

General Description

The MAX71071 are dual-channel isolated analog-todigital converters (ADCs) for use with a compatible host. The device provides current and voltage measurements to the host while the host provides control, command, and power to the MAX71071. A pulse transformer provides the isolated data, clock, and power path between the device and host, eliminating the need for additional isolation components in the measurement subsystem. These metrology ADCs operate over the industrial temperature range and come in a 10-pin μ SOP package.

Benefits and Features

- Accurately Measure Voltage and Current
 - Dual 24-Bit ADC

.

- 0.1% Accuracy Over 2000:1 Dynamic Range
 - Exceeds IEC 62053/ANSI C12.20 Standards
- On-Chip Temperature Sensor Enables Localized
 Digital Temperature Compensation
- Galvanic Isolation Through Pulse Transformer provides Power, Bidirectional Data, and Timing Reference
 - 1.4mA Typical Consumption
 - On-Chip PLL and Power Monitoring

Block Diagram

Absolute Maximum Ratings

(All voltages with respect to V _{SSA} .)	
Supplies and Ground Pins	
V _{CC}	0.5V to +3.6V
V _{SS}	0.1V to +0.1V
Analog Input Pins	
INP, INN, SP, SN10mA to +	+10mA, -0.5V to (V _{CC} + 0.5V)

Digital Pins

TEST	10mA to +10mA, -0.5V to +3	8.6V
Operating Junction Temperate	ure (peak, 100ms)+14	0°C
Operating Junction Temperatu	ure (continuous)+12	5°C
Storage Temperature		5°C
Solder Temperature (10s dura	ation)+250)°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

μSOP

Junction-to-Ambient Thermal Res	sistance (θ _{JA})
Multilayer Board	113.10°C/W
Single-Layer Board	180°C/W

Junction-to-Case Thermal Resistance (0_{JC})......42°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.

Recommended External Components

NAME	FROM	то	FUNCTION	VALUE	UNITS
C1	V _{CC}	V _{SS}	Bypass capacitor for supply	1.0	μF
R1, R2, R3, R4	Sensor	ND	To establish proper bias for INVN/INVP and ININ/INIP pins	1.0	kΩ

Figure 1. Recommended External Components Circuit

Recommended Operating Conditions

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{CC} Supply Voltage		2.5		3.6	V
Operating Temperature Range		-40		+85	°C

Performance Specifications

(Limits are production tested at $T_A = +25$ °C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY CURRENT	-				·
V _{CC} Current, Normal Operation	V _{CC} = 3.3V, voltage ADC preamp bypassed	1.2	1.6		mA
V _{REF}					
V _{REF} (22), V _{REF} Output Voltage	$T_A = +22^{\circ}C$	1.1925	1.195	1.1975	V
V_{REF} Power Supply Sensitivity $\Delta V_{REF} / \Delta V_{CC}$		-2.4		+2.4	mV/V
V _{NOM} Definition	$V_{NOM}(T) = V_{REF}(22) + (T - 22) \times TC_1$ + (T - 22) ² x TC ₂ (Note 2)			•	V
TC, and TC, Equations		$TC_1 = 316 - 7$	<i>TRIMT</i> *5.94		μV/C
		TC ₂ = -0.582	+ <i>TRIMT</i> *(0.00)132)	μV/(C²)
$V_{REF}(T)$ Deviation from $V_{NOM}(T)$ $[(V_{REF}(T) - V_{NOM}(T))/V_{NOM}(T)]$ x [10 ⁶ /62]	(Note 3)	-93	0	+93	ppm/°C
V_{CC} voltage monitor					
BNOM: Nominal Value, T _A = +22°C	V _{CC} = 3.0V		120		LSB
V _{CC} Voltage	V _{CC} = 3.0 + (BSENSE - 120) x 0.0244 (No	te 4)			V
Measurement Error		-150		+150	mV
TEMPERATURE MONITOR					
T _{NOM} : Nominal Value, T _A = +22°C			945		LSB
Temperature Error	$T_A = -40^{\circ}C, -10^{\circ}C, +55^{\circ}C, +85^{\circ}C$ (Note 3)		0		°C
TETIME: Duration of Temperature Measurement	V _{CC} = 3.0V	14	30		ms
POWER PULSE					
Power Pulse Frequency			1.638		MHz
PULSE I/O	•	•			
SP and SN Outputs V _{OH} (ONE Pulse)	I _{OH} = 1mA	V _{CC} - 0.28			V
SN and SN Outputs V _{OL} (ONE Pulse)	I _{OL} = 1mA			0.287	V

Performance Specifications (continued)

