

Click here to ask an associate for production status of specific part numbers.

MAX77963

23VIN 3.2AOUT Buck-Boost Charger for 2S/3S Li-Ion Batteries and USB Power Delivery

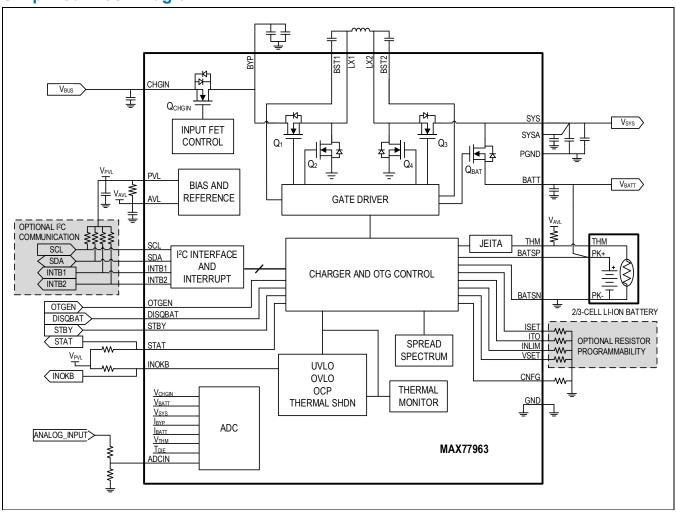
General Description

The MAX77963 is a high-performance wide-input 3.2A buck-boost charger with a Smart Power Selector[™] and operates as a reverse buck without an additional inductor, allowing the IC to power USB On-the-Go (OTG) accessories. The device integrates low-loss power switches and provides a small solution size, high efficiency, low heat, and fast battery charging. The reverse buck has a true-load disconnect and is protected by an adjustable output current limit. The device is highly flexible and programmable through I²C configuration or autonomously through resistor configuration.

The battery charger includes a Smart Power Selector to accommodate a wide range of battery sizes and system loads. The Smart Power Selector allows the system to start up gracefully when an input source is available even when the battery is deeply discharged (dead battery) or missing. For battery safety/authentication reasons, the IC can be configured to keep charging disabled and allow the DC-DC to switch and regulate the SYS voltage. The system processor can later enable charging using I²C commands as appropriate. Alternatively, the MAX77963 can be configured to automatically start charging.

Applications

- Wide-Input Voltage Range for USB Power Delivery Applications
- 2- and 3-Cell Battery Powered Devices
- Smartphones, Tablets, and 2-in-1 Laptops
- Medical Devices, Health and Fitness Monitors
- Digital Still, Video, and Action Cameras
- Handheld Computers and Terminals
- Handheld Radios
- Power Tools
- Drones
- Battery Backups
- Wireless Speakers


Benefits and Features

- 3.5V to 23V Input Operating Range, 30V_{DC} Withstand Voltage
- 96% Peak Efficiency for 2S Battery at 9V_{IN}/8.4V_{OUT}/1.5A_{OUT}
- 96% Peak Efficiency for 3S Battery at 15V_{IN}/12.6V_{OUT}/2A_{OUT}
- Reverse Leakage Protection
- 50mA to 3.15A Programmable Input Current Limit
- 50mA to 3.2A Programmable Constant Current Charge
- 12-Bit ADC for Monitoring Voltage, Current, and Temperature
- Remote Differential Voltage Sensing
- 600kHz, 1.2MHz, or 1.8MHz Switching Frequency Options
- Spread-Spectrum Modulation to Reduce EMI Emissions at the Switching Frequency
- System Instant-On with Smart Power Selector Power-Path
- Charge Safety Timer
- Die Temperature Regulation with Thermal Foldback Loop
- Input Power Management with Adaptive Input Current Limit (AICL) and Input Voltage Regulation
- PFM Operation to Guarantee No Audible Noise
- Integrated 10mΩ CHGIN to BYP Switch for Current Sense
- Integrated 10mΩ BATT to SYS Switch, up to 10A Overcurrent Threshold
- Reverse Buck Mode 5.1V/3A to Support USB OTG
- JEITA Compliant with NTC Thermistor Monitor
- I²C or Resistor Programmable
- 3.718mm x 3.718mm 49-Bump Wafer-Level Package (WLP)

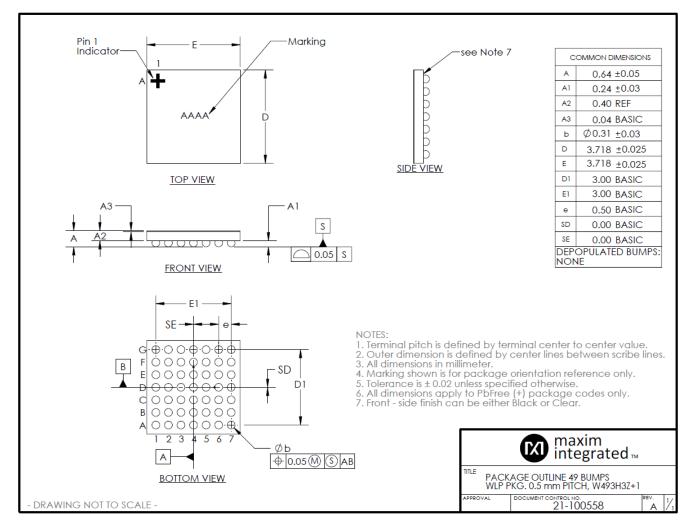
Ordering Information appears at end of data sheet.

Smart Power Selector is a trademark of Maxim Integrated Products, Inc.

Simplified Block Diagram

Absolute Maximum Ratings

CHGIN to GND	-0.3V to +30.0V
BYP to PGND	0.3V to +30.0V
BYP to CHGIN	0.3V to +0.3V
LX1 to PGND	0.3V to +30.0V
LX2 to PGND	0.3V to +17.6V
BST1 to PVL	-0.3V to +30.0V
BST2 to PVL	0.3V to +17.6V
BST1 to LX1	0.3V to +2.2V
BST2 to LX2	0.3V to +2.2V
SYS, SYSA to GND	0.3V to +17.6V
BATT to GND	0.3V to +17.6V
SYS to BATT	0.3V to +17.6V
BATSP to GND	0.3V to BATT + 0.3V


BATSN, PGND to GND0.3V to +0.3V
PVL, AVL, ISET, VSET, INLIM, ITO, CNFG, THM, ADCIN, SDA, SCL to GND0.3V to +2.2V
AVL to PVL0.3V to +0.3V
DISQBAT, OTGEN, STBY, STAT, INOKB, INTB1, INTB2 to GND0.3V to +6.0V
CHGIN, BYP, LX1, LX2, PGND Continuous Current $6.5A_{\mbox{RMS}}$
SYS Continuous Current10.0A _{RMS}
Tuno
BATT Continuous Current9.6A _{RMS}
· ···
BATT Continuous Current9.6 A_{RMS} Continuous Power Dissipation (Multilayer Board) (T_A = +70°C,

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

49-Bump WLP

Package Code	W493H3Z+1
Outline Number	<u>21-100558</u>
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Single-Layer Board:	
Junction-to-Ambient (θ _{JA})	
Junction-to-Case Thermal Resistance (θ_{JC})	
Thermal Resistance, Four-Layer Board:	
Junction-to-Ambient (θ _{JA})	34.87°C/W
Junction-to-Case Thermal Resistance (θ_{JC})	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GENERAL ELECTRICAL	CHARACTERIS	STICS				
CHGIN Voltage Range	V _{CHGIN}	Operating voltage	3.5		23.0	V
CHGIN Overvoltage Threshold	V _{CHGIN_OVLO}	V _{CHGIN} rising, 300mV hysteresis	23.0	23.7	24.3	V
CHGIN Overvoltage	tD_CHGIN_OVL	V _{CHGIN} rising, 100mV overdrive	10			μs
Delay	0	V _{CHGIN} falling, 100mV overdrive	7			ms
CHGIN Undervoltage Threshold	V _{CHGIN_UVLO}	V _{CHGIN} rising, 20% hysteresis	3.43	3.5	3.57	V
		V _{CHGIN} = 2.4V, the input is undervoltage and R _{INSD} is the only loading		0.075		
OLICIN Outreset	I _{CHGIN}	V _{CHGIN} = 9.0V, charger disabled		0.45	0.52	
CHGIN Quiescent Current (I _{SYS} = 0A)		V _{CHGIN} = 9.0V, charger enabled, V _{SYS} = V _{BATT} = 8.7V, no switching		2.7	4	mA
	I _{CHGIN_STBY}	MODE[3:0] = 0x0 (DC-DC off), STBY = H or STBY_EN = 1, V _{CHGIN} = 5V			1	
	I _{SHDN}	FSHIP_MODE = 1 or DISQBAT = H, V _{CHGIN} = 0V, I _{SYS} = 0A		2.3	5.0	
	I _{BATT}	I ² C enabled, V _{CHGIN} = 0V, I _{SYS} = 0A, V _{BATT} = 8.86V		100	200	μΑ
BATT Quiescent Current (I _{SYS} = 0A)	l _{BATTDN}	V _{CHGIN} = 9V, V _{BATT} = 8.4V, Q _{BAT} is off, battery-overcurrent protection disabled, charger is enabled but in its done mode, T _A = +25°C		57	65	
	BATTER	V _{CHGIN} = 9V, V _{BATT} = 8.4V, Q _{BAT} is off, battery-overcurrent protection disabled, charger is enabled but in its done mode, T _A = +85°C (Note 1)		57		
SYS Operating Voltage	V _{SYS}	Guaranteed by V _{SYSUVLO} and V _{SYSOVLO}	SYSUVL O rising		SYSOVL O rising	V
SYS Undervoltage- Lockout Threshold	V _{SYSUVLO}	V _{SYS} falling, 530mV hysteresis	3.95	4.1	4.25	V
SYS Overvoltage- Lockout Threshold	V _{SYSOVLO}	V _{SYS} rising, 430mV hysteresis, 2S battery V _{SYS} rising, 300mV hysteresis, 3S	10.45	10.73	11.00	V
Lockout Tilleshold		battery	15.135	15.56	15.985	
PVL Output Voltage	V _{PVL}		1.7	1.8	1.9	V
Thermal-Shutdown Threshold	T _{SHDN}	T _J rising		150		°C
Thermal-Shutdown Hysteresis				15		°C
CHGIN Self-Discharge Resistance	R _{INSD}	V _{CHGIN} = 3V		44		kΩ
BATT Self-Discharge Resistance	R _{BATSD}	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 5V		1200		Ω
SYS Self-Discharge Resistance	R _{SYSSD}	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 5V		600		Ω
Self-Discharge Latch Time				300		ms
SWITCH MODE CHARG	ER / CHARGER					

 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BATT Regulation Voltage Range	V _{BATTREG}	Programmable from 7.810V to 9.395V (2S battery) and 11.715V to 14.092V (3S battery); production tested at 7.810V, 8.341V, 8.873V, and 9.395V only (2S battery) and 11.715V, 12.505V, 13.309V, and 14.092V only (3S battery)	7.810		14.092	٧
BATT Regulation		8.7V setting, T _A = +25°C	-0.9	-0.3	+0.3	0/
Voltage Accuracy		8.7V setting, T _A = 0°C to +85°C (Note 1)	-1	-0.3	+0.5	%
BATT Overvoltage- Lockout Threshold	V _{BATTOVLO}	V _{BATT} rising above V _{BATTREG} , 2% hysteresis	75	240	375	mV/cel
BATT Undervoltage- Lockout Threshold	V _{BATTUVLO}	V _{BATT} rising, 100mV hysteresis	2.0	2.5	3.0	٧
Fast-Charge Current Program Range	I _{FC}	50mA to 3193.75mA; production tested at 500, 1000, and 3000mA settings	50		3193.75	mA
		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 50mA	30	50	70	
		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 100mA	80	100	120	
Fast-Charge Current Accuracy		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 300mA	289	300	311	
		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 500mA	481	500	519	
		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 1000mA	962	1000	1038	mA
		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 1500mA	1444	1500	1556	
		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 3000mA	2887	3000	3113	
		T _A = +25°C, V _{BATT} > V _{SYSMIN} , programmed for 3193.75mA	3074	3194	3314	
Fast-Charge Current		-40°C < T _A < +85°C, V _{BATT} > V _{SYSMIN} , programmed for 200mA or less (Note 1)	-20		+20	mA
Accuracy (Over Temperature)		-40°C < T _A < +85°C, V _{BATT} > V _{SYSMIN} , programmed for greater than 200mA (Note 1)	-5		+5	%
BYP Adaptive Voltage Regulation Range	V _{BYP_REG}	I ² C programmable	4.025		19.05	٧
BYP Adaptive Voltage Regulation Accuracy		4.55V setting	4.42	4.55	4.68	V
CHGIN Current Limit Range	CHGIN_ILIM	Programmable, 500mA default; production tested at 100mA, 500mA, 1000mA, and 3000mA settings only	50		3150	mA
		Charger enabled, 50mA input current setting, T _A = +25°C	44	49	54	
CHGIN Current Limit		Charger enabled, 100mA input current setting, T _A = +25°C	88	98	108	, A
Accuracy		Charger enabled, 300mA input current setting, T _A = +25°C	285	293	300	mA
		Charger enabled, 500mA input current setting, T _A = +25°C	475	488	500	

 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Charger enabled, 1000mA input current setting, T _A = +25°C	950	975	1000	
		Charger enabled, 1500mA input current setting, T _A = +25°C	1425	1463	1500	
		Charger enabled, 3000mA input current setting, T _A = +25°C	2850	2925	3000	
		Charger enabled, 3150mA input current setting, T _A = +25°C	2993	3071	3150	
		Charger enabled and operating in a mode that is not force-buck-boost mode, CHGIN current limit setting ≤ 200mA, - 40°C < T _A < +85°C (Note 1)	-22.5		+17.5	
CHGIN Current Limit Accuracy (Over Temperature)		Charger enabled and operating in a mode that is not force-buck-boost mode, 200mA < CHGIN current limit setting ≤ 2A, -40°C < T _A < +85°C (Note 1)	-7.5		+2.5	%
		Charger enabled and operating in a mode that is not force-buck-boost mode, CHGIN current limit setting > 2A, -40°C < T _A < +85°C (Note 1)	-8.5		+1.5	
CHGIN Current Limit Error During Force- Buck-Boost Operation (Over Temperature)		Charger enabled, force-buck-boost operation, input current setting from 50mA to 1.6A, -40°C < T _A < +85°C (Note 1)		+16	+40	mA
Precharge Voltage Threshold	V _{PRECHG}	V _{BATT} rising, voltage threshold per cell	2.4	2.5	2.6	V/Cell
Precharge Current	I _{PRECHG}	I _{PRECHG} = 50mA	35	50	65	mA
Prequalification Threshold Hysteresis	V _{PQ-H}	Applies to V _{PRECHG}		150		mV/Cell
Minimum SYS Voltage Accuracy	V _{SYSMIN}	Programmable from 5.535V to 6.970V, VBATT = 5.6V; tested at 3V/cell setting	-3		+3	%
		Default setting = enabled; ITRICKLE[1:0] = 0b00	80	100	120	
Trickle Charge Current	ITRICKLE	Default setting = enabled; ITRICKLE[1:0] = 0b01 (Note 1)	160	200	240	mA
Thickie Charge Current	TRICKLE	Default setting = enabled; ITRICKLE[1:0] = 0b10 (Note 1)	240	300	360	IIIA
		Default setting = enabled; ITRICKLE[1:0] = 0b11	320	400	480	
Top-Off Current Program Range	I _{TO}	Programmable from 25mA to 1600mA	25		1600	mA
Top-Off Current		Gain			5	%
Accuracy		Offset			20	mA
Charge Termination Deglitch Time	^t TERM	2mV overdrive, 100ns rise/fall time (Note 2)		160		ms
Charger Restart Threshold Range	V _{RSTRT}	Program options for disabled, 100mV/cell, 150mV/cell, and 200mV/cell with CHG_RSTRT[1:0]	100		200	mV/Cell
Charger Restart Deglitch Time		10mV overdrive, 100ns rise time (Note 2)		130		ms
Charger State Change Interrupt Deglitch Time	t _{SCIDG}	Excludes transition to timer fault state, watchdog timer state (Note 2)		30		ms

 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCH MODE CHARG	ER / CHARGE T	IMER				
Prequalification Time	t _{PQ}	Applies to both low-battery prequalification and dead-battery prequalification modes; option to disable (Note 2)		30		min
Fast-Charge Constant Current + Fast-Charge Constant Voltage Time	t _{FC}	Adjustable from 3hrs, 4hrs, 5hrs, 6hrs, 7hrs, 8hrs, and 10hrs including a disable setting; 3hrs default (Note 2)		3		hrs
Top-Off Time	t _{TO}	Adjustable from 100ms to 60min in 10min steps; 100ms default (Note 2)		100		ms
Timer Accuracy			-20		+20	%
SWITCH MODE CHARG	ER / WATCHDO	G TIMER				
Watchdog Timer Period	t _{WD}	Note 2	80			s
Watchdog Timer Accuracy			-20	0	+20	%
SWITCH MODE CHARG	ER / BUCK-BOO	ST				
		600kHz option	540	600	660	
PWM Switching Frequency	f _{SW}	1.2MHz option	1080	1200	1320	kHz
rrequericy		1.8MHz option	1620	1800	1980	
CHGIN OK to Start Switching Delay	t _{START}	Delay from INOKB H → L to LX_ start switching (Note 2)		150		ms
Buck-Boost Current Limit	HSILIM	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 7.6V	5.3	6	6.7	А
SWITCH MODE CHARG	ER / BUCK-BOO	ST / SPREAD-SPECTRUM				
Modulation Envelope	ΔF _{SS}	(Note 1)		±6		%
SWITCH MODE CHARG	ER / BUCK-BOO	ST / SWITCH IMPEDANCE AND LEAKAGE	CURREN	Т		
CHGIN to BYP Resistance	R _{CHGIN2BYP}	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 7.6V		10		mΩ
LX1 High-Side Resistance	R _{LX1_HS}	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 7.6V		17.5	26	mΩ
LX1 Low-Side Resistance	R _{LX1_LS}	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 7.6V		16.5	25	mΩ
LX2 High-Side Resistance	R _{LX2_HS}	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 7.6V		12	17	mΩ
LX2 Low-Side Resistance	R _{LX2_LS}	V _{CHGIN} = 9V, V _{SYS} = V _{BATT} = 7.6V		19.5	28	mΩ
LX_ Leakage Current		LX1 = PGND or BYP, LX2 = PGND or SYS, T _A = +25°C		0.01	10	μΑ
LA_ Leakage Current		LX1 = PGND or BYP, LX2 = PGND or SYS, T _A = +85°C (Note 1)		1		μΑ
DOT I salvana Oversant		BST_ = 1.8V, T _A = +25°C		0.01	10	
BST_ Leakage Current		BST_ = 1.8V, T _A = +85°C (Note 1)		1		μA
SYS, SYSA Leakage Current		V _{CHGIN} = 9V, V _{SYS} = V _{SYSA} = 7.6V, V _{BATT} = 0V, charger disabled, leakage current measured at BATT with reference to SYS, T _A = +25°C		0.08	1	μА
		V _{CHGIN} = 9V, V _{SYS} = V _{SYSA} = 7.6V, V _{BATT} = 0V, charger disabled, leakage		3		

 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		current measured at BATT with reference to SYS, T _A = +85°C (Note 1)				
SWITCH MODE CHARG	ER / SMART PO	WER SELECTOR				
BATT to SYS Dropout Resistance	R _{BAT2SYS}	V _{CHGIN} = 9V, V _{SYS} = 6V		10	17	mΩ
BATT to SYS Reverse Regulation Voltage	V _{BSREG}	V _{CHGIN} = 9V, V _{BATT} = 7.4V		90		mV
SWITCH MODE CHARG	ER / BATT TO S	YS OVERCURRENT ALERT				
Battery Overcurrent Threshold Range	IBOVCR	Programmable from 3A to 10A; option to disable	3		10	А
Battery Overcurrent Debounce Time	^t BOVRC	Response time for generating the overcurrent interrupt (Note 2)			3.3	ms
SWITCH MODE CHARG	ER / THERMAL I	FOLDBACK				
Junction Temperature Thermal Regulation Loop Setpoint Program Range	T _{REG}	Junction temperature when charge current is reduced; programmable from 85°C to 130°C in 5°C steps; default value is 115°C	85		130	°C
Thermal Regulation Gain	Atjreg	The charge current is decreased 5% of the fast-charge current setting for every degree that the junction temperature exceeds the thermal regulation temperature. This slope ensures that the full-scale current of 3.2A is reduced to 0A by the time the junction temperature is 20°C above the programmed loop set point. For lower programmed charge currents such as 480mA, this slope is valid for charge current reductions down to 80mA; below 100mA the slope becomes shallower but the charge current still reduced to 0A if the junction temperature is 20°C above the programmed loop set point.		-5		%/°C
SWITCH MODE CHARG	ER / THERMISTO					ı
THM Threshold, COLD	THM_COLD	V _{THM} /V _{AVL} rising, 1% hysteresis (thermistor temperature falling)	73.36	74.56	75.76	%
THM Threshold, COOL	THM_COOL	V _{THM} /V _{AVL} rising, 1% hysteresis (thermistor temperature falling)	58.8	60	61.2	%
THM Threshold, WARM	THM_WARM	V _{THM} /V _{AVL} falling, 1% hysteresis (thermistor temperature rising)	33.68	34.68	35.68	%
THM Threshold, HOT	тнм_нот	V _{THM} /V _{AVL} falling, 1% hysteresis (thermistor temperature rising)	21.59	22.5	23.41	%
THM Threshold, Disabled		V _{THM} /V _{AVL} falling, 1% hysteresis, THM function is disabled below this voltage	4.9	5.9	6.9	%
THM Threshold, Battery Removal Detection		V _{THM} /V _{AVL} rising, 1% hysteresis, battery removal	85.6	87	88.4	%
		V _{THM} = GND or V _{AVL} ; T _A = +25°C		0.1	1	
THM Input Leakage Current		V _{THM} = GND or V _{AVL} ; T _A = +85°C (Note 1)		0.1		μA
REVERSE BUCK	I	1.*/	1			1
Buck Current Limit	HSILIM_REV	F _{SW} = 600kHz	5.3	6	6.7	Α
		1	<u> </u>		V	1

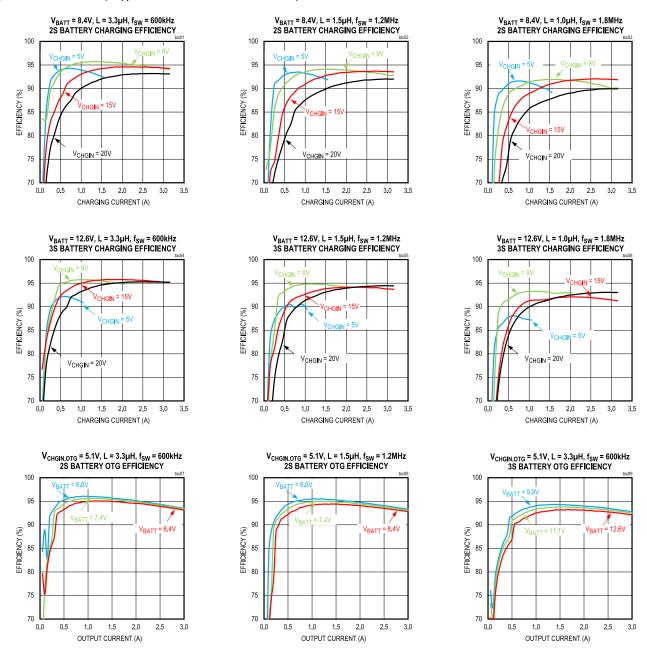
 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Reverse Buck Quiescent Current		Non-switching: output forced 200mV above its target regulation voltage		2.1		mA	
Minimum BATT Voltage in OTG Mode	V _{BATT.MIN.OT} G	V _{BATT} = V _{SYS} , SYS UVLO falling threshold in OTG mode	5.96	6.14	6.32	٧	
BYP Voltage in OTG Mode	V _{BYP.OTG}	V _{BATT} = V _{BATT.MIN.OTG} , OTGEN = H	4.94	5.1	5.26	V	
CHGIN Undervoltage Threshold in OTG Mode	V _{CHGIN.OTG.U} V	V _{CHGIN} falling, OTGEN = H		85		%	
CHGIN Overvoltage Threshold in OTG Mode	V _{CHGIN.OTG.O} V	V _{CHGIN} rising, OTGEN = H		110		%	
		V _{BATT} = V _{BATT.MIN.OTG} , T _A = +25°C, OTG_ILIM[2:0] = 0b000, OTGEN = H		500	550		
CHGIN Output Current	I _{CHGIN.OTG.LI}	V _{BATT} = V _{BATT.MIN.OTG} , T _A = +25°C, OTG_ILIM[2:0] = 0b001, OTGEN = H		900	990	mA	
Limit in OTG Mode	М	V _{BATT} = V _{BATT.MIN.OTG} , T _A = +25°C, OTG_ILIM[2:0] = 0b011, OTGEN = H		1500	1650	IIIA	
		$V_{BATT} = V_{BATT.MIN.OTG}$, $T_A = +25$ °C, OTG_ILIM[2:0] = 0b111, OTGEN = H		3000	3300		
BYP Output Voltage		Discontinuous inductor current (i.e., skip mode), OTGEN = H		±150		mV	
Ripple in OTG Mode		Continuous inductor current, OTGEN = H		±150			
ADC							
		SAMPLE_RATE = 0x0		1000			
		SAMPLE_RATE = 0x1		100			
ADC Sampling Rate		SAMPLE_RATE = 0x2		10		Hz -	
		SAMPLE_RATE = 0x3		1			
ADC Channel1		Range	0		25000		
(V _{CHGIN})		Resolution		6.1050		mV	
ADC Channel2		Range	0		1250		
(V _{ADCIN})		Resolution		0.30525		mV	
		Range	0		15000		
ADC Channel3 (V _{BATT})		Resolution		3.6630		mV	
		Range	0		15000		
ADC Channel4 (V _{SYS})		Resolution		3.6630		mV	
		Range	-40		+175		
ADC Channel5 (T _{DIE})		Resolution		0.10989		°C	
		Range	0		100		
ADC Channel6 (V _{THM} /V _{AVL})		Resolution		0.09765 6	- 30	%	
ADC Observed 17 (1)		Range	0	· · ·	5024	_	
ADC Channel7 (I _{CHGIN})		Resolution		1.5873		mA	
ADO OL		Range	0		4220		
ADC Channel8 (I _{BATT})		Resolution		1.2210		mA	
IO CHARACTERISTICS	1						

