Stacked MCP (Multi-Chip Package) FLASH MEMORY & FCRAM cmos

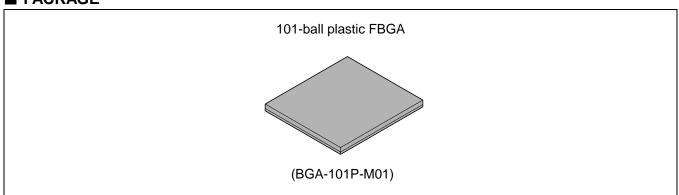
64 M (×16) FLASH MEMORY & 16 M (×16) Mobile FCRAM™

MB84VD23381EF-85

■ FEATURES

- Power Supply Voltage of 2.7 V to 3.0 V for FCRAM
- Power Supply Voltage of 2.7 V to 3.3 V for Flash
- High Performance
 85 ns maximum access time (Flash)
 75 ns maximum access time (FCRAM)

85 ns maximum access time (FCRAM)


(Continued)

■ PRODUCT LINE UP

	Flash Memory	FCRAM*
	Vccf = 2.7 V to 3.3 V	Vccs = 2.7 V to 3.0 V
Max Address Access Time (ns)	85	85
Max CE Access Time (ns)	85	85
Max OE Access Time (ns)	35	60

^{* :} Both Vccf and Vccs must be the same level when either part is being accessed and Vccf can be 2.4 V during standby state.

■ PACKAGE

(Continued)

Operating Temperature

-30 °C to +85 °C

Package 101-ball FBGA

- FLASH MEMORY

Simultaneous Read/Write Operations (FlexBank™)

Two virtual Banks are chosen from the combination of four physical banks

Host system can program or erase in one bank, then read immediately and simultaneously read from the other bank Zero latency between read and write operations

Read-while-erase

Read-while-program

• Minimum 100,000 Write/Erase Cycles

• Sector Erase Architecture

Sixteen 4 K words and one hundred twenty-six 32 K word sectors.

Any combination of sectors can be concurrently erased. Also supports full chip erase.

• Embedded Erase™ Algorithms

Automatically pre-programs and erases the chip or any sector

Embedded Program[™] Algorithms

Automatically writes and verifies data at specified address

• Data Polling and Toggle Bit feature for detection of program or erase cycle completion

Ready-Busy Output (RY/BY)

Hardware method for detection of program or erase cycle completion

Automatic Sleep Mode

When addresses remain stable, automatically switch themselves to low power mode.

- Low Vcc Write Inhibit ≤ 2.5 V
- Hidden ROM (Hi-ROM) Region

256 byte of Hi-ROM, accessible through a new "Hi-ROM Enable" command sequence Factory serialized and protected to provide a secure electronic serial number (ESN)

ractory serialized and protected to provide a secure electronic se

• WP/ACC Input Pin

At V_{IL} , allows protection of "outermost" 2×8 K bytes on both ends of boot secctors, regardless of sector protection/unprotection status.

At V_{IH}, allows removal of boot sector protection

At Vacc, program time will be reduced by 40 %.

Program Suspend/Resume

Suspends the program operation to allow a read in another byte

Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

• Please refer to "MBM29DL640E" datasheet in detailed function

- FCRAM™

Power Dissipation

Operating: 20 mA Max
Standby: 100 μA Max
Power Down: 10 μA Max
• Power Down Control by CE2s

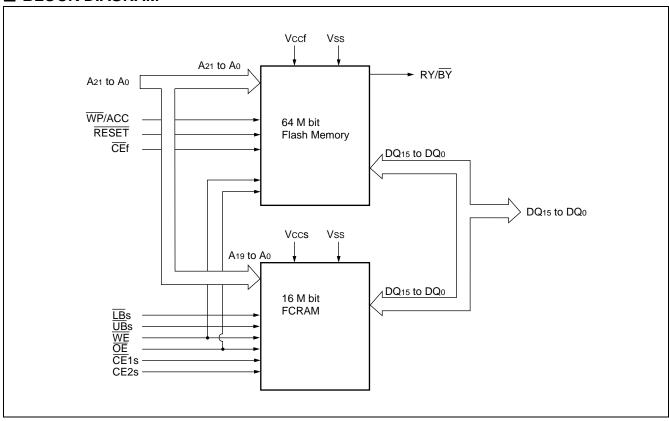
• Byte Write Control : LBs (DQ7-DQ0) , UBs (DQ15-DQ8)

FlexBank™ is a trademark of Fujitsu Limited, Japan.

FCRAMTM™ is a trademark of Fujitsu Limited, Japan.

■ PIN ASSIGNMENT

						FB0 (TOP ' Markin	VIEW)						
Á12 ¹ N.C.	(B12) N.C.	(C12) N.C.									M12 N.C.	N12 N.C.	P12 N.C
Á11) N.C.	(B11) N.C.	(C11) N.C.				(G11) N.C.	H11) N.C.				M11) N.C.	N11) N.C.	(P11) N.C.
Á10) N.C.	(B10) N.C.	(C10) N.C.		E10) A15	(F10) A ₂₁	(G10) N.C.	H10) A16	(J10) Vccf	(K10) Vss		M10 N.C.	N10 N.C.	(P10) N.C.
			(D9) A11	(E9) A12	(F9) A13	(G9) A14	(H9) N.C.	(J9) DQ15	(K9) DQ7	(L9) DQ14			
			(D8) A8	(E8) A19	(F8) A9	(G8) A10	(H8) DQ6	(J8) DQ13	(K8) DQ12	(L8) DQ5			
		(C7) N.C.	(D7) WE	(E7) CE2s	(F7) A20			(J7) DQ4	(K7) Vccs	(L7) N.C.	(M7) N.C.		
		(C6) N.C.	(D6) WP/ACC	(E6) RESET	(F6) RY/BY			(J6) DQ3	(K6) Vccf	(L6) DQ11	(M6) N.C.		
			(D5) LBs	(E5) UBs	(F5) A ₁₈	(G5) A ₁₇	(H5) DQ1	(J5) DQ9	(K5) DQ10	(L5) DQ2			
			(D4) A7	(E4) A6	(F4) A5	(G4) A4	(H4) Vss	(J4) ÖE	(K4) DQo	(L4) DQ8			
(A3) N.C.	(B3) N.C.	(C3) N.C.		(E3) A3	(F3) A2	(G3) A1	(H3) Ao	(J3) CEf	(K3) $\overline{CE}1s$		(M3) N.C.	(N3) N.C.	(P3) N.C
(Â2) N.C.	(B2) N.C.	(C2) N.C.	(D2) N.C.			(G2) N.C.	(H2) N.C.				(M2) N.C.	(N2) N.C.	(P2 N.C
(A1) N.C.	(B1) N.C.	(C1) N.C.									(M1) N.C.	(N1) N.C.	(P1 N.C


(BGA-101P-M01)

■ PIN DESCRIPTION

Pin Configuration

Pin	Function	Input/Output
A ₁₉ to A ₀	Address Inputs (Common)	I
A ₂₁ , A ₂₀	Address Input (Flash)	I
DQ ₁₅ to DQ ₀	Data Inputs/Outputs (Common)	I/O
<u>CE</u> f	Chip Enable (Flash)	I
CE1s	Chip Enable (FCRAM)	I
CE2s	Chip Enable (FCRAM)	I
ŌĒ	Output Enable (Common)	I
WE	Write Enable (Common)	I
RY/ BY	Ready/Busy Outputs (Flash) Open Drain Output	0
UB s	Upper Byte Control (FCRAM)	I
LBs	Lower Byte Control (FCRAM)	I
RESET	Hardware Reset Pin/Sector Protection Unlock (Flash)	I
WP/ACC	Write Protect/Acceleration (Flash)	I
N.C.	No Internal Connection	_
Vss	Device Ground (Common)	Power
Vccf	Device Power Supply (Flash)	Power
Vccs	Device Power Supply (FCRAM)	Power

■ BLOCK DIAGRAM

■ DEVICE BUS OPERATIONS

User Bus Operations

Operation*1, *2	CEf	CE1s	CE2s	ŌĒ	WE	LBs	UB s	DQ7 to DQ0	DQ ₁₅ to DQ ₈	RESET	WP/ ACC*5
Full Standby	Н	Н	Х	Χ	Χ	Х	Х	High-Z	High-Z	Н	Х
Output Disable*3	Н	L	Н	Н	Н	Х	Х	High-Z	High-Z	Н	Х
Output Disable	L	Н	Н	Н	Н	Х	Х	High-Z	High-Z] ''	^
Read from Flash*4	L	Н	Н	L	Н	Х	Х	D оит	D ouт	Н	Х
Write to Flash	L	Н	Н	Н	L	Х	Х	Din	Din	Н	Х
Read from FCRAM*5	Н	L	Н	L	Н	Х	Х	D оит	D ouт	Н	Х
						L	L	Din	Din		
Write to FCRAM	Н	L	Н	Н	L	Н	L	High-Z	Din	Н	Х
						L	Н	Din	High-Z		
Temporary Sector Group Unprotection*6	Х	Х	х	Х	Х	Х	Х	Х	Х	VID	Х
Flash Hardware Reset	Х	Н	Н	Х	Х	Х	Х	High-Z	High-Z	L	Х
Boot Block Sector Write Protection	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
FCRAM Power Down	Χ	L	L	Χ	Χ	Х	Χ	Х	Х	Х	Х

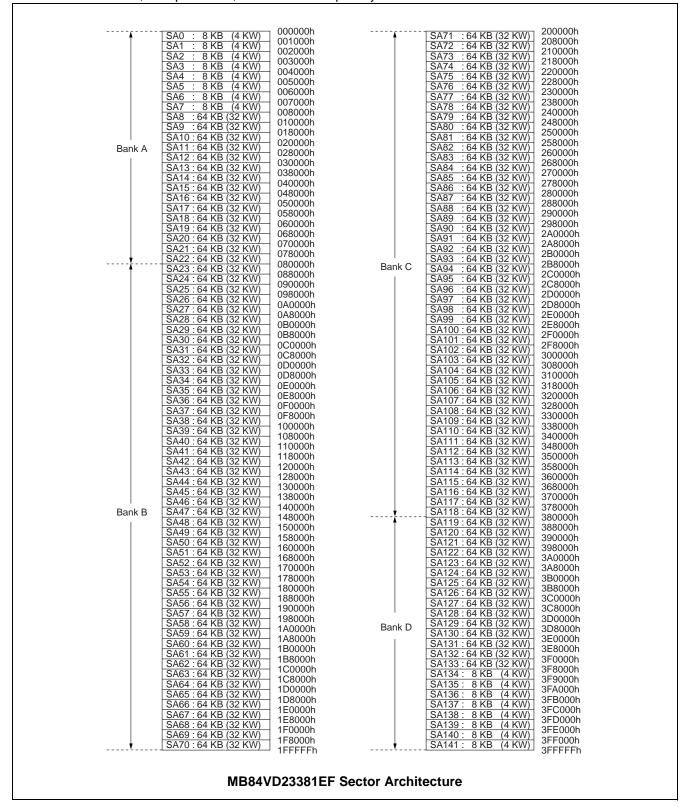
Legend: L = V_{IL}, H = V_{IH}, X = V_{IL} or V_{IH}. See "■ DC CHARACTERISTICS" for voltage levels.

