

MB81C79B-35/-45 CMOS 72K-BIT HIGH-SPEED SRAM

8K Words x 9 Bits High-Speed CMOS Static Random Access Memory with Automatic Power Down

The Fujitsu MB81C79B is a 8,192 words x 9 bits static random access memory fabricated with CMOS technology. The 9-bit organization of this device is desirable for use in a parity check function. This device also has two fast column addresses, making it very suitable to use as cache buffers. To make power dissipation lower, peripheral circuits use CMOS technology, and to obtain smaller chip size, cells use NMOS transistors and resistors. All pins are TTL compatible and a single +5 V power supply is

The MB81C79B offers low power dissipation, low cost, and high performance.

Organization:

8.192 words x 9 bits

Static operation: no clock or timing strobe required

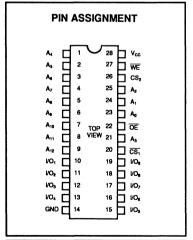
Access time:

 $t_{AA} = t_{ACS1} = 35$ ns max, $t_{OE} = 10$ ns max. A11. A12 access time = 12 ns max. (MB81C79B-35) $t_{AA} = t_{ACS1} = 45$ ns max, $t_{OE} = 15$ ns max. A11, A12 access time = 15 ns max. (MB81C79B-45)

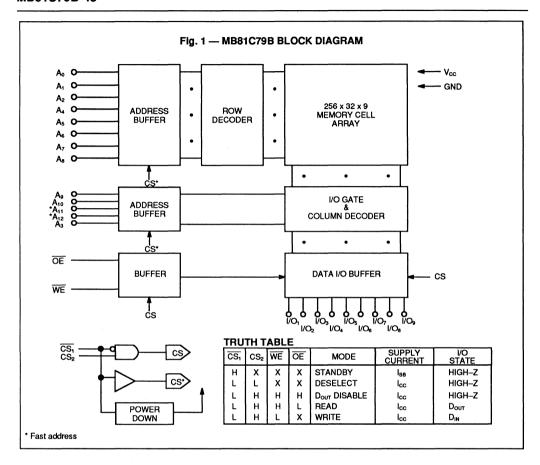
Low power consumption: 550 mW max. (Operation)

138 mW max. (TTL Standby) (CMOS Standby)

- 83 mW max. Single +5 V power supply ±10% tolerance
- TTL compatible inputs and outputs
- Three-state inputs and outputs
- Chip select for simplified memory expansion, automatic power down
- Electrostatic protection for all inputs and outputs
- Standard 28-pin Plastic Packages:


Skinny DIP (300 mil) MB81C79B-xxPSK (450 mil) MB81C79B-xxPF

Absolute Maximum Ratings (See Note)


Rating	Symbol	Valu e	Unit
Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage on any pin with respect to GND	V _{IN}	-3.5 to +7.0	V
Output Voltage on any I/O pin with respect to GND	V _{out}	-0.5 to +7.0	٧
Output Current	l _{out}	±20	mA
Power Dissipation	P _D	1.0	W
Temperature Under Bias	T _{BIAS}	-10 to +85	°C
Storage Temperature Range	T _{STG}	-40 to +125	°C

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE DIP-28P-M04 PLASTIC PACKAGE FPT-28P-M02

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CAPACITANCE (T_A = 25° C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (V _{IN} =0V) (CS ₁ , CS ₂ , OE, WE)	C _{II}		7	pF
Input Capacitance (V _{IN} =0V) (Other Inputs)	C ₁₂		6	pF
I/O Capacitance (V _{VO} =0V)	C _{I/O}		8	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

1					
Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Input Low Voltage	V _{IL}	-2.0*		0.8	V
Input High Voltage	V _{IH}	2.2		6.0	v
Ambient Temperature	TA	0		70	•℃

^{* -2.0}V Min. for pulse width less than 20ns, (V_{IL} Min=-0.5V at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

