Microprocessor SPARClite **CMOS**

Peripherals for SPARClite

MB86943B

■ DESCRIPTION

The MB86943B is a bus bridge that allows high-speed [data] transfers between the host processor (SPARClite* Family) and the PCI-bus. This bridge chip enables SPARClite (host CPU) access in program mode (direct master operation) to devices on a PCI bus. Also, the SPARClite host can invoke the built-in DMA function on the bridge chip to allow access to devices on the PCI bus. Access from the PCI side to devices on the SPARClite bus (SL bus) is enabled by using the bridge chip slave operation function. The DMA function can be started up from the SL-bus side. The MB86943B supports Door Bell functions and Mail Box function as well.

*: SPARClite is a trademark of SPARC International, Inc. in the United States. Fujitsu Microelectronics, Inc. has been granted permission to use the trademark.


■ FEATURES

Key hardware features

- Functions for SL-bus to PCI slave (possible to work in program mode)
- Functions for PCI-bus to SL-bus slave (possible to work in program mode)
- Two-channel DMA functions (between the SL-bus and the PCI-bus)
- Functions to access the SL-bus's external areas (ECS0 through ECS2)
- Interrupt communication functions between the SL-bus and the PCI-bus by use of Door Bell and Mail Box.

(Continued)

■ PACKAGE

(Continued)

Bus bridge features

The host SPARClite can access the PCI-bus's target by use of the chip's PCI-bus direct master functions (Direct Master Operation). Also the PCI-bus's other masters can access the SPARClite bus by use of the chip's PCI-bus direct slave functions (Direct Slave Operation). These functions allow individual bus masters to mutually access the PCI-bus area and SL-bus area. With the Direct Master or the Direct Slave in operation, data are transferred via the 128-byte data buffer, so that a high-speed burst transfer can be achieved.

Direct Master Operation

Allows the SL-bus processor to directly access the PCI space.

Allows high-speed burst transfer via the relevant data buffer.

• Direct Slave Operation

Allows the PCI-bus master to directly access the SL-bus space.

Allows high-speed burst transfer via the relevant data buffer.

Provided with two independent DMA channels

- Carries out 32/64-bit transfer.
- Possible to work DMA control from the SL-bus side.
- Bidirectional DMA functions by use of the bidirectional data buffer having a capacity of 128 bytes.
- High-speed data chain mode by use of the built-in registers.

High Speed Data Chain Mode Using Internal Registers.

Because DMA descriptors are stored in internal registers there is no need to fetch descriptors from external memory, enabling high speed DMA operations in descriptor chain mode.

Functions to access the SL-bus's external areas

• Pins ECS0 through ECS2 (External Chip Select) allow the access to the SL-bus's external I/Os, the memory via the bridge chip.

Door Bell functions

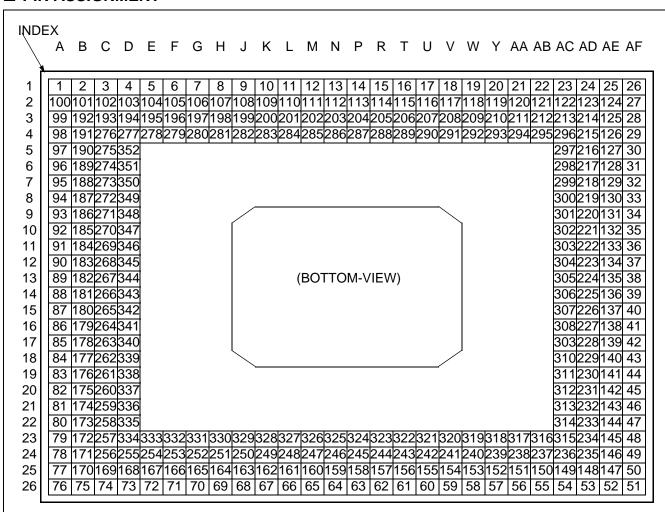
The functions notify bidirectional interrupts; SL-bus \rightarrow PCI-bus and PCI-bus \rightarrow SL-bus.

Mail Box functions

Provided with eight registers possible to perform PCI write/SL read and eight registers possible to perform SL write/PCI read, so that messages can be communicated from both sides. A means is also provided to interrupt from the writing side to the reading side at same time.

The PCI-bus and the SL-bus can operate asynchronously by use of different clocks.

Data bus widths


SL-bus 64/32 bits. PCI-bus 64/32 bits.

Address bus widths

SL-bus 32 bits (fixed) ADR<1:0> ignored, ASI<3:0> supported.

PCI-bus 64/32 bits.