 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

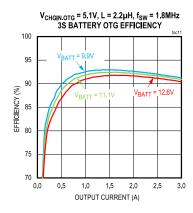
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
R _{CNFG} , R _{INLIM} , R _{ISET} , R _{VSET} , R _{TO} Resistor Range	R _{PROG} _		5.49		226	kΩ
Output Low Voltage INOKB, STAT		I _{SINK} = 1mA, T _A = +25°C			0.4	V
Output High Leakage INOKB, STAT		5.5V, T _A = +25°C 5.5V, T _A = +85°C (Note 1)	-1	0.1	+1	μΑ
DISQBAT, OTGEN, STBY Logic Input Low Threshold	V _{IL}				0.4	V
DISQBAT, OTGEN, STBY Logic Input High Threshold	V_{IH}		1.4			V
DISQBAT, OTGEN, STBY Logic Input Leakage Current		5.5V (including current through pulldown resistor)		5.5	10	μА
DISQBAT, OTGEN, STBY Pulldown Resistor	R _{DISQBAT}			1000	1200	kΩ
INTERFACE / I ² C INTER	FACE AND INTE	RRUPT	•			•
SCL, SDA Input Low Level					0.3 x V _{AVL}	V
SCL, SDA Input High Level			0.7 x V _{AVL}			V
SCL, SDA Input Hysteresis				0.1 x V _{AVL}		V
SCL, SDA Logic Input Current		SDA = SCL = 1.8V	-1		+1	μA
SCL, SDA Input Capacitance				10		pF
SDA Output Low Voltage		Sinking 20mA			0.4	V
Output Low Voltage INTB1/INTB2		I _{SINK} = 1mA			0.4	V
Output High Leakage		V _{INTB} _ = 5.5V, T _A = +25°C	-1	0	+1	μΑ
		V _{INTB} _ = 5.5V, T _A = +85°C (Note 1)		0.1		
		ACE TIMING FOR STANDARD, FAST, ANI	D FAST-MC	DDE PLUS		1
Clock Frequency	fSCL				1000	kHz
Hold Time (Repeated) START Condition	t _{HD;STA}		0.26			μs
CLK Low Period	t _{LOW}		0.5			μs
CLK High Period	^t HIGH		0.26			μs
Set-Up Time Repeated START Condition	t _{SU;STA}		0.26			μs
DATA Hold Time	t _{HD:DAT}		0			μs
DATA Valid Time	t _{VD:DAT}				0.9	μs
DATA Valid Acknowledge Time	t _{VD:ACK}				0.9	μs
DATA Set-Up time	tsu;dat		50			ns

 $(V_{SYS} = 7.6V, V_{BATT} = 7.6V, V_{CHGIN} = 9V)$

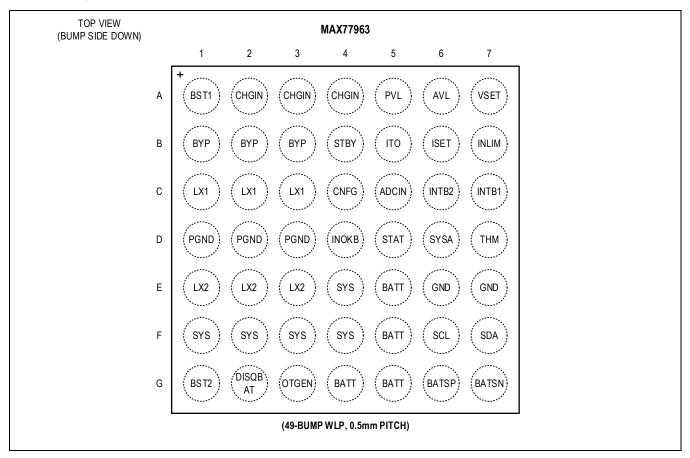

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Set-Up Time for STOP Condition	t _{SU;STO}		0.26			μs
Bus-Free Time Between STOP and START	t _{BUF}		0.5			μs
Pulse Width of Spikes that Must be Suppressed by the Input Filter					50	ns
INTERFACE / I ² C-COMP	ATIBLE INTERF	ACE TIMING FOR HS-MODE ($C_B = 100 pF$)				
Clock Frequency	f _{SCL}				3.4	MHz
Set-Up Time Repeated START Condition	t _{SU;STA}		160			ns
Hold Time (Repeated) START Condition	t _{HD;STA}		160			ns
CLK Low Period	t _{LOW}		160			ns
CLK High Period	^t HIGH		60			ns
DATA Set-Up time	t _{SU;DAT}		10			ns
DATA Hold Time	t _{HD:DAT}		0		70	ns
Set-Up Time for STOP Condition	t _{SU;STO}		160			ns
Pulse Width of Spikes that must be Suppressed by the Input Filter					10	ns
INTERFACE / I ² C-COMP	ATIBLE INTERF	ACE TIMING FOR HS-MODE (CB = 400pF)				
Clock Frequency	f _{SCL}				1.7	MHz
Set-Up Time Repeated START Condition	t _{SU;STA}		160			ns
Hold Time (Repeated) START Condition	t _{HD;STA}		160			ns
CLK Low Period	t_{LOW}		160			ns
CLK High Period	^t HIGH		60			ns
DATA Set-Up time	t _{SU;DAT}		10			ns
DATA Hold Time	t _{HD:DAT}		0		150	ns
Set-Up Time for STOP Condition	t _{SU;STO}		160			ns
Pulse Width of Spikes that must be Suppressed by the Input Filter					10	ns

Note 1: Guaranteed by design. Not production tested.

Note 2: Guaranteed by design. Production tested through scan.


Typical Operating Characteristics

 $(C_{BYP} = 2 \times 10 \mu F, C_{SYS} = 2 \times 47 \mu F, L = 3.3 \mu H (XAL4030-332ME)$ or $2.2 \mu H (XAL4020-222ME)$ or $1.5 \mu H (XAL4020-152ME)$ or $1.0 \mu H (VLS3012HBX-1R0M), T_A = +25 ^{\circ}C$ unless otherwise noted.)



 $(C_{BYP} = 2 \times 10 \mu F, C_{SYS} = 2 \times 47 \mu F, L = 3.3 \mu H (XAL4030-332ME)$ or $2.2 \mu H (XAL4020-222ME)$ or $1.5 \mu H (XAL4020-152ME)$ or $1.0 \mu H (VLS3012HBX-1R0M), T_A = +25 ^{\circ}C$ unless otherwise noted.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
A1	BST1	High-Side Input MOSFET Driver Supply. Bypass BST1 to LX1 with a 0.22µF/6.3V capacitor.
A2, A3, A4	CHGIN	Charger Input. Bypass CHGIN to PGND with a 2.2µF/35V capacitor.
A5	PVL	Internal Bias Regulator High Current Output Bypass Pin. Supports internal noisy and high current gate drive loads. Bypass to PGND with a 4.7μ F/6.3V ceramic capacitor and connect AVL to PVL with a 4.7Ω resistor. Powering external loads from PVL is not recommended, other than pullup resistors.
A6	AVL	Analog Voltage Supply for On-Chip, Low-Noise Circuits. Bypass with a 4.7μ F/6.3V ceramic capacitor to GND and connect AVL to PVL with a 4.7Ω resistor.
A7	VSET	Charge Termination Voltage Setting Input. Connecting a resistor (R _{VSET}) from VSET to GND programs the charge termination voltage. See <u>Table 7</u> .
B1, B2, B3	BYP	CHGIN Bypass Pin. This pin is the input of the buck-boost switcher and the output of the buck when the charger operates in the reverse mode. Refer to <u>BYP Capacitor Selection</u> for BYP bypass capacitor.
B4	STBY	Active-High Input. Connect high to disable the DC-DC between BYP input and SYS output. The battery supplies the system power if the Q _{BAT} is on. See <u>Table 2</u> . Connect low to control the DC-DC with the power-path state machine.
B5	ITO	Top-Off Current Setting Input. Connecting a resistor (R _{ITO}) from ITO to GND programs the top-off current. See <u>Table 6</u> .
В6	ISET	Fast-Charge Current Setting Input. Connecting a resistor (R _{ISET}) from ISET to GND programs the fast-charge current. See <u>Table 5</u> .

(
B7	INLIM	Charger Input Current Limit Setting Input. Connecting a resistor (R _{INLIM}) from INLIM to GND programs				
	II VEIIVI	the charger input current limit. See <u>Table 4</u> .				
C1, C2, C3	LX1	Inductor Connection One. Connect an inductor between LX1 and LX2.				
C4	CNFG	Device Configuration Input. Connect a resistor (R _{CNFG}) from CNFG to GND to program the following parameters, see <u>Table 1</u> . Switching frequency (600kHz ~ 1.8MHz) Number of battery cells in series connection (2S or 3S) Slope compensation for different inductor selection				
C5	ADCIN	General-Purpose ADC Input. Use an external resistor divider to divide the voltage signal to be sensed below 1.25V.				
C6	INTB2	Active-Low, Open-Drain Interrupt Output Two. Connect a pullup resistor to the pullup power source.				
C7	INTB1	Active-Low, Open-Drain Interrupt Output One. Connect a pullup resistor to the pullup power source.				
D1, D2, D3	PGND	Power ground for buck-boost low-side MOSFETs.				
D4	INOKB	Input Power-OK/OTG Power-OK Output. Active-low, open-drain output pulls low when the CHGIN voltage is valid.				
D5	STAT	Charger Status Output. Active-low, open-drain output, connect to the pullup rail through a $200k\Omega$ resistor. Pulls low when the charging is in progress. Otherwise, STAT is high impedance. STAT toggles between low and high (when connected to a pullup rail) during charge. STAT becomes low when the top-off threshold is detected, and the charger enters the done state. STAT becomes high (when connected to a pullup rail) when charge faults are detected.				
D6	SYSA	SYS voltage sensing input for SYS UVLO and OVLO detection.				
D7	ТНМ	Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor from THM to GND. Connect a resistor equal to the thermistor +25°C resistance from THM to AVL. JEITA controlled charging available with JEITA_EN = 1. Charging is suspended when the thermistor voltage is outside of the hot and cold limits. Connect THM to GND to disable the thermistor temperature sensor. Connect THM to AVL to emulate battery removal and prevent charging.				
E1, E2, E3	LX2	Inductor Connection Two. Connect an inductor between LX1 and LX2.				
E4, F1, F2, F3, F4	SYS	System Supply Output. Refer to SYS Capacitor Selection for SYS bypass capacitor.				
E5, F5, G4, G5	BATT	Battery Power Connection. Connect to the positive terminal of the battery pack. Bypass BATT to PGND with a 10µF/16V capacitor.				
E6, E7	GND	Analog Ground				
F6	SCL	Serial Interface I ² C Clock Input				
F7	SDA	Serial Interface I ² C Data. Open-drain output.				
G1	BST2	High-Side Output MOSFET Driver Supply. Bypass BST2 to LX2 with a 0.22µF/6.3V capacitor.				
G2	DISQBAT	Active-High Input. Connect high to disable the integrated Q _{BAT} FET between SYS and BATT. Charging is disabled when DISQBAT connects to high. When DISQBAT is pulled low, Q _{BAT} FET control is defined in <i>Table 2</i> .				
G3	OTGEN	Active-High Input. Connecting the OTGEN pin to high enables the OTG function. When the OTGEN pin is pulled low, the OTG enable function is controlled by I ² C.				
G6	BATSP	Battery Voltage Differential Sense Positive Input. Connect to the positive terminal of the battery pack.				
G7	BATSN	Battery Voltage Differential Sense Negative Input. Connect to the negative terminal of the battery pack.				

Detailed Description

Charger Configuration

The MAX77963 is a highly flexible, highly integrated switch-mode charger. Autonomous charging inputs configure the charger without host I²C interface. See the <u>Autonomous Charging</u> section for more details. The MAX77963 has an I²C interface which allows the host controller to program and monitor the charger. Charger configuration registers, interrupt, interrupt mask, and status registers are described in the *Register Map*.

Device Configuration Input (CNFG)

CNFG is the MAX77963's configuration input for the following parameters:

- Switching frequency (600kHz ~ 1.8MHz)
- Inductor selection (1.0μH ~ 3.3μH)
- Number of battery cells in series connection (2S or 3S)

Connect a resistor (R_{CNFG}) from CNFG to GND to program. See Table 1.

Table 1. CNFG Program Options Lookup Table

R _{CNFG} (Ω)	NUMBER OF SERIES BATTERY CELLS	SWITCHING FREQUENCY (MHz)	INDUCTOR (µH)	OTG MODE SUPPORT
Tied to PVL	2	0.6	2.2 or 3.3	Yes
All other resistance	2	0.6	2.2 or 3.3	Yes
140000	2	0.6	2.2 or 3.3	Yes
110000	2	1.2	1.0 or 1.5	Yes
86600	2	1.2	2.2 or 3.3	Yes
69800	2	1.8	1.0 or 1.5	No
54900	2	1.8	2.2 or 3.3	No
14000	3	0.6	2.2 or 3.3	Yes
11000	3	1.2	1.0 or 1.5	Yes
8660	3	1.2	2.2 or 3.3	Yes
6980	3	1.8	1.0 or 1.5	Yes
5490	3	1.8	2.2 or 3.3	Yes

CHGIN Standy Input (STBY)

The host can reduce the MAX77963's CHGIN supply current by driving the STBY pin to high or setting the STBY_EN bit to '1'. When STBY is pulled high or STBY_EN bit is set to '1', the DC-DC turns off. When STBY is pulled low and the STBY EN bit is set to '0', the DC-DC is controlled by the power-path state machine.

Battery to SYS Q_{BAT} Disable Input (DISQBAT)

The host can disable the Q_{BAT} switch by setting the DISIBS bit to 1 or driving the DISQBAT pin to high. Charging stops when the Q_{BAT} switch is disabled.

QBAT and DC-DC Control—Configuration Table

The Q_{BAT} control and the DC-DC control depend on both hardware pins (OTGEN, DISQBAT, and STBY) and their associated I²C registers. See <u>Table 2</u>.

Table 2. QBAT and DC-DC Control Configuration Table

OTGEN (PIN) OR MODE [3:0] = 0xA (I ² C)	DISQBAT (PIN)	DISIBS (I ² C)	CHGIN	STBY (PIN)	STBY_EN (I ² C)	Q _{BAT}	DC-DC				
				Low	0	Power-Path State Machine/Internal Logic Control	Power-Path State Machine/Internal Logic Control				
0	Low	0	х		1	Enable (SYS is powered from battery	Disable				
				High	х	through Q _{BAT} switch while DC-DC is disabled)					
		Low 1			Low	0	Disable	Power-Path State Machine/Internal Logic Control			
	Low		Х		1	Disable (SYS is powered from battery	Disable				
				High	х	through Q _{BAT} body diode while DC-DC is disabled)	Disable				
		High x			Low	0	Disable	Power-Path State Machine/Internal Logic Control			
0			Valid		1	Disable (SYS is powered from battery	Disable				
	High		х	x				High	х	through Q _{BAT} body diode while DC-DC is disabled)	Disable
						Low	х	Disable (factory ship mode)	Disable (factory ship mode)		
			Invalid		High	x	Disable (SYS is powered from battery through Q _{BAT} body diode while DC-DC is disabled)	Disable			
1	х	х	х	х	х	Enable (if not in factory ship mode)	Power-Path State Machine/Internal Logic Control (if not in factory ship mode)				

Thermistor Input (THM)

The thermistor input can be utilized to achieve functions that include charge suspension, JEITA-compliant charging, and battery removal detection. The thermistor monitoring feature can be disabled by connecting the THM pin to ground.

Charge Suspension

The THM input connects to an external negative temperature coefficient (NTC) thermistor to monitor battery or system temperature. Charging stops when the thermistor temperature is out of range (T < T_{COLD} or T > T_{HOT}). The charge timers are reset. The CHG_DTLS[3:0] and CHG_OK register bits report the charging suspension status, and the CHG_I interrupt bit is set. When the thermistor comes back into range (T_{COLD} < T < T_{HOT}), charging resumes, and the charge timer restarts.

JEITA Compliant Charging

JEITA compliant charging is available with JEITA EN = 1. See the JEITA Compliance section for more details.

Battery Removal Detection

Connecting THM to AVL emulates battery removal and prevents charging.

Disable Thermistor Monitoring

Connecting THM to GND disables the thermistor monitoring function, and JEITA-controlled charging is unavailable in this configuration. The IC detects an always-connected battery when THM is grounded, and charging starts automatically when a valid adapter is plugged in. In applications with removable batteries, do not connect THM to GND because the IC cannot detect battery removal when THM is grounded. Instead, connecting THM to the thermistor pin in the battery pack is recommended.

Since the thermistor monitoring circuit employs an external bias resistor from THM to AVL, the thermistor is not limited only to $10k\Omega$ (at $+25^{\circ}$ C). Any resistance thermistor can be used if the value is equivalent to the thermistors $+25^{\circ}$ C resistance. For example, with a $10k\Omega$ at R_{TB} resistor, the charger enters a temperature suspend state when the thermistor resistance falls below $3.97k\Omega$ (too hot) or rises above $28.7k\Omega$ (too cold). This corresponds to a 0° C to $+50^{\circ}$ C range when using a $10k\Omega$ NTC thermistor with a beta of 3500. The general relation of thermistor resistance to temperature is defined by the following equation:

$$R_T = R_{25} \times e^{\{\beta \times (\frac{1}{T + 273^{\circ}C} - \frac{1}{298^{\circ}C})\}}$$

where:

 R_T = The resistance in Ω of the thermistor at temperature T in Celsius.

 R_{25} = The resistance in Ω of the thermistor at +25°C.

 β = The material constant of the thermistor, which typically ranges from 3000k to 5000k.

T = The temperature of the thermistor in Celsius.

Some designs might prefer other thermistor temperature limits. Threshold adjustment can be accommodated by changing R_{TB} , connecting a resistor in series and/or in parallel with the thermistor, or using a thermistor with different β . For example, a +45°C hot threshold and 0°C cold threshold can be realized by using a thermistor with a β to 4250 and connecting 120k Ω in parallel. Since the thermistor resistance near 0°C is much higher than it is near +50°C, a large parallel resistance lowers the cold threshold, while only slightly lowering the hot threshold. Conversely, a small series resistance raises the hot threshold, while only slightly raising the cold threshold. Raising R_{TB} raises both the hot and cold thresholds, while lowering R_{TB} lowers both thresholds.

Since AVL is active whenever a valid power is provided at CHGIN or BATT, thermistor bias current always flows, even when charging is disabled. When using a $10k\Omega$ thermistor and a $10k\Omega$ pullup to AVL, this results in an additional 90μ A load. This load can be reduced to 9μ A by instead using a $100k\Omega$ thermistor and $100k\Omega$ pullup resistor.

Table 3. Trip Temperatures for Different Thermistors

THERMISTOR						TRIP TEMP	ERATURES	
R ₂₅ (Ω)	β	R _{TB} (Ω)	R ₁₅ (Ω)	R ₄₅ (Ω)	T _{COLD} (°C)	T _{COOL} (°C)	T _{WARM} (°C)	T _{HOT} (°C)
10000	3380	10000	14826	4900	-0.8	14.7	42.6	61.4
10000	3940	10000	15826	4354	2.6	16.1	40.0	55.7
47000	4050	47000	75342	19993	3.2	16.4	39.6	54.8
100000	4250	100000	164083	40781	4.1	16.8	38.8	53.2

Autonomous Charging

The MAX77963 supports autonomous charging without I²C. In applications without I²C serial communication, use the following pins to configure the MAX77963 charger:

CNFG, INLIM, ITO, ISET, VSET, OTGEN, DISQBAT, and STBY.

The INLIM, ITO, ISET, and VSET pins are used to program the charger's input current limit, top-off current, constant-charging current, and termination voltage.

Connect a valid resistor from each of these pins to ground to program the charger. See the *Pin Description* for details.

Connect all four pins (INLIM, ITO, SET, VSET) to PVL to use the default values for the associated charger registers.

For autonomous charging, it is considered an abnormal condition if some of these pins (INLIM, ITO, ISET, VSET) connect to a valid resistor, but others do not (for example open or connects to PVL or connects to a resistor that is out of range). When this happens, the MAX77963 allows the DC-DC to switch and regulate the SYS voltage, but charging is disabled for safety reasons. The STAT pin reports no charge.

Table 4. INLIM, ITO, ISET, and VSET Pin Connections for Autonomous Charging

INLIM PIN	ITO PIN	ISET PIN	VSET PIN	AUTONOMOUS CHARGING
Valid resistor		Valid resistor	Normal, charger configuration is programmed by resistors	
Tied to PVL Tied to PVL Tied to PVL Tied to PVL		Tied to PVL	Normal, charger configuration uses default values	
	All other co	onnections		Abnormal, no charging

Charger Input Current Limit Setting Input (INLIM)

When a valid charge source is applied to CHGIN, the MAX77963 limits the current drawn from the charge source to the value programmed with the INLIM pin.

The default charger input current limit is programmed with the resistance from INLIM to GND. See <u>Table 5</u>.

If I²C is used in the application, the CHGIN input current limit can also be reprogrammed with the CHGIN_ILIM[6:0] register bits after the device powers up. Connect the INLIM pin to PVL to use I²C default settings.

Table 5. INLIM Program Options Lookup Table

R _{INLIM} (Ω)	CHGIN INPUT CURRENT LIMIT (mA) DEFAULT VALUE OF CHGIN_ILIM[6:0]
Tied to PVL	500
226000	50
178000	100
140000	200
110000	500
86600	1000
69800	1500
54900	2000
39200	2500
22600	3000

Fast-Charge Current Setting Input (ISET)

When a valid input source is present, the battery charger attempts to charge the battery with a fast-charge current programmed with the ISET pin.

The default fast-charge current is programmed with the resistance from ISET to GND. See <u>Table 6</u>.

If I²C is used in the application, the fast-charge current can also be reprogrammed with CHGCC_MSB and CHGCC[7:0] register bits after the device powers up. Connect the ISET pin to PVL to use I²C default settings.

Table 6. ISET Program Options Lookup Table

R _{ISET} (Ω)	FAST-CHARGE CURRENT SELECTION (mA) DEFAULT VALUE OF CHGCC_MSB and CHGCC[7:0]
Tied to PVL	450
226000	50
178000	100
140000	200

110000	500
86600	1000
69800	1500
54900	2000
39200	2500
22600	3000

Top-Off Current Setting Input (ITO)

When the battery charger is in the top-off state, the top-off charge current is programmed by the ITO pin.

The default top-off charge current is programmed with the resistance from ITO to GND. See <u>Table 7</u>.

If I²C is used in the application, the top-off current can also be reprogrammed with the TO_ITH[2:0] register bits after the device powers up. Connect the ITO pin to PVL to use I²C default settings.

Table 7. ITO Program Options Lookup Table

R _{ITO} (Ω)	TOP-OFF CURRENT THRESHOLD (mA) DEFAULT VALUE OF TO_ITH[2:0]
Tied to PVL	25
226000	25
178000	50
140000	100
110000	200
86600	400
69800	600
54900	1000
39200	1600

Charge Termination Voltage Setting Input (VSET)

The default charge termination voltage is programmed with the resistance from VSET to GND. See <u>Table 8</u>.

If I²C is used in the application, the charge termination voltage can also be reprogrammed with the CHG_CV_PRM[7:0] register bits after the device powers up. Connect the VSET pin to PVL to use I²C default settings.