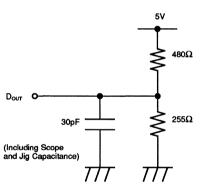
Parameter	Symbol	Min	Max	Unit	Test Condition
Input Leakage Current	lu	-10	10	μА	V_{IN} =0V to V_{CC}
Output Leakage Current	I _{LO}	-10	10	μΑ	CS₁=V _{IH} or CS₂=V _{IL} or WE=V _{IL} or OE=V _{IH} , V _{OUT} =0V to V _{CC}
Operating Supply Current	lcc		130	mA	CS₁=V _{IL} I/O=Open, Cycle=Min
Shoodhu Supalu Cumant	I _{SB1}		15	mA	V _{CC} =Min to Max. CS₁=V _{CC} -0.2V V _{IN} ≤0.2V or V _{IN} ≥V _{CC} -0.2V
Standby Supply Current	I _{SB2}		25	mA	CS₁=V _{IH}
Output Low Voltage	V _{OL}		0.4	٧	I _{OL} =8mA
Output High Voltage	V _{OH}	2.4		٧	I _{OH} =-4mA
Peak Power-on Current	I _{PO}		50	mA	V _{CC} =0V to V _{CC} Min. CS ₁ =Lower of V _{CC} or V _{IH} Min.

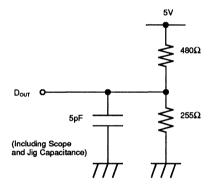
AC TEST CONDITIONS

Input Pulse Levels: 0.6V to 2.4V

Input Pulse Rise And Fall Times: 5ns (Transient time between 0.8V and 2.2V)

Timing Measurement Reference Levels:Input: 1.5V
Output:1.5V

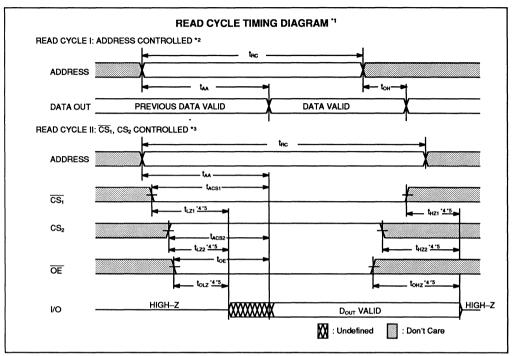

Fig. 2


Output Load I.

For all except t_{LZ}, t_{HZ}, t_{WZ}, t_{OW}, t_{OLZ}, and t_{OHZ}.

Output Load II.

For t_{LZ}, t_{HZ}, t_{WZ}, t_{OW}, t_{OLZ}, and t_{OHZ}.


AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) READ CYCLE*1

_	G	MB81C	79B-35	9B-35 MB81C7		Unit
Parameter	Symbol	Min	Max	Min	Max	Unit
Read Cycle Time	tac	35		45		ns
Address Access Time *2	tu		35#1		45#2	ns
CS ₁ Access Time *3	t _{ACS1}		35		45	ns
CS₂ Access Time *3	t _{ACS2}		15		20	ns
Output Hold from Address Change	t _{он}	3		3		ns
OE Access Time	t _{OE}		10		15	ns
Output Active from CS ₁ *4*5	t _{LZ1}	5		5		ns
Output Active from CS ₂ *4*5	t _{1.72}	2		2		ns
Output Active from OE *4*5	toız	2		2		ns
Output Disable from CS ₁ *4*5	t _{HZ1}		20		25	ns
Output Disable from CS ₂ *4*5	t _{HZ2}		20		25	ns
Output Disable from OE *4 *5	t _{OHZ}		20		25	ns

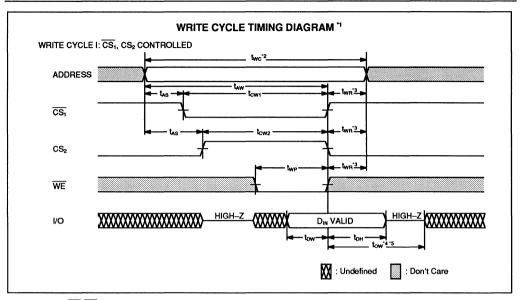
Note: *1 WE is high for Read cycle.

- Device is continuously selected, \$\overline{CS}_1 = V_{IL}\$. \$CS_2 = V_{IH}\$ and \$\overline{OE}_2 = V_{IL}\$.
 Address valid prior to or coincident with \$\overline{CS}_1\$ transition low, \$\overline{CS}_2\$ transition high.
- *4 Transition is specified at the point of ±500mV from steady state voltage.
- *5 This parameter is specified with Load II in Fig. 2.
- #1 A11, A12 address access time is 12ns max.
- #2 A11, A12 address access time is 15ns max.