Note : Protect "outermost" 2×8 K bytes (4 words) on both ends of the boot block sectors.

^{*1 :} Other operations not indicated in this column are prohibited.

^{*2 :} Do not apply $\overline{CE}f = V_{IL}$, $\overline{CE}1s = V_{IL}$ and $CE2s = V_{IH}$ all at once.

 $^{^*3}$: FCRAM Output Disable condition should not be kept longer than 1 μ s.


^{*4 :} WE can be V_{IL} if OE is V_{IL}, OE at V_{IH} initiates the write operations.

^{*5 :} FCRAM Byte control at Read operation is not supported.

^{*6 :} Also used for the extended sector group protections.

■ FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY

- Sixteen 4 K words, and one hundred twenty-six 32 K words.
- Individual-sector, multiple sector, or bulk-erase capability.

Example of Virtual Banks Combination

		Bank	c 1			Bank	2	
Bank	Moga	Combination of	Sec	tors	Mega	Combination of	Sec	tors
Splits	Mega bits	Memory Bank			Memory Bank	8 K byte/ 4 K word	64 K byte/ 32 K word	
1	8 M bits	Bank A	8	15	56 Mbits	Bank B Bank C Bank D	8	111
2	16 Mbits	Bank A Bank D	16	30	48 Mbits	Bank B Bank C	0	96
3	24 Mbits	Bank B	0	48	40 Mbits	Bank A Bank C Bank D	16	78
4	32 Mbits	Bank A Bank B	8	63	32 Mbits	Bank C Bank D	8	63

BankA: Address 000000h to 07FFFh BankB: Address 080000h to 1FFFFh BankC: Address 200000h to 37FFFh BankD: Address 380000h to 3FFFFFh

Sector Address Tables

					S	ector /	Addres	SS				
Bank	Sector	Ban	k Add	ress								Address Range
		A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	
	SA0	0	0	0	0	0	0	0	0	0	0	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	0	0	1	001000h to 001FFFh
	SA2	0	0	0	0	0	0	0	0	1	0	002000h to 002FFFh
	SA3	0	0	0	0	0	0	0	0	1	1	003000h to 003FFFh
	SA4	0	0	0	0	0	0	0	1	0	0	004000h to 004FFFh
	SA5	0	0	0	0	0	0	0	1	0	1	005000h to 005FFFh
	SA6	0	0	0	0	0	0	0	1	1	0	006000h to 006FFFh
Bank A	SA7	0	0	0	0	0	0	0	1	1	1	007000h to 007FFFh
Dalik A	SA8	0	0	0	0	0	0	1	Х	Х	Х	008000h to 00FFFFh
	SA9	0	0	0	0	0	1	0	Х	Х	Х	010000h to 017FFFh
	SA10	0	0	0	0	0	1	1	Х	Х	Х	018000h to 01FFFFh
	SA11	0	0	0	0	1	0	0	Х	Х	Х	020000h to 027FFFh
	SA12	0	0	0	0	1	0	1	Х	Х	Х	028000h to 02FFFFh
	SA13	0	0	0	0	1	1	0	Х	Х	Х	030000h to 037FFFh
	SA14	0	0	0	0	1	1	1	Х	Х	Х	038000h to 03FFFFh
	SA15	0	0	0	1	0	0	0	Х	Х	Х	040000h to 047FFFh

					S	ector /	Addres	SS				
Bank	Sector	Ban	k Add	ress								Address Range
		A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	_
	SA16	0	0	0	1	0	0	1	Х	Х	Х	048000h to 04FFFFh
	SA17	0	0	0	1	0	1	0	Х	Х	Х	050000h to 057FFFh
	SA18	0	0	0	1	0	1	1	Х	Х	Х	058000h to 05FFFFh
Bank A	SA19	0	0	0	1	1	0	0	Х	Х	Х	060000h to 067FFFh
	SA20	0	0	0	1	1	0	1	Х	Х	Х	068000h to 06FFFFh
	SA21	0	0	0	1	1	1	0	Х	Х	Х	070000h to 077FFFh
	SA22	0	0	0	1	1	1	1	Х	Х	Х	078000h to 07FFFFh
	SA23	0	0	1	0	0	0	0	Х	Х	Х	080000h to 087FFFh
	SA24	0	0	1	0	0	0	1	Х	Х	Х	088000h to 08FFFFh
	SA25	0	0	1	0	0	1	0	Х	Х	Х	090000h to 097FFFh
	SA26	0	0	1	0	0	1	1	Х	Х	Х	098000h to 09FFFFh
	SA27	0	0	1	0	1	0	0	Х	Х	Х	0A0000h to 0A7FFFh
	SA28	0	0	1	0	1	0	1	Х	Х	Х	0A8000h to 0AFFFFh
	SA29	0	0	1	0	1	1	0	Х	Х	Х	0B0000h to 0B7FFFh
	SA30	0	0	1	0	1	1	1	Х	Х	Х	0B8000h to 0BFFFFh
	SA31	0	0	1	1	0	0	0	Х	Х	Х	0C0000h to 0C7FFFh
	SA32	0	0	1	1	0	0	1	Х	Х	Х	0C8000h to 0CFFFFh
	SA33	0	0	1	1	0	1	0	Х	Х	Х	0D0000h to 0D7FFFh
	SA34	0	0	1	1	0	1	1	Х	Х	Х	0D8000h to 0DFFFFh
Donk D	SA35	0	0	1	1	1	0	0	Х	Х	Х	0E0000h to 0E7FFFh
Bank B	SA36	0	0	1	1	1	0	1	Х	Х	Х	0E8000h to 0EFFFFh
	SA37	0	0	1	1	1	1	0	Х	Х	Х	0F0000h to 0F7FFFh
	SA38	0	0	1	1	1	1	1	Х	Х	Х	0F8000h to 0FFFFFh
	SA39	0	1	0	0	0	0	0	Х	Х	Х	100000h to 107FFFh
	SA40	0	1	0	0	0	0	1	Х	Х	Х	108000h to 10FFFFh
	SA41	0	1	0	0	0	1	0	Х	Х	Х	110000h to 117FFFh
	SA42	0	1	0	0	0	1	1	Х	Х	Х	118000h to 11FFFFh
	SA43	0	1	0	0	1	0	0	Х	Х	Х	120000h to 127FFFh
	SA44	0	1	0	0	1	0	1	Х	Х	Х	128000h to 12FFFFh
	SA45	0	1	0	0	1	1	0	Х	Х	Х	130000h to 137FFFh
	SA46	0	1	0	0	1	1	1	Х	Х	Х	138000h to 13FFFFh
	SA47	0	1	0	1	0	0	0	Х	Х	Х	140000h to 147FFFh
	SA48	0	1	0	1	0	0	1	Х	Х	Х	148000h to 14FFFFh

					S	ector	Addres	SS				
Bank	Sector	Ban	k Add	ress								Address Range
		A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	
	SA49	0	1	0	1	0	1	0	Х	Х	Х	150000h to 157FFFh
	SA50	0	1	0	1	0	1	1	Х	Х	Х	158000h to 15FFFFh
	SA51	0	1	0	1	1	0	0	Х	Х	Х	160000h to 167FFFh
	SA52	0	1	0	1	1	0	1	Х	Х	Х	168000h to 16FFFFh
	SA53	0	1	0	1	1	1	0	Х	Х	Х	170000h to 177FFFh
	SA54	0	1	0	1	1	1	1	Х	Х	Х	178000h to 17FFFFh
	SA55	0	1	1	0	0	0	0	Х	Х	Х	180000h to 187FFFh
	SA56	0	1	1	0	0	0	1	Х	Х	Х	188000h to 18FFFFh
	SA57	0	1	1	0	0	1	0	Х	Х	Х	190000h to 197FFFh
	SA58	0	1	1	0	0	1	1	Х	Х	Х	198000h to 19FFFFh
Donk D	SA59	0	1	1	0	1	0	0	Х	Х	Х	1A0000h to 1A7FFFh
Bank B	SA60	0	1	1	0	1	0	1	Х	Х	Х	1A8000h to 1AFFFFh
	SA61	0	1	1	0	1	1	0	Х	Х	Х	1B0000h to 1B7FFFh
	SA62	0	1	1	0	1	1	1	Х	Х	Х	1B8000h to 1BFFFFh
	SA63	0	1	1	1	0	0	0	Х	Х	Х	1C0000h to 1C7FFFh
	SA64	0	1	1	1	0	0	1	Х	Х	Х	1C8000h to 1CFFFFh
	SA65	0	1	1	1	0	1	0	Х	Х	Х	1D0000h to 1D7FFFh
	SA66	0	1	1	1	0	1	1	Х	Х	Х	1D8000h to 1DFFFFh
	SA67	0	1	1	1	1	0	0	Х	Х	Х	1E0000h to 1E7FFFh
	SA68	0	1	1	1	1	0	1	Х	Х	Х	1E8000h to 1EFFFFh
	SA69	0	1	1	1	1	1	0	Х	Х	Х	1F0000h to 1F7FFFh
	SA70	0	1	1	1	1	1	1	Х	Х	Х	1F8000h to 1FFFFFh
	SA71	1	0	0	0	0	0	0	Х	Х	Х	200000h to 207FFFh
	SA72	1	0	0	0	0	0	1	Х	Х	Х	208000h to 20FFFFh
	SA73	1	0	0	0	0	1	0	Х	Х	Х	210000h to 217FFFh
	SA74	1	0	0	0	0	1	1	Х	Х	Х	218000h to 21FFFFh
	SA75	1	0	0	0	1	0	0	Х	Х	Х	220000h to 227FFFh
Bank C	SA76	1	0	0	0	1	0	1	Х	Х	Х	228000h to 22FFFFh
	SA77	1	0	0	0	1	1	0	Х	Х	Х	230000h to 237FFFh
	SA78	1	0	0	0	1	1	1	Х	Х	Х	238000h to 23FFFFh
	SA79	1	0	0	1	0	0	0	Х	Х	Х	240000h to 247FFFh
	SA80	1	0	0	1	0	0	1	Х	Х	Х	248000h to 24FFFFh
	SA81	1	0	0	1	0	1	0	Х	Х	Х	250000h to 257FFFh