Table 8. VSET Program Options Lookup Table

R _{VSET} (Ω)	CHARGE TERMINATION VOLTAGE SETTING - 2S (V) DEFAULT VALUE OF CHG_CV_PRM[7:0]	CHARGE TERMINATION VOLTAGE SETTING - 3S (V) DEFAULT VALUE OF CHG_CV_PRM[7:0]
Tied to PVL	7.81	11.72
226000	7.90	11.85
178000	8.00	12.00
140000	8.10	12.15
110000	8.20	12.30
86600	8.30	12.45
69800	8.40	12.60
54900	8.50	12.75
39200	8.60	12.90
22600	8.70	13.05
17800	8.80	13.20
14000	8.90	13.35
11000	9.00	13.50

8660	9.10	13.65
6980	9.20	13.80
5490	9.30	13.95

Switch Mode Charger

The MAX77963 features a switch mode buck-boost charger for a two-cell or three-cell lithium-ion (Li+) or lithium polymer (Li-polymer) battery. The charger operates with a wide input range from 3.5V to 23V, which is ideal for USB Type-C charging applications. The charger input current limit is programmable from 50mA to 3.15A, which is flexible to operate from either an AC-to-DC wall charger or a USB Type-C adapter. The battery charging current is programmable from 50mA to 3.2A, which accommodates small or large capacity batteries.

The MAX77963 offers a high level of integration and does not require any external MOSFETs to operate, which significantly reduces the solution size. It operates with a switching frequency of 600kHz, 1.2MHz or 1.8MHz, which is ideal for portable devices that benefit from small solution size and high efficiency. Spread-spectrum modulation reduces the EMI emissions at the switching frequency.

When the input source is not available, the MAX77963 can be enabled in a reverse-buck mode, delivering energy from the battery to the input, CHGIN, commonly known as USB On-the-Go (OTG). In OTG mode, the regulated BYP voltage is 5.1V with programmable current limit up to 3A.

ADI's Smart Power Selector architecture makes the best use of the limited adapter power and the battery power to power the system. Adapter power that is not used for the system charges the battery. When system load exceeds the input limit, the battery provides additional current to the system up to the BATT to SYS overcurrent threshold, programmable with B2SOVRC[3:0] I²C register bits. All power switches for charging and switching the system load between battery and adapter power are integrated on chip—no external MOSFETs required.

ADI's proprietary process technology allows for low-R_{DSON} devices in a small solution size. The resistance between CHGIN and BYP is $10m\Omega$ (typ), and the resistance between BATT and SYS is $10m\Omega$ (typ), allowing for low power dissipation and long battery life.

A multitude of safety features ensure reliable charging. Features include charge timers, watchdog, junction thermal regulation, over-/undervoltage protection, and SYS overloading protection.

Integrated 8-channel 12-bit SAR ADC samples and converts voltage, current, and temperature, which is convenient for the host to monitor charger's operating conditions.

Buck-Boost Regulator Operation

The MAX77963's buck-boost regulator utilizes a four-switch H-bridge configuration to realize buck and boost operating modes. This topology maintains output voltage regulation when the input voltage is greater than, equal to, or less than the output voltage. The transition between buck, buck-boost, and boost operating modes is seamless and uninterrupted, which is convenient for variable input voltage powered by USB and variable output voltage of the battery.

Pulse Frequency Modulation (PFM) Operation

The MAX77963's buck-boost regulator implements a novel PFM architecture to improve the light load efficiency and avoid audible noise of the skip mode operation. When loading is light and the inductor current becomes discontinuous, PWM operation transitions smoothly to PFM operation, and the switching frequency reduces from the nominal switching frequency (fsw). The lighter the loader is, the lower the actual switching frequency is modulated to. The minimum switching frequency (programmable by PFM_MIN_FREQ[1:0]) can be locked above the audible range (> 20kHz) to avoid audible noise caused by the vibration of ceramic capacitors. For reverse buck mode (OTG), it is recommended to set PFM_MIN_FREQ[1:0] to 0x3 (Disabled) to prevent CHGIN overvoltage if the CHGIN load can be very light.

Spread-Spectrum Modulation

The buck-boost regulator can dither its switching frequency for noise-sensitive applications. The spread-spectrum modulation can be enabled/disabled by the SS_EN bit, and its modulation pattern is programmable either pseudo-random or triangular by the SS_PAT bit. Modulation envelope (ΔF_{SS}) determines the maximum difference between the modulated switching frequency and the nominal switching frequency. The $\pm 6\%$ modulation envelope controls 'how wide' the switching frequency dithers.

Pseudo-Random Pattern

As shown in <u>Figure 1</u>, the pseudo-random engine uses a 15-bit linear feedback shift register (LFSR) to create a pseudo-random value. The LFSR value is converted to an analog signal and then amplified before being added to the clock generation circuit, which increases or decreases the switching frequency. The refresh rate of the LFSR is 20kHz. This is the frequency at which one pseudo-random value changes to another.

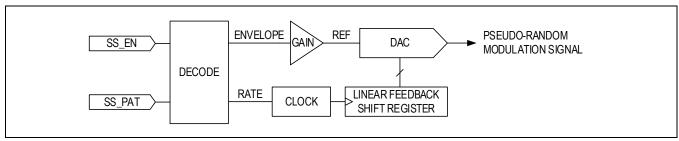


Figure 1. Pseudo-Random Modulator Engine

Triangular Pattern

As shown in <u>Figure 2</u>, the triangular engine uses an up/down synchronous counter to create a stepped triangular pattern. The counter value is converted to an analog signal and then amplified before being added to the clock generation circuit, which progressively increases and decreases the switching frequency.

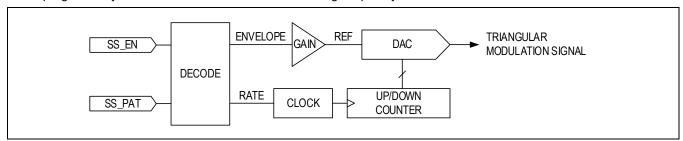


Figure 2. Triangular Modulator Engine

Smart Power Selector (SPS)

The smart power selector (SPS) architecture includes a network of internal switches and control loops that efficiently distributes energy between an external power source (CHGIN), the battery (BATT), and the system (SYS). This architecture allows power-path operation with system instant on with a dead battery.

The Simplified Block diagram shows the Smart Power Selector switches and gives them the following names: Q_{CHGIN} , Q_1 , Q_2 , Q_3 , Q_4 , and Q_{BAT} .

Power Switches

- CHGIN-to-BYP Switch: Q_{CHGIN} is used to monitor CHGIN current.
- DC-DC Switches: Q₁, Q₂, Q₃, and Q₄ are the DC-DC switches which can operate as a buck (step-down) or a boost (step-up), depending on the external power source and battery voltage conditions.
- Battery-to-System Switch: QBAT is used to control battery charging and discharging operations.

I²C Configuration Register Bits

- MODE[3:0] configures the Smart Power Selector mode to be DC-DC, charging, or OTG mode respectively. See the MODE[3:0] register bit description in the *Register Map* for details.
- VBYP_REG[4:0] sets the BYP regulation voltage, when the MAX77963 operates in forward mode (CHGIN has a valid power source). See the <u>BYP Regulation Voltage</u> section for details.
- MINVSYS[2:0] sets the minimum system regulation voltage. See the <u>SYS Regulation Voltage</u> section for details.
- B2SOVRC[3:0] sets the battery to system discharge over-current alert threshold.

Energy Distribution Priority

- With a valid external power source at CHGIN:
 - The external power source is the primary source of energy.
 - The battery is the secondary source of energy.
 - · Energy delivery to SYS has the highest priority.

- Any remaining energy from the power source that is not required by the system is available to the battery charger.
- With no valid external power source at CHGIN:
 - The battery is the primary source of energy.
 - When OTG mode is enabled, energy delivery to SYS has the highest priority.
 - Any remaining energy from the battery that is not required by the system is available to power the CHGIN.

BYP Regulation Voltage

- In forward mode (when CHGIN is powered from a valid external source), BYP voltage is regulated to VBYP_REG[4:0] when a high impedance or current-limited source is applied. VBYP might experience significant voltage droop from the high-impedance source when the MAX77963 extracts high power from the source. Regulating VBYP allows the IC to extract the most power from the power source. See the <u>Adaptive Input Current Limit (AICL) and Input Voltage Regulation</u> section for more details.
- In reverse mode (OTG), BYP voltage is regulated to 5.1V with a programmable current limit up to 3A (OTG ILIM[2:0]).

SYS Regulation Voltage

With a valid external power source at CHGIN:

- When the DC-DC is disabled (MODE[3:0] = 0x00 or STBY_EN = 0b1 or STBY pin = high), the Q_{BAT} switch is fully on and V_{SYS} = V_{BATT} - I_{BATT} x R_{BAT2SYS}.
- When the DC-DC is enabled and the charger is disabled (MODE[3:0] = 0x04), V_{SYS} is regulated to V_{BATTREG} (CHG_CV_PRM[7:0]) and Q_{BAT} is off.
- When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05), but in a noncharging state such as Done, Thermistor Suspend, Watchdog Suspend, or Timer Fault, V_{SYS} is regulated to V_{BATTREG} (CHG_CV_PRM[7:0]) and Q_{BAT} is off.
- When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05) and in a valid charging state such as Precharge or Trickle Charge (V_{BATT} < V_{SYSMIN} - 500mV), V_{SYS} is regulated to V_{BATTREG}. The charger operates as a linear regulator, and the power dissipation can be calculated with P = (V_{BATTREG} - V_{BATT}) x I_{BATT}.
- When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05) and in a valid charging state such as
 Fast Charge (CC or CV) or Top-Off (VBATT > VSYSMIN 500mV), the QBAT switch is fully on, and VSYS = VBATT +
 IBATT x RBAT2SYS.
- In all the modes described above when the power demand on SYS exceeds the input source power limit, the battery
 automatically provides supplemental power to the system. If the QBAT switch is initially off when VSYS drops to VBATT
 VBSREG, the QBAT switch turns on, and VSYS is regulated to VBATT VBSREG.

Without a valid external power source at CHGIN, including with OTG mode (MODE[3:0] = 0x0A):

The QBAT switch is fully on, and VSYS = VBATT - IBATT x RBAT2SYS.

Power States

The MAX77963 transitions between power states as input/battery and load conditions dictate.

The MAX77963 provides four (4) power states and one (1) no power state. Under power limited conditions, the power-path feature maintains SYS and USB-OTG loads at the expense of the battery charge current. In addition, the battery supplements the input power when required. See the <u>Smart Power Selector (SPS)</u> section for more details. Transitions between power states are initiated by detection/removal of valid power sources, OTG events, and undervoltage conditions.

- NO INPUT POWER, MODE[3:0] = undefined: No input adapter or battery is detected. The charger and system are off. Battery is disconnected.
- BATTERY-ONLY, MODE[3:0] = any mode: CHGIN is invalid or outside the input voltage operating range. Battery is connected to power the SYS load (QBAT = on).
- NO CHARGE—DC-DC in FORWARD mode, MODE[3:0] = 0x04: CHGIN input is valid, DC-DC supplies power to SYS.
 DC-DC operates from a valid input. Battery is disconnected (QBAT = OFF) when SYS load is less than the power that DC-DC can supply.
- CHARGE—DC-DC in FORWARD mode, MODE[3:0] = 0x05: CHGIN input is valid, DC-DC supplies power to SYS and charges the battery with IBATT. DC-DC operates from a valid input.
- OTG—DC-DC in REVERSE mode (OTG), MODE[3:0] = 0x0A: OTG is active. Battery is connected to support SYS and OTG loads (QBAT = on), and charger operates in REVERSE buck mode.

MAX77963

23VIN 3.2AOUT Buck-Boost Charger for 2S/3S Li-Ion Batteries and USB Power Delivery Applications

Powering up with Charger Disabled by Default

MAX77963's default power state is CHARGE - DC-DC in FORWARD mode, MODE[3:0] = 0x05. For battery authentication/safety purposes, MAX77963 can be configured to keep charging disabled, while allowing the DC-DC to switch and regulate the SYS voltage, when power is applied to CHGIN. To implement this and enable the charger when appropriate:

- Connect at least one of INLIM, ITO, ISET, or VSET pins to a valid resistor while tie others (at least one) to PVL.
 CHG DTLS = 0x05 and CHG OK = 0.
- The system processor can configure the charger through I2C.
- The system processor enables charging by setting COMM_MODE to 1 (default is 0).

See the <u>Wide-Input I²C Programmable Charger with Charger Disabled</u> diagram for a pin connection example. INLIM is connected to a valid resistor while ITO, ISET and VSET tie to PVL. Default input current limit is programmed by R_{INLIM}, while default top-off current, constant charging current and termination voltage use their default value. The system processor can re-program all four settings through I²C if needed.

Input Validation

The charger input is compared with several voltage thresholds to determine if it is valid. A charger input must meet the following characteristics to be valid:

- CHGIN must be above V_{CHGIN_UVLO} to be valid. Once CHGIN is above the UVLO threshold, the information is latched and can only be reset when the charger is in adaptive input current loop (AICL) and input current is lower than IULO threshold of 30mA.
- CHGIN must be below its overvoltage-lockout threshold (V_{CHGIN OVLO}).

The device generates a CHGINUVLO_I interrupt (maskable with CHGINUVLO_M bit) when V_{CHGIN} is below V_{CHGIN_UVLO}. Similarly, the device generates a CHGINOVLO_I interrupt (maskable with CHGINOVLO_M bit) when V_{CHGIN} is above V_{CHGIN_OVLO}. Read the CHGIN input status with CHGINUVLO_OK, CHGINOVLO_OK, and CHGIN_DTLS[1:0] register bits.

Adaptive Input Current Limit (AICL) and Input Voltage Regulation

The MAX77963 features input power management to extract maximum input power while avoiding input source overload. The AICL and BYP_REG features allow the charger to extract more energy from relatively high-resistance charge sources with long cables, non-compliant USB hubs, or current limited adapters. In addition, the input power management allows the MAX77963 to perform well with adapters that have poor transient load responses.

With a high-resistance source, the charger input voltage drops substantially when it draws large current from the source. The charger's input voltage regulation loop automatically reduces the current drawn from the input to regulate the BYP voltage at V_{BYP_REG} . If the input current is reduced to $I_{BYP_REG_OFF}$ (50mA typical) and the BYP voltage is still below V_{BYP_REG} , the charger input turns off. V_{BYP_REG} is programmable with V_{BYP_REG} register bits.

With a current-limited source, if the MAX77963's input current limit is programmed above the current limit of the adapter, the charger input voltage starts to drop when the input current drawn exceeds the source current limit. The charger's input voltage regulation loop allows the MAX77963 to reduce its input current and operate at the current limit of the adapter.

When operating with the input voltage regulation loop active, an AICL_I interrupt is generated, and AICL_OK sets to 0. The device prioritizes system energy delivery over battery charging. See the <u>Smart Power Selector (SPS)</u> section for more details.

To extract the most input power from a current limited charge source, monitor the AICL_OK status while decreasing the CHGIN_ILIM[6:0] register setting. Lowering the CHGIN_ILIM[6:0] to a value below the current limit of the adapter causes the input voltage to rise. Although the CHGIN_ILIM[6:0] is lowered, more power can be extracted from the adapter when the input voltage rises.

Input Self-Discharge

To ensure that a rapid removal and re-insertion of a charge source always results in a charger input interrupt, the charger input presents loading to the input capacitor to ensure that when the charge source is removed, the input voltage decays below the UVLO threshold in a reasonable time (t_{INSD}). The input self-discharge is implemented with a 44k Ω resistor (R_{INSD}) from CHGIN input to ground.

System Self-Discharge with No Power

To ensure a timely, complete, repeatable, and reliable reset behavior when the system has no power, the MAX77963 actively discharges the BATT and SYS nodes when the adapter is missing, the battery is removed, and V_{SYS} is less than V_{SYS} I_{O} . The BATT and SYS discharge resistors are both 600Ω .

Charger States

The MAX77963 utilizes several charging states to charge batteries safely and quickly as shown in <u>Figure 3</u> and <u>Figure 4</u>. Figure 3 shows an exaggerated view of a Li+/Li-Poly battery progressing through the following charge states when there is no system load, and the die and battery are close to room temperature: Prequalification \rightarrow Fast-charge \rightarrow Top-off \rightarrow Done.

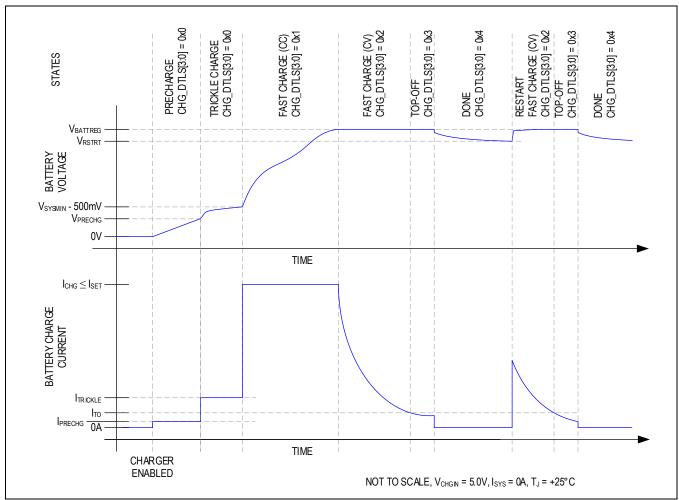


Figure 3. Li+/Li-Poly Charge Profile

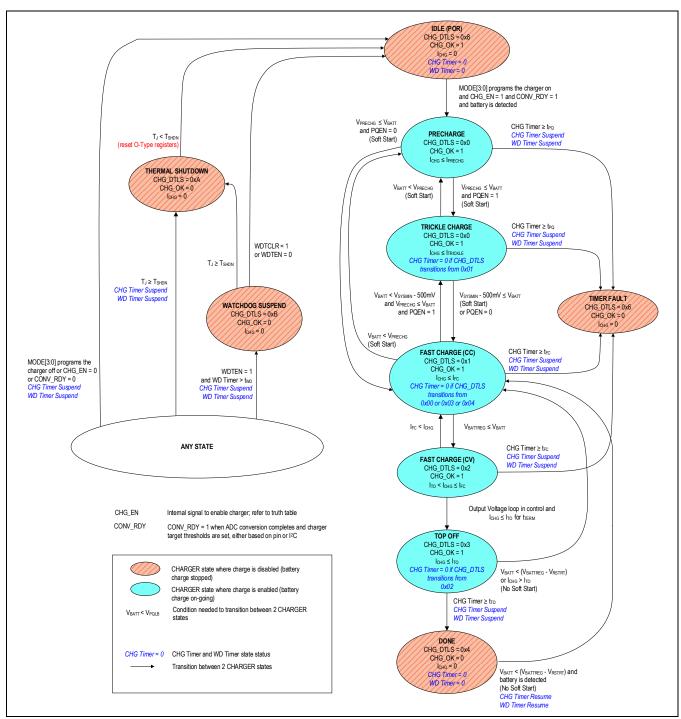


Figure 4. Charger State Diagram

No Input Power or Charger-Disabled Idle State

From any state shown in <u>Figure 4</u>, except thermal shutdown, the "no input power or charger disabled" state is entered whenever the charger is programmed to be off or the charger input CHGIN is invalid. After being in this state for t_{SCIDG}, CHG_DTLS is set to 0x08, and CHG_OK is set to 1. A CHG_I interrupt is generated if CHG_OK was 0 previously.

While in the "no input power or charger disabled" state, the charger current is 0mA, the watchdog and charge timers are forced to 0, and the power to the system is provided by either the battery or the adapter. When both battery and adapter

power are available, the adapter provides primary power to the system and the battery contributes supplemental energy to the system if necessary.

To exit the "no input power or charger disabled" state, the charger input must be valid, and the charger must be enabled.

Precharge State

As shown in <u>Figure 4</u>, the charger enters the precharge state when the battery voltage is less than V_{PRECHG}. After being in this state for t_{SCIDG}, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS is set to 0x00. In the precharge state, charge current into the battery is I_{PRECHG}.

The following events cause the state machine to exit this state:

- Battery voltage rises above V_{PRECHG} and the charger enters the next state in the charging cycle: "Trickle Charge".
- If the battery charger remains in this state for longer than t_{PQ}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

Note that the precharge state works with battery voltages down to 0V. The 0V operation typically allows this battery charger to recover batteries that have an "open" internal pack protector. Typically, a battery pack's internal protection circuit opens if the battery has seen an overcurrent, undervoltage, or overvoltage. When a battery with an "open" internal pack protector is used with this charger, the precharge mode current flows into the 0V battery—this current raises the pack's terminal voltage to the level where the internal pack protection switch closes.

Note that a normal battery typically stays in the precharge state for several minutes or less. Therefore, a battery that stays in the precharge for longer than t_{PQ} may be experiencing a problem.

Trickle Charge State

As shown in <u>Figure 4</u>, the charger state machine is in trickle charge state when $V_{PRECHG} < V_{BATT} < V_{SYSMIN}$ - 500mV. After being in this state for t_{SCIDG} , a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x00.

With PQEN = 1(default) and the IC is in its trickle charge state, the current in the battery is less than or equal to I_{TRICKLE}. When PQEN = 0, the charger skips the trickle charge state and transitions directly to the fast-charge state, and the battery charging current is less than or equal to I_{FC}.

Charge current can be less than I_{TRICKLE}/I_{FC} for any of the following reasons:

- The charger input is in input current limit.
- The charger input voltage is low.
- The charger is in thermal foldback.
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

Typical systems operate with PQEN = 1. When operating with PQEN = 0, the system's software usually sets I_{FC} to a low value such as 200mA and then monitors the battery voltage. When the battery exceeds a relatively low voltage such as 6V, then the system's software usually increases I_{FC} .

The following events cause the state machine to exit this state:

- When the battery voltage rises above V_{SYSMIN} 500mV or the PQEN bit is cleared, the charger enters the next state in the charging cycle: "Fast-Charge (CC)".
- If the battery charger remains in this state for longer than t_{PQ}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state. Note that a normal battery typically stays in the trickle charge state for several minutes or less. Therefore, a battery that stays in trickle charge for longer than tpO may be experiencing a problem.

Fast-Charge Constant Current (CC) State

As shown in <u>Figure 4</u>, the charger enters the fast-charge constant current (CC) state when V_{SYSMIN} - 500mV (typical) < $V_{BATT} < V_{BATTREG}$. After being in the fast-charge CC state for t_{SCIDG} , a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x01.

In the fast-charge CC state, the battery charging current is less than or equal to I_{FC}. Charge current can be less than I_{FC} for any of the following reasons:

- The charger input is in input current limit.
- The charger input voltage is low.
- The charger is in thermal foldback.
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charging current.

The following events cause the state machine to exit this state:

- When the battery voltage rises above V_{BATTREG}, the charger enters the next state in the charging cycle: "Fast-Charge (CV)".
- If the battery charger remains in this state for longer than t_{FC}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

The battery charger dissipates the most power in the fast-charge constant current state, which causes the die temperature to rise. If the die temperature exceeds T_{REG}, the thermal-foldback loop is engaged and I_{FC} is reduced. See the <u>Thermal Foldback</u> section for more information.

Fast-Charge Constant Voltage (CV) State

As shown in <u>Figure 4</u>, the charger enters the fast-charge constant voltage (CV) state when the battery voltage rises to V_{BATTREG} from the fast-charge CC state. After being in the fast-charge CV state for t_{SCIDG}, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x02.

In the fast-charge CV state, the battery charger maintains $V_{BATTREG}$ across the battery and the charge current is less than or equal to I_{FC} . As shown in <u>Figure 3</u>, charger current decreases exponentially in this state as the battery becomes fully charged.

The Smart Power Selector control circuitry can reduce the charge current for any of the following reasons:

- The charger input is in input current limit.
- The charger input voltage is low.
- The charger is in thermal foldback.
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

The following events cause the state machine to exit this state:

- When the charger current is below I_{TO} for t_{TERM}, the charger enters the top-off state.
- If the battery charger remains in this state for longer than t_{FC}, the charger state machine transitions to the timer fault
- If the watchdog timer is not serviced, the charger state machine transitions to the watchdog timer suspend state.

Top-Off State

As shown in <u>Figure 4</u>, the top-off state can only be entered from the fast-charge CV state when the charger current decreases below I_{TO} for I_{TERM} . After being in the top-off state for I_{SCIDG} , a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x03. In the top-off state the battery charger maintains $I_{RATTREG}$ across the battery and typically the charge current is less than or equal to I_{TO} .

The Smart Power Selector control circuitry can reduce the charge current for any of the following reasons:

- The charger input is in input current limit.
- The charger input voltage is low.
- The charger is in thermal foldback.
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

The following events cause the state machine to exit this state:

- After being in this state for the top-off time (t_{TO}), the charger enters the done state.
- If VBATT < VBATTREG VRSTRT, the charger goes back to the fast-charge (CC) state.

MAX77963

23VIN 3.2AOUT Buck-Boost Charger for 2S/3S Li-Ion Batteries and USB Power Delivery Applications

• If the watchdog timer is not serviced, the charger state machine transitions to the watchdog timer suspend state.

Done State

As shown in <u>Figure 4</u>, the battery charger enters its done state after the charger has been in the top-off state for t_{TO} . After being in this state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 0, and CHG_DTLS = 0x04.

The following events cause the state machine to exit this state:

- If VBATT < VBATTREG VRSTRT, the charger goes back to the fast-charge constant current state.
- If the watchdog timer is not serviced, the charger state machine transitions to the watchdog timer suspend state. In the done state, the battery charging current (I_{CHG}) is 0A and the charger presents a very low load (I_{MBDN}) to the battery. If the system load presented to the battery is low (<<100µA), then a typical system can remain in the done state for many days. If left in the done state long enough, the battery voltage decays below the charging restart threshold (V_{RSTRT}) and the charger state machine transitions back into the fast-charge CC state. There is no soft-start (di/dt limiting) during the done to fast-charge state transition.