(Limits are production tested at $T_A = +25$ °C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	CONDITIONS	MIN TYP MAX			UNITS		
PREAMP GAIN							
Gain = 14x		14 - 2%	14	14 + 2%	V/V		
Gain = 9x		9 - 2% 9 9 + 2%					
Gain = 4x		4 - 2%	4	4 + 2%	V/V		
Phase Shift			1	l	m°		
Phase Shift Variation vs. Supply	(Note 3)	-10		+10	m°/V		
Phase Shift Variation vs. Temperature	(Note 3)	-0.1		+0.1	m°/°C		
Input Current	Preamp gain = 4x, 9x, 14x	7.5	13	24	μA		
PREAMP OFFSET				•			
Gain = 14x	(Note 7)	-1.7		+1.7	mV		
Gain = 9x	(Note 7)	-1.9		+1.9	mV		
Gain = 4x	(Note 7)	-2.25		+2.25	mV		
ADC CONVERTER		L	L	•			
Usable Input Range (I _{NP} - I _{NN})		-250/gain		250/gain	mV _{PK}		
THD (FIRST 10 HARMONICS)							
Preamp Gain = 1x	V _{IN} = 65Hz, 64kpts FFT, Blackman-Harris window	85			dB		
250mV _{PK} /Preamp Gain, Preamp Gain = 4x, 9x, 14x	V _{IN} = 65Hz, 64kpts FFT, Blackman-Harris window	85			dB		
20mVPK/Preamp Gain, Preamp Gain = 4x, 9x, 14x	VIN = 65Hz, 64kpts FFT, Blackman-Harris window	85			dB		
	Preamp bypassed (Note 6)	20		40			
	Preamp = 4x	6.5	12	18	кO		
input impedance	Preamp = 9x	3.5	6.3	9.1	K12		
	Preamp = 14x	2.3	4.3	6.3			
LSB SIZE							
Preamp Gain = 14x	FIR length = 100		22.9		nV/LSB		
Preamp Gain = 9x	FIR length = 100		35.5		nV/LSB		
Preamp Gain = 4x	FIR length = 100		79.9		nV/LSB		
Digital Full Scale <i>L</i> = FIR Length	FIR length = 100	±1,000,000			LSB		
ADC Gain Error vs. % Power Supply Variation	V _{IN} = 250mV _{PK} , 55Hz	120			ppm/%		
Current Channel Gain Variation	V _{IN} = 250mV _{PK} , 55Hz (Note 3)	90			ppm/%		
Input Offset, Preamp Bypassed				-4	mV		

Note 2: This relationship describes the nominal behavior of V_{REF} at different temperatures.

Note 3: Guaranteed by design, not production tested.

Note 4: This is a definition, and it is not a measured quantity.

Note 5: N/A

Note 6: For Preamp gain = 4x, 9x, and 14x, an internal amplifier with both input and feedback resistors is used in front of the ADC. External source impedance can degrade the gain significantly by adding resistance to the input resistor.

For bypassed preamp (gain = 1), the ADC is directly connected to the input, and only the interaction of the internal impedance with the source impedance will decrease the signal amplitude, with no change in gain.

Note 7: This is the offset of the preamp as well as of the ADC, meaning this is the total offset seen at the ADC input.

Pin Configuration

Figure 2. Pin Diagram

Pin Description

PIN	NAME	FUNCTION
1	INVN	Voltage Channel Negative Input
2	INVP	Voltage Channel Positive Input
3	TEST	Test Mode Enable. Must be grounded in normal operation.
4	SN	Transformer Negative
5	SP	Transformer Positive
6	N.C.	Not Connected
7	V _{CC}	Power Bypass. Connect 1µF capacitor to ground.
8	V _{SS}	Ground.
9	INIP	Current Channel Positive Input
10	ININ	Current Channel Negative Input

Detailed Description

The MAX71071 are dual-channel isolated metrology analog-to-digital converters (ADCs) that are compatible with MAX71xxx MAX78615 hosts. The device digitizes a current signal from a shunt type current sensor and/or a voltage signal from a resistor-divider. The two input channels of the MAX71071 are identical except that the voltage channel contains an option to bypass the preamp.

The device continuously sends ADC data to the host. The host can request the device to return certain ancillary data such as the temperature monitor output. The MAX71071 communicate with the host through a pulse transformer to provide isolation from the high-voltage power domain.

The MAX71071 include a rectifier, two staring preamp/ADC channels, bandgap, temperature monitor, PLL, and BIAS block.

Rectifier

The active rectifier in the device rectifies the power pulses received from the host through the pulse transformer to create the V_{CC} voltage. The block also has the drivers that drive the data bits out of the MAX71071 and through the transformer.

ISO Interface

The isolated interface block receives the incoming data from the host and transmits data back to the host through the pulse transformer.

Preamp

The preamp is a low-noise differential amplifier. The INP and INN pins are the differential inputs to the preamp. It has three gain settings (4x, 9x, and 14x) The gain is controlled by the host, using two preamp gain control bits:

Bit 1	Bit 0	Gain
0	0	4
0	1	9
1	0	14
1	1	N/A

The inputs are V_{SS} referenced, and the output of the preamp connects directly to the ADC.

Bandgap

The device includes an on-chip precision bandgap volt- age reference that incorporates autozero techniques as well as production trims to minimize errors caused by component mismatch and drift. The result is a voltage output with a predictable temperature coefficient that is compensated in firmware by the host.