■ PIN ASSIGNMENT

Signals (259 pins); 248 pins of them already used

V _{DD3} (32 pins)	282,	301,	320,	339,	196,	108,	20,	23		
linternal LOGIC,	287,	306,	325,	344,	299,	131,	45,	48		
Power-supply for I/Os	291,	310,	329,	348,	54,	154,	70,	73		
	296,	315,	334,	277	79,	177,	270,	98		
V _{DD5} (21 pins)	281,	300,	319,	338,	194,	198,	112,	15,	209,	212
Power-supply for PCI	286,	305,	324,	343,	215,	272,	275			
I/Os	292,	311,	330,	349						
Vss (38 pins)	1,	26,	51,	76,	195,	6,	285,	288,	210,	121
linternal LOGIC,	279,	298,	317,	336,	216,	129,	39,	312		
GND common to I/Os	284,	303,	322,	341,	55,	64,	331,			
	289,	308,	327,	346,	80,	89,	186,	273,	190	
	294,	313,	332,	351						
VPDP (1 pin)	92		Wher	n moui	nted, c	onnec	ted to	Vss		
A feed-through current	feed-through current prevention cell									
OVSENS (1 pin)	93 When mounted, connected to Vss									
A power-sensing cell										

	G Pin mber	Pin name	At-		G Pin mber	Pin name	At-		G Pin mber	Pin	At-
FJ	JEDEC		tribute	FJ	JEDEC		tribute	FJ	JEDEC	name	tribute
1	A1	Vss	Vss	284	L4	Vss	Vss	286	N4	V _{DD5}	V _{DD5}
279	F4	Vss	Vss	109	K2	AD[08]	PCI I/O	19	W1	AD[57]	PCI I/O
282	J4	V _{DD3}	V _{DD3}	10	K1	AD[10]	PCI I/O	290	U4	AD[60]	PCI I/O
2	B1	AD[19]	PCI I/O	201	L3	C/BE[0]#	PCI I/O	117	V2	AD[56]	PCI I/O
101	B2	AD[18]	PCI I/O	110	L2	AD[04]	PCI I/O	207	U3	AD[62]	PCI I/O
103	D2	FRAME#	PCI I/O	202	МЗ	AD[06]	PCI I/O	20	Y1	V _{DD3}	V _{DD3}
102	C2	AD[17]	PCI I/O	11	L1	AD[07]	PCI I/O	208	V3	AD[58]	PCI I/O
3	C1	C/BE[2]#	PCI I/O	287	P4	V _{DD3}	V _{DD3}	21	AA1	AD[53]	PCI I/O
194	D3	V _{DD5}	V _{DD5}	12	M1	AD[05]	PCI I/O	118	W2	AD[54]	PCI I/O
195	E3	Vss	Vss	285	M4	Vss	Vss	210	Y3	Vss	Vss
278	E4	TRDY#	PCI I/O	112	N2	V _{DD5}	V _{DD5}	209	W3	V _{DD5}	V _{DD5}
4	D1	IRDY#	PCI I/O	111	M2	AD[00]	PCI I/O	22	AB1	AD[51]	PCI I/O
104	E2	(N.C.)	N.C.	13	N1	AD[03]	PCI I/O	119	Y2	AD[55]	PCI I/O
105	F2	STOP#	PCI I/O	203	N3	AD[02]	PCI I/O	293	Y4	AD[52]	PCI I/O
196	F3	V _{DD3}	V _{DD3}	14	P1	AD[01]	PCI I/O	120	AA2	AD[49]	PCI I/O
5	E1	DEVSEL#	PCI I/O	204	P3	REQ64#	PCI I/O	211	AA3	AD[50]	PCI I/O
280	G4	AD[15]	PCI I/O	113	P2	ACK64#	PCI I/O	23	AC1	V _{DD3}	V _{DD3}
106	G2	SERR#	PCI I/O	114	R2	C/BE[6]#	PCI I/O	121	AB2	Vss	Vss
197	G3	PAR	PCI I/O	15	R1	V _{DD5}	V _{DD5}	212	AB3	V _{DD5}	V _{DD5}
198	НЗ	V _{DD5}	V _{DD5}	288	R4	Vss	Vss	24	AD1	AD[45]	PCI I/O
6	F1	Vss	Vss	16	T1	C/BE[4]#	PCI I/O	295	AB4	AD[48]	PCI I/O
107	H2	AD[12]	PCI I/O	291	V4	V _{DD3}	V _{DD3}	213	AC3	AD[46]	PCI I/O
7	G1	PERR#	PCI I/O	115	T2	PAR64	PCI I/O	122	AC2	AD[47]	PCI I/O
199	J3	AD[13]	PCI I/O	205	R3	C/BE[7]#	PCI I/O	123	AD2	AD[42]	PCI I/O
108	J2	V _{DD3}	V _{DD3}	17	U1	AD[63]	PCI I/O	25	AE1	AD[43]	PCI I/O
200	K3	AD[11]	PCI I/O	206	Т3	C/BE[5]#	PCI I/O	214	AD3	AD[44]	PCI I/O
8	H1	C/BE[1]#	PCI I/O	18	V1	AD[59]	PCI I/O	292	W4	V _{DD5}	V _{DD5}
283	K4	AD[09]	PCI I/O	116	U2	AD[61]	PCI I/O	294	AA4	Vss	Vss
9	J1	AD[14]	PCI I/O	289	T4	Vss	Vss	296	AC4	V _{DD3}	V _{DD3}
281	H4	V _{DD5}	V _{DD5}		•				•		•