Timer Fault State

The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. As shown in Figure 4, the charge timer prevents the battery from charging indefinitely. The time that the charger is allowed to remain in its prequalification states is t_{PQ} . The time that the charger is allowed to remain in the fast-charge CC and CV states is t_{FC} which is programmable with FCHGTIME. Finally, the time that the charger is in the top-off state is t_{TO} which is programmable with TO_TIME. Upon entering the timer fault state, a CHG_I interrupt is generated without a delay, CHG OK is cleared, and CHG DTLS = 0x06.

The charger is off in the timer fault state. The charger can exit the timer fault state when the charger is programmed to be off then on again through the MODE bits or when DISQBAT pin is toggled from L-H-L. Alternatively, the charger input can be removed and re-inserted to exit the timer fault state (see the "ANY STATE" bubble in *Figure 4*).

Watchdog Timer Suspend State

The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. As shown in <u>Figure 4</u>, the watchdog timer protects the battery from charging indefinitely if the host hangs or otherwise cannot communicate correctly. The watchdog timer is disabled by default with WDTEN = 0. Enable the feature by setting WDTEN = 1. With watchdog timer enabled, the host controller must reset the watchdog timer within the timer period (t_{WD}) for the charger to operate properly. Reset the watchdog timer by programming WDTCLR = 0x01.

If the watchdog timer expires, charging stops, a CHG_I interrupt is generated if CHG_OK was 1 previously, CHG_OK is cleared, and CHG_DTLS indicates that the charger is off because the watchdog timer expired. Once the watchdog timer expires, the charger can be restarted by programming WDTCLR = 0x01. The SYS node can be supported by the battery and/or the adapter through the DC-DC buck while the watchdog timer is expired.

Thermal Shutdown State

As shown in <u>Figure 4</u>, the state machine enters the thermal shutdown state when the junction temperature (T_J) exceeds the device's thermal-shutdown threshold (T_{SHDN}). When T_J is close to T_{SHDN} , the charger would have already folded back the input current to 0A (see the <u>Thermal Foldback</u> section for more details), so the charger and the DC-DC are effectively off. Upon entering this state, CHG_I interrupt is generated if CHG_OK was 1 previously, CHG_OK is cleared, and CHG_DTLS = 0x0A.

In the thermal shutdown state, the charger is off. The MODE register (CHG_CNFG_00[3:0]) is reset to its default value as well as all O-type registers.

Thermal Management

The MAX77963 charger uses several thermal management techniques to prevent excessive battery and die temperatures.

Thermal Foldback

Thermal foldback maximizes the battery charge current while regulating the IC junction temperature. As shown in <u>Figure 5</u>, when the die temperature exceeds the value programmed by REGTEMP (T_{REG}), a thermal limiting circuit reduces the battery charger's target current by 5%/°C (A_{TJREG}) with an analog control loop. When the charger transitions in and out of the thermal foldback loop, a CHG_I interrupt is generated and the host microprocessor can read the status of the thermal regulation loop with the TREG status bit. Note that an active thermal foldback loop is not an abnormal operation and the thermal foldback loop status does not affect the CHG_OK bit (only information contained within CHG_DTLS affects CHG_OK).

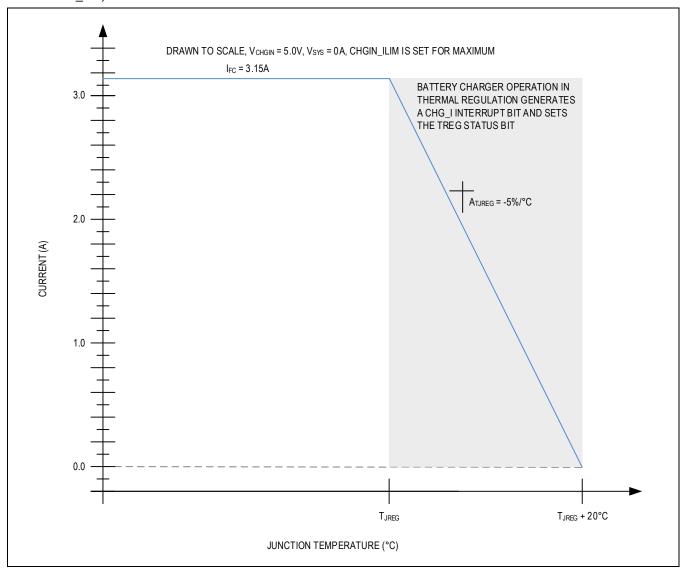


Figure 5. Charge Currents vs. Junction Temperature

JEITA Compliance

The MAX77963 safely charges Li+ batteries in accordance with JEITA specifications. The MAX77963 monitors the battery temperature with an NTC thermistor connected to the THM pin and automatically adjusts the fast-charge current and/or charge termination voltage as the battery temperature varies. JEITA-controlled charging can be disabled by setting JEITA_EN to 0. CHG_DTLS and THM_DTLS registers report JEITA controlled charging status.

The JEITA-controlled fast-charging current (I_{CHGCC_JEITA}) and charge termination voltage (V_{CHGCV_JEITA}) for I_{COLD} of I_{COLD} are programmable with I_{CHGCC_COOL} and I_{CHGCV_COOL} .

The charge termination voltage for $T_{WARM} < T < T_{HOT}$ is reduced to (CHG_CV_PRM - 180mV/cell), as shown in <u>Figure</u> <u>6</u>.

Charging is suspended when the battery temperature is too cold or too hot (T < T_{COLD} or T_{HOT} < T).

Temperature thresholds T_{COLD} , T_{COOL} , T_{WARM} , and T_{HOT} depend on the thermistor selection. See the <u>Thermistor Input</u> section for more details.

When battery charge current is reduced by 50%, the charger timer is doubled.

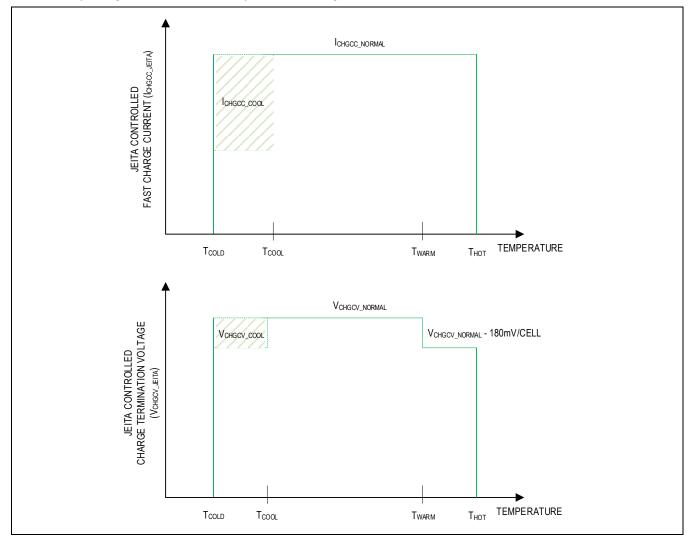


Figure 6. JEITA Compliance

Thermal Shutdown

The MAX77963 has a die temperature sensing circuit. When the die temperature exceeds the thermal-shutdown threshold, T_{SHDN}, the MAX77963 shuts down and resets O-type I²C registers. There is a 15°C thermal hysteresis. After thermal shutdown, if the die temperature reduces by 15°C, the thermal shutdown bus de-asserts, and the device reenables. The battery charger has an independent thermal regulation loop. See the *Thermal Foldback* section for more details.

Automatic Charger Loop Offset

The MAX77963 has four independent analog loops, including input voltage (AICL), input current, output voltage, and output current. The MAX77963 automatically switches between different loops and only one loop is in control at any time. Due to offset between different loops, the charger might hop between two loops at the boundary condition. For example, if the MAX77963 is in the fast-charge state and V_{BATT} is close to CHG_CV_PRM[7:0], and I_{BATT} is close to CHGCC, the charger is at the boundary of the fast-charge CC state (output current loop) and fast-charge CV state (output voltage loop). The charger might hop between the output current loop and the output voltage loop continuously.

To prevent possible loop-hopping behavior, an automatic charger loop offset is implemented. The automatic offset of the output voltage loop (CHGR_CV_OFFSET[1:0]) and automatic offset of the output current loop (CHGCC_OFFSET[1:0]) provide programmable hysteresis for entering these loops. The offset is applied when the charger is not in the corresponding loop and is automatically removed if the charger transitions to the corresponding loop. For example, if CHGR_CV_OFFSET[1:0] is set to 0x1 (+22.9mV (2S) or +34.4mV (3S)), the fast-charge CC to CV transition occurs at VBATT equal to (CHG_CV_PRM[7:0] + 22.9mV (2S) or 34.4mV (3S), and VBATT regulation target in the fast-charge CV state remains at CHG_CV_PRM[7:0]. This creates extra hysteresis and maintains accurate regulation of each loop.

Adding automatic offset to a loop can prevent possible hopping with all other three loops. It is recommended that the user set:

- CHGCC OFFSET[1:0] to 0x01 for +62.5mA
- CHGR CV OFFSET[1:0] to 0x01 for +22.9mV (2S) or +34.4mV (3S)

Offsets for the input current loop and input voltage (AICL) loop are set in OTP. The input current loop offset OTP_INLIM_OFFSET[1:0] is 0x0 (0mA/disabled), and the input voltage (AICL) loop offset OTP_BYPV_OFFSET[1:0] is set to 0x1 (-1 LSB). (The LSB is 175mV at VCHGIN_REG = 4.025V - 4.900V, 525mV at VCHGIN_REG = 5.425V - 10.950V, or 600mV at VCHGIN_REG = 11.550V - 19.050V).

Setting the automatic offset to 0x0 effectively disables this feature.

Factory Ship Mode

The MAX77963 supports factory ship mode with low battery quiescent current, I_{SHDN}.

When the input source is not valid, and the device is powered by battery, the device enters factory ship mode if DISQBAT pin is pulled high or FSHIP_MODE bit is set to 1. I²C communication is unavailable in the factory ship mode. When a valid input source is applied to the device's CHGIN pin or STBY pin is pulled high, the device exits factory ship mode. I²C communication is enabled.

Minimum System Voltage

The system voltage is regulated to the minimum SYS voltage (V_{SYSMIN}) when the battery voltage is low ($V_{BATT} < V_{SYSMIN} - 500 \text{mV}$).

- The charging current is IPRECHG when VBATT < VPRECHG.
- The charging current is ITRICKLE when VPRECHG < VBATT < VSYSMIN 500mV.
- The charging current is I_{FC} when V_{SYSMIN} 500mV < V_{BATT}.

Battery Differential Voltage Sense (BATSP, BATSN)

BATSP and BATSN are differential remote voltage sense lines for the battery. The MAX77963's remote sensing feature improves voltage sense accuracy, maximizes charging time in Fast-Charge CC State, and thus minimizes total charging time. The thermistor voltage is interpreted with respect to BATSN. For best results, connect BATSP and BATSN as close as possible to the battery connector.

Battery Overcurrent Alert

Excessive battery discharge current can occur for several reasons such as exposure to moisture, a software problem, an IC failure, a component failure, or a mechanical failure that causes a short circuit. The battery overcurrent alert feature is enabled with B2SOVRC[3:0]; disabling this feature reduces the battery current consumption by IBOVRC.

When the battery (BATT) to system (SYS) discharge current (I_{BATT}) exceeds the programmed overcurrent threshold for at least t_{BOVRC}, the Q_{BAT} switch closes to reduce the power loss in the IC. A B2SOVRC_I and a BAT_I interrupt are generated, BAT_OK is cleared, and BAT_DTLS reports an overcurrent condition. Typically, when the host processor detects this overcurrent interrupt it executes a housekeeping routine that tries to mitigate the overcurrent situation. If the processor cannot correct the overcurrent within t_{OCP}, then the MAX77963 turns off the DC-DC.

 t_{OCP} time duration can be set through the B2SOVRC_DTC register bit (battery to SYS overcurrent debounce time control): 0x0 (dflt): $t_{OCP} = 6ms$, 0x1: $t_{OCP} = 100ms$.

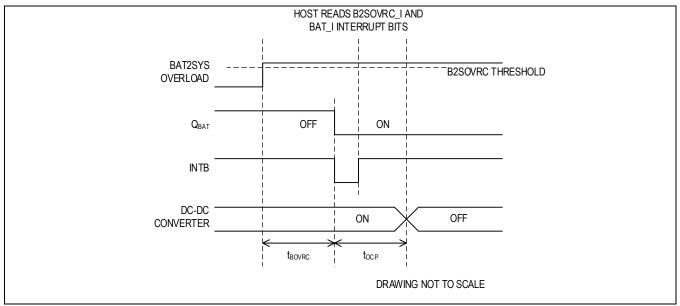


Figure 7. B2SOVRC

Charger Interrupt Debounce Time

Debounce times of charger interrupts are listed in Table 9.

Table 9. List of Charger Interrupt Debounce Times

	DEBOUNCE TIME				
INTERRUPT	RI	SING	FALLING		
	MIN	MAX	MIN	MAX	
AICL_I	30ms	_	30ms		
B2SOVRC_I		3.3ms	None		
BAT_I (OV)	30ms	_	None		
OTG_I	37.5ms	_	None		
PLIM_I	450µs	_	None	_	

Input Power-OK/OTG Power-OK Output (INOKB)

INOKB is an open-drain and active-low output that indicates CHGIN power-ok status.

When OTG mode is disabled (OTGEN = L and MODE[3:0] ≠ 0x0A), INOKB pulls low when a valid input source is inserted at CHGIN, V_{CHGIN} UVLO < V_{CHGIN} OVLO.

When OTG mode is enabled (OTGEN = H or MODE[3:0] = 0x0A), INOKB pulls low to indicate the OTG output power-OK when VCHGIN.OTG.UV < VCHGIN.OTG.UV < VCHGIN.OTG.UV < VCHGIN.OTG.UV < VCHGIN.OTG.OV

INOKB can be used as a logic output by adding a $200k\Omega$ pullup resistor to a system IO voltage.

Charge Status Output (STAT)

STAT is an open-drain and active-low output that indicates charge status. STAT can be used as a logic input to the host processor by adding a $200k\Omega$ pullup resistor to a system IO rail and a rectifier (a diode and a capacitor).

Table 10. Charge Status Indicator by STAT

CHARGE STATUS	STAT	LOGIC STATE
No input	High impedance	High
No DC-DC/no charge: Valid adapter with STBY_EN = 1 or MODE = 0x0/1/2/3/4	High impedance	High
Trickle, Precharge, Fast-Charge	Repeat low and high impedance with 1Hz, 50% duty cycle	High, rectified with an external diode and a capacitor
Top-Off and Done	Low	Low
Faults	High impedance	High

Reverse Buck Mode (OTG)

The DC-DC converter topology of the MAX77963 allows it to operate as a forward buck-boost converter or as a reverse buck converter. The modes of the DC-DC converter are controlled with MODE[3:0] register bits. When MODE[3:0] = 0xA or OTGEN = H, the DC-DC converter operates in reverse buck mode, allowing it to source current to CHGIN, commonly referred to as USB On-the-Go (OTG) mode.

In OTG mode, the DC-DC converter operates in reverse buck mode and regulates V_{BYP} to $V_{BYP.OTG}$ (5.1V, typical). The current through the CHGIN-to-BYP switch (Q_{CHGIN}) is limited to the value programmed by OTG_ILIM[2:0]. There are eight OTG_ILIM options to program CHGIN current limit from 500mA to 3A. When the OTG mode is enabled, CHGIN current sense measures current going from BYP to CHGIN. When OTG mode is disabled, CHGIN current sense measures current going from CHGIN to BYP.

OTG_I, OTG_M, and OTG_OK are the interrupt bit, interrupt mask bit, and interrupt status bit associated with OTG function. OTG_DTLS[1:0] reports the status of the OTG operation. OTG_DTLS[1:0] is latched until the host reads the register.

If the external OTG load at CHGIN exceeds $I_{CHGIN.OTG.ILIM}$ current limit for a minimum of 37.5ms, an OTG_I interrupt is generated, OTG_OK = 0, and OTG_DTLS[1:0] = 0x1. The reverse buck operates as a current-limited voltage source when overloaded. The DC-DC converter stops switching when the OTG_ILIM condition lasts for 60ms and automatically resumes switching after 300ms OFF time. If the OTG_ILIM fault condition at CHGIN persists, the DC-DC toggles ON and OFF with ~60ms ON and ~300ms OFF.

When CHGIN voltage drops below $V_{CHGIN.OTG.UV}$, the DC-DC stops switching and an OTG_I interrupt is generated. OTG_OK = 0 and OTG_DTLS[1:0] = 0x0.

When CHGIN voltage exceeds $V_{CHGIN.OTG.OV}$, the DC-DC stops switching and an OTG_I interrupt is generated. OTG OK = 0 and OTG DTLS[1:0] = 0x2.

If the DC-DC stops switching due to an OTG_UV or OTG_OV fault condition, it automatically retries after 300ms OFF time.

The minimum switching frequency of PFM operation (programmable by PFM_MIN_FREQ[1:0]) should be set to Disabled in OTG mode. At a very light CHGIN load, forcing a minimum switching frequency may cause CHGIN overvoltage.

INOKB is the hardware indication of the OTG power-OK. See the <u>Input Power-OK/OTG Power-OK Output (INOKB)</u> section for details.

OTG mode is not supported for the configuration of 2S battery and 1.8MHz switching frequency.

OTG Enable (OTGEN)

The OTGEN is an active-high input. When the OTGEN pin is pulled high, the OTG function is enabled. When the OTGEN pin is pulled low, the OTG function can be enabled through I2C by setting MODE[3:0] = 0xA.

The device enables reverse buck operation only when the voltage on the CHGIN bypass cap, V_{CHGIN} , falls below V_{CHGIN} UVLO.

In case V_{CHGIN} is above the V_{CHGIN_UVLO} threshold at OTG enable, the device ensures the V_{CHGIN} node discharges through an $8k\Omega$ pulldown resistor before enabling OTG function and reverse buck switching.

The pulldown is released once V_{CHGIN UVLO} is reached.

Analog Low-Noise Power Input (AVL)

AVL is the power input for the MAX77963's analog circuitry. Do not power external devices from this pin. Bypass with a 4.7Ω resistor between AVL and PVL and a 4.7μ F capacitor from AVL to GND.

Low-Side Gate Driver Power Supply (PVL)

PVL is an internal 1.8V LDO output that powers the MAX77963's low-side gate driver circuitry. Do not power external devices other than pullup resistors from this pin. Bypass with a 4.7µF capacitor to PGND.

System Faults

V_{SYS} Fault

The MAX77963 monitors the V_{SYS} node for undervoltage and overvoltage events. The following describes the device's behavior if any of these events are to occur.

V_{SYS} Undervoltage Lockout (V_{SYSUVLO})

When the voltage from SYS to GND (V_{SYS}) is less than the undervoltage-lockout threshold ($V_{SYSUVLO}$), the MAX77963 generates an SYSUVLO_I interrupt immediately. If V_{SYS} is undervoltage for greater than 8ms, the device shuts down and resets O-type I²C registers.

V_{SYS} Overvoltage Lockout (V_{SYSOVLO})

When the V_{SYS} exceeds $V_{SYSOVLO}$, the MAX77963 generates an SYSOVLO_I interrupt immediately, and the device shuts down and resets O-type I²C registers.

Thermal Fault

The MAX77963 has a die temperature sensing circuit. When the die temperature exceeds the thermal-shutdown threshold, 150°C (T_{SHDN}), the MAX77963 shuts down and resets O-type I²C registers. There is a 15°C thermal hysteresis. After thermal shutdown, if the die temperature reduces by 15°C, the thermal shutdown bus de-asserts and the MAX77963 re-enables. The battery charger has an independent thermal regulation loop. See the <u>Thermal Foldback</u> section for more details.

Register Types and Reset Conditions

The IC has different levels of reset as defined below:

- S-Type: registers are reset each time when: V_{AVL} < 1.8V or hardware reset (HW_RST). S-type registers include TOP registers 0x00, 0x01, 0x03, 0x04, 0x05; CHARGER_FUNC registers 0x10, 0x12, 0x13, 0x14, 0x15; ADC_FUNC registers from 0x32 to 0x45.
- O-Type: registers are reset each time when: V_{AVL} < 1.8V or hardware reset (HW_RST) or V_{SYS} < V_{SYSUVLO} or V_{SYS} > V_{SYSOVLO} or die temperature > T_{SHDN} or software reset (SW_RST). O-type registers include TOP register 0x02; CHARGER_FUNC registers 0x11, and all registers from 0x16 to 0x23; ADC_FUNC registers 0x30, 0x31.

SYS Overloading Protection

If V_{SYS} is less than $V_{SYSUVLO}$ and the inductor peak current reaches the buck-boost current limit (HSILIM), the MAX77963 detects SYS overloading and possible short condition. The MAX77963 protects the chip from current runaway by turning off the buck-boost converter for a few switching cycles. Switching resumes after the inductor current ramps down.

Charger Register Write Protection

CHG_CNFG register 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 (CHARGER_FUNC register address 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23) are protected by CHG_CNFG_06.CHGPROT bitfield. By default, these configurations are not writable, and need unlocking by writing bitfield CHGPROT = 0x3 first.

Interrupt Output (INTB1 and INTB2)

The INTB1 and INTB2 are active-low, open-drain outputs. Connect pullup resistors to the pullup power source.

The MAX77963's INTB1/INTB2 can be connected to the host's interrupt inputs and signal to the host when unmasked interrupt events occur within the MAX77963.

Top interrupts (TOP_INT[7:0]) are mapped to INTB1, and charger interrupts (CHG_INT[7:0]) are mapped to INTB2.

ADC

The MAX77963 has an 8-channel 12-bit SAR (Successive Approximation Register) ADC for the user to monitor the voltage, current, and temperature of the IC, including CHGIN voltage (CH1), ADCIN voltage (CH2), BATT voltage (CH3), SYS voltage (CH4), die temperature (CH5), V_{THM}/V_{AVL} (CH6), CHGIN current (CH7), and BATT current (CH8). Each channel is individually enabled/disabled through I²C. The conversion output of each channel is stored in the ADC_DATAx registers.

The ADC has a continuous conversion mode and a single conversion mode. In continuous conversion mode (MEAS_CONT = 0b1), the ADC samples and converts the enabled channels continuously at the sample rate specified by SAMPLE_RATE[1:0]. In single conversion mode (MEAS_SGLE = 0b1), ADC samples and converts the enabled channels once. For both continuous and single conversion modes, averaging is optional to average multiple conversion outputs before loading to ADC_DATAx registers. Averaging is programmable by AVG_EN and AVG_CNT[1:0].

CH2 (ADCIN voltage) measures and converts the voltage of an external signal of the user's preference. If CH2 is used, an external resistor divider is required at the ADCIN bump to scale down the voltage to the range of 0 \sim 1.25V. The resistance of the bottom dividing resistor is recommended to be no higher than $50k\Omega$. If CH2 is not used, short ADCIN to GND.

CH7 (CHGIN current) and CH8 (BATT current) are capable of measuring current in both directions, with the MSB (bit 12) as the sign bit. For CH7, MSB is '0' for the current from CHGIN to BYP and '1' for the current from BYP to CHGIN. For CH8, MSB is '0' for the current from SYS to BATT and '1' for the current from BATT to SYS. Note that the readout data of CH8 is zero in the following conditions:

- When the charger is in Pregualification (precharge state and trickle charge state) where Q_{BAT} is off.
- When the battery supplements current to SYS.

For a single conversion mode, an interrupt is generated at ADC_CONV_I once the conversion is completed. Continuous conversion mode does not generate the interrupt.

I²C Serial Interface

The I²C serial bus consists of a bidirectional serial data line (SDA) and a serial clock (SCL). I²C is an open-drain bus. SDA and SCL require pullup resistors (500Ω or greater). Optional 24Ω resistors in series with SDA and SCL help to protect the device inputs from high voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot on bus lines.

System Configuration

The I²C bus is a multi-master bus. The maximum number of devices that can attach to the bus is only limited by bus capacitance.

Figure 8 shows an example of a typical I²C system. A device on I²C bus that sends data to the bus is called a transmitter. A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates SCL clock signals to control the data transfer is a master. Any device that is being addressed by the master is considered a slave. When the MAX77963 I²C-compatible interface is operating, it is a slave on I²C bus, and it can be both a transmitter and a receiver.

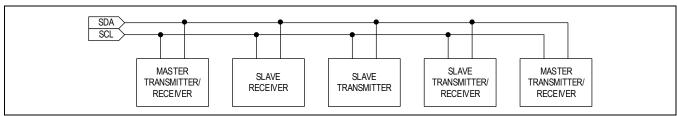


Figure 8. Functional Logic Diagram for Communications Controller

Bit Transfer

One data bit is transferred for each SCL clock cycle. The data on SDA must remain stable during the high portion of SCL clock pulse. Changes in SDA, while SCL is high, are control signals (START and STOP conditions).