					S	ector	Addres	SS				
Bank	Sector	Ban	k Add	ress								Address Range
		A 21	A ₂₀	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	
	SA82	1	0	0	1	0	1	1	Х	Х	Х	258000h to 25FFFFh
	SA83	1	0	0	1	1	0	0	Х	Х	Х	260000h to 267FFFh
	SA84	1	0	0	1	1	0	1	Х	Х	Х	268000h to 26FFFFh
	SA85	1	0	0	1	1	1	0	Х	Х	Х	270000h to 277FFFh
	SA86	1	0	0	1	1	1	1	Х	Х	Х	278000h to 27FFFFh
	SA87	1	0	1	0	0	0	0	Х	Х	Х	280000h to 287FFFh
	SA88	1	0	1	0	0	0	1	Х	Х	Х	288000h to 28FFFFh
	SA89	1	0	1	0	0	1	0	Х	Х	Х	290000h to 297FFFh
	SA90	1	0	1	0	0	1	1	Х	Х	Х	298000h to 29FFFFh
	SA91	1	0	1	0	1	0	0	Х	Х	Х	2A0000h to 2A7FFFh
	SA92	1	0	1	0	1	0	1	Х	Х	Х	2A8000h to 2AFFFFh
	SA93	1	0	1	0	1	1	0	Х	Х	Х	2B0000h to 2B7FFFh
	SA94	1	0	1	0	1	1	1	Х	Х	Х	2B8000h to 2BFFFFh
	SA95	1	0	1	1	0	0	0	Х	Х	Х	2C0000h to 2C7FFFh
	SA96	1	0	1	1	0	0	1	Х	Х	Х	2C8000h to 2CFFFFh
	SA97	1	0	1	1	0	1	0	Х	Х	Х	2D0000h to 2D7FFFh
Bank C	SA98	1	0	1	1	0	1	1	Х	Х	Х	2D8000h to 2DFFFFh
	SA99	1	0	1	1	1	0	0	Х	Х	Х	2E0000h to 2E7FFFh
	SA100	1	0	1	1	1	0	1	Х	Х	Х	2E8000h to 2EFFFFh
	SA101	1	0	1	1	1	1	0	Х	Х	Х	2F0000h to 2F7FFFh
	SA102	1	0	1	1	1	1	1	Х	Х	Х	2F8000h to 2FFFFFh
	SA103	1	1	0	0	0	0	0	Х	Х	Х	300000h to 307FFFh
	SA104	1	1	0	0	0	0	1	Х	Х	Х	308000h to 30FFFFh
	SA105	1	1	0	0	0	1	0	Х	Х	Х	310000h to 317FFFh
	SA106	1	1	0	0	0	1	1	Х	Х	Х	318000h to 31FFFFh
	SA107	1	1	0	0	1	0	0	Х	Х	Х	320000h to 327FFFh
	SA108	1	1	0	0	1	0	1	Х	Х	Х	328000h to 32FFFFh
	SA109	1	1	0	0	1	1	0	Х	Х	Х	330000h to 337FFFh
	SA110	1	1	0	0	1	1	1	Х	Х	Х	338000h to 33FFFFh
	SA111	1	1	0	1	0	0	0	Х	Х	Х	340000h to 347FFFh
	SA112	1	1	0	1	0	0	1	Х	Х	Х	348000h to 34FFFFh
	SA113	1	1	0	1	0	1	0	Х	Х	Х	350000h to 357FFFh
	SA114	1	1	0	1	0	1	1	Х	Х	Х	358000h to 35FFFFh

Commuc					S	ector /	Addres	SS				
Bank	Sector	Ban	k Add	ress								Address Range
		A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	
	SA115	1	1	0	1	1	0	0	Х	Х	Х	360000h to 367FFFh
Book C	SA116	1	1	0	1	1	0	1	Х	Х	Х	368000h to 36FFFFh
Bank C	SA117	1	1	0	1	1	1	0	Х	Х	Х	370000h to 377FFFh
	SA118	1	1	0	1	1	1	1	Х	Х	Х	378000h to 37FFFFh
	SA119	1	1	1	0	0	0	0	Х	Х	Χ	380000h to 387FFFh
	SA120	1	1	1	0	0	0	1	Х	Х	Χ	388000h to 38FFFFh
	SA121	1	1	1	0	0	1	0	Х	Х	Χ	390000h to 397FFFh
	SA122	1	1	1	0	0	1	1	Х	Х	Χ	398000h to 39FFFFh
	SA123	1	1	1	0	1	0	0	Х	Х	Χ	3A0000h to 3A7FFFh
	SA124	1	1	1	0	1	0	1	Х	Х	Χ	3A8000h to 3AFFFFh
	SA125	1	1	1	0	1	1	0	Х	Х	Χ	3B0000h to 3B7FFFh
	SA126	1	1	1	0	1	1	1	Х	Х	Χ	3B8000h to 3BFFFFh
	SA127	1	1	1	1	0	0	0	Х	Х	Χ	3C0000h to 3C7FFFh
	SA128	1	1	1	1	0	0	1	Х	Х	Χ	3C8000h to 3CFFFFh
	SA129	1	1	1	1	0	1	0	Х	Х	Χ	3D0000h to 3D7FFFh
Bank D	SA130	1	1	1	1	0	1	1	Х	Х	Χ	3D8000h to 3DFFFFh
	SA131	1	1	1	1	1	0	0	Х	Х	Χ	3E0000h to 3E7FFFh
	SA132	1	1	1	1	1	0	1	Х	Х	Χ	3E8000h to 3EFFFFh
	SA133	1	1	1	1	1	1	0	Х	Х	Χ	3F0000h to 3F7FFFh
	SA134	1	1	1	1	1	1	1	0	0	0	3F8000h to 3F8FFFh
	SA135	1	1	1	1	1	1	1	0	0	1	3F9000h to 3F9FFFh
	SA136	1	1	1	1	1	1	1	0	1	0	3FA000h to 3FAFFFh
	SA137	1	1	1	1	1	1	1	0	1	1	3FB000h to 3FBFFFh
	SA138	1	1	1	1	1	1	1	1	0	0	3FC000h to 3FCFFFh
	SA139	1	1	1	1	1	1	1	1	0	1	3FD000h to 3FDFFFh
	SA140	1	1	1	1	1	1	1	1	1	0	3FE000h to 3FEFFFh
	SA141	1	1	1	1	1	1	1	1	1	1	3FF000h to 3FFFFFh

Sector Group Addresses (MB84VD23381EF)

Sector Group	A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	Sectors
SGA0	0	0	0	0	0	0	0	0	0	0	SA0
SGA1	0	0	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	0	0	1	1	1	SA7
						0	0				
SGA8	0	0	0	0	0	0	1	Х	Χ	Х	SA8 to SA10
						1	0				
SGA9	0	0	0	0	1	Х	Х	Х	Х	Х	SA11 to SA14
SGA10	0	0	0	1	0	Х	Х	Х	Х	Х	SA15 to SA18
SGA11	0	0	0	1	1	Х	Х	Х	Х	Х	SA19 to SA22
SGA12	0	0	1	0	0	Х	Х	Х	Х	Х	SA23 to SA26
SGA13	0	0	1	0	1	Х	Х	Х	Х	Х	SA24 to SA30
SGA14	0	0	1	1	0	Х	Х	Х	Х	Х	SA31 to SA34
SGA15	0	0	1	1	1	Х	Х	Х	Х	Х	SA35 to SA38
SGA16	0	1	0	0	0	Х	Х	Х	Х	Х	SA39 to SA42
SGA17	0	1	0	0	1	Х	Х	Х	Х	Х	SA43 to SA46
SGA18	0	1	0	1	0	Х	Х	Х	Х	Х	SA47 to SA50
SGA19	0	1	0	1	1	Х	Х	Х	Х	Х	SA51 to SA54
SGA20	0	1	1	0	0	Χ	Х	Χ	Χ	Х	SA55 to SA58
SGA21	0	1	1	0	1	Х	Х	Х	Х	Х	SA59 to SA62
SGA22	0	1	1	1	0	Χ	Х	Х	Х	Х	SA63 to SA66
SGA23	0	1	1	1	1	Χ	Х	Χ	Χ	Х	SA67 to SA70
SGA24	1	0	0	0	0	Х	Х	Х	Х	Х	SA71 to SA74
SGA25	1	0	0	0	1	Х	Х	Х	Х	Х	SA75 to SA78
SGA26	1	0	0	1	0	Х	Х	Х	Х	Х	SA79 to SA82
SGA27	1	0	0	1	1	Х	Х	Х	Х	Х	SA83 to SA86
SGA28	1	0	1	0	0	Х	Х	Х	Х	Х	SA87 to SA90
SGA29	1	0	1	0	1	Х	Х	Х	Х	Х	SA91 to SA94
SGA30	1	0	1	1	0	Х	Х	Х	Х	Х	SA95 to SA98
SGA31	1	0	1	1	1	Х	Х	Х	Х	Х	SA99 to SA102
SGA32	1	1	0	0	0	Х	Х	Х	Х	Х	SA103 to SA106

(Continued)

Sector Group	A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	Sectors
SGA33	1	1	0	0	1	Х	Х	Х	Х	Х	SA107 to SA110
SGA34	1	1	0	1	0	Х	Х	Х	Х	Х	SA111 to SA114
SGA35	1	1	0	1	1	Х	Х	Х	Х	Х	SA115 to SA118
SGA36	1	1	1	0	0	Х	Х	Х	Х	Х	SA119 to SA122
SGA37	1	1	1	0	1	Х	Х	Х	Х	Х	SA123 to SA126
SGA38	1	1	1	1	0	Х	Х	Х	Х	Х	SA127 to SA130
						0	0				
SGA39	1	1	1	1	1	0	1	Х	Х	Х	SA131 to SA133
						1	0				
SGA40	1	1	1	1	1	1	1	0	0	0	SA134
SGA41	1	1	1	1	1	1	1	0	0	1	SA135
SGA42	1	1	1	1	1	1	1	0	1	0	SA136
SGA43	1	1	1	1	1	1	1	0	1	1	SA137
SGA44	1	1	1	1	1	1	1	1	0	0	SA138
SGA45	1	1	1	1	1	1	1	1	0	1	SA139
SGA46	1	1	1	1	1	1	1	1	1	0	SA140
SGA47	1	1	1	1	1	1	1	1	1	1	SA141

Flash Memory Autoselect Codes

Туре	A ₂₁ to A ₁₂	A 6	Аз	A ₂	A 1	Ao	Code (HEX)
Manufacture's Code	BA*2	VIL	VIL	VIL	VIL	VIL	04h
Device Code	BA*2	VIL	VIL	VIL	VIL	ViH	227Eh
Extended Device Code	BA*2	VIL	ViH	ViH	ViH	VIL	2202h
Extended Device Code	BA*2	VIL	ViH	ViH	ViH	ViH	2201h
Sector Group Protection	Sector Group Addresses	VıL	VIL	VIL	ViH	VIL	01h*1

^{*1 :} Outputs 01h at protected sector group addresses and outputs 00h at unprotected sector group addresses.