V_{DD3} : A 3.3 V power-supply pin (for supplying I/O power and internal power)

V_{DD5}: Either a 5 V power-supply pin or 3.3 V power-supply pin (for supplying power to PCI I/Os) N.C.: Use this in an open state.

	(G Pin umber	Pin name	At-		G Pin mber	Pin name	At- trib-		G Pin Imber	Pin name	At-
FJ	JEDEC		tribute	FJ	JEDEC		ute	FJ	JEDEC		tribute
26	AF1	Vss	Vss	303	AC11	Vss	Vss	305	AC13	V _{DD5}	V _{DD5}
298	AC6	Vss	Vss	132	AE10	DACK1#	0	44	AF19	ADR<23>	I/O*
301	AC9	V _{DD3}	V _{DD3}	35	AF10	EOP1#	0	309	AC17	ADR<24>	I/O*
27	AF2	AD[41]	PCI I/O	222	AD11	(N.C.)	N.C.	140	AE18	ADR<25>	I/O*
124	AE2	AD[40]	PCI I/O	133	AE11	ADR<2>	I/O*	228	AD17	ADR<26>	I/O*
126	AE4	AD[36]	PCI I/O	223	AD12	ADR<3>	I/O*	45	AF20	V _{DD3}	V _{DD3}
125	AE3	AD[38]	PCI I/O	36	AF11	ADR<4>	I/O*	229	AD18	ADR<27>	I/O*
28	AF3	AD[39]	PCI I/O	306	AC14	V _{DD3}	V_{DD3}	46	AF21	ADR<28>	I/O*
215	AD4	V _{DD5}	V _{DD5}	37	AF12	ADR<5>	I/O*	141	AE19	ADR<29>	I/O*
216	AD5	Vss	Vss	304	AC12	ADR<6>	I/O*	231	AD20	ADR<30>	I/O*
297	AC5	AD[34]	PCI I/O	135	AE13	ADR<7>	I/O*	230	AD19	ADR<31>	I/O*
29	AF4	AD[37]	PCI I/O	134	AE12	ADR<8>	I/O*	47	AF22	(N.C.)	N.C.
127	AE5	AD[33]	PCI I/O	38	AF13	ADR<9>	I/O*	142	AE20	BMREQ#	I/O*
128	AE6	AD[35]	PCI I/O	224	AD13	ADR<10>	I/O*	312	AC20	Vss	Vss
217	AD6	AD[32]	PCI I/O	39	AF14	Vss	Vss	143	AE21	BMACK#	I/O*
30	AF5	(N.C.)	N.C.	225	AD14	ADR<11>	I/O*	232	AD21	ERROR#	l*
299	AC7	V _{DD3}	V _{DD3}	136	AE14	ADR<12>	I/O*	48	AF23	V _{DD3}	V _{DD3}
129	AE7	Vss	Vss	137	AE15	ADR<13>	I/O*	144	AE22	RGSL#	*
218	AD7	EAS#	0	40	AF15	ADR<14>	I/O*	233	AD22	BMINH#	l*
219	AD8	ECS0#	0	307	AC15	ADR<15>	I/O*	49	AF24	WINDOWS#	l*
31	AF6	ECS1#	0	41	AF16	ADR<16>	I/O*	314	AC22	ASI<0>	l*
130	AE8	ECS2#	0	310	AC18	V _{DD3}	V_{DD3}	234	AD23	ASI<1>	 *
32	AF7	EBMREQ#	0	138	AE16	ADR<17>	I/O*	145	AE23	ASI<2>	 *
220	AD9	EBMACK#	 *	226	AD15	ADR<18>	I/O*	146	AE24	ASI<3>	l*
131	AE9	V _{DD3}	V _{DD3}	42	AF17	ADR<19>	I/O*	50	AF25	SRSTO#	t/s O
221	AD10	DRQ0#	 *	227	AD16	ADR<20>	I/O*	235	AD24	SRSTI#	 *
33	AF8	DACK0#	0	43	AF18	ADR<21>	I/O*	311	AC19	V _{DD5}	V _{DD5}
302	AC10	EOP0#	0	139	AE17	ADR<22>	I/O*	313	AC21	Vss	Vss
34	AF9	DRQ1#	*	308	AC16	Vss	Vss	315	AC23	V _{DD3}	V _{DD3}
300	AC8	V _{DD5}	V _{DD5}								