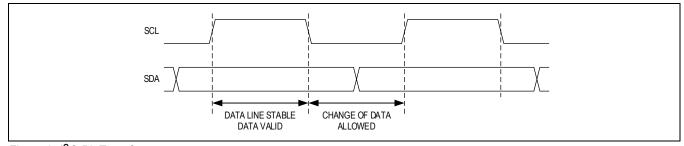


Figure 9. I²C Bit Transfer

START and STOP Conditions

When the I²C serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high.

A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission by issuing a NOT ACKNOWLEDGE followed by a STOP condition.

The STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START (Sr) commands instead of a STOP command to maintain control of the bus. In general, a REPEATED START command is functionally equivalent to a regular START command.

When a STOP condition or incorrect address is detected, the IC internally disconnects SCL from the I²C serial interface until the next START condition, minimizing digital noise and feed-through.

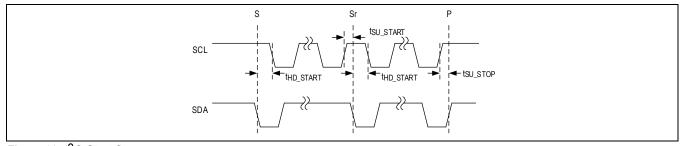


Figure 10. I²C Start Stop

Acknowledge

Both the I²C bus master and the IC (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each nine-bit data packet. To generate an ACKNOWLEDGE (A), the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse. To generate a NOT-ACKNOWLEDGE (nA), the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse.

Monitoring the acknowledge bits allows for the detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication later.

Slave Address

The IC acts as a slave transmitter/receiver. The slave address of the IC is 0xD2h/0xD3h. The least significant bit is the read/write indicator (1 for read, 0 for write).

Clock Stretching

In general, the clock signal generation for the I²C bus is the responsibility of the master device. I²C specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The IC does not use any form of clock stretching to hold down the clock line.

General Call Address

The IC does not implement an I^2C specification general call address. If the IC sees the general call address (00000000b), it does not issue an ACKNOWLEDGE (A).

Communication Speed

The IC provides I²C 3.0-compatible (1MHz) serial interface.

- I²C Revision 3 Compatible Serial Communications Channel
 - 0Hz to 100kHz (Standard Mode)
 - 0Hz to 400kHz (Fast Mode)
 - · 0Hz to 1MHz (Fast-Mode Plus)
- Does not utilize I²C Clock Stretching

Operating in standard mode, fast mode, and fast-mode plus does not require any special protocols. The main consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup resistors. Higher time constants created by the bus capacitance and pullup resistance (C x R) slow the bus operation. Therefore, when increasing bus speeds, the pullup resistance must be decreased to maintain a reasonable time constant. Refer to the *Pullup Resistor Sizing* section of the I²C revision 3.0 specification for detailed guidance on the pullup resistor selection. In general, for bus capacitance of 200pF, a 100kHz bus needs $5.6k\Omega$ pullup resistors, a 400kHz bus needs $1.5k\Omega$ pullup resistors, and a 1MHz bus needs 680Ω pullup resistors. Note that the pullup resistor dissipates power when the open-drain bus is low. The lower the value of the pullup resistor, the higher the power dissipation (V²/R).

Operating in high-speed mode requires some special considerations. For the full list of considerations, refer to the I²C 3.0 specification. The major considerations with respect to the IC are:

- I2C bus master uses current source pullups to shorten the signal rise times.
- I2C slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus speed.
- The communication protocols need to utilize the high-speed master code.

At power-up and after each STOP condition, the IC input filters are set for standard mode, fast mode, or fast-mode plus (i.e., 0Hz to 1MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are described in the Communication Protocols section.

Communication Protocols

The device supports both writing and reading from its registers.

Writing to a Single Register

<u>Figure 11</u> shows the protocol for the I²C master device to write one byte of data to the IC. This protocol is the same as SMBus specification's "Write Byte" protocol.

The "Write Byte" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a data byte.
- 7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active.
- 8. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

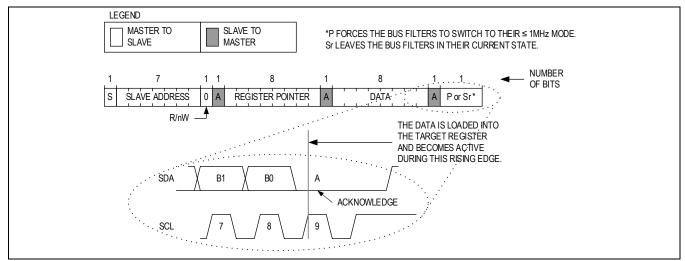


Figure 11. Writing to a Single Register

Writing to Sequential Registers

<u>Figure 12</u> shows the protocol for writing to sequential registers. This protocol is similar to the "Write Byte" protocol, except the master continues to write after it receives the first byte of data. When the master is done writing, it issues a STOP or REPEATED START.

The "Writing to Sequential Registers" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a data byte.
- 7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active.
- 8. Steps 6 to 7 are repeated as many times as the master requires.
- 9. During the last acknowledge related clock pulse, the slave issues an ACKNOWLEDGE (A).
- 10. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

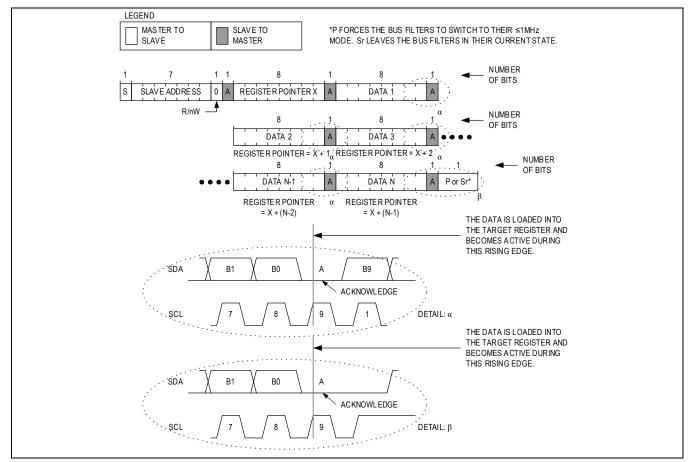


Figure 12. Writing to Sequential Registers

Writing Multiple Bytes using Register-Data Pairs

<u>Figure 13</u> shows the protocol for the I²C master device to write multiple bytes to the IC using register-data pairs. This protocol allows the I²C master device to address the slave only once and then send data to multiple registers in random order. Registers may be written continuously until the master issues a STOP condition.

The "Multiple Byte Register-Data Pair" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a data byte.
- 7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active.
- 8. Steps 4 to 7 are repeated as many times as the master requires.
- 9. The master sends a STOP condition. During the rising edge of the stop-related SDA edge, the data byte that was previously written is loaded into the target register and becomes active.

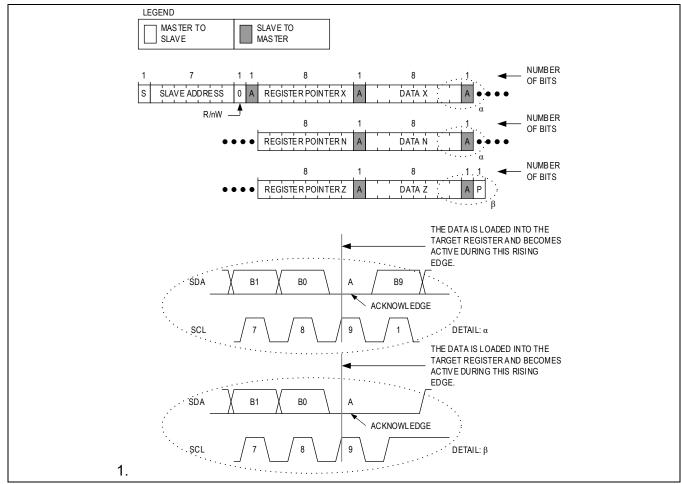


Figure 13. Writing to Multiple Registers with "Multiple Byte Register-Data Pairs" Protocol

Reading from a Single Register

The I²C master device reads one byte of data to the IC. This protocol is the same as SMBus specification's "Read Byte" protocol.

The "Read Byte" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a REPEATED START command (Sr).
- 7. The master sends the 7-bit slave address followed by a read bit (R/W = 1).
- 8. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9. The addressed slave places 8-bits of data on the bus from the location specified by the register pointer.
- 10. The master issues a NOT-ACKNOWLEDGE (nA).
- 11. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

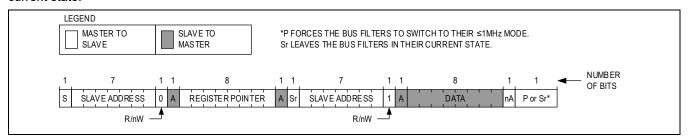


Figure 14. Reading from a Single Register

Reading from Sequential Registers

<u>Figure 15</u> shows the protocol for reading from sequential registers. This protocol is similar to the "Read Byte" protocol except the master issues an ACKNOWLEDGE (A) to signal the slave that it wants more data—when the master has all the data it requires, it issues a not-acknowledge (nA) and a STOP (P) to end the transmission.

The "Continuous Read from Sequential Registers" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a REPEATED START command (Sr).
- 7. The master sends the 7-bit slave address followed by a read bit (R/W =1).
- 8. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9. The addressed slave places 8-bits of data on the bus from the location specified by the register pointer.
- 10. The master issues an ACKNOWLEDGE (A) signaling the slave that it wishes to receive more data.
- 11. Steps 9 to 10 are repeated as many times as the master requires. Following the last byte of data, the master must issue a NOT-ACKNOWLEDGE (nA) to signal that it wishes to stop receiving data.
- 12. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

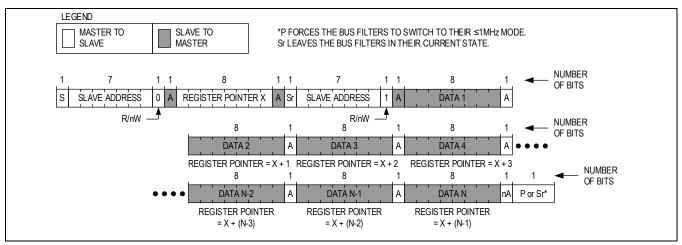


Figure 15. Reading from Sequential Registers

Register Map

MAX77963 Functional Registers

			<u> </u>								
ADDR ESS	NAME	MSB							LSB		
ТОР	тор										
0x00	CID[7:0]				(CID[7:0]	[7:0]				
0x01	CHIP REV[7:0]	F	REVISION[2:0]]		VERSION[4:0]					
0x02	RST[7:0]		HW_R	ST[3:0]			SW_	RST[3:0]			
0x03	TOP INT[7:0]	SPR_7	_6[1:0]	ADC_CON V_I	TSHDN_I	CHGINOVL O_I	CHGINUVL O_I	SYSOVLO _I	SYSUVLO_I		
0x04	TOP INT MASK [7:0]	SPR_7	_6[1:0]	ADC_CON V_M	TSHDN_M	CHGINOVL O_M	CHGINUVL O_M	SYSOVLO _M	SYSUVLO_M		
0x05	TOP INT OK[7: 0]	SPR_7_6[1:0]		ADC_CON V_OK	TSHDN_O K	CHGINOVL O_OK	CHGINUVL O_OK	SYSOVLO _OK	SYSUVLO_OK		
CHARG	ER_FUNC										
0x10	CHG INT[7:0]	AICL_I	PLIM_I	B2SOVRC _I	CHG_I	BAT_I	CHGINILIM _I	DISQBAT_	OTG_I		
0x11	CHG INT MAS K[7:0]	AICL_M	PLIM_M	B2SOVRC _M	CHG_M	BAT_M	CHGINILIM _M	DISQBAT_ M	OTG_M		
0x12	CHG INT OK[7:	AICL_OK	PLIM_OK	B2SOVRC _OK	CHG_OK	BAT_OK	CHGINILIM _OK	DISQBAT_ OK	OTG_OK		
0x13	CHG DETAILS 00[7:0]	SPR_7	CHGIN_I	DTLS[1:0]	OTG_D	TLS[1:0] SPR_2_1[1:0]			QB_DTLS		
0x14	CHG DETAILS 01[7:0]	TREG	I	BAT_DTLS[2:0)]		CHG_	DTLS[3:0]			
0x15	CHG DETAILS 02[7:0]	RESERVED	7	ΓHM_DTLS[2:0	0]	SPR_3	FSW_D1	ΓLS[1:0]	NUM_CELL_DT LS		
0x16	CHG CNFG 00[7:0]	COMM_MO DE	DISIBS	DISIBS STBY_EN WDTEN			МО	DE[3:0]			
0x17	CHG CNFG 01[7:0]	PQEN	TPQ_EN CHG_RSTRT[1:0] S			STAT_EN	N FCHGTIME[2:0]				
0x18	CHG CNFG 02[7:0]		CHGCC[7:0]								
0x19	CHG CNFG 03[7:0]	SYS_TRAC K_DIS	B2SOVRC _DTC		TO_TIME[2:0]		TO_ITH[2:	0]		

F:		· ·	phodulone							
ADDR ESS	NAME	MSB							LSB	
0x1A	CHG CNFG 04[7:0]	CHG_CV_PRM[7:0]								
0x1B	CHG CNFG 05[7:0]	CHGR_CV_C	DFFSET[1:0]	ITRICK	[LE[1:0]	B2SOVRC[3:0]				
0x1C	CHG CNFG 06[7:0]	CHGCC_W R_EN	RESERVE D	PFM_MIN_	_FREQ[1:0]	CHGPR	OT[1:0]	WD	TCLR[1:0]	
0x1D	CHG CNFG 07[7:0]	JEITA_EN		REGTE	EMP[3:0]		VCHGCV_ COOL	ICHGCC_ COOL	FSHIP_MODE	
0x1E	CHG CNFG 08[7:0]	CHGCC_M SB				CHGIN_ILIM	[6:0]			
0x1F	CHG CNFG 09[7:0]	INLIM_C	INLIM_CLK[1:0] OTG_ILIM[2:0				D] ZX_TH[2:0]			
0x20	CHG CNFG 10[7:0]	CHGCC_OF	CHGCC_OFFSET[1:0]				/BYP_REG[4:0]			
0x21	CHG CNFG 11[7:0]	SLOPE_COMP[2:0] RESER				VED[1:0] MINVSYS[2:0]				
0x22	CHG CNFG 12[7:0]	SPR_7	_6[1:0]	LPM	FORCED_ BUCK	FORCED_B OOST	BYPI_HBW	BATI_HB W	BATV_HBW	
0x23	CHG CNFG 13[7:0]		SPR_7	_4[3:0]		SS_PAT	RSVD	SS_EN	TRICKLE_DESP IKE_EN	
ADC_FU	INC									
0x30	ADC CNFG 00[7:0]	CH8_EN	CH7_EN	CH6_EN	CH5_EN	CH4_EN	CH3_EN	CH2_EN	CH1_EN	
0x31	ADC CNFG 01[7:0]	SAMPLE_I	RATE[1:0]	AVG_C	:NT[1:0]	SPR_3	AVG_EN	MEAS_CO NT	MEAS_SGLE	
0x32	ADC DATA CH 1 A[7:0]		RESER\	/ED[3:0]			ADC_D/	ATA1_A[3:0]		
0x33	ADC DATA CH 1 B[7:0]	ADC_DATA1_B[7:0]								
0x34	ADC DATA CH 2 A[7:0]		RESER\	/ED[3:0]		ADC_DATA2_A[3:0]				
0x35	ADC DATA CH 2 B[7:0]				ADC_E	DATA2_B[7:0]				

ADDR ESS	NAME	MSB							LSB	
0x36	ADC DATA CH 3 A[7:0]		RESERVED[3:0] ADC_DATA3_A[3:0]							
0x37	ADC DATA CH 3 B[7:0]				ADC_[DATA3_B[7:0]				
0x38	ADC DATA CH 4 A[7:0]		RESERVED[3:0]			ADC_DATA4_A[3:0]				
0x39	ADC DATA CH 4 B[7:0]				ADC_[DATA4_B[7:0]				
0x3A	ADC DATA CH 5 A[7:0]		RESERVED[3:0]			ADC_DATA5_A[3:0]				
0x3B	ADC DATA CH 5 B[7:0]		ADC_DATA5_B[7:0]							
0x3C	ADC DATA CH 6 A[7:0]		RESER\	/ED[3:0]		ADC_DATA6_A[3:0]				
0x3D	ADC DATA CH 6 B[7:0]				ADC_[DATA6_B[7:0]				
0x3E	ADC DATA CH 7 A[7:0]	R	ESERVED[2:0)]		,	ADC_DATA7_/	\ [4:0]		
0x3F	ADC DATA CH 7 B[7:0]		ADC_DATA7_B[7:0]							
0x40	ADC DATA CH 8 A[7:0]	R	RESERVED[2:0] ADC_DATA8_A[4:0]							
0x41	ADC DATA CH 8 B[7:0]				ADC_[OATA8_B[7:0]				

Register Details

CID (0x0)

ВІТ	7	6	5	4	3	2	1	0	
Field	CID[7:0]								
Reset		0x55							
Access Type	Read Only								

BITFIELD	вітѕ	DESCRIPTION
CID	7:0	Chip ID

CHIP_REV (0x1)

BIT	7	6	5	4	3	2	1	0	
Field		REVISION[2:0]		VERSION[4:0]					
Reset		0x1		0x0					
Access Type	Read Only			Read Only					

BITFIELD	вітѕ	DESCRIPTION
REVISION	7:5	Silicon Revision
VERSION	4:0	OTP Recipe Version

RST (0x2)

ВІТ	7	6	5	4	3	2	1	0	
Field		HW_R	ST[3:0]		SW_RST[3:0]				
Reset		0:	×0		0x0				
Access Type		Write,	Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
HW_RST	7:4	Hardware Reset	0x6: All registers are reset regardless of reset type. Internal bias regulator is turned off. HW_RST register is auto-clear due to lost of bias. Internal bias regulator then reboots and resets all registers. All others: No reset
SW_RST	3:0	Software Reset	0x5: O-type registers are reset. SW_RST register is autoclear as under O-type reset control. All others: No reset

TOP_INT (0x3)

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	'_6[1:0]	ADC_CONV_I	TSHDN_I	CHGINOVLO_I	CHGINUVLO_I	SYSOVLO_I	SYSUVLO_I
Reset	0x000		0x0	0x0	0x0	0x0	0x0	0x0

Access Type Read Clears All All Read Clears All
--

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7_6	7:6	Spare Bit	
ADC_CONV_I	5	ADC Conversion Done Interrupt	0x0: No interrupt detected 0x1: Interrupt detected
TSHDN_I	4	Thermal Shutdown Interrupt	0x0: No interrupt detected 0x1: Interrupt detected
CHGINOVLO_I	3	CHGINOVLO Interrupt	0x0: No interrupt detected 0x1: Interrupt detected
CHGINUVLO_I	2	CHGINUVLO Interrupt	0x0: No interrupt detected 0x1: Interrupt detected
SYSOVLO_I	1	SYSOVLO Interrupt	0x0: No interrupt detected 0x1: Interrupt detected
SYSUVLO_I	0	SYSUVLO Interrupt	0x0: No interrupt detected 0x1: Interrupt detected

TOP_INT_MASK (0x4)

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	<u>_</u> 6[1:0]	ADC_CONV_M	TSHDN_M	CHGINOVLO_M	CHGINUVLO_M	SYSOVLO_M	SYSUVLO_M
Reset	0:	k 3	0x1	0x1	0x1	0x1	0x1	0x1
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7_6	7:6	Spare Bit	
ADC_CONV_M	5	ADC Conversion Done Interrupt Mask	0x0: Unmasked 0x1: Masked
TSHDN_M	4	Thermal Shutdown Interrupt Mask	0x0: Unmasked 0x1: Masked
CHGINOVLO_M	3	CHGINOVLO Interrupt Mask	0x0: Unmasked 0x1: Masked
CHGINUVLO_M	2	CHGINUVLO Interrupt Mask	0x0: Unmasked 0x1: Masked
SYSOVLO_M	1	SYSOVLO Interrupt Mask	0x0: Unmasked 0x1: Masked
SYSUVLO_M	0	SYSUVLO Interrupt Mask	0x0: Unmasked 0x1: Masked

TOP_INT_OK (0x5)

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	_6[1:0]	ADC_CONV_OK	TSHDN_OK	CHGINOVLO_OK	CHGINUVLO_OK	SYSOVLO_OK	SYSUVLO_OK

Reset	0x0	0x0	0x1	0x1	0x1	0x1	0x1
Access Type	Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7_6	7:6	Spare Bit	
ADC_CONV_OK	5	ADC Conversion Done Status Indicator	0x0: ADC conversion is not done. 0x1: ADC conversion is done.
TSHDN_OK	4	Thermal Shutdown Status Indicator	0x0: Device is in thermal shutdown. 0x1: Device is not in thermal shutdown.
CHGINOVLO_OK	3	CHGINOVLO Status Indicator	0x0: CHGIN voltage is above CHGINOVLO threshold. 0x1: CHGIN voltage is below CHGINOVLO threshold.
CHGINUVLO_OK	2	CHGINUVLO Status Indicator	0x0: CHGIN voltage is below CHGINUVLO threshold. 0x1: CHGIN voltage is above CHGINUVLO threshold.
SYSOVLO_OK	1	SYSOVLO Status Indicator	0x0: SYS voltage is above SYSOVLO threshold. 0x1: SYS voltage is below SYSOVLO threshold.
SYSUVLO_OK	0	SYSUVLO Status Indicator	0x0: SYS voltage is below SYSUVLO threshold. 0x1: SYS voltage is above SYSUVLO threshold.

CHG_INT (0x10)

BIT	7	6	5	4	3	2	1	0
Field	AICL_I	PLIM_I	B2SOVRC_I	CHG_I	BAT_I	CHGINILIM_I	DISQBAT_I	OTG_I
Reset	0x0							
Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE
AICL_I	7	AICL Interrupt	0x0: The AICL_OK bit has not changed since the last time this bit was read. 0x1: The AICL_OK bit has changed since the last time this bit was read.
PLIM_I	6	PLIM Interrupt	0x0: The PLIM_OK bit has not changed since the last time this bit was read. 0x1: The PLIM_OK bit has changed since the last time this bit was read.
B2SOVRC_I	5	B2SOVRC Interrupt	0x0: The B2SOVRC_OK bit has not changed since the last time this bit was read. 0x1: The B2SOVRC_OK bit has changed since the last time this bit was read.
CHG_I	4	Charger Interrupt	0x0: The CHG_OK bit has not changed since the last time this bit was read. 0x1: The CHG_OK bit has changed since the last time this bit was read.
BAT_I	3	Battery Interrupt	0x0: The BAT_OK bit has not changed since the last time this bit was read. 0x1: The BAT_OK bit has changed since the last time this bit was read.

BITFIELD	BITS	DESCRIPTION	DECODE
CHGINILIM_I	2	CHGINILIM Interrupt	0x0: The CHGINILIM_OK bit has not changed since the last time this bit was read. 0x1: The CHGINILIM_OK bit has changed since the last time this bit was read.
DISQBAT_I	1	DISQBAT Interrupt	0x0: The DISQBAT_OK bit has not changed since the last time this bit was read. 0x1: The DISQBAT_OK bit has changed since the last time this bit was read.
OTG_I	0	OTG Interrupt	0x0: The OTG_OK bit has not changed since the last time this bit was read. 0x1: The OTG_OK bit has changed since the last time this bit was read.

CHG_INT_MASK (0x11)

BIT	7	6	5	4	3	2	1	0
Field	AICL_M	PLIM_M	B2SOVRC_M	CHG_M	BAT_M	CHGINILIM_M	DISQBAT_M	OTG_M
Reset	0x1							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
AICL_M	7	AICL Interrupt Mask	0x0: Unmasked 0x1: Masked
PLIM_M	6	PLIM Interrupt Mask	0x0: Unmasked 0x1: Masked
B2SOVRC_M	5	B2SOVRC Interrupt Mask	0x0: Unmasked 0x1: Masked
CHG_M	4	Charger Interrupt Mask	0x0: Unmasked 0x1: Masked
BAT_M	3	Battery Interrupt Mask	0x0: Unmasked 0x1: Masked
CHGINILIM_M	2	CHGINILIM Interrupt Mask	0x0: Unmasked 0x1: Masked
DISQBAT_M	1	DISQBAT Interrupt Mask	0x0: Unmasked 0x1: Masked
OTG_M	0	OTG Interrupt Mask	0x0: Unmasked 0x1: Masked

CHG_INT_OK (0x12)

BIT	7	6	5	4	3	2	1	0
Field	AICL_OK	PLIM_OK	B2SOVRC_OK	CHG_OK	BAT_OK	CHGINILIM_OK	DISQBAT_OK	отg_ок
Reset	0x1	0x1	0x1	0x1	0x1	0x1	0x1	0x1
Access Type	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
AICL_OK	7	AICL Status Indicator	0x0: AICL mode 0x1: Not in AICL mode
PLIM_OK	6	PLIM Status Indicator	0x0: Buck-boost reaches positive current limit. 0x1: Buck-boost does not reach positive current limit.
B2SOVRC_OK	5	B2SOVRC Status Indicator	0x0: BATT to SYS exceeds current limit. 0x1: BATT to SYS does not exceed current limit.
CHG_OK	4	Charger Status Indicator. See CHG_DTLS for more information.	0x0: The charger has reduced charge current or charge termination voltage based on JEITA control, or suspended charging, or TREG = 1. 0x1: The charger is okay or the charger is off.
BAT_OK	3	Battery Status Indicator. See BAT_DTLS for more information.	0x0: The battery has an issue or the charger has been suspended. BAT_DTLS ≠ 0x03 and ≠ 0x07 0x1: The battery is okay. BAT_DTLS = 0x03 or 0x07
CHGINILIM_OK	2	CHGINILIM Status Indicator	0x0: The CHGIN input has reached the current limit. 0x1: The CHGIN input has not reached the current limit.
DISQBAT_OK	1	DISQBAT Status Indicator	0x0: DISQBAT pin is high or DISIBS bit is set to '1' and Q _{BAT} is disabled. 0x1: DISQBAT is low and DISIBS bit is '0' and Q _{BAT} is not disabled.
OTG_OK	0	OTG Status Indicator. See OTG_DTLS for more information.	0x0: There is a fault in OTG mode. OTG_DTLS ≠ 0x11. 0x1: The OTG operation is okay or disabled. OTG_DTLS = 0x11.