^{*2 :} BA is Bank Address which is needed only in Command Autoselect mode.

Flash Memory Command Definitions

Command Sequence	Bus Write Cycles	First Write			nd Bus Cycle	Third Write C		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle	
-	Req'd	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data
Read/Reset*1	1	XXXh	F0h	_	_	_	_	_	_	_	_	_	_
Read/Reset*1	3	555h	AAh	2AAh	55h	555h	F0h	RA	RD	_	_	_	_
Autoselect	3	555h	AAh	2AAh	55h	(BA) 555h	90h	_		_		_	
Program	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	_	_	_	_
Chip Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h
Sector Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h
Sector Erase Suspend	1	ВА	B0h	_	_		_	_	_	_	_	_	_
Sector Erase Resume	1	ВА	30h	_	_	_		_		_			_
Program Sus- pend	1	ВА	B0h	_	_	_		_		_			_
Program Resume	1	ВА	30h	_	_		—	_	_	_	_	_	_
Set to Fast Mode	3	555h	AAh	2AAh	55h	555h	20h	_	_	_	_	_	_
Fast Program *2	2	XXXh	A0h	PA	PD			_	_	_	_	_	
Reset from Fast Mode*2	2	ВА	90h	XXXh	F0h *6		_	_		_		_	_
Extended Sector Group Protection *3	4	XXXh	60h	SPA	60h	SPA	40h	SPA	SD		_		_
Query *4	1	(BA) 55h	98h	_	_		_	_		_		_	_
Hi-ROM Entry	3	555h	AAh	2AAh	55h	555h	88h	_	_	_	_	_	_
Hi-ROM Program *5	4	555h	AAh	2AAh	55h	555h	A0h	(HRA) PA	PD	_			_
Hi-ROM Exit *5	4	555h	AAh	2AAh	55h	(HRBA) 555h	90h	XXXh	00h				_

- *1 : Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
- *2 : This command is valid during Fast Mode.
- *3 : This command is valid while $\overline{RESET} = V_{ID}$.
- *4: The valid addresses are A₆ to A₀.
- *5: This command is valid during Hi-ROM mode.
- *6 : The data "00h" is also acceptable.
- Notes: Address bits A_{21} to $A_{11} = X =$ "H" or "L" for all address commands except for Program Address (PA), Sector Address (SA), and Bank Address (BA).
 - Bus operations are defined in "User Bus Operation" in "■ DEVICE BUS OPERATIONS".
 - RA = Address of the memory location to be read.
 - PA = Address of the memory location to be programmed.

 Addresses are latched on the falling edge of the write pulse.
 - SA = Address of the sector to be erased. The combination of A₂₁, A₂₀, A₁₉, A₁₈, A₁₇, A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂ will uniquely select any sector.
 - BA = Bank address (A₂₁ to A₁₉)
 - RD = Data read from location RA during read operation.
 - PD = Data to be programmed at location PA. Data is latched on the rising edge of write pulse.
 - SPA = Sector group address to be protected. Set sector group address (SGA) and (A₆, A₃, A₂, A₁, A₀) = (0, 0, 0, 1, 0).
 - SD = Sector group protection verify data. Output 01h at protected sector group addresses and output 00h at unprotected sector group addresses.
 - HRA = Address of the Hi-ROM area (000000h to 00007Fh)
 - HRBA = Bank Address of the Hi-ROM area (A21 = A20 = A19 = VIL)
 - The system should generate the following address patterns: 555h or 2AAh to addresses (A10 to A0).
 - Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
 - The Command combinations not described in "Flash Memory Command Definitions" table are illegal.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Sumb al	Rat	l lni4	
Parameter	Symbol	Min	Max	Unit
Storage Temperature	Tstg	–55	+125	°C
Ambient Temperature with Power Applied	TA	-30	+85	°C
Voltage with Respect to Ground All pins*1	Vin	-0.3	Vccf + 0.3	V
Voltage with Respect to Ground All pins	Vout	-0.3	Vccs + 0.3	V
Vccf Supply*1, *2	Vccf	-0.2	+3.6	V
Vccs Supply*1	Vccs	-0.2	+3.3	V
RESET*1, *3	Vin	-0.5	+13.0	V
WP/ACC*1, *4	Vacc	-0.5	+10.5	V

^{*1 :} Voltage is defined on the basis of Vss = GND = 0 V.

- *3 : Minimum DC input voltage on $\overline{\text{RESET}}$ pin is -0.5 V. During voltage transitions, $\overline{\text{RESET}}$ pin may undershoot Vss to -2.0 V for periods of up to 20 ns.
 - Voltage difference between input and supply voltage (V_{IN} - V_{CC} f or V_{CC} s) does not exceed 9.0 V. Maximum DC input voltage on \overline{RESET} pin is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns.
- *4 : Minimum DC input voltage on WP/ACC pin is -0.5 V. During voltage transitions, WP/ACC pin may undershoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC input voltage on WP/ACC pin is +10.5 V which may overshoot to +10.5 V for periods of up to 20 ns, When Vccf is applied.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Val	Unit	
	Symbol	Min	Max	Onit
Ambient Temperature	TA	-30	+85	°C
Vccf Supply Voltages	Vccf	+2.7	+3.3	V
Vccs Supply Voltages	Vccs	+2.7	+3.0	V

Notes: • Voltage is defined on the basis of Vss = GND = 0 V.

- Operating ranges define those limits between which the functionality of the device is guaranteed.
- Vccs can be 2.4 V minimum during standby state.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

^{*2 :} Minimum DC voltage on input or I/O pins is -0.3 V. During voltage transitions, input or I/O pins may undershoot Vss to -1.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is Vccf + 0.3 V or Vccs + 0.3 V. During voltage transitions, input or I/O pins may overshoot to Vccf + 1.0 V or Vccs + 1.0 V for periods of up to 5 ns.

■ DC CHARACTERISTICS

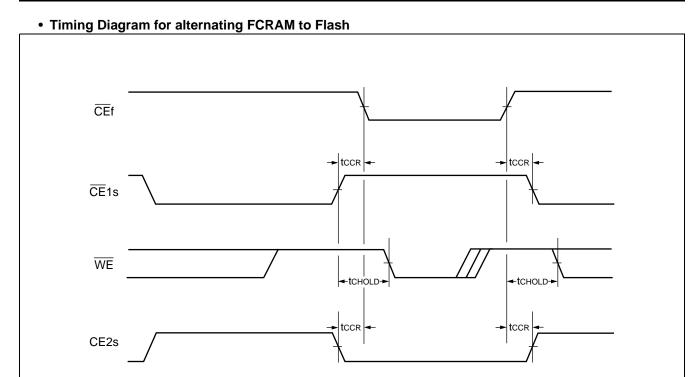
Danamatan	Cumahad	Took Condi	Test Conditions				Unit
Parameter	Symbol	lest Cond	itions	Min	Тур	Max	Unit
Input Leakage Current	lц	V _{IN} = V _{SS} to V _{CC} , V _{CC} = V _{CC} Max		-1.0		+1.0	μΑ
Output Leakage Current	lьо	Vout = Vss to Vcc, Vc	c = Vcc Max	-1.0	_	+1.0	μΑ
RESET Inputs Leakage Current	I шт	$Vcc = Vcc Max, \overline{RES}$	ET = 12.5 V	_		35	μΑ
Flash Vcc Active Current	lcc ₁ f	$\overline{CE}f = V_{IL},$	tcycle = 5 MHz	_		18	mA
(Read) *1	ICCII	OE = V _{IH}	tcycle = 1 MHz	_		7	mA
Flash Vcc Active Current (Program/Erase) *2	lcc2f	$\overline{CE}f = V_{IL}, \overline{OE} = V_{IH}$		_		40	mA
Flash Vcc Active Current (Read-While-Program) *5	lcc3f	$\overline{CE}f = V_{IL}, \overline{OE} = V_{IH}$		_		58	mA
Flash Vcc Active Current (Read-While-Erase) *5	Icc4f	$\overline{CE}f = V_{IL}, \overline{OE} = V_{IH}$		_		58	mA
Flash Vcc Active Current (Erase-Suspend-Program)	Icc5f	$\overline{CE}f = V_{IL}, \overline{OE} = V_{IH}$		_		40	mA
		Vccs = Vccs Max,	trc/twc = Min	_	15	20	
FCRAM Vcc Active Current	Icc1S	$ \overline{CE1s} = V_{IL}, CE2s = V_{IH}, V_{IN} = V_{IH} \text{ or } V_{IL}, \\ I_{OUT} = 0 \text{ mA} $	trc/twc = Max	_	2.5	3.0	mA
Flash Vcc Standby Current	I _{SB1} f			_	1	5	μΑ
Flash Vcc Standby Current (RESET)	Is _{B2} f	Vccf = Vcc Max, RES V, WP/Acc = Vccf ± 0		_	1	5	μΑ
Flash Vcc Current (Automatic Sleep Mode) *3	Isвзf			_	1	5	μА
FCRAM Vcc Standby Current	I _{SB} S	$\begin{aligned} &\text{Vccs} = \text{Vccs Max}, \overline{\text{CE}} 1\text{s} \geq \text{Vccs} - 0.2 \\ &\text{V, CE2s} \geq \text{Vccs} - 0.2\text{V}, \\ &\text{Vin} \leq 0.2 \text{ V or Vccs} - 0.2 \text{ V} \end{aligned}$		_	80	100	μΑ
FCRAM Vcc Power Down Current	IPDS	$\label{eq:Vccs} \begin{array}{l} \text{Vccs} = \text{Vccs Max,} \\ \underline{\text{V}_{\text{IN}}} \geq \text{Vccf} - 0.2 \; \text{V or V}_{\text{IN}} \leq 0.2 \; \text{V} \\ \overline{\text{CE}} \text{1s} \leq 0.2 \text{V, CE2s} \leq 0.2 \text{V,} \\ \text{Iout} = 0 \; \text{mA} \end{array}$		_	_	10	μА

Doromotor	Cumbal	Took Cons		Unit			
Parameter	Symbol Test Conditions			Min	Тур	Max	Unit
Input Low Level	Vıl	_		-0.3		0.4	V
Input High Level	ViH		Flash	2.0		Vcc + 0.3	V
Input riigii Level	VIH	_ [FCRAM	2.3	_		V
Voltage for Autoselect and Sector Protection (RESET) *4	VID	_		11.5	_	12.5	٧
Voltage for WP/ACC Sector Protection/Unprotection and Program Acceleration	Vacc	_		8.5	9.0	9.5	V
FCRAM Output Low Level	Vol	Vccs = Vccs Min,	I _{OL} = 1.0 mA	_		0.4	V
FCRAM Output High Level	Vон	Vccs = Vccs Min, Iон = -0.5 mA		1.8		_	V
Flash Output Low Level	Vol	Vccf = Vccf Min, IoL = 4.0 mA		_		0.45	V
Flash Output High Level	Vон	Vccf = Vccf Min, IoH = -0.1 mA		Vccf - 0.4			V
Low Vcc Lock-Out Voltage	Vlko	_		2.3		2.5	V

^{*1 :} The loc current listed includes both the DC operating current and the frequency dependent component.