Temperature Monitor

The temperature monitor block performs a temperature and a supply measurement whenever the MAX71071 receives an instruction from the host requesting for STEMP or BSENSE. This request causes the MAX71071 to return STEMP or BSENSE from the previous measurement and to initiate a new measurement for both. The temperature can be determined from the STEMP reading as follows:

T = 22.85 + STEMP*0.344 + (STEMP²)*1.95*10⁻⁵

Temperature Compensation

The host can implement temperature compensation for each connected MAX71071 based on the temperature reported by each MAX71071 and its fuse settings. Linear (TC1) and quadratic (TC2) coefficients can be obtained as follows:

 $TC_1 = 316 - TRIMT^*5.94 \mu V/C$

 $TC_2 = -0.582 + TRIMT^*(0.00132) \mu V/(C^2)$

See section Application Information on how to read TRIMT.

PLL

The PLL locks to the incoming power pulses to create reference clocks for the ADC and communications interface to the host. The PLL is typically stable after power pulses have been applied for 5ms.

Pulse I/O

The pulse I/O block in the MAX71071 receives the incoming data from the MAX71xxx host and transmits the data back to the host. The integrated output is applied to the input of a comparator, and the comparator output is captured by a flip-flop at the end of the integration time.

ADC

Two proven Teridian delta-sigma ADCs digitize the voltage and current-sense voltages.

Application Information

Trim Fuse Information

To establish the temperature coefficient for the purpose of temperature compensation, the host IC reads the *TRIMT* value, using read code 0b001 and TMUX[2:0] setting = 0b00x. *TRIMT* is an 8-bit unsigned integer.

Device temperature, supply voltage, and other parameters can be read using the settings in the table below.

RD_ CODE2	RD_ CODE1	RD_ CODE0	TMUX2	TMUX1	тмихо	Function
0	0	0	Х	Х	Х	ZERO command
0	0	1	0	0	Х	Read TRIMBGA, TRIMT
0	0	1	0	1	Х	Read BG_STEP, IBIAS, TEMP_MON
0	0	1	1	0	Х	Read TRIMBGB, TRIMBGD
0	0	1	1	1	Х	Read Device ID, TRIMBGC
0	1	0	0	0	Х	Read STEMP
0	1	0	0	1	Х	Read VSENSE
0	1	0	1	0	Х	Read VERSION
0	1	0	1	1	Х	MAX71071 sends 0xD9BA test pattern
0	1	1	0	1	1	RESET command
1	1	0	Х	Х	Х	Illegal code

Functional Diagram

Figure3. Functional Block Diagram

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX71071+	-40°C to +85°C	10 μSOP
MAX71071+T	-40°C to +85°C	10 μSOP

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

*Future product—contact factory for availability.

Package Information

Package outline information is appended to this document. Land patterns (footprints) are shown below.

NDTES:

- 1. ALL DIMENSIONS IN MM.
- 2. LAND PATTERN COMPLIES TO: IPC7351A.
- 3. TOLERANCE: +/- 0.02 MM.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/2014	Initial release	_
1	1/2015	Updated the Benefits and Features section	1
2	4/2016	Rebranding only	All
3	6/2019	Added data for pre-amp offset Added compensated tolerance for VREF over temperature Added notes 6 and 7 Added typical time for PLL to stabilize Added formula for temperature reading and compensation Added legal disclaimer Removed references to MAX71071H	4 4 5 6 6 10 all
4	4/2020	Corrected Figure 1 (removed reference to MAX71071H) Added TC ₁ and TC ₂ equations in electrical specifications, corrected voltage levels for Pulse I/O Added table with trim fuse information Added land pattern (PCB footprint) Corrected package drawing	2 3 7 9 12

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safetyrelated requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. **No offer to sell or license**. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2020 Silergy Corp.

All Rights Reserved.

TOP VIEW

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	-	0.043	-	1.10
A1	0.002	0.006	0.05	0.15
A2	0.030	0.037	0.75	0.95
D1	0.116	0.120	2.95	3.05
D2	0.114	0.118	2.89	3.00
E1	0.116	0.120	2.95	3.05
E2	0.114	0.118	2.89	3.00
Н	0.187	0.199	4.75	5.05
L	0.0157	0.0275	0.40	0.70
L1	0.037 REF		0.940 REF	
b	0.007	0.0106	0.177	0.270
е	0.0197 BSC		0.500 BSC	
с	0.0035	0.0078	0.090	0.200
S	0.0196 REF		0.498 REF	
α	0.	6.	0.	6*
Pkg Codes: U10-2; U10CN-1; U10+5; U10M-5; U10-2C; U10-6C				

NDTESI

- 1. D&E DO NOT INCLUDE MOLD FLASH. 2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15mm (.006*).

- 3. CONTROLLING DIMENSION: MILLIMETERS. 4. COMPLIES TO JEDEC MO-187, LATEST REVISION, VARIATION BA. 5. MARKING SHOWN IS FOR PKG, DRIENTATION ONLY, 6. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PIOFREE (+) PKG, CODES,

-DRAWING NOT TO SCALE-