CHG_DETAILS_00 (0x13)

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	CHGIN_[OTLS[1:0]	OTG_D	TLS[1:0]	SPR_2	_1[1:0]	QB_DTLS
Reset	0x0	02	к0	0:	κ0	02	κ0	0x0
Access Type	Read Only	Read	l Only	Read	Only	Read	Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7	7	Spare Bit	
CHGIN_DTLS	6:5	CHGIN Details	0x0: V _{BUS} is invalid. V _{CHGIN} < V _{CHGIN_UVLO} . 0x1: Reserved 0x2: V _{BUS} is invalid. V _{CHGIN} > V _{CHGIN_OVLO} . 0x3: V _{BUS} is valid. V _{CHGIN} > V _{CHGIN_UVLO} and V _{CHGIN} < V _{CHGIN_OVLO} .
OTG_DTLS	4:3	OTG Details	0x0: OTG output (V _{CHGIN}) is in undervoltage condition. V _{CHGIN} < V _{OTG_UVLO} 0x1: OTG output (V _{CHGIN}) is in current limit (OTG_ILIM) within the last 37.5ms. 0x2: OTG output (V _{CHGIN}) is in overvoltage condition. V _{CHGIN} > V _{OTG_OVLO} 0x3: OTG is disabled (OTGEN = L and MODE ≠ 0xA) or OTG output (V _{CHGIN}) is valid. V _{CHGIN} > V _{OTG_UVLO} and V _{CHGIN} < V _{OTG_OVLO} and it's not in current limit.

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_2_1	2:1	Spare Bit	
QB_DTLS	0	Q _{BAT} status Read back value of QB_DTLS reflects the actual Q _{BAT} state.	0x0: Q _{BAT} is OFF 0x1: Q _{BAT} is ON

CHG_DETAILS_01 (0x14)

BIT	7	6	5	4	3	2	1	0		
Field	TREG		BAT_DTLS[2:0]			CHG_DTLS[3:0]				
Reset	0x0		0x7			8x0				
Access Type	Read Only		Read Only			Read	Only			

BITFIELD	вітѕ	DESCRIPTION	DECODE
TREG	7	Temperature Regulation Status	0x0: The junction temperature is less than the threshold set by REGTEMP and the full charge current limit is available. 0x1: The junction temperature is greater than the threshold set by REGTEMP and the charge current limit may be folding back to reduce power dissipation.
BAT_DTLS	6:4	Battery Details Note: Only B2SOVRC is reported in battery-only mode. As a consequence, BAT_OK = 1 is also reported in BAT_DTLS = 0x07. In the event that multiple faults occur within the battery details category, overcurrent has priority followed by no-battery, then over-voltage, then timer fault, and then below prequal.	Ox0: Battery removal is detected on THM pin. Ox1: VBATT < VPRECHG. This condition is also reported in the CHG_DTLS as 0x00. Ox2: The battery is taking longer than expected to charge. This could be due to high system currents, an old battery, a damaged battery, or something else. Charging has suspended and the charger is in its timer-fault mode. This condition is also reported in the CHG_DTLS as 0x06. Ox3: The battery is okay and its voltage is greater than the minimum system voltage (Vsysmin - 500mV < Vbatt), Qbat is on and Vsys is approximately equal to Vbatt. Ox4: The battery is okay but its voltage is low: VPRECHG < Vbatt < Vsysmin - 500mV. This condition is also reported in the CHG_DTLS as 0x00. Ox5: The battery voltage has been greater than the battery-overvoltage threshold (CHG_CV_PRM + 240mV/cell) for the last 30ms. This flag is only generated when there is a valid input. Ox6: The battery has been overcurrent for at least 3ms since the last time this register has been read. Ox7: Battery level is not available. In battery only mode, all battery comparators are off except for B2SOVRC.
CHG_DTLS	3:0	Charger Details	0x00: Charger is in precharge or trickle-charge mode. CHG_OK = 1 and $V_{BATT} < V_{SYSMIN} - 500mV$ and $T_J < T_{SHDN}$ 0x01: Charger is in fast-charge constant current mode. CHG_OK = 1 and $V_{BATT} < V_{BATTREG}$ and $T_J < T_{SHDN}$ 0x02: Charger is in fast-charge constant voltage mode. CHG_OK = 1 and $V_{BATT} = V_{BATTREG}$ and $T_J < T_{SHDN}$ 0x03: Charger is in top-off mode. CHG_OK = 1 and $V_{BATT} = V_{BATTREG}$ and $T_J < T_{SHDN}$ 0x04: Charger is in done mode. CHG_OK = 0 and $V_{BATT} > V_{BATTREG} - V_{RSTRT}$ and $T_J < T_{SHDN}$ 0x05: Charger is off because at least one pin of (INLIM, ITO, ISET, VSET) has valid resistance while others don't (invalid resistance, open or tied to PVL). Configure charger with I²C, then setting COMM_MODE to '1'

BITFIELD	BITS	DESCRIPTION	DECODE
			enables charging. CHG_OK = 0 0x06: Charger is in timer-fault mode. CHG_OK = 0 and if BAT_DTLS = 0x1 then V_BATT < V_SYSMIN - 500mV or V_BATT < V_PRECHG and T_J < T_SHDN 0x07: Charger is suspended because Q_BAT is disabled (DISQBAT = H or DISIBS = 1). CHG_OK = 0 0x08: Charger is off, charger input invalid and/or charger is disabled. CHG_OK = 1 0x09: Reserved 0x0A: Charger is off and the junction temperature is > T_SHDN. CHG_OK = 0 0x0B: Charger is off because the watchdog timer expired. CHG_OK = 0 0x0C: Charger is suspended, or charge current, or voltage is reduced based on JEITA control. This condition is also reported in THM_DTLS. CHG_OK = 0 0x0D: Charger is suspended because battery removal is detected on THM pin. This condition is also reported in THM_DTLS. CHG_OK = 0 0x0E: Reserved 0x0F: Reserved

CHG DETAILS 02 (0x15)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED	THM_DTLS[2:0]			SPR_3	FSW_D	TLS[1:0]	NUM_CELL_DTLS
Reset	0x0		0x2			0:	k 0	0x0
Access Type	Read Only		Read Only		Read Only	Read Only		Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7	Reserved	
THM_DTLS	6:4	Thermistor Status This is also reported in the CHG_DTLS as 0x0C.	0x0: Low temperature and charging suspended (COLD). 0x1: Low temperature charging (COOL). 0x2: Normal temperature charging (NORMAL). 0x3: High temperature charging (WARM). 0x4: High temperature and charging suspended (HOT). 0x5: Battery removal detected on THM pin. 0x6: Thermistor monitoring is disabled. 0x7: Reserved
SPR_3	3	Spare Bit	
FSW_DTLS	2:1	Programmed Switching Frequency Details	0x0: 600kHz 0x1: 1.2MHz 0x2: 1.8MHz 0x3: Reserved
NUM_CELL_DTLS	0	Number of Serially Connected Battery Cells Details	0x0: Device is configured to support a 2-cell battery. 0x1: Device is configured to support a 3-cell battery.

CHG_CNFG_00 (0x16)

Charger configuration 0

ВІТ	7	6	5	4	3	2	1	0	
Field	COMM_MODE	DISIBS	STBY_EN	WDTEN	MODE[3:0]				
Reset	0x0	0x0	0x0	0x0	0x5				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
BITFIELD	ыз	DESCRIPTION	0x0: Autonomous mode
			CHGIN_ILIM, CHGCC, CHG_CV_PRM, and TO_ITH registers are programmed by external resistors on INLIM, ISET, VSET, and ITO pins
COMM_MODE	7	I ² C Mode Enable	Writing 0 to COMM_MODE is ignored. 0x1: I ² C mode enabled. CHGIN_ILIM, CHGCC, CHG_CV_PRM, and TO_ITH registers are programmed by I ² C.
			Writing 1 to COMM_MODE is allowed. Writting COMM_MODE = 1 clears any charger suspension due to invalid resistance detected on INLIM, ISET, VSET, and ITO pins. Charger starts with I ² C programmed settings in CHGIN_ILIM, CHGCC, CHG_CV_PRM, and TO_ITH registers.
DISIBS	6	BATT to SYS FET Disable Control. Read back value of DISIBS register bit reflects the actual DISIBS command or DISQBAT pin state.	0x0: BATT to SYS FET is controlled by the power-path state machine. 0x1: BATT to SYS FET is forced off.
STBY_EN	5	CHGIN Standby Enable. Read back value of the STBY_EN register bit reflects the actual CHGIN standby setting.	0x0: DC-DC is controlled by the power-path state machine. 0x1: Force DC-DC off. Device goes to CHGIN low quiescent current standby.
		Watchdog Timer Enable	
WDTEN	4	While enabled, the system controller must reset the watchdog timer within the timer period (twD) for the charger to operate normally. Reset the watchdog timer by programming WDTCLR = 0x01.	0x0: Watchdog timer disabled 0x1: Watchdog timer enabled
MODE	3:0	Smart Power Selector Configuration. Read back value of the MODE register reflects the actual Smart Power Selector configuration.	Ox0: Charger = off, OTG = off, DC-DC = off. When the QBAT switch is on (DISQBAT = L and DISIBS = 0), the battery powers the system. Ox1: Same as 0x0 Ox2: Same as 0x0 Ox3: Same as 0x0 Ox4: Charger = off, OTG = off, DC-DC = on. When there is a valid input, the DC-DC converter regulates the system voltage to be the maximum of (Vsysmin and VbATT + 4%). Ox5: Charger = on, OTG = off, DC-DC = on. When there is a valid input, the battery is charging. Vsys is the larger of Vsysmin and ~VbATT + IbATT x RBATZSYS. Ox6: Same as 0x5 Ox7: Same as 0x5 Ox8: Reserved Ox9: Reserved Ox9: Reserved OxA: Charger = off, OTG = on, DC-DC = off. The QBAT switch is on to allow the battery to support the

BITFIELD	BITS	DESCRIPTION	DECODE
			system, and the charger's DC-DC operates in reverse mode as a buck converter. The OTG output, CHGIN, can source current up to I _{CHGIN.OTG.LIM} . The CHGIN target voltage is V _{CHGIN.OTG} . 0xB: Reserved 0xC: Reserved 0xD: Reserved 0xE: Reserved 0xF: Reserved

CHG_CNFG_01 (0x17)

Charger configuration 1

BIT	7	6	5	4	3	2	1	0
Field	PQEN	TPQ_EN	CHG_RSTRT[1:0]		STAT_EN	FCHGTIME[2:0]		
Reset	0x1	0x1	0>	0x1		0x1		
Access Type	Write, Read	Write, Read	Write,	Read	Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE		
PQEN	7	Low-Battery Prequalification Mode Enable	0x0: Low-battery prequalification mode is disabled. 0x1: Low-battery prequalification mode is enabled.		
TPQ_EN	6	Low-Battery Prequalification Mode Enable	0x0: Prequalification timer t _{PQ} is disabled. Charger state machine does not transition to Timer Fault state in prequalification. 0x1: Prequalification timer t _{PQ} is enabled.		
CHG_RSTRT	5:4	Charger Restart Threshold	0x0: 100mV/cell below the value programmed by CHG_CV_PRM 0x1: 150mV/cell below the value programmed by CHG_CV_PRM 0x2: 200mV/cell below the value programmed by CHG_CV_PRM 0x3: Disabled		
STAT_EN	3	Charge Indicator Output Enable	0x0: Disable STAT output 0x1: Enable STAT output		
FCHGTIME	2:0	Fast-Charge Timer Setting (t _{FC} , hrs)	0x0: Disabled 0x1: 3 0x2: 4 0x3: 5 0x4: 6 0x5: 7 0x6: 8 0x7: 10		

CHG_CNFG_02 (0x18)

Charger configuration 2

BIT	7	6	5	4	3	2	1	0	
Field	CHGCC[7:0]								
Reset	0x40								

Access Type Write, Read	
-------------------------	--

BITFIELD	BITS	DESCRIPTION	DECODE
CHGCC	7:0	Fast-Charge Current Selection (mA). When the charger is enabled, the charge current limit is set by these bits. Read back value of the CHGCC register reflects the actual fast-charge current programmed in the charger. The thermal foldback loop can reduce the battery charger's target current by Atures.	0x000: 50 0x001: 56.25 0x002: 62.5 0x002: 62.5 0x003: 68.75 0x004: 75 0x005: 81.25 0x006: 100 0x009: 106.25 0x0008: 100 0x009: 106.25 0x0008: 112.5 0x0008: 112.5 0x0008: 113.75 0x000: 131.25 0x000: 131.25 0x001: 135.0 0x011: 156.25 0x010: 150 0x011: 156.25 0x012: 162.5 0x013: 168.75 0x015: 181.25 0x016: 187.5 0x016: 187.5 0x016: 187.5 0x018: 200 0x019: 206.25 0x010: 123.25 0x018: 218.75 0x016: 225 0x018: 218.75 0x016: 225 0x018: 218.75 0x016: 226 0x022: 262.5 0x022: 268.75 0x022: 268.75 0x022: 287.5 0x028: 303 0x029: 306.25 0x028: 318.75 0x028: 305 0x029: 306.25 0x028: 331.25 0x028: 337.5 0x028: 337.5 0x028: 337.5 0x038: 341.25 0x038: 341.25 0x038: 341.25 0x038: 341.25 0x039: 341.25 0x038: 341.25 0x038: 341.25 0x038: 341.25 0x038: 341.25 0x038: 441.5 0x038: 441.5 0x036: 443.75 0x046: 4450 0x041: 4456.25

BITFIELD	вітѕ	DESCRIPTION	DECODE
			0x042: 462.5
			0x043: 468.75
			0x044: 475
			0x045: 481.25 0x046: 487.5
			0x040: 407.5 0x047: 493.75
			0x048: 500
			0x049: 506.25
			0x04A: 512.5
			0x04B: 518.75
			0x04C: 525
			0x04D: 531.25
			0x04E: 537.5 0x04F: 543.75
			0x050: 550
			0x051: 556.25
			0x052: 562.5
			0x053: 568.75
			0x054: 575
			0x055: 581.25
			0x056: 587.5
			0x057: 593.75 0x058: 600
			0x058.000 0x059: 606.25
			0x05A: 612.5
			0x05B: 618.75
			0x05C: 625
			0x05D: 631.25
			0x05E: 637.5
			0x05F: 643.75
			0x060: 650 0x061: 656.25
			0x062: 662.5
			0x063: 668.75
			0x064: 675
			0x065: 681.25
			0x066: 687.5
			0x067: 693.75
			0x068: 700
			0x069: 706.25 0x06A: 712.5
			0x06B: 718.75
			0x06C: 725
			0x06D: 731.25
			0x06E: 737.5
			0x06F: 743.75
			0x070: 750
			0x071: 756.25 0x072: 762.5
			0x072: 762.5 0x073: 768.75
			0x073.766.75 0x074: 775
			0x075: 781.25
			0x076: 787.5
			0x077: 793.75
			0x078: 800
			0x079: 806.25
			0x07A: 812.5 0x07B: 818.75
			0x07B. 818.73 0x07C: 825
			0x07D: 831.25
			0x07E: 837.5
			0x07F: 843.75
			0x080: 850
			0x081: 856.25
			0x082: 862.5
			0x083: 868.75
			0x084: 875 0x085: 881.25
			0x065. 661.25 0x086: 887.5
			0x080: 867.5 0x087: 893.75

BITFIELD	BITS	DESCRIPTION	DECODE
			0x0CE: 1337.5
			0x0CF: 1343.75
			0x0D0: 1350
			0x0D1: 1356.25 0x0D2: 1362.5
			0x0D2: 1362:3 0x0D3: 1368.75
			0x0D4: 1375
			0x0D5: 1381.25
			0x0D6: 1387.5
			0x0D7: 1393.75
			0x0D8: 1400
			0x0D9: 1406.25 0x0DA: 1412.5
			0x0DA: 1412.5 0x0DB: 1418.75
			0x0DC: 1425
			0x0DD: 1431.25
			0x0DE: 1437.5
			0x0DF: 1443.75
			0x0E0: 1450
			0x0E1: 1456.25
			0x0E2: 1462.5
			0x0E3: 1468.75
			0x0E4: 1475 0x0E5: 1481.25
			0x0E3: 1401:23 0x0E6: 1487.5
			0x0E7: 1493.75
			0x0E8: 1500
			0x0E9: 1506.25
			0x0EA: 1512.5
			0x0EB: 1518.75
			0x0EC: 1525
			0x0ED: 1531.25 0x0EE: 1537.5
			0x0EE: 1537.5
			0x0F0: 1550
			0x0F1: 1556.25
			0x0F2: 1562.5
			0x0F3: 1568.75
			0x0F4: 1575
			0x0F5: 1581.25
			0x0F6: 1587.5 0x0F7: 1593.75
			0x0F8: 1600
			0x0F9: 1606.25
			0x0FA: 1612.5
			0x0FB: 1618.75
			0x0FC: 1625
			0x0FD: 1631.25
			0x0FE: 1637.5
			0x0FF: 1643.75 0x100: 1650
			0x100: 1656 0x101: 1656.25
			0x102: 1662.5
			0x103: 1668.75
			0x104: 1675
			0x105: 1681.25
			0x106: 1687.5
			0x107: 1693.75
			0x108: 1700 0x100: 1706 25
			0x109: 1706.25 0x10A: 1712.5
			0x10A: 1712:5 0x10B: 1718:75
			0x10C: 1725
			0x10D: 1731.25
			0x10E: 1737.5
			0x10F: 1743.75
			0x110: 1750
			0x111: 1756.25
			0x112: 1762.5
			0x113: 1768.75

BITFIELD	вітѕ	DESCRIPTION	DECODE
			0x114: 1775
			0x115: 1781.25
			0x116: 1787.5 0x117: 1793.75
			0x117. 1793.73 0x118: 1800
			0x119: 1806.25
			0x11A: 1812.5
			0x11B: 1818.75
			0x11C: 1825
			0x11D: 1831.25
			0x11E: 1837.5 0x11F: 1843.75
			0x120: 1850
			0x121: 1856.25
			0x122: 1862.5
			0x123: 1868.75
			0x124: 1875
			0x125: 1881.25
			0x126: 1887.5 0x127: 1893.75
			0x127.1693.75 0x128: 1900
			0x129: 1906.25
			0x12A: 1912.5
			0x12B: 1918.75
			0x12C: 1925
			0x12D: 1931.25
			0x12E: 1937.5 0x12F: 1943.75
			0x130: 1950
			0x131: 1956.25
			0x132: 1962.5
			0x133: 1968.75
			0x134: 1975
			0x135: 1981.25
			0x136: 1987.5 0x137: 1993.75
			0x138: 2000
			0x139: 2006.25
			0x13A: 2012.5
			0x13B: 2018.75
			0x13C: 2025
			0x13D: 2031.25 0x13E: 2037.5
			0x13F: 2043.75
			0x140: 2050
			0x141: 2056.25
			0x142: 2062.5
			0x143: 2068.75
			0x144: 2075
			0x145: 2081.25 0x146: 2087.5
			0x140. 2007.3 0x147: 2093.75
			0x148: 2100
			0x149: 2106.25
			0x14A: 2112.5
			0x14B: 2118.75
			0x14C: 2125
			0x14D: 2131.25 0x14E: 2137.5
			0x14E: 2137.5 0x14F: 2143.75
			0x150: 2150
			0x151: 2156.25
			0x152: 2162.5
			0x153: 2168.75
			0x154: 2175
			0x155: 2181.25
			0x156: 2187.5 0x157: 2193.75
			0x157: 2193.75 0x158: 2200
			I UA IJU. ZZUU

BITFIELD	BITS	DESCRIPTION	DECODE
BITFIELD	BITS	DESCRIPTION	0x15A: 2212.5 0x15B: 2218.75 0x15C: 2225 0x15D: 2231.25 0x15D: 2231.25 0x15C: 2243.75 0x160: 2250 0x161: 2256.25 0x162: 2262.5 0x163: 2268.75 0x163: 2268.75 0x166: 2287.5 0x166: 2287.5 0x166: 2287.5 0x166: 2287.5 0x168: 2300 0x169: 2306.25 0x168: 2318.75 0x168: 2312.5 0x168: 2312.5 0x168: 2337.5 0x16C: 2325 0x16C: 2325 0x171: 2356.25 0x177: 2350.25 0x177: 2358.75 0x177: 2458.75 0x177: 2458.75 0x177: 2458.75 0x177: 2458.75 0x177: 2455 0x177: 2455 0x177: 2455 0x178: 2456.25 0x181: 2456.25 0x182: 2450.5 0x181: 2456.25 0x182: 2451.5 0x182: 2451.5 0x182: 2451.5 0x183: 2468.75 0x188: 2508.25 0x188: 2518.75 0x188: 2508.25 0x188: 2518.75 0x188: 2518.75 0x188: 2525 0x188: 2525 0x188: 2525 0x189: 2568.75 0x198: 2568.75 0x198: 2668.75 0x199: 2666.25
			0x19D: 2631.25 0x19E: 2637.5 0x19F: 2643.75

BITFIELD	BITS	DESCRIPTION	DECODE
DITTIELD	סווס	DESCRIPTION	
			0x1A0: 2650 0x1A1: 2656.25
			0x1A2: 2662.5
			0x1A3: 2668.75
			0x1A4: 2675
			0x1A5: 2681.25
			0x1A6: 2687.5 0x1A7: 2693.75
			0x1A8: 2700
			0x1A9: 2706.25
			0x1AA: 2712.5
			0x1AB: 2718.75
			0x1AC: 2725 0x1AD: 2731.25
			0x1AE: 2737.5
			0x1AF: 2743.75
			0x1B0: 2750
			0x1B1: 2756.25
			0x1B2: 2762.5
			0x1B3: 2768.75 0x1B4: 2775
			0x1B4: 2775 0x1B5: 2781.25
			0x1B6: 2787.5
			0x1B7: 2793.75
			0x1B8: 2800
			0x1B9: 2806.25
			0x1BA: 2812.5 0x1BB: 2818.75
			0x1BC: 2825
			0x1BD: 2831.25
			0x1BE: 2837.5
			0x1BF: 2843.75
			0x1C0: 2850
			0x1C1: 2856.25 0x1C2: 2862.5
			0x1C3: 2868.75
			0x1C4: 2875
			0x1C5: 2881.25
			0x1C6: 2887.5
			0x1C7: 2893.75
			0x1C8: 2900 0x1C9: 2906.25
			0x1CA: 2912.5
			0x1CB: 2918.75
			0x1CC: 2925
			0x1CD: 2931.25
			0x1CE: 2937.5 0x1CF: 2943.75
			0x1CF: 2943.75 0x1D0: 2950
			0x1D1: 2956.25
			0x1D2: 2962.5
			0x1D3: 2968.75
			0x1D4: 2975
			0x1D5: 2981.25 0x1D6: 2987.5
			0x1D6: 2987.5 0x1D7: 2993.75
			0x1D8: 3000
			0x1D9: 3006.25
			0x1DA: 3012.5
			0x1DB: 3018.75
			0x1DC: 3025 0x1DD: 3031.25
			0x1DD: 3031.25 0x1DE: 3037.5
			0x1DF: 3043.75
			0x1E0: 3050
			0x1E1: 3056.25
			0x1E2: 3062.5
			0x1E3: 3068.75
			0x1E4: 3075 0x1E5: 3081.25
			UATEJ. 3001.23

BITFIELD	BITS	DESCRIPTION	DECODE
			0x1E6: 3087.5
			0x1E7: 3093.75
			0x1E8: 3100
			0x1E9: 3106.25
			0x1EA: 3112.5
			0x1EB: 3118.75
			0x1EC: 3125
			0x1ED: 3131.25
			0x1EE: 3137.5
			0x1EF: 3143.75
			0x1F0: 3150
			0x1F1: 3156.25
			0x1F2: 3162.5
			0x1F3: 3168.75
			0x1F4: 3175
			0x1F5: 3181.25
			0x1F6: 3187.5
			0x1F7: 3193.75
			0x1F8: 3193.75
			0x1F9: 3193.75
			0x1FA: 3193.75
			0x1FB: 3193.75
			0x1FC: 3193.75
			0x1FD: 3193.75
			0x1FE: 3193.75
			0x1FF: 3193.75

CHG_CNFG_03 (0x19)