^{*2 :} Icc active while Embedded Algorithm (program or erase) is in progress.

^{*3 :} Automatic sleep mode enables the low power mode when the address remains stable for 150 ns.


^{*4 :} Applicable for only Vcc applying.

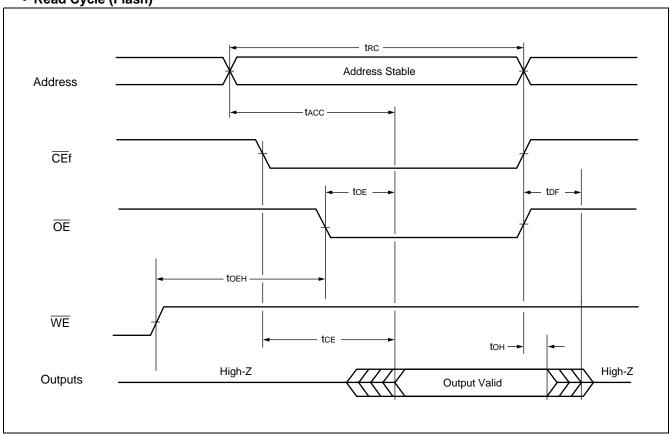
^{*5 :} Embedded Algorithm (program or erase) is in progress. (@5 MHz)

■ AC CHARACTERISTICS

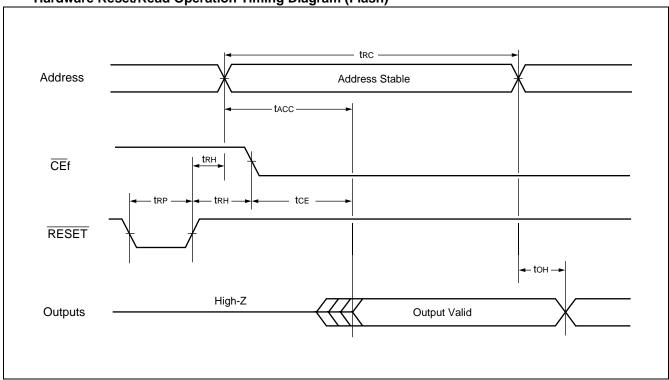
• CE Timing

Parameter	Syn	nbol	Test Setup	Value	Unit
Farameter	JEDEC	Standard	rest Setup	Min	Oilit
CE Recover Time	_	t ccr	_	0	ns
CE Hold Time	_	t chold		3	ns

• Read Only Operations Characteristics (Flash)


Parameter	Syn	nbol	Test	-85		Unit
Parameter	JEDEC	Standard	Setup	Min	Max	Unit
Read Cycle Time	t avav	t RC		85		ns
Address to Output Delay	tavqv	t ACC	$\overline{CE}f = V_{IL}$ $\overline{OE} = V_{IL}$	_	85	ns
Chip Enable to Output Delay	t ELQV	t ce	OE = VIL	_	85	ns
Output Enable to Output Delay	t GLQV	t oe	_	_	35	ns
Chip Enable to Output High-Z	t ehqz	t DF		_	30	ns
Output Enable to Output High-Z	t GHQZ	t DF	_	_	30	ns
Output Hold Time From Addresses, CEf or OE, Whichever Occurs First	taxqx	tон	_	0	_	ns
RESET Pin Low to Read Mode	_	t READY	_	_	20	μs
CEf Switching Low or High	_	telfl telfh	_	_	5	ns

Test Conditions: Output Load: 1 TTL gate and 30 pF

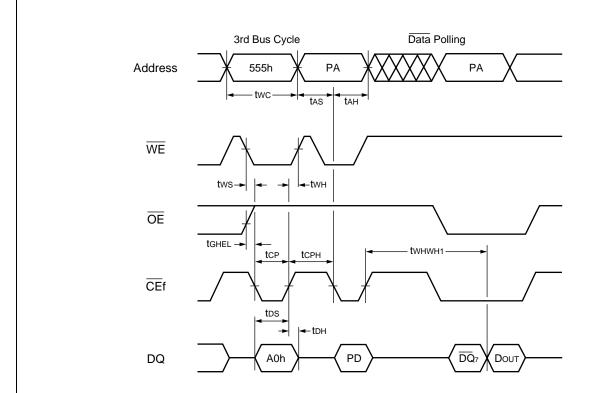

Input rise and fall times: 5 ns Input pulse levels: 0.0 V or Vccf Timing measurement reference level

Input: $0.5 \times Vccf$ Output: $0.5 \times Vccf$

• Read Cycle (Flash)

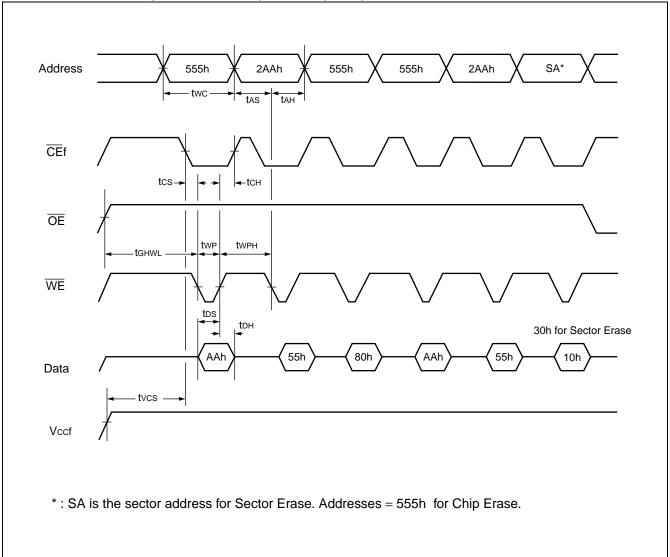
• Hardware Reset/Read Operation Timing Diagram (Flash)

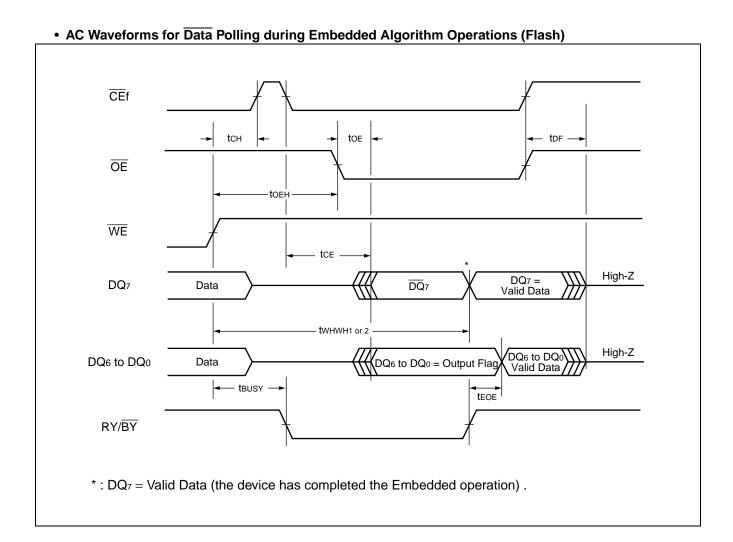
• Erase/Program Operations (Flash)


Erase/Program Operation	no (r idon)				Value		
Parar	neter	Syr	nbol		-85		Unit
		JEDEC	Standard	Min	Тур	Max	
Write Cycle Time		tavav	twc	85	_	_	ns
Address Setup Time (WE to A	t avwl	t as	0	_	_	ns	
Address Setup Time to CEf Lo	w During Toggle Bit Polling	_	t aso	15	_	_	ns
Address Hold Time (WE to Ad	dr.)	twlax	t ah	45	_	_	ns
Address Hold Time from CEf of Polling	or OE High During Toggle Bit	_	t aht	0	_	_	ns
Data Setup Time		t dvwh	t os	35	_		ns
Data Hold Time		twhox	tон	0	_	_	ns
Output Enable Hold Time	Read		4	0	_	_	ns
Output Enable Hold Time	Toggle and Data Polling	— tоєн		10	_		ns
CEf High During Toggle Bit Po	olling	_	t CEPH	20	_		ns
OE High During Toggle Bit Po	lling	_	t oeph	20	_	_	ns
Read Recover Time Before W	rite (OE to CEf)	t GHEL	t GHEL	0	_	_	ns
Read Recover Time Before W	rite (OE to WE)	t GHWL	t GHWL	0	_	_	ns
WE Setup Time (CEf to WE)			tws	0	_	_	ns
CEf Setup Time (WE to CEf)		t elwl	t cs	0	_	_	ns
WE Hold Time (CEf to WE)		t ehwh	twн	0	_	_	ns
CEf Hold Time (WE to CEf)		twheh	tсн	0	_	_	ns
Write Pulse Width		twlwh	t wp	35	_	_	ns
CEf Pulse Width		t ELEH	t cp	35	_	_	ns
Write Pulse Width High		twhwl	t wph	30	_	_	ns
CEf Pulse Width High		t ehel	t cph	30	_	_	ns
Word Programming Operation		twhwh1	twнwн1		16	_	μs
Sector Erase Operation*1		t whwh2	twhwh2		1	_	s
Vccf Setup Time		_	tvcs	50	_	_	μs
Voltage Transition Time*2		_	t vlht	4	_	_	μs
Rise Time to V _{ID} *2		_	tvidr	500	_	_	ns
Rise Time to Vacc		_	tvaccr	500	_	_	ns
Recover Time from RY/BY			t RB	0	_	_	ns
RESET Pulse Width			t RP	500	_	_	ns
Delay Time from Embedded Output Enable			t eoe			85	ns
RESET High Level Period Before Read			t RH	200	_		ns
Program/Erase Valid to RY/BY	Ż Delay	_	t BUSY	_	_	90	ns
Erase Time-out Time*3		_	t TOW	50	_		μs
Erase Suspend Transition Tim	e*4	_	t spd	_	_	20	μs