^{*:} With a pull-up resistor

V_{DD3} : A 3.3 V power-supply pin (for supplying I/O power and internal power)
V_{DD5} : Either a 5 V power-supply pin or 3.3 V power-supply pin (for supplying power to PCI I/Os)

N.C. : Use this in an open state.

	(G Pin ımber	Pin name	At-		G Pin mber	Pin	At-	PKG Pi	n number	Pin	At-
FJ	JEDEC		tribute	FJ	JEDEC	name	tribute	FJ	JEDEC	name	tribute
51	AF26	Vss	Vss	322	T23	Vss	Vss	324	P23	V _{DD5}	V _{DD5}
317	AA23	Vss	Vss	155	U25	D<0>	I/O*	69	H26	D<22>	I/O*
320	V23	V _{DD3}	V _{DD3}	60	U26	D<1>	I/O*	328	K23	D<23>	I/O*
52	AE26	CLKIN	I	243	T24	D<2>	I/O*	163	J25	DP5	I/O*
147	AE25	TMS	I *	156	T25	D<3>	I/O*	249	K24	D<24>	I/O*
149	AC25	TRST#	I *	244	R24	D<4>	I/O*	70	G26	V _{DD3}	V _{DD3}
148	AD25	TCK	I *	61	T26	D<5>	I/O*	250	J24	D<25>	I/O*
53	AD26	TDO	0	325	N23	V _{DD3}	V _{DD3}	71	F26	D<26>	I/O*
236	AC24	TDI	l*	62	R26	D<6>	I/O*	164	H25	D<27>	I/O*
237	AB24	BREQ#	0	323	R23	D<7>	I/O*	252	G24	D<28>	I/O*
316	AB23	BGRNT#	I *	158	P25	DP7	I/O*	251	H24	D<29>	I/O*
54	AC26	V _{DD3}	V _{DD3}	157	R25	D<8>	I/O*	72	E26	D<30>	I/O*
150	AB25	BRIN#	 *	63	P26	D<9>	I/O*	165	G25	D<31>	I/O*
151	AA25	BGOUT#	0	245	P24	D<10>	I/O*	331	G23	Vss	Vss
238	AA24	PBREQ#	I *	64	N26	Vss	Vss	166	F25	DP4	I/O*
55	AB26	Vss	Vss	246	N24	D<11>	I/O*	253	F24	D<32>	I/O*
318	Y23	BE0#	I/O*	159	N25	D<12>	I/O*	73	D26	V _{DD3}	V _{DD3}
152	Y25	BE1#	I/O*	160	M25	D<13>	I/O*	167	E25	D<33>	I/O*
239	Y24	BE2#	I/O*	65	M26	D<14>	I/O*	254	E24	D<34>	I/O*
240	W24	BE3#	I/O*	326	M23	D<15>	I/O*	74	C26	D<35>	I/O*
56	AA26	BE4#	I/O*	66	L26	DP6	I/O*	333	E23	D<36>	I/O*
153	W25	BE5#	I/O*	329	J23	V _{DD3}	V _{DD3}	255	D24	D<37>	I/O*
57	Y26	BE6#	I/O*	161	L25	D<16>	I/O*	168	D25	D<38>	I/O*
241	V24	BE7#	I/O*	247	M24	D<17>	I/O*	169	C25	D<39>	I/O*
154	V25	V _{DD3}	V _{DD3}	67	K26	D<18>	I/O*	75	B26	DP3	I/O*
242	U24	(N.C.)	N.C.	248	L24	D<19>	I/O*	256	C24	D<40>	I/O*
58	W26	RDWR#	I/O*	68	J26	D<20>	I/O*	330	H23	V _{DD5}	V _{DD5}
321	U23	AS#	I/O*	162	K25	D<21>	I/O*	332	F23	Vss	Vss
59	V26	(N.C.)	N.C.	327	L23	Vss	Vss	334	D23	V _{DD3}	V _{DD3}
319	W23	V _{DD5}	V _{DD5}								

^{*:} With a pull-up resistor

V_{DD3} : A 3.3 V power-supply pin (for supplying I/O power and internal power)
V_{DD5} : Either a 5 V power-supply pin or 3.3 V power-supply pin (for supplying power to PCI I/Os)

N.C.: Use this in an open state.