Charger configuration 3

ВІТ	7	6	5	4	3	2	1	0	
Field	SYS_TRACK_DIS	B2SOVRC_DTC	TO_TIME[2:0]			TO_ITH[2:0]			
Reset	0x1	0x0	0x0				0x0		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read			Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
SYS_TRACK_DIS	7	SYS Tracking Disable Control	0x0: SYS tracking is enabled. SYS is regulated to MAX of (VBATT + 4%, VSYSMIN). This is also valid in charge done state. 0x1: SYS tracking is disabled. SYS is regulated to VCHG_CV_PRM.
B2SOVRC_DTC	6	Battery to SYS Overcurrent Debounce Time Control While under OVRC condition, after tocp switcher (and therfore charge) is disabled.	0x0: t _{OCP} = 6ms 0x1: t _{OCP} = 100ms
TO_TIME	5:3	Top-Off Timer Setting (min)	0x0: 100ms 0x1: 30sec 0x2: 10 0x3: 20 0x4: 30 0x5: 40 0x6: 50 0x7: 60
то_ітн	2:0	Top-Off Current Threshold (mA). The charger transitions from its fast-charge constant voltage	0x0: 25 0x1: 50

BITFIELD	BITS	DESCRIPTION	DECODE
		mode to its top-off mode when the charger current decays to the value programmed by this register. This transition generates a CHG_I interrupt and causes the CHG_DTLS register to report top-off mode. This transition also starts the top-off time as programmed by TO_TIME. Read back value of the TO_ITH register reflects the actual top-off current programmed in the charger.	0x2: 100 0x3: 200 0x4: 400 0x5: 600 0x6: 1000 0x7: 1600

CHG_CNFG_04 (0x1A)

Charger configuration 4

ВІТ	7	6	5	4	3	2	1	0
Field		CHG_CV_PRM[7:0]						
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CHG_CV_PRM	7:0	Charge Termination Voltage Setting (V) Read back value of the CHG_CV_PRM register reflects the actual charge termination voltage programmed in the charger when JEITA_EN = 0. When JEITA_EN = 1, charge termination voltage is controlled by VCHGCV_COOL and VCHGCV_WARM register settings.	2-Cell Battery 0x00: 7.810 0x01: 7.824 0x02: 7.837 0x03: 7.851 0x04: 7.865 0x05: 7.879 0x06: 7.892 0x07: 7.906 0x08: 7.920 0x09: 7.934 0x0A: 7.947 0x0B: 7.961 0x0C: 7.975 0x0D: 7.989 0x0E: 8.002 0x0F: 8.016 0x10: 8.030 0x11: 8.044 0x12: 8.057 0x13: 8.071 0x14: 8.085 0x15: 8.099 0x16: 8.103 0x17: 8.108 0x18: 8.112 0x19: 8.117 0x1A: 8.121 0x1B: 8.126 0x1C: 8.135 0x1E: 8.140 0x1C: 8.135 0x1E: 8.144 0x20: 8.149 0x21: 8.154

BITFIELD	вітѕ	DESCRIPTION	DECODE	
			0x23: 8.163	
			0x24: 8.167	
			0x25: 8.172	
			0x26: 8.176 0x27: 8.181	
			0x28: 8.186	
			0x29: 8.190	
			0x2A: 8.195	
			0x2B: 8.199	
			0x2C: 8.204	
			0x2D: 8.208	
			0x2E: 8.213 0x2F: 8.218	
			0x30: 8.222	
			0x31: 8.227	
			0x32: 8.231	
			0x33: 8.236	
			0x34: 8.241	
			0x35: 8.245	
			0x36: 8.250	
			0x37: 8.254	
			0x38: 8.259 0x39: 8.263	
			0x39. 8.263 0x3A: 8.268	
			0x3B: 8.273	
			0x3C: 8.277	
			0x3D: 8.282	
			0x3E: 8.286	
			0x3F: 8.291	
			0x40: 8.295	
			0x41: 8.300 0x42: 8.305	
			0x43: 8.309	
			0x44: 8.314	
			0x45: 8.318	
			0x46: 8.323	
			0x47: 8.328	
			0x48: 8.332	
			0x49: 8.337 0x4A: 8.341	
			0x4A. 6.341 0x4B: 8.346	
			0x4C: 8.350	
			0x4D: 8.355	
			0x4E: 8.360	
			0x4F: 8.364	
			0x50: 8.369	
			0x51: 8.373	
			0x52: 8.378 0x53: 8.383	
			0x53: 8.385 0x54: 8.387	
			0x55: 8.392	
			0x56: 8.396	
			0x57: 8.401	
			0x58: 8.405	
			0x59: 8.410	
			0x5A: 8.415	
			0x5B: 8.419 0x5C: 8.424	
			0x5C: 8.424 0x5D: 8.428	
			0x5E: 8.433	
			0x5F: 8.437	
			0x60: 8.442	
			0x61: 8.447	
			0x62: 8.451	
			0x63: 8.456	
			0x64: 8.460	
			0x65: 8.465 0x66: 8.470	
			0x67: 8.470 0x67: 8.474	

BITFIELD	вітѕ	DESCRIPTION	DECODE	
			0x69: 8.483	
			0x6A: 8.488	
			0x6B: 8.492	
			0x6C: 8.497 0x6D: 8.502	
			0x6E: 8.506	
			0x6F: 8.511	
			0x70: 8.515	
			0x71: 8.520	
			0x72: 8.524 0x73: 8.529	
			0x74: 8.534	
			0x75: 8.538	
			0x76: 8.543	
			0x77: 8.547	
			0x78: 8.552 0x79: 8.557	
			0x74: 8.561	
			0x7B: 8.566	
			0x7C: 8.570	
			0x7D: 8.575	
			0x7E: 8.579 0x7F: 8.584	
			0x7F. 8.384 0x80: 8.589	
			0x81: 8.593	
			0x82: 8.598	
			0x83: 8.602	
			0x84: 8.607 0x85: 8.612	
			0x86: 8.616	
			0x87: 8.621	
			0x88: 8.625	
			0x89: 8.630	
			0x8A: 8.634 0x8B: 8.639	
			0x8C: 8.644	
			0x8D: 8.648	
			0x8E: 8.653	
			0x8F: 8.657	
			0x90: 8.662 0x91: 8.666	
			0x91: 8.600 0x92: 8.671	
			0x93: 8.676	
			0x94: 8.680	
			0x95: 8.685	
			0x96: 8.689 0x97: 8.694	
			0x98: 8.699	
			0x99: 8.703	
			0x9A: 8.708	
			0x9B: 8.712	
			0x9C: 8.717 0x9D: 8.721	
			0x9E: 8.726	
			0x9F: 8.731	
			0xA0: 8.735	
			0xA1: 8.740	
			0xA2: 8.744	
			0xA3: 8.749 0xA4: 8.753	
			0x44. 8.755 0xA5: 8.758	
			0xA6: 8.763	
			0xA7: 8.767	
			0xA8: 8.772	
			0xA9: 8.776 0xAA: 8.781	
			0xAB: 8.786	
			0xAC: 8.790	
			0xAD: 8.795	
			0xAD: 6.795 0xAE: 8.799	

BITFIELD	вітѕ	DESCRIPTION	DECODE
			0xAF: 8.804
			0xB0: 8.808
			0xB1: 8.813
			0xB2: 8.818
			0xB3: 8.822
			0xB4: 8.827 0xB5: 8.831
			0xB6: 8.836
			0xB7: 8.841
			0xB8: 8.845
			0xB9: 8.850
			0xBA: 8.854
			0xBB: 8.859
			0xBC: 8.873
			0xBD: 8.886 0xBE: 8.900
			0xBE: 8.914
			0xC0: 8.928
			0xC1: 8.941
			0xC2: 8.955
			0xC3: 8.969
			0xC4: 8.982
			0xC5: 8.996
			0xC6: 9.010
			0xC7: 9.024 0xC8: 9.037
			0xC8: 9.037 0xC9: 9.051
			0xCA: 9.065
			0xCB: 9.079
			0xCC: 9.092
			0xCD: 9.106
			0xCE: 9.120
			0xCF: 9.134
			0xD0: 9.147
			0xD1: 9.161 0xD2: 9.175
			0xD3: 9.189
			0xD4: 9.202
			0xD5: 9.216
			0xD6: 9.230
			0xD7: 9.244
			0xD8: 9.257
			0xD9: 9.271
			0xDA: 9.285 0xDB: 9.299
			0xDB: 9.299 0xDC: 9.312
			0xDD: 9.312 0xDD: 9.326
			0xDE: 9.340
			0xDF: 9.353
			0xE0: 9.367
			0xE1: 9.381
			0xE2: 9.395
			3-Cell Battery
			0x00: 11.715 0x01: 11.736
			0x01: 11.736 0x02: 11.756
			0x03: 11.777
			0x04: 11.797
			0x05: 11.818
			0x06: 11.839
			0x07: 11.859
			0x08: 11.880
			0x09: 11.900
			0x0A: 11.921 0x0B: 11.942
			0x0C: 11.962
			0x0D: 11.983
			0x0E: 12.004
			0x0F: 12.024

BITFIELD	BITS	DESCRIPTION	DECODE
			0x11: 12.065
			0x12: 12.086
			0x13: 12.107
			0x14: 12.127 0x15: 12.148
			0x16: 12.155
			0x17: 12.162
			0x18: 12.168
			0x19: 12.175
			0x1A: 12.182 0x1B: 12.189
			0x1C: 12.196
			0x1D: 12:100
			0x1E: 12.210
			0x1F: 12.217
			0x20: 12.223
			0x21: 12.230
			0x22: 12.237 0x23: 12.244
			0x24: 12.251
			0x25: 12.258
			0x26: 12.265
			0x27: 12.271
			0x28: 12.278
			0x29: 12.285 0x2A: 12.292
			0x2B: 12.299
			0x2C: 12.306
			0x2D: 12.313
			0x2E: 12.320
			0x2F: 12.326
			0x30: 12.333
			0x31: 12.340 0x32: 12.347
			0x33: 12:354
			0x34: 12.361
			0x35: 12.368
			0x36: 12.375
			0x37: 12.381
			0x38: 12.388 0x39: 12.395
			0x3A: 12.402
			0x3B: 12.409
			0x3C: 12.416
			0x3D: 12.423
			0x3E: 12.429
			0x3F: 12.436 0x40: 12.443
			0x40: 12.443 0x41: 12.450
			0x42: 12.457
			0x43: 12.464
			0x44: 12.471
			0x45: 12.478
			0x46: 12.484 0x47: 12.491
			0x48: 12.498
			0x49: 12.505
			0x4A: 12.512
			0x4B: 12.519
			0x4C: 12.526
			0x4D: 12.533 0x4E: 12.539
			0x4E: 12.539 0x4F: 12.546
			0x50: 12.553
			0x51: 12.560
			0x52: 12.567
			0x53: 12.574
			0x54: 12.581
			0x55: 12.587 0x56: 12.594
			UX00. 12.094

BITFIELD	BITS	DESCRIPTION	DECODE
			0x57: 12.601
			0x58: 12.608
			0x59: 12.615 0x5A: 12.622
			0x5B: 12.629
			0x5C: 12.636
			0x5D: 12.642
			0x5E: 12.649
			0x5F: 12.656
			0x60: 12.663 0x61: 12.670
			0x62: 12.677
			0x63: 12.684
			0x64: 12.691
			0x65: 12.697
			0x66: 12.704 0x67: 12.711
			0x68: 12.718
			0x69: 12.725
			0x6A: 12.732
			0x6B: 12.739
			0x6C: 12.746
			0x6D: 12.752 0x6E: 12.759
			0x6F: 12.766
			0x70: 12.773
			0x71: 12.780
			0x72: 12.787
			0x73: 12.794
			0x74: 12.800 0x75: 12.807
			0x76: 12.814
			0x77: 12.821
			0x78: 12.828
			0x79: 12.835
			0x7A: 12.842 0x7B: 12.849
			0x7C: 12.855
			0x7D: 12.862
			0x7E: 12.869
			0x7F: 12.876
			0x80: 12.883
			0x81: 12.890 0x82: 12.897
			0x83: 12.904
			0x84: 12.910
			0x85: 12.917
			0x86: 12.924
			0x87: 12.931 0x88: 12.938
			0x89: 12.945
			0x8A: 12.952
			0x8B: 12.958
			0x8C: 12.965
			0x8D: 12.972 0x8E: 12.979
			0x8E: 12.979 0x8F: 12.986
			0x90: 12.993
			0x91: 13.000
			0x92: 13.007
			0x93: 13.013
			0x94: 13.020
			0x95: 13.027 0x96: 13.034
			0x97: 13.041
			0x98: 13.048
			0x99: 13.055
			0x9A: 13.062
			0x9B: 13.068
			0x9C: 13.075

BITFIELD	BITS	DESCRIPTION	DECODE
5	5.10	DEGGIAI FION	0x9D: 13.082
			0x9E: 13.089
			0x9F: 13.096
			0xA0: 13.103
			0xA1: 13.110
			0xA2: 13.116 0xA3: 13.123
			0xA4: 13.130
			0xA5: 13.137
			0xA6: 13.144
			0xA7: 13.151
			0xA8: 13.158 0xA9: 13.165
			0xAA: 13.171
			0xAB: 13.178
			0xAC: 13.185
			0xAD: 13.192
			0xAE: 13.199
			0xAF: 13.206 0xB0: 13.213
			0xB1: 13.220
			0xB2: 13.226
			0xB3: 13.233
			0xB4: 13.240
			0xB5: 13.247 0xB6: 13.254
			0xB7: 13.261
			0xB8: 13.268
			0xB9: 13.274
			0xBA: 13.281
			0xBB: 13.288
			0xBC: 13.309 0xBD: 13.329
			0xBE: 13.350
			0xBF: 13.371
			0xC0: 13.391
			0xC1: 13.412
			0xC2: 13.433 0xC3: 13.453
			0xC4: 13.474
			0xC5: 13.494
			0xC6: 13.515
			0xC7: 13.536
			0xC8: 13.556
			0xC9: 13.577 0xCA: 13.597
			0xCB: 13.618
			0xCC: 13.639
			0xCD: 13.659
			0xCE: 13.680
			0xCF: 13.700 0xD0: 13.721
			0xD1: 13.742
			0xD2: 13.762
			0xD3: 13.783
			0xD4: 13.803
			0xD5: 13.824 0xD6: 13.845
			0xD7: 13.865
			0xD8: 13.886
			0xD9: 13.907
			0xDA: 13.927
			0xDB: 13.948
			0xDC: 13.968 0xDD: 13.989
			0xDE: 14.010
			0xDF: 14.030
			0xE0: 14.051
			0xE1: 14.071
			0xE2: 14.092

CHG_CNFG_05 (0x1B)

Charger configuration 5

BIT	7	6	5	4	3	2	1	0
Field	CHGR_CV_OFFSET[1:0]		ITRICKLE[1:0]		B2SOVRC[3:0]			
Reset	0x0		0x0 0x4		< 4			
Access Type	Write, Read		Write, Read		Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
CHGR_CV_OFFSET	7:6	CHG_CV_PRM Offset Control (Positive)	0x0: No offset 0x1: +22.9mV (2S) / +34.4mV (3S) 0x2: +36.6mV (2S) / +55.0mV (3S) 0x3: +45.8mV (2S) / +68.7mV (3S)
ITRICKLE	5:4	Trickle Charge Current Selection (mA)	0x0: 100 0x1: 200 0x2: 300 0x3: 400
B2SOVRC	3:0	BATT to SYS Overcurrent Threshold (A)	0x00: Disable 0x01: 3.000 0x02: 3.500 0x03: 4.000 0x04: 4.500 0x05: 5.000 0x06: 5.500 0x07: 6.000 0x08: 6.500 0x09: 7.000 0x0A: 7.500 0x0B: 8.000 0x0C: 8.500 0x0C: 8.500 0x0C: 9.500 0x0E: 9.500 0x0E: 9.500 0x0F: 10.000

CHG_CNFG_06 (0x1C)

Charger configuration 6

ВІТ	7	6	5	4	3	2	1	0
Field	CHGCC_WR_EN	RESERVED	PFM_MIN_FREQ[1:0]		CHGPROT[1:0]		WDTCLR[1:0]	
Reset	0x0	0x0	0x0		0x0		0x0	
Access Type	Write 1 to Toggle, Read	Write, Read	Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
CHGCC_WR_EN	7	Fast-Charge Current Write Command. When set to "1" CHGCC_MSB/CHGCC[7:0] registers are loaded into design. Auto clear bit.	

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	6	Reserved	Default value is 0x0. Do not change.
PFM_MIN_FREQ	5:4	Minimum PFM Pattern Frequency (kHz). For reverse buck mode (OTG), it is recommended to set PFM_MIN_FREQ[1:0] to 0x3 (Disabled) to prevent CHGIN overvoltage if CHGIN load can be very light.	0x0: 20 0x1: Reserved 0x2: Reserved 0x3: Disabled
CHGPROT	3:2	Charger Settings Protection Bits. Writing 0x3 to these bits unlocks the write capability for the registers which are "Protected with CHGPROT". Writing any value besides 0x3 locks the protected registers.	0x0: Write capability locked. 0x1: Write capability locked. 0x2: Write capability locked. 0x3: Write capability unlocked.
WDTCLR	1:0	Watchdog Timer Clear Bits. Writing 0x3 to these bits clears the watchdog timer when the watchdog timer is enabled.	0x0: The watchdog timer is not cleared. 0x1: The watchdog timer is not cleared. 0x2: The watchdog timer is not cleared. 0x3: The watchdog timer is cleared.

CHG_CNFG_07 (0x1D)

Charger configuration 7

ВІТ	7	6	5	4	3	2	1	0
Field	JEITA_EN		REGTEMP[3:0]			VCHGCV_COOL	ICHGCC_COOL	FSHIP_MODE
Reset	0x0		0x6				0x1	0x0
Access Type	Write, Read		Write, Read			Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
JEITA_EN	7	JEITA Enable	0x0: JEITA disabled. Fast-charge current and charge termination voltage do not change based on thermistor temperature. 0x1: JEITA enabled. Fast-charge current and charge termination voltage change based on thermistor temperature.
REGTEMP	6:3	Junction Temperature Thermal Regulation (°C). The charger's target current limit starts to foldback and the TREG bit is set if the junction temperature is greater than the REGTEMP setpoint.	0x0: 85 0x1: 90 0x2: 95 0x3: 100 0x4: 105 0x5: 110 0x6: 115 0x7: 120 0x8: 125 0x9: 130
VCHGCV_COOL	2	JEITA controlled battery termination voltage when thermistor temperature is between T _{COLD} and T _{COOL} .	0x0: Battery termination voltage is set by CHG_CV_PRM. 0x1: Battery termination voltage is set by (CHG_CV_PRM - 180mV/cell).
ICHGCC_COOL	1	JEITA controlled battery fast-charge current when thermistor temperature is between T _{COLD} and T _{COOL} .	0x0: Battery fast-charge current is set by CHGCC. 0x1: Battery fast-charge current is reduced to 50% of CHGCC.

BITFIELD	BITS	DESCRIPTION	DECODE
FSHIP_MODE	0	Factory Ship Mode Enable	0x0: Disable factory ship mode. 0x1: Enable factory ship mode.

CHG_CNFG_08 (0x1E)

Charger configuration 8

ВІТ	7	6	5	4	3	2	1	0
Field	CHGCC_MSB		CHGIN_ILIM[6:0]					
Reset	0x0		0x15					
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
CHGCC_MSB	7	Fast-Charge Current Selection (mA) Most Significant Bit	
CHGIN_ILIM	6:0	CHGIN Input Current Limit (mA). Read back value of the CHGIN_ILIM register reflects the actual input current limit programmed in the charger.	0x00: 50 0x01: 50 0x02: 50 0x03: 50 0x04: 75 0x05: 100 0x06: 125 0x07: 150 0x08: 175 0x09: 200 0x0A: 225 0x08: 250 0x0C: 275 0x0D: 300 0x0E: 325 0x0F: 350 0x10: 375 0x11: 400 0x12: 425 0x13: 450 0x14: 475 0x15: 500 0x16: 525 0x17: 550 0x18: 575 0x19: 600 0x1A: 625 0x1B: 650 0x1C: 675 0x1D: 700 0x1E: 725 0x1E: 725 0x1E: 725 0x21: 800 0x22: 825 0x23: 850 0x24: 875 0x25: 900 0x26: 925 0x27: 950 0x28: 975 0x29: 1000

BITFIELD	BITS	DESCRIPTION	DECODE
			0x2A: 1025
			0x2B: 1050
			0x2C: 1075
			0x2D: 1100
			0x2E: 1125
			0x2F: 1150
			0x30: 1175 0x31: 1200
			0x31: 1200 0x32: 1225
			0x33: 1250
			0x34: 1275
			0x35: 1300
			0x36: 1325
			0x37: 1350
			0x38: 1375
			0x39: 1400 0x3A: 1425
			0x3B: 1450
			0x3C: 1475
			0x3D: 1500
			0x3E: 1525
			0x3F: 1550
			0x40: 1575
			0x41: 1600
			0x42: 1625
			0x43: 1650 0x44: 1675
			0x45: 1700
			0x46: 1725
			0x47: 1750
			0x48: 1775
			0x49: 1800
			0x4A: 1825
			0x4B: 1850
			0x4C: 1875
			0x4D: 1900 0x4E: 1925
			0x4E: 1923 0x4F: 1950
			0x50: 1975
			0x51: 2000
			0x52: 2025
			0x53: 2050
			0x54: 2075
			0x55: 2100
			0x56: 2125
			0x57: 2150 0x58: 2175
			0x50: 2175
			0x5A: 2225
			0x5B: 2250
			0x5C: 2275
			0x5D: 2300
			0x5E: 2325
			0x5F: 2350
			0x60: 2375
			0x61: 2400 0x62: 2425
			0x63: 2450
			0x64: 2475
			0x65: 2500
			0x66: 2525
			0x67: 2550
			0x68: 2575
			0x69: 2600
			0x6A: 2625
			0x6B: 2650 0x6C: 2675
			0x6C: 2675 0x6D: 2700
			0x6E: 2725
	1		

BITFIELD	BITS	DESCRIPTION	DECODE
			0x70: 2775 0x71: 2800
			0x71: 2800 0x72: 2825
			0x73: 2850
			0x74: 2875
			0x75: 2900
			0x76: 2925
			0x77: 2950
			0x78: 2975 0x79: 3000
			0x79: 3000 0x7A: 3025
			0x7B: 3050
			0x7C: 3075
			0x7D: 3100
			0x7E: 3125
			0x7F: 3150

CHG_CNFG_09 (0x1F)

Charger configuration 9

BIT	7	6	5	4	3	2	1	0
Field	INLIM_0	CLK[1:0]	OTG_ILIM[2:0]		ZX_TH[2:0]			
Reset	0x2		0x3			0x6		
Access Type	Write, Read		Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
INLIM_CLK	7:6	Input current limit soft-start period (µsec) between consecutive increments of 25mA.	0x0: 8 0x1: 256 0x2: 1024 0x3: 4096
OTG_ILIM	5:3	OTG Mode Current Limit Setting (mA)	0x0: 500 0x1: 900 0x2: 1200 0x3: 1500 0x4: 2000 0x5: 2250 0x6: 2500 0x7: 3000
ZX_TH	2:0	Zero-Cross (ZX) Current Threshold (mA)	0x0: -1200 0x1: -975 0x2: -750 0x3: -525 0x4: -300 0x5: -75 0x6: 150 0x7: 375

CHG_CNFG_10 (0x20)

Charger configuration 10

ВІТ	7	6	5	4	3	2	1	0
Field	CHGCC_O	FFSET[1:0]	VBYP_REG[4:0]					SLOPE_COMP_HALF

Reset	0x1	0x03	0x1
Access Type	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
CHGCC_OFFSET	7:6	CHGCC Offset Control (Positive)	0x0: No offset 0x1: +62.5mA 0x2: +125mA 0x3: +250mA
VBYP_REG	5:1	BYP Voltage Regulation Threshold (V)	0x00: 4.025 0x01: 4.200 0x02: 4.375 0x03: 4.550 0x04: 4.725 0x05: 4.900 0x06: 5.425 0x07: 5.950 0x08: 6.475 0x09: 7.000 0x0A: 7.525 0x0B: 8.050 0x0C: 8.575 0x0D: 9.100 0x0E: 9.625 0x0F: 10.150 0x10: 10.675 0x11: 10.950 0x12: 11.550 0x13: 12.150 0x14: 12.750 0x15: 13.350 0x16: 13.350 0x16: 13.950 0x17: 14.550 0x18: 16.350 0x18: 16.350 0x18: 16.350 0x16: 17.550 0x17: 18.150 0x17: 18.150 0x16: 18.750 0x17: 18.150 0x17: 18.150 0x17: 18.150
SLOPE_COMP_HALF	0	Slope Compensation Half	0x0: Slope compensation is not halved. 0x1: Slope compensation is halved (default).

