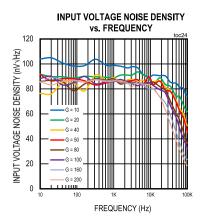


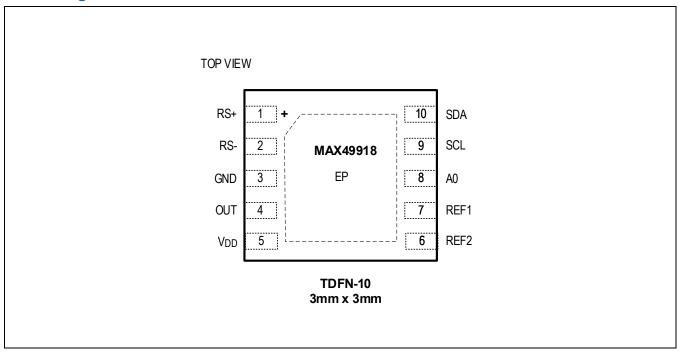











 $(V_{CM} = V_{RS+} = V_{RS-} = +50V, V_{DD} = +3.3V, V_{SENSE} = V_{RS+} - V_{RS-} = 0V, V_{REF1} = V_{DD}/2, V_{REF2} = V_{DD}/2, G = 20V/V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Configurations

Pin Descriptions

PIN	NAME	FUNCTION			
1	RS+	Positive Current-Sensing Input. Power side connects to external sense resistor.			
2	RS-	Negative Current-Sensing Input. Load side connects to external sense resistor.			
3	GND	Ground. Should be connected to a solid ground plane for best performance.			
4	OUT Current-Sense Voltage Output. V _{OUT} is proportional to V _{SENSE} .				
5	VDD	Supply Voltage Input. Bypass V _{DD} to GND with a 0.1μF capacitor.			
6	REF2	Reference 2 Input. REF2 and REF1 determine whether the device is used as uni or bidirectional.			
7	REF1	Reference 1 Input. REF2 and REF1 determine whether the device is used as uni or bidirectional.			
8	A0 I ² C Address as explained in the <u>Detailed Description</u> section.				
9	SCL	I ² C Clock.			
10	SDA	I ² C Data.			
-	EP	Exposed Pad. Internally connected to GND.			

Detailed Description

The MAX49918 is a high-precision current-sense amplifier (CSA) with an I²C programmable gain option from 10V/V to 200V/V in 8 steps. The multiple programmable gain options offer maximum flexibility for the user to change gain on-the-fly.

The MAX49918 operating input common-mode ranges from -5V to +70V, with protections that extend down to -6V and up to +80V, thus providing protection against reverse-battery and high-voltage spikes.

The low input offset of $\pm 1\mu V(typ)$ and low gain error of $\pm 0.01\%(typ)$ make the device well-suited for high-precision current measurements.

The MAX49918 operates from a supply voltage of +2.7V to +5.5V, with a typical quiescent supply at 0.7mA.

Programmable Gain

The MAX49918 features a programmable gain through I²C. There are eight gain options with the following values in V/V: 10, 20, 40, 50, 80, 100, 160, and 200.

I²C Device Address

The MAX49918 uses an input pin (A0) that determines the least-significative bit (LSB) of the I²C device address word below.

	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Ī	1	1	0	0	1	0	A0

I²C Gain register

The register address to set the gain is 0x00. And the data to set the gain is in the table below.

GAIN	10	20	40	50	80	100	160	200
DATA (Hex)	0	1	2	3	4	5	6	7

Application Information

Output Voltage

The MAX49918 has two reference inputs (REF1 and REF2) to set the device in either unidirectional or bidirectional operation mode. Connect the REF1 and REF2 inputs to low-impedance voltage source(s) to set the MAX49918 output (V_{OUT}) reference level. Do not connect REF1 and REF2 inputs to any voltages lower than GND or higher than VDD. V_{RFF} is defined as the average voltage of V_{RFF1} and V_{RFF2} , i.e., the output voltage refers to V_{RFF} = $(V_{RFF1} + V_{RFF2})/2$.

Use the following equation to set the gain:

VOUT = VSENSE x GAIN + VREE

Where $V_{SENSE} = V_{RS+} - V_{RS-}$, and GAIN is the voltage gain of the MAX49918.

Ground-Referenced Output

Connect REF1 and REF2 inputs together and to ground. In this mode, the output is referenced to ground, and the output is taken to ground when the voltage drop across R_{SENSE} is 0V. The output voltage then increases proportionally to the voltage drop (V_{SENSE}) from RS+ to RS-.

VDD-Referenced Output

Connect REF1 and REF2 inputs together and to V_{DD} . In this mode, the output is referenced to V_{DD} , or the output is taken to V_{DD} when the V_{SENSE} is 0V. The input V_{SENSE} must be negative to decrease the output voltage.

Setting Output to Mid-Supply Voltage

Connect REF1 to V_{DD} and REF2 to ground. In this mode, it creates a ratio-metric offset to the supply voltage, which means if V_{DD} increases or decreases, the output remains at $V_{DD}/2$ when there is no V_{SENSE} . This configuration is useful when external references are not available for offsetting the output.

Setting Output to Mid-External Reference

Connect one reference input pin to a reference voltage source and the other to ground. In this case, V_{OUT} refers to the external reference voltage divided by 2.

Setting Output to External Reference

Connect both reference input pins together to a reference voltage, which creates an output voltage equal to the reference voltage when the voltage drop across R_{SENSE} is zero. The output decreases when the input V_{SENSE} is negative. The output increases when the input V_{SENSE} is positive.

Ordering Information

PART NUMBER	DIE TYPE	PACKAGE	PACKAGE CODE	
MAX49918IATB+T	OW05A-0A	TDFN-CU	T1033+1C	

T = Tape-and-reel.

MAX49918

Bidirectional, On-The-Fly Programmable Gain, Current-Sense Amplifier with Wide Measurement Range

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/23	Initial release	_