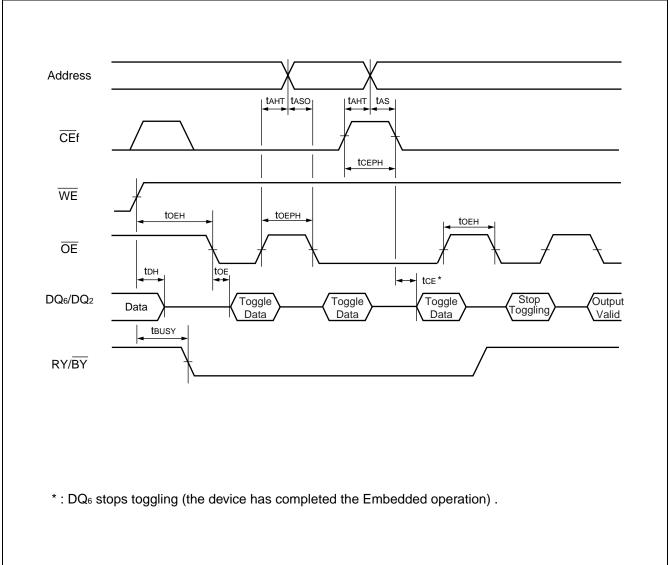
- *1: Does not include the preprogramming time.
- *2: For Sector Group Protection Operation.
- *3 : The time between writes must be less than " t_{TOW} " otherwise that command will not be accepted and erasure will start. A time-out or " t_{TOW} " from the rising edge of last \overline{CE} for \overline{WE} whichever happens first will initiate the execution of the Sector Erase command (s) .
- *4: When the Erase Suspend command is written during the Sector Erase operation, the device will take maximum of "tspp" to suspend the erase operation.

• Write Cycle (WE control) (Flash)

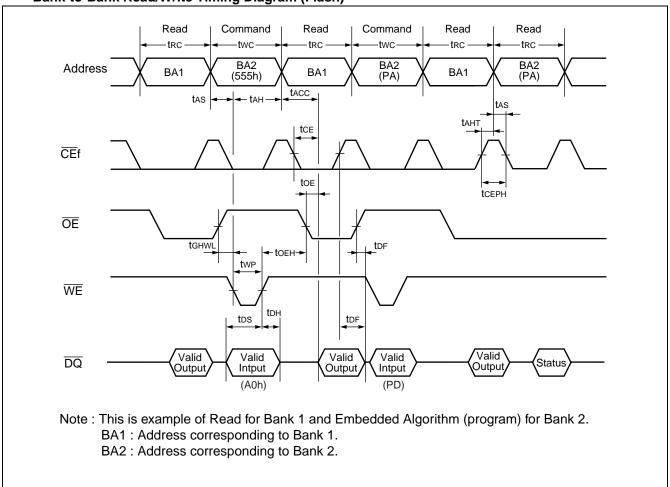

• Write Cycle (CEf control) (Flash)

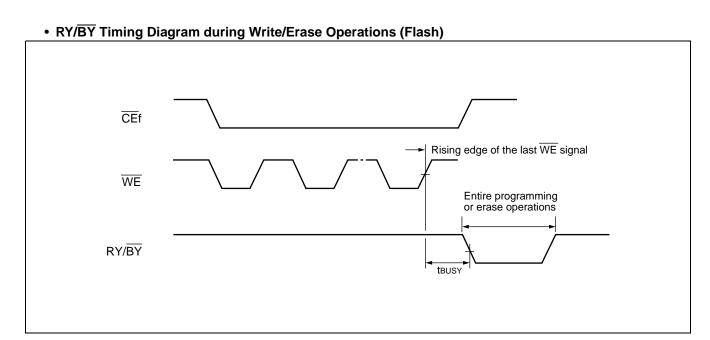


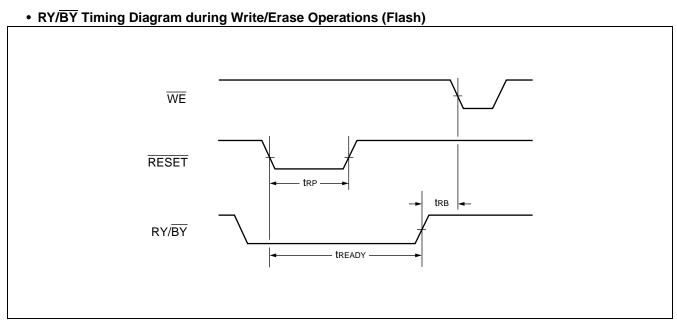
Notes: • PA is address of the memory location to be programmed.


- PD is data to be programmed at word address.
- \overline{DQ}_7 is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates the last two bus cycles out of four bus cycle sequence.

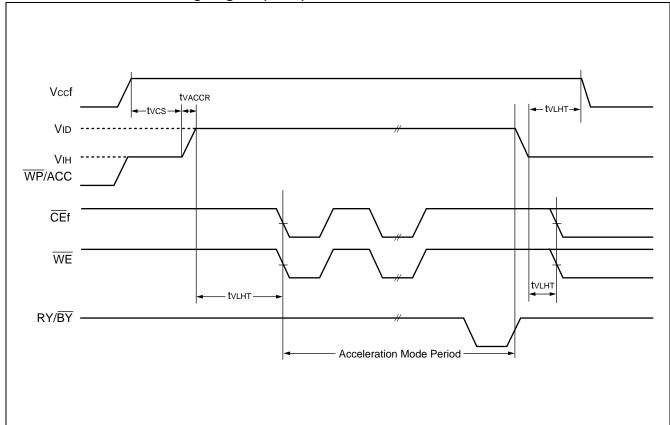
• AC Waveforms Chip/Sector Erase Operations (Flash)

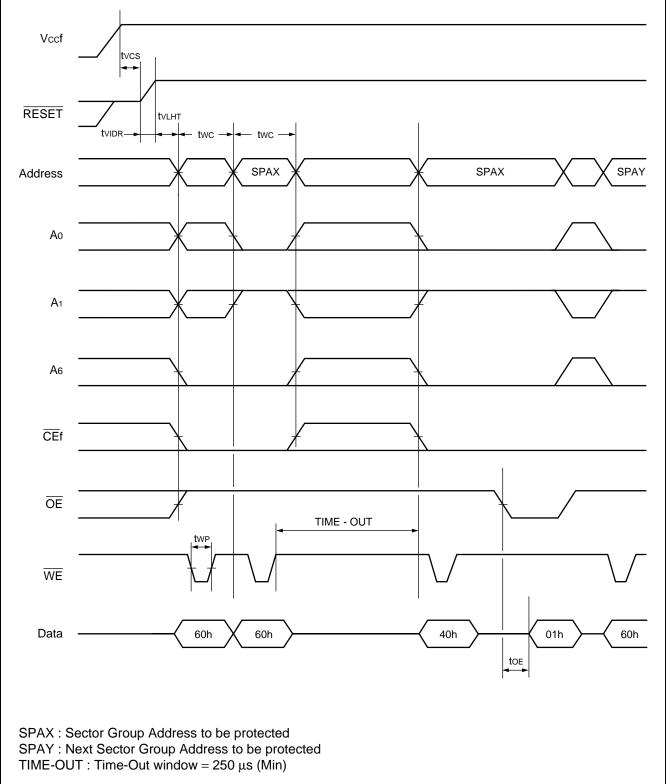






• Bank-to-Bank Read/Write Timing Diagram (Flash)



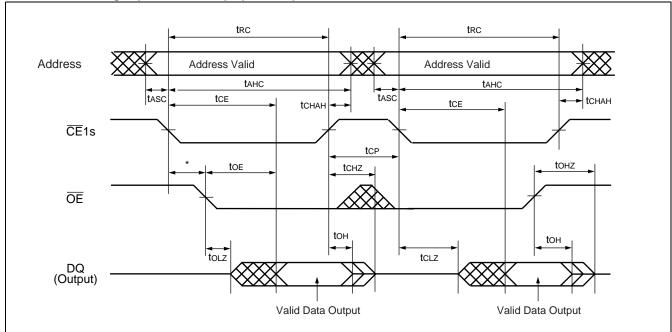

• Temporary Sector Group Unprotection (Flash)

Extended Sector Group Protection (Flash)

• READ Cycle (FCRAM)

Parameter	Cumbal	Va	lue	Unit	Damarka
Farameter	Symbol	Min	Max	Onit	Remarks
Read Cycle Time	t RC	90	1000	ns	*1
Address Setup Time at CE1s High to Low Transition	t asc	-5	_	ns	
Address Hold Time during CE1s Low	t AHC	90	_	ns	*2
Address Access Time	t AA	_	85	ns	*3
Chip Enable Access Time	t ce	_	85	ns	*3
Output Enable Access Time	t oe	_	60	ns	*3
Output Data Hold Time	t он	5	_	ns	*3
CE1s Low to Output Low-Z	t cLZ	10	_	ns	*4
OE Low to Output Low-Z	tolz	0	_	ns	*4
CE1s High to Output High-Z	t cHZ	_	25	ns	*4
OE High to Output High-Z	tонz	_	15	ns	*4
CE1s High Pulse Width	t cp	10	_	ns	
CE1s High to Address Hold Time	t chah	-5	_	ns	*5
Address Invalid Time during Read (CE1s = Low)	t AX		10	ns	

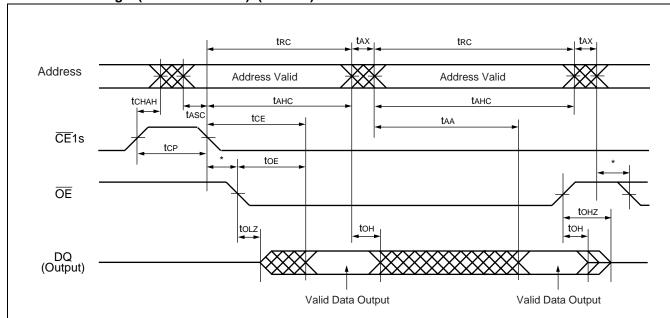
^{*1 :} Maximum value is a reference and is applied to Output Disable condition.