- Note: *1 WE is high for Read cycle.
 - *2 Device is continuously selected, $\overline{CS}_1 = V_{IL}$, $CS_2 = V_{IH}$ and $\overline{OE} = V_{IL}$
 - *3 Address valid prior to or coincident with CS₁ transition low, CS₂ transition high.
 - *4 Transition is specified at the point of ±500mV from steady state voltage.
 - *5 This parameter is specified with Load II in Fig. 2.

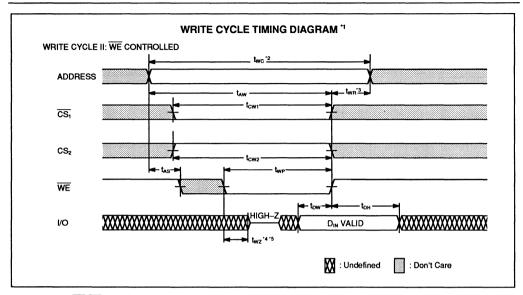
WRITE CYCLE*1

Parameter	Symbol	MB81C	9B-35 MB81C79B-45			Unit
Parameter	Symbol	Min	Max	Min	Max	Unit
Write Cycle Time *2	twc	35		45		ns
CS ₁ to End of Write	t _{CW1}	30		40		ns
CS₂ to End of Write	t _{cw2}	20		25		ns
Address Valid to End of Write	t _{AW}	30		40		ns
Address Setup Time	tas	0		0		ns
Write Pulse Width	twe	20		25		ns
Data Setup Time	tow	17		20		ns
Write Recovery Time *3	twa	3		3		ns
Data Hold Time	t _{OH}	0		0		ns
Output High–Z from WE *4*5	twz		15		20	ns
Output Low–Z from WE *4*5	tow	0		0		ns


Note: *1 If $\overline{\text{CS}_1}$ goes high simultaneously with $\overline{\text{WE}}$ high, the output remains in high impedance state.

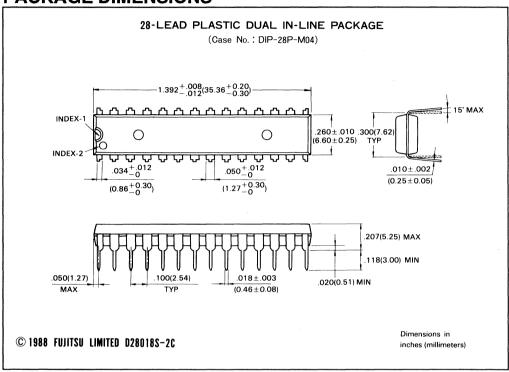
^{*2} All write cycles are determined from the last address transition to the first address transition of next address.

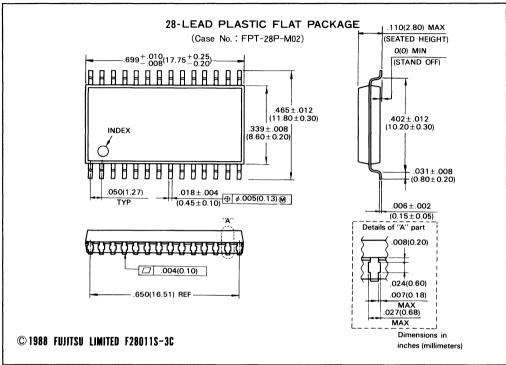
^{*3} twn is defined from the end point of Write Mode.


^{*4} Transition is specified at the point of ±500mV from steady state voltage.

^{*5} This parameter is specified with Load II in Fig. 2.

Note: *1 If OE, CS₁, and CS₂ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.


- *2 All write cycles are determined from the last address transition to the first address transition of next address.
- *3 twn is defined from the end point of WRITE Mode.
- *4 Transition is specified at the point of ±500mV from steady state voltage.
- *5 This parameter is specified with Load II in Fig. 2.


Note: *1 If OE, OS₁, and CS₂ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

- *2 All write cycles are determined from the last address transition to the first address transition of next address.
- *3 twR is defined from the end point of WRITE Mode.
- *4 Transition is specified at the point of ±500mV from steady state voltage.
- *5 This parameter is specified with Load II in Fig. 2.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