CHG_CNFG_11 (0x21)

Charger configuration 11

BIT	7	6	5	4	3	2	1	0
Field	SLOPE_COMP[2:0]		RESERVED[1:0]		MINVSYS[2:0]			
Reset	0x2			0x2 0x2				
Access Type	Write, Read			Write, Read		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
SLOPE_COMP	7:5	Slope Compensation Options	0x0: Lowest slope compensation 0x1 0x2

BITFIELD	BITS	DESCRIPTION	DECODE
			0x3 0x4 0x5 0x6 0x7: Highest slope compensation
RESERVED	4:3	Reserved	Default value is 0x2. Do not change.
MINVSYS	2:0	Minimum System Regulation Voltage (V)	2-Cell Battery 0x0: 5.48 0x1: 5.81 0x2: 6.14 0x3: 6.47 0x4: 6.80 0x5: 7.13 0x6: 7.45 0x7: 7.78 3-Cell Battery 0x0: 8.23 0x1: 8.73 0x2: 9.22 0x3: 9.71 0x4: 10.20 0x5: 10.70 0x6: 11.19 0x7: 11.68

CHG_CNFG_12 (0x22)

Charger configuration 12

ВІТ	7	6	5	4	3	2	1	0
Field	SPR_7	<u>_</u> 6[1:0]	LPM	FORCED_BUCK	FORCED_BOOST	BYPI_HBW	BATI_HBW	BATV_HBW
Reset	0x0		0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write,	Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
SPR_7_6	7:6	Spare Bit			
LPM	5	Low-Power Mode Control	0x0: Q _{BAT} charge pump runs in normal mode. 0x1: Q _{BAT} charge pump is in low-power mode.		
FORCED_BUCK	4	Force Buck Switching Phase	0x0: Allow automatic buck-boost control. 0x1: Force buck switching phase every switching cycle.		
FORCED_BOOST	3	Force Boost Switching Phase	0x0: Allow automatic buck-boost control. 0x1: Force boost switching phase every switching cycle.		
BYPI_HBW	2	High Bandwidth Option for Input Current Regulation Loop	0x0: Normal bandwidth 0x1: High bandwidth		
BATI_HBW	1	High Bandwidth Option for Output Current Regulation Loop	0x0: Normal bandwidth 0x1: High bandwidth		
BATV_HBW	0	High Bandwidth Option for Output Voltage Regulation Loop	0x0: Normal bandwidth 0x1: High bandwidth		

CHG_CNFG_13 (0x23)

Charger configuration 13

ВІТ	7	6	5	4	3	2	1	0
Field		SPR_7	_4[3:0]		SS_PAT	RSVD	SS_EN	TRICKLE_DESPIKE_EN
Reset		0:	«О		0x1	0x0	0x0	0x1
Access Type	Write, Read				Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
SPR_7_4	7:4	Spare Bit			
SS_PAT	3	Spread-Spectrum Pattern Setting	0x0: Triangular pattern 0x1: Pseudo-random pattern		
RSVD	2	Reserved. Reads back 0.			
SS_EN	1	Spread-Spectrum Enable	0x0: Disable 0x1: Enable		
TRICKLE_DESPIKE_EN	0	Trickle to Fast-charge CC Current Spike Suppression Enable	0x0: Disable 0x1: Enable		

ADC_CNFG_00 (0x30)

BIT	7	6	5	4	3	2	1	0
Field	CH8_EN	CH7_EN	CH6_EN	CH5_EN	CH4_EN	CH3_EN	CH2_EN	CH1_EN
Reset	0x0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CH8_EN	7	ADC Channel8 (IBATT) Data Readback Control	0x0: Disabled 0x1: Enabled
CH7_EN	6	ADC Channel7 (ICHGIN) Data Readback Control	0x0: Disabled 0x1: Enabled
CH6_EN	5	ADC Channel6 (VTHM) Data Readback Control	0x0: Disabled 0x1: Enabled
CH5_EN	4	ADC Channel5 (TDIE) Data Readback Control	0x0: Disabled 0x1: Enabled
CH4_EN	3	ADC Channel4 (VSYS) Data Readback Control	0x0: Disabled 0x1: Enabled
CH3_EN	2	ADC Channel3 (VBATT) Data Readback Control	0x0: Disabled 0x1: Enabled
CH2_EN	1	ADC Channel2 (VADCIN) Data Readback Control	0x0: Disabled 0x1: Enabled
CH1_EN	0	ADC Channel1 (VCHGIN) Data Readback Control	0x0: Disabled 0x1: Enabled

ADC_CNFG_01 (0x31)

BIT	7	6	5	4	3	2	1	0
Field	SAMPLE_	SAMPLE_RATE[1:0] AVG_CNT[1:0]		NT[1:0]	SPR_3	AVG_EN	MEAS_CONT	MEAS_SGLE
Reset	0x0		0:	x0	0x0	0x0	0x0	0x0
Access Type	Write, Read		Write,	Read	Write, Read	Write, Read	Write, Read	Write 1 to Toggle, Read

BITFIELD	BITS	DESCRIPTION	DECODE
SAMPLE_RATE	7:6	ADC Sampling Rate (Hz). ADC sampling rate is configurable for reducing power consumption.	0x0: 1000 0x1: 100 0x2: 10 0x3: 1
AVG_CNT	5:4	ADC Averaging Count Setting	0x0: 2-point average 0x1: 4-point average 0x2: 8-point average 0x3: 16-point average
SPR_3	3	Spare Bit	
AVG_EN	2	ADC Averaging Enable	0x0: Disabled 0x1: Enabled
MEAS_CONT	1	ADC Continuous Measurement Control. When set to "1" ADC channels that are enabled sample and convert continuously.	0x0: Disable continuous conversion. 0x1: Enable continuous conversion.
MEAS_SGLE	0	ADC Single Measurement Control. When set to "1" ADC channels that are enabled sample and convert once. Auto clear bit.	0x0: Disable single conversion. 0x1: Enable single conversion.

ADC DATA CH1 A (0x32)

BIT	7	6	5	4	3	2	1	0	
Field		RESER ¹	VED[3:0]		ADC_DATA1_A[3:0]				
Reset		0:	k 0		0x0				
Access Type		Read	l Only			Read	Only		

BITFIELD	вітѕ	DESCRIPTION
RESERVED	7:4	Reserved
ADC_DATA1_A	3:0	ADC Channel1 (VCHGIN) Data Readback (Bit 11-8) Range: 0mV (0x000) ~ 25000mV (0xFFF) Resolution: 6.1050mV

ADC_DATA_CH1_B (0x33)

ВІТ	7	6	5	4	3	2	1	0
Field	ADC_DATA1_B[7:0]							
Reset		0x00						
Access Type		Read Only						

BITFIELD	вітѕ	DESCRIPTION
ADC_DATA1_B	7:0	ADC Channel1 (VCHGIN) Data Readback (Bit 7-0) Range: 0mV (0x000) ~ 25000mV (0xFFF) Resolution: 6.1050mV

ADC_DATA_CH2_A (0x34)

BIT	7	6	5	4	3	2	1	0	
Field		RESER\	/ED[3:0]		ADC_DATA2_A[3:0]				
Reset		0)	κ0		0x0				
Access Type		Read	Only			Read	Only		

BITFIELD	вітѕ	DESCRIPTION
RESERVED	7:4	Reserved
ADC_DATA2_A	3:0	ADC Channel2 (VADCIN) Data Readback (Bit 11-8) Range: 0mV (0x000) ~ 1250mV (0xFFF) Resolution: 0.30525mV

ADC_DATA_CH2_B (0x35)

BIT	7	6	5	4	3	2	1	0
Field		ADC_DATA2_B[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	вітѕ	DESCRIPTION
ADC_DATA2_B	7:0	ADC Channel2 (VADCIN) Data Readback (Bit 7-0) Range: 0mV (0x000) ~ 1250mV (0xFFF) Resolution: 0.30525mV

ADC DATA CH3 A (0x36)

BIT	7	6	5	4	3	2	1	0	
Field		RESER\	/ED[3:0]		ADC_DATA3_A[3:0]				
Reset		0)	κ0		0x0				
Access Type		Read	Only			Read	Only		

BITFIELD	вітѕ	DESCRIPTION
RESERVED	7:4	Reserved
ADC_DATA3_A	3:0	ADC Channel3 (VBATT) Data Readback (Bit 11-8) Range: 0mV (0x000) ~ 15000mV (0xFFF) Resolution: 3.6630mV

ADC_DATA_CH3_B (0x37)

BIT	7	6	5	4	3	2	1	0	
Field		ADC_DATA3_B[7:0]							
Reset		0x00							
Access Type		Read Only							

BITFIELD	вітѕ	DESCRIPTION
ADC_DATA3_B	7:0	ADC Channel3 (VBATT) Data Readback (Bit 7-0) Range: 0mV (0x000) ~ 15000mV (0xFFF) Resolution: 3.6630mV

ADC_DATA_CH4_A (0x38)

BIT	7	6	5	4	3	2	1	0	
Field		RESER'	VED[3:0]		ADC_DATA4_A[3:0]				
Reset		0:	×0		0x0				

Access Type Read Only	Read Only
-----------------------	-----------

BITFIELD	вітѕ	DESCRIPTION
RESERVED	7:4	Reserved
ADC_DATA4_A	3:0	ADC Channel4 (VSYS) Data Readback (Bit 11-8) Range: 0mV (0x000) ~ 15000mV (0xFFF) Resolution: 3.6630mV

ADC_DATA_CH4_B (0x39)

BIT	7	6	5	4	3	2	1	0	
Field	ADC_DATA4_B[7:0]								
Reset	0x00								
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
ADC_DATA4_B	7:0	ADC Channel4 (VSYS) Data Readback (Bit 7-0) Range: 0mV (0x000) ~ 15000mV (0xFFF) Resolution: 3.6630mV

ADC DATA CH5 A (0x3A)

BIT	7	6	5	4	3	2	1	0	
Field		RESER\	/ED[3:0]		ADC_DATA5_A[3:0]				
Reset		0)	κ0		0x0				
Access Type		Read	Only		Read Only				

BITFIELD	вітѕ	DESCRIPTION
RESERVED	7:4	Reserved
ADC_DATA5_A	3:0	ADC Channel5 (TDIE) Data Readback (Bit 11-8) Range: -40°C (0x848) ~ 175°C (0xFED) Resolution: 0.10989°C

ADC_DATA_CH5_B (0x3B)

BIT	7	6	5	4	3	2	1	0	
Field	ADC_DATA5_B[7:0]								
Reset		0x00							
Access Type				Read	Only				

BITFIELD	вітѕ	DESCRIPTION
ADC_DATA5_B	7:0	ADC Channel5 (TDIE) Data Readback (Bit 7-0) Range: -40°C (0x848) ~ 175°C (0xFED) Resolution: 0.10989°C

ADC_DATA_CH6_A (0x3C)

BIT	7	6	5	4	3	2	1	0	
Field		RESER\	/ED[3:0]		ADC_DATA6_A[3:0]				
Reset		0)	κ0		0x0				
Access Type		Read	Only		Read Only				

BITFIELD	BITS	DESCRIPTION
RESERVED	7:4	Reserved
ADC_DATA6_A	3:0	ADC Channel6 (VTHM/VAVL) Data Readback (Bit 11-8) Range: 0% (0x000) ~ 100% (0x400) Resolution: 0.097656% Readback value is $0x400$ if $V_{THM} \ge V_{AVL}$.

ADC_DATA_CH6_B (0x3D)

ВІТ	7	6	5	4	3	2	1	0	
Field	ADC_DATA6_B[7:0]								
Reset		0x00							
Access Type				Read	Only				

BITFIELD	вітѕ	DESCRIPTION
ADC_DATA6_B	7:0	ADC Channel6 (VTHM/VAVL) Data Readback (Bit 7-0) Range: 0% (0x000) ~ 100% (0x400)

BITFIELD	вітѕ	DESCRIPTION
		Resolution: 0.097656% Readback value is 0x400 if V _{THM} ≥ V _{AVL} .

ADC_DATA_CH7_A (0x3E)

ВІТ	7	6	5	4	3	2	1	0	
Field	RESERVED[2:0]			ADC_DATA7_A[4:0]					
Reset	0x0			0x00					
Access Type	Read Only					Read Only			

BITFIELD	вітѕ	DESCRIPTION
RESERVED	7:5	Reserved
ADC_DATA7_A	4:0	ADC Channel7 (ICHGIN) Data Readback (Bit 12-8) Bit 12 is the sign bit. '0' for current from CHGIN to BYP and '1' for current from BYP to CHGIN. Range: 0mA (0x000) ~ 5024mA (0xC5D) Resolution: 1.5873mA Readback value is 0xC5D if I _{CHGIN} is higher than 5024mA.

ADC_DATA_CH7_B (0x3F)

BIT	7	6	5	4	3	2	1	0
Field		ADC_DATA7_B[7:0]						
Reset		0x00						
Access Type	Read Only							

BITFIELD	вітѕ	DESCRIPTION
ADC_DATA7_B	7:0	ADC Channel7 (ICHGIN) Data Readback (Bit 7-0) Bit 12 is the sign bit. '0' for current from CHGIN to BYP and '1' for current from BYP to CHGIN. Range: 0mA (0x000) ~ 5024mA (0xC5D) Resolution: 1.5873mA Readback value is 0xC5D if I _{CHGIN} is higher than 5024mA.

ADC_DATA_CH8_A (0x40)

BIT	7	6	5	4	3	2	1	0
-----	---	---	---	---	---	---	---	---

Field	RESERVED[2:0]	ADC_DATA8_A[4:0]	
Reset	0x0	0x00	
Access Type	Read Only	Read Only	

BITFIELD	вітѕ	DESCRIPTION
RESERVED	7:5	Reserved
ADC_DATA8_A	4:0	ADC Channel8 (IBATT) Data Readback (Bit 12-8) Bit 12 is the sign bit. '0' for current from SYS to BATT and '1' for current from BATT to SYS. Range: 0mA (0x000) ~ 4220mA (0xD80) Resolution: 1.2210mA Readback value is 0xD80 if IBATT is higher than 4220mA.

ADC_DATA_CH8_B (0x41)

BIT	7	6	5	4	3	2	1	0
Field		ADC_DATA8_B[7:0]						
Reset		0x00						
Access Type	Read Only							

BITFIELD	вітѕ	DESCRIPTION
ADC_DATA8_B	7:0	ADC Channel8 (IBATT) Data Readback (Bit 7-0) Bit 12 is the sign bit. '0' for current from SYS to BATT and '1' for current from BATT to SYS. Range: 0mA (0x000) ~ 4220mA (0xD80) Resolution: 1.2210mA Readback value is 0xD80 if I _{BATT} is higher than 4220mA.

Applications Information

Inductor Selection

Buck-boost allows a range of inductance for different combinations of switching frequency and maximum nominal CHGIN voltage. See <u>Table 11</u> for recommendations. The lower the inductor DCR is, the higher the buck-boost efficiency is. The user needs to weigh the trade-offs between inductor size and DCR value and choose a suitable inductor for the buck-boost. See <u>Table 12</u> for inductor recommendations.

Table 11. Recommended Inductance for Combinations of Switching Frequency and Maximum Nominal CHGIN Voltage

SWITCHING FREQUENCY (kHz)	MAXIMUM NOMINAL CHGIN VOLTAGE (V)	RECOMMENDED NOMINAL INDUCTANCE (µH)	
600	15 or lower	2.2, 3.3	
600	Higher than 15	3.3	
1200	15 or lower	1.0, 1.5, 2.2, 3.3	
1200	Higher than 15	1.5, 2.2, 3.3	
1800	Any	1.0, 1.5, 2.2, 3.3	

Table 12. Suggested Inductors

MFGR.	SERIES	NOMINAL INDUCTANCE (µH)	TYPICAL DC RESISTANCE (mΩ)	CURRENT RATING (A) -30% (ΔL/L)	CURRENT RATING (A) ΔT = +40°C RISE	DIMENSIONS L x W x H (mm)
TDK	VLS3012HBX-1R0M	1.0	39.0	6.11	5.13	3.0 x 3.0 x 1.2
Coilcraft	XAL4020-152ME	1.5	21.5	7.1	7.5	4.0 x 4.0 x 2.1
Coilcraft	XAL4020-222ME	2.2	35.2	5.6	5.5	4.0 x 4.0 x 2.1
Coilcraft	XAL4030-332ME	3.3	26.0	5.5	6.6	4.0 x 4.0 x 3.1

BYP Capacitor Selection

The BYP capacitor, C_{BYP} , reduces the current peaks drawn from the input power source and reduces switching noise in the device. In OTG mode, it also reduces the output voltage ripple and ensures regulation loop stability. The impedance of C_{BYP} at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, 1 x 10 μ F (1210) or 2 x 10 μ F (1206) or 3 x 10 μ F (0805) capacitors are sufficient. See <u>Table 13</u> for BYP capacitor recommendations.

Table 13. Suggested BYP Capacitors

MFGR.	SERIES	NOMINAL CAPACITANCE (µF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (in)	DIMENSIONS L x W x H (mm)
Murata	GRM32ER7YA106KA12	10	35	X7R	1210	3.2 x 2.5 x 2.5
Murata	GRT31CR6YA106KE01	10	35	X5R	1206	3.2 x 1.6 x 1.6
Murata	GRM21BR6YA106ME43	10	35	X5R	0805	2.0 x 1.25 x 1.25

SYS Capacitor Selection

The SYS capacitor, C_{SYS} , is required to keep the output voltage ripple small and to ensure regulation loop stability. The C_{SYS} must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. For stable operation, buck-boost requires $22\mu F$ of minimum effective output capacitance. Considering the DC bias characteristic of ceramic capacitors, 1 x $47\mu F$ (1210) or 2 x $47\mu F$ (1206) or 4 x $22\mu F$ (0805) capacitors are recommended for 2-cell applications, and 2 x $47\mu F$ (1210) or 3 x $47\mu F$ (1206) or 6 x $22\mu F$ (0805) capacitors are recommended for 3-cell applications. If the high bandwidth option for output current regulation loop or output voltage regulation loop is used (BATI_HBW = 1 or BATV_HBW = 1), double the SYS capacitance to guarantee the loop stability. See <u>Table 14</u> for SYS capacitor recommendations.

Table 14. Suggested SYS Capacitors

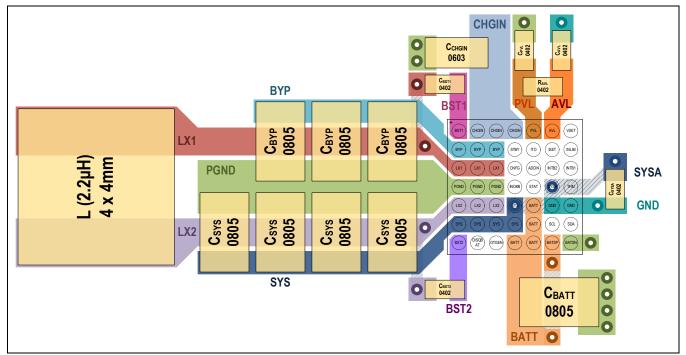
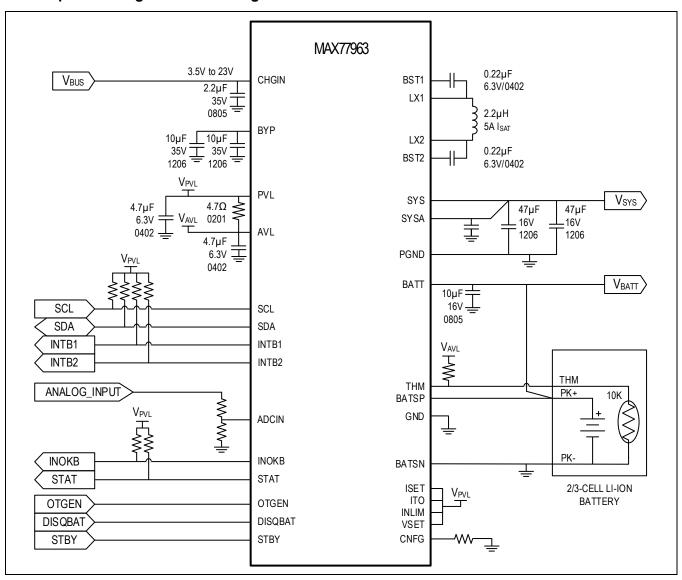
MFGR.	SERIES	NOMINAL CAPACITANCE (μF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (in)	DIMENSIONS L x W x H (mm)
Taiyo Yuden	EMK325ABJ476MM8P	47	16	X5R	1210	3.2 x 2.5 x 2.5
Murata	GRM31CR61C476ME44	47	16	X5R	1206	3.2 x 1.6 x 1.6
Murata	GRM21BR61C226ME44	22	16	X5R	0805	2.0 x 1.25 x 1.25

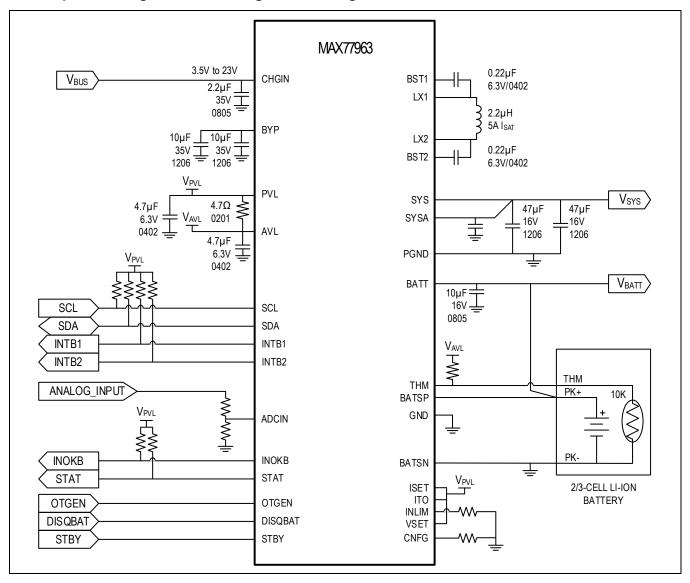
PCB Layout Guidelines

Careful circuit board layout is critical to achieving low switching power losses and clean, stable operation. <u>Figure 16</u> shows a PCB layout example.

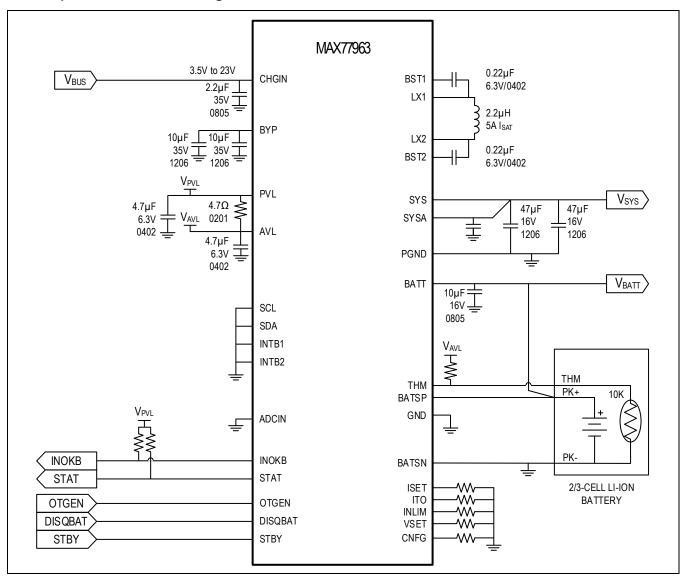
When designing the PCB, follow these guidelines:

- Place the BYP capacitor (C_{BYP}) and SYS capacitors (C_{SYS}) immediately next to the BYP pin and SYS pin of the IC, respectively. Since the IC operates at a high switching frequency, this placement is critical for minimizing parasitic inductance within the input and output current loops which can cause high voltage spikes and can damage the internal switching MOSFETs.
- Place the inductor next to the LX pins and make the traces between the LX pins and the inductor short and wide to
 minimize PCB trace impedance. Excessive PCB impedance reduces converter efficiency. When routing LX traces on
 a separate layer, make sure to include enough vias to minimize trace impedance. Routing LX traces on multiple layers
 is recommended to further reduce trace impedance. Furthermore, do not make LX traces take up an excessive amount
 of area. The voltage on this node switches very quickly and additional area creates more radiated emissions.
- Route LX nodes to their corresponding bootstrap capacitors (C_{BST}) as short as possible. Prioritize C_{BST} placement to reduce trace length to the IC.
- Place the PVL capacitor (C_{PVL}) immediately next to the PVL pin. Proximity to the IC provides a stable supply for the internal circuitry.
- Place the CHGIN capacitor (C_{CHGIN}), BATT capacitor (C_{BATT}), and SYSA capacitor (C_{SYSA}) immediately next to the CHGIN pin, BATT pin, and SYSA pin of the IC, respectively.
- Connect BATSP and BATSN as close as possible to the battery connector. This optimizes the remote sense of the battery voltage.
- Keep the power traces and load connections short and wide. This is essential for high converter efficiency.
- Do not neglect ceramic capacitor DC voltage derating. Choose capacitor values and case sizes carefully. See the
 <u>SYS Capacitor Selection</u> section and refer to <u>Tutorial 5527</u> for more information.


Figure 16. PCB Layout Example

Typical Application Circuits


Wide-Input I²C Programmable Charger

Wide-Input I²C Programmable Charger with Charger Disabled

Wide-Input Autonomous Charger

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX77963EWJ+	-40°C to +85°C	3.718mm x 3.718mm 49-Bump WLP
MAX77963EWJ+T	-40°C to +85°C	3.718mm x 3.718mm 49-Bump WLP

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

MAX77963

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	5/23	Release for Market Intro	_