^{*2 :} tahc must be satisfied every address valid state after tax during $\overline{CE}1s = Low$.

^{*3 :} Output load is 30 pF.

^{*4 :} Output load is 5 pF.

^{*5 :} If actual address change before $\overline{\text{CE}}$ 1s High transition is earlier than tchah (min) , tcp ($\overline{\text{CE}}$ 1s High period) should be kept at least trc (min) period.


• READ Timing 1 (CE1s Control) (FCRAM)

Note : CE2s and $\overline{\text{WE}}$ must be HIGH for entire read cycle.

 * : Output Disable condition before new Read data valid should not be kept longer than 1 μs .

• READ Timing 2 (Address Access) (FCRAM)

Note: CE2s and $\overline{\text{WE}}$ must be HIGH for entire read cycle.

*: Output Disable condition before new Read data valid should not be kept longer than 1 μs.

• WRITE Cycle (FCRAM)

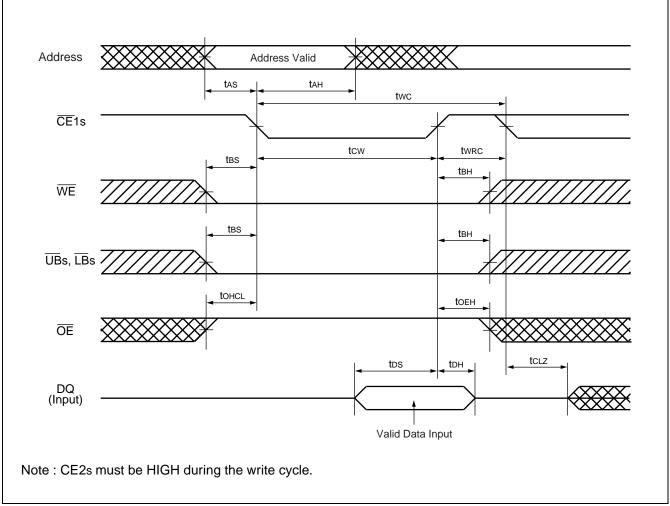
Parameter	Symbol	Va	lue	Unit	Re-	
Parameter	Symbol	Min	Max	Unit	marks	
Write Cycle Time	twc	90	1000	ns	*1	
Address Setup Time	t AS	0	_	ns		
Address Hold Time	t ah	40	_	ns		
CE1s Write Setup Time	t cs	0	1000	ns	*2	
CE1s Write Hold Time	tсн	0	1000	ns	*2	
WE, LBs, UBs Setup Time	t BS	0	_	ns		
WE, LBs, UBs Hold Time	t вн	0	_	ns		
OE Setup Time	toes	0	_	ns		
OE Hold Time	tоен	15	_	ns		
OE High to CE1s Low Setup Time	toнcl	-5	_	ns	*3	
OE High to Address Hold Time	tонан	0	_	ns	*4	
CE1s Write Pulse Width	tcw	60	_	ns	*5, *6	
WE Write Pulse Width	twp	60	_	ns	*5, *6	
CE1s Write Recovery Time	twrc	15	_	ns	*7	
WE Write Recovery Time	twr	15	1000	ns	*2, *7	
Data Setup Time	t os	20	_	ns		
Data Hold Time	t DH	10	_	ns		
CE1s Low to Output in Low-Z	tclz	10	_	ns	*8	
OE Low to Output in Low-Z	tolz	0		ns	*8	

^{*1 :} Maximum value is a reference and applied to Output Disable condition.

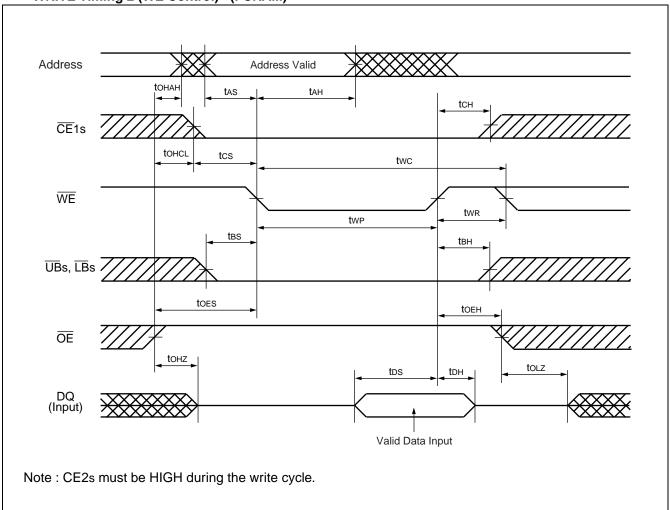
^{*2 :} Maximum value is applied to Output Disable condition.

^{*3 :} tohcl (min) must be satisfied if read operation is not performed prior to write operation. In case \overline{OE} is disabled after tohcl (min), \overline{WE} Low must be asserted after trc (min) from \overline{CE} 1s Low.

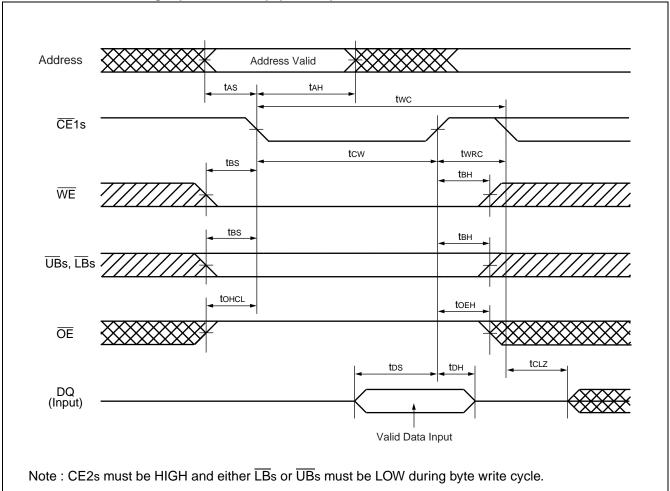
^{*4 :} Applicable if CE1s stays Low after read operation.

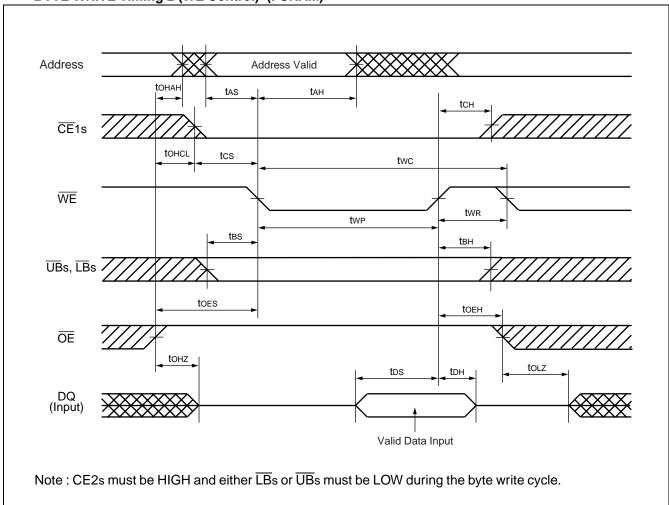

^{*5:} twhp (max) must be satisfied for the high pulse noise.

^{*6 :} tcw and twp are applied if write operation is initiated by $\overline{\text{CE}}1\text{s}$ and $\overline{\text{WE}}$, respectively.


^{*7 :} twrc and twr are applied if write pulse is terminated by $\overline{\text{CE}}1\text{s}$ and $\overline{\text{WE}}$, respectively.

^{*8 :} Output load is 5 pF.

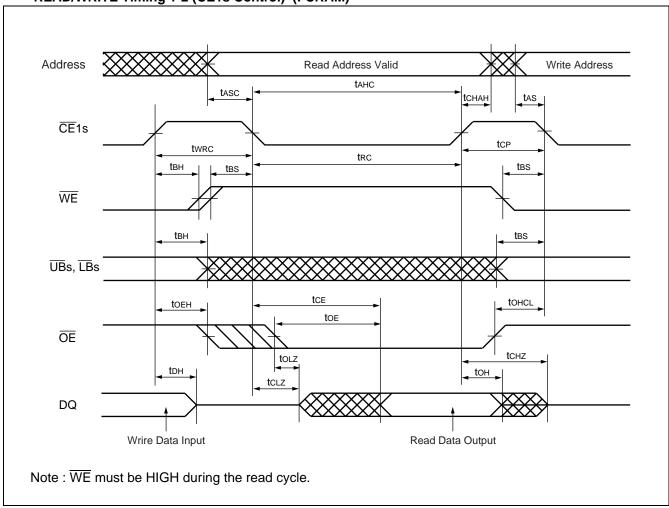

• WRITE Timing 1 (CE1s Control) (FCRAM)


• WRITE Timing 2 (WE Control) (FCRAM)

• BYTE WRITE Timing 1 (CE1s Control) (FCRAM)

• BYTE WRITE Timing 2 (WE Control) (FCRAM)

• READ/WRITE Timing 1-1 (CE1s Control) (FCRAM) Don't Care Address Valid Address tasc **t**AH tAS **t**CHAH twc CE1s twrc tcw tBS tвн WE tBS tвн $\overline{UB}s$, $\overline{LB}s$ tohcl toeh $\overline{\mathsf{OE}}$ tchz tos tDH tclz


Write Data Input

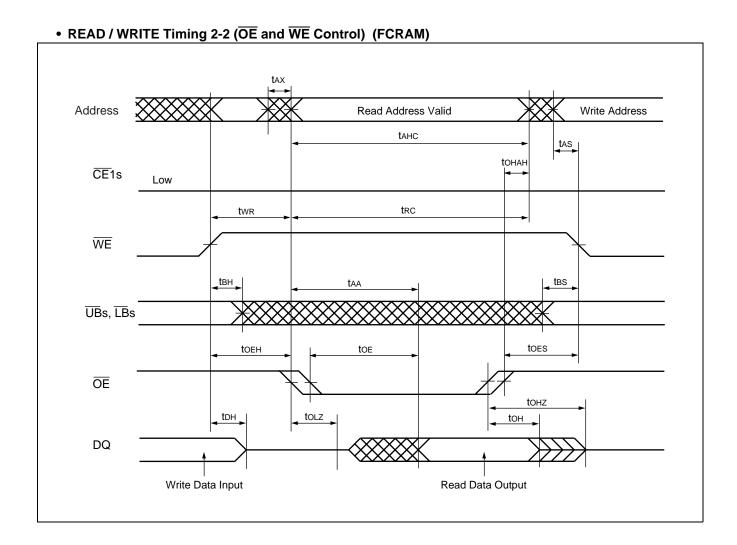
Note : Write address is edge trigger of either $\overline{\text{CE}}1\text{s}$ or $\overline{\text{WE}}$ falling edge.

Read Data Output

DQ

• READ/WRITE Timing 1-2 (CE1s Control) (FCRAM)

Address Valid Don't Care Address **t**OHAH tан twc CE1s Low twp $\overline{\text{WE}}$ tBS tвн UBs, LBs / toes **t**OEH ŌĒ tonz tos tDH tolz DQ Read Data Output Write Data Input


• READ/WRITE Timing 2-1 (OE and WE Control) (FCRAM)

Note : $\overline{\text{CE}}1\text{s}$ can be tied to LOW for $\overline{\text{WE}}$ and $\overline{\text{OE}}$ controlled operation.

When $\overline{CE}1s$ is tied to LOW, output is exclusively controlled by \overline{OE} and read address can be issued after

WE is brought to High.

WARNING: The read address following write operation must be changed if $\overline{\text{CE}}1s$ stays LOW.

• POWER DOWN PARAMETER (FCRAM)

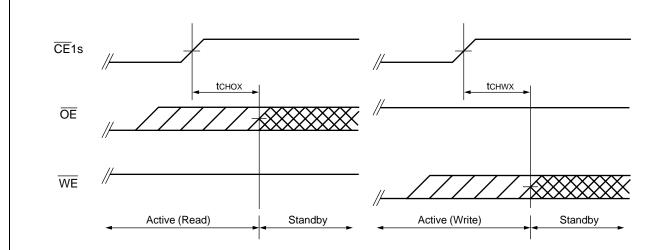
Parameter	Symbol	Value		Unit	Note
Farameter		Min	Max	Onit	Note
CE2s Low Setup Time for Power Down Entry	t csp	100	_	ns	
CE1s Low Pulse Width during Power Down Mode	t CPP	100		ns	
CE2s Low Hold Time after Power Down Exit $(\overline{CE}1s = High)$	t _{C2LP}	350		μs	*1
CE1s High Hold Time following CE2s High after Power Down Exit	t _{C1HP}	300	_	μs	*2

^{*1 :} Requires at least two dummy read cycles.

• OTHER TIMING PARAMETER (FCRAM)

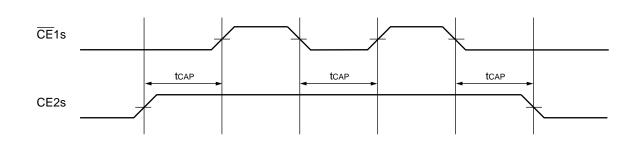
Parameter	Symbol	Value		Unit	Note
Farameter		Min	Max	Offic	Note
CE1s High to OE Invalid Time for Standby Entry	t cнох	10	_	ns	
CE1s High to WE Invalid Time for Standby Entry		20	_	ns	
CE1s and CE2s Active Glitch Pulse Width	t CAP		5	ns	*1
CE1s or WE High Glitch Pulse Width during Write Cycle	t whp		5	ns	*2
CE2s Low Hold Time after Power-up	t _{C2LP}	350		μs	*3
CE1s High Hold Time following CE2s High after Power-up	t C1HP	300	_	μs	*4

^{*1 :} Active means a condition where $\overline{CE}1s = V_{IL}$ and $CE2s = V_{IH}$.

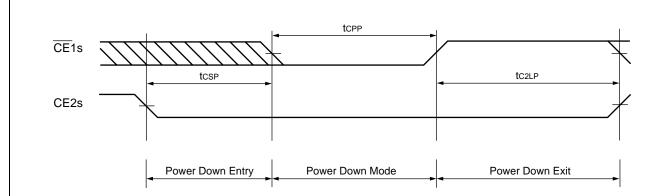

^{*2 :} Required when dummy read cycles are not performed.

^{*2 :} Specified to the one time high pulse width during tow or two and excluded 10 ns from beginning and end of the write cycle.

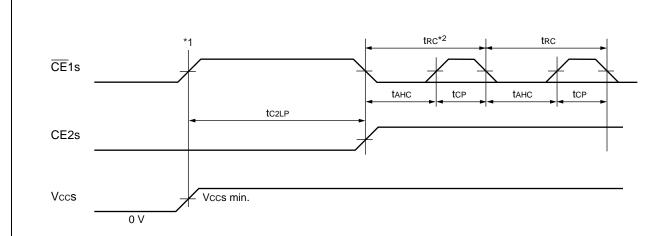
^{*3 :} Requires at least two dummy read cycles.


^{*4 :} Required when dummy read cycles are not performed.

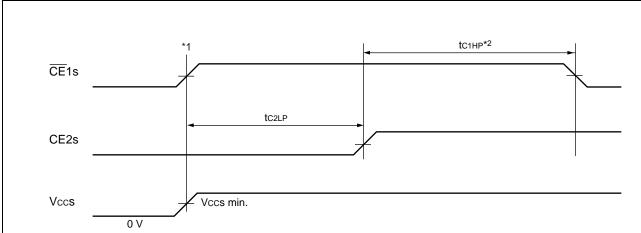
• Standby Entry Timing after Read or Write (FCRAM)


Note: Both t_{CHOX} and t_{CHWX} define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes t_{RC} (min) period from either last address transition or $\overline{CE}1s$ Low to High transition.

• Chip Enable Timing (FCRAM)


Note: tcap is not applicable CE2s HIGH pulse width while $\overline{\text{CE}}1\text{s}$ stays LOW and CE2s should not use as a read and write timing control signal in stead of $\overline{\text{CE}}1\text{s}$.

• POWER DOWN Timing (FCRAM)


Note: A minimum of two dummy read cycle must be performed prior to regular read and write operation after tc2LR Otherwise $\overline{\text{CE}}$ 1s must kept High for tc1HP period after tc2LR

• Power-Up Timing 1 (FCRAM)

- *1 : It is recommended $\overline{CE}1s$ to track V_{CCS} . The t_{C2LP} specifies from valid state of $\overline{CE}1s = High$ and CE2s = Low after V_{CCS} reaches specified minimum level.
- *2 : 2A minimum of two dummy read cycle must be performed prior to regular read and write operation after tc2LR

Power-Up Timing 2 (No dummy cycle) (FCRAM)

- *1 : It is recommended $\overline{CE}1s$ to track Vccs. The tc2LP specifies from valid state of $\overline{CE}1s$ = High and CE2s = Low after Vccs reaches specified minimum level.
- *2: No dummy read cycle is required if tothe is satisfied.

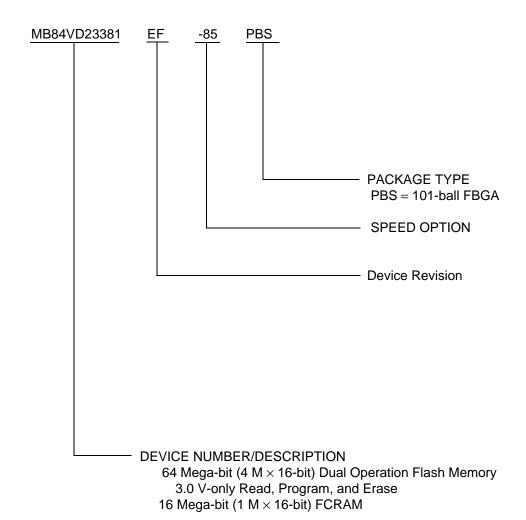
■ ERASE AND PROGRAMMING PERFORMANCE (FLASH)

Parameter	Limits			Unit	Comments	
Parameter	Min Typ Max		Oilit			
Sector Erase Time	_	1	10	S	Excludes programming time prior to erasure	
Word Programming Time	_	16	360	μs	Excludes system-level overhead	
Chip Programming Time	_	_	200	S	Excludes system-level overhead	
Erase/Program Cycle	100,000	_	_	cycle	_	

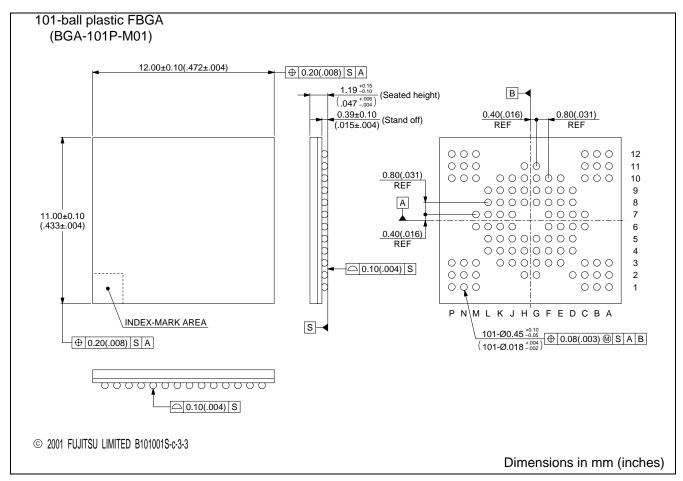
■ PACKAGE PIN CAPACITANCE

Parameter	Symbol	Test Setup	Value		Unit
			Тур	Max	Onit
Input Capacitance	Cin	VIN = 0 V	11	14	pF
Output Capacitance	Соит	Vout = 0 V	12	16	pF
Control Pin Capacitance	C _{IN2}	V _{IN} = 0 V	14	16	pF
WP/ACC Pin Capacitance	Сімз	V _{IN} = 0 V	21.5	26	pF

Note: Test conditions $T_A = +25$ °C, f = 1.0 MHz


■ HANDLING OF PACKAGE

Please handle this package carefully since the sides of package are created with acute angles.


CAUTION

- The high voltage (V_{ID}) cannot be applied to address pins and control pins except RESET. Exception is when autoselect and Sector Group Protection function are used. Then the high voltage (V_{ID}) can be applied to RESET.
- Without the high voltage (V_{ID}) , Sector Group Protection can be achieved by using "Extended Sector Group Protection" command.

■ ORDERING INFORMATION

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Marketing Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan

Tel: +81-3-5322-3353 Fax: +81-3-5322-3386 http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 2545 North First Street

3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH

Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fme.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0204

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite)

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.