	(G Pin ımber	Pin name	At-		G Pin ımber	Pin name	At-		G Pin ımber	Pin	At-
FJ	JEDEC		tribute	FJ	JEDEC		tribute	FJ	JEDEC	name	tribute
76	A26	Vss	Vss	341	D16	Vss	Vss	343	D14	V _{DD5}	V _{DD5}
336	D21	Vss	Vss	178	B17	D<62>	I/O*	94	A8	REQ#	PCI O
339	D18	V _{DD3}	V _{DD3}	85	A17	D<63>	I/O*	347	D10	PRST#	PCII
77	A25	D<41>	I/O*	264	C16	DP0	I/O*	186	В9	Vss	Vss
170	B25	D<42>	I/O*	179	B16	(N.C.)	N.C.	270	C10	V _{DD3}	V _{DD3}
172	B23	D<43>	I/O*	265	C15	READY#	t/s O	95	A7	AD[29]	PCI I/O
171	B24	D<44>	I/O*	86	A16	READYIN#	I	271	C9	GNT#	PCII
78	A24	D<45>	I/O*	344	D13	V _{DD3}	V _{DD3}	96	A6	AD[27]	PCI I/O
257	C23	D<46>	I/O*	87	A15	RDYOUT#	I	187	B8	AD[30]	PCI I/O
258	C22	D<47>	I/O*	342	D15	MEXC#	t/s O	273	C7	Vss	Vss
335	D22	DP2	I/O*	181	B14	IRQ#	0	272	C8	V _{DD5}	V_{DD5}
79	A23	V _{DD3}	V _{DD3}	180	B15	(N.C.)	N.C.	97	A5	AD[25]	PCI I/O
173	B22	D<48>	I/O*	88	A14	HOST	 *	188	B7	AD[31]	PCI I/O
174	B21	D<49>	I/O*	266	C14	SLD64	*	350	D7	AD[28]	PCI I/O
259	C21	D<50>	I/O*	89	A13	Vss	Vss	189	В6	AD[26]	PCI I/O
80	A22	Vss	Vss	267	C13	BST8	l*	274	C6	AD[24]	PCI I/O
337	D20	D<51>	I/O*	182	B13	(N.C.)	N.C.	98	A4	V _{DD3}	V _{DD3}
175	B20	D<52>	I/O*	183	B12	TEST0	0	190	B5	Vss	Vss
260	C20	D<53>	I/O*	90	A12	TEST1	0	275	C5	V _{DD5}	V _{DD5}
261	C19	D<54>	I/O*	345	D12	TEST2	0	99	А3	AD[23]	PCI I/O
81	A21	D<55>	I/O*	91	A11	TEST3	0	352	D5	IDSEL	PCI I
176	B19	DP1	I/O*	348	D9	V _{DD3}	V _{DD3}	276	C4	AD[20]	PCI I/O
82	A20	D<56>	I/O*	184	B11	(N.C.)	N.C.	191	B4	C/BE[3]#	PCI I/O
262	C18	D<57>	I/O*	268	C12	(N.C.)	N.C.	192	В3	AD[22]	PCI I/O
177	B18	V _{DD3}	V _{DD3}	92	A10	VPDP	VPDP	100	A2	AD[21]	PCI I/O
263	C17	D<58>	I/O*	269	C11	INTA#	PCI O	193	C3	AD[16]	PCI I/O
83	A19	D<59>	I/O*	93	A9	OVSENSE	OVSNS	349	D8	V _{DD5}	V _{DD5}
340	D17	D<60>	I/O*	185	B10	CLK	PCII	351	D6	Vss	Vss
84	A18	D<61>	I/O*	346	D11	Vss	Vss	277	D4	V _{DD3}	V _{DD3}
338	D19	V _{DD5}	V _{DD5}								

^{*:} With a pull-up resistor

V_{DD3}: A 3.3 V power-supply pin (for supplying I/O power and internal power)

V_{DD5}: Either a 5 V power-supply pin or 3.3 V power-supply pin (for supplying power to PCI I/Os)

OVSENSE: A power-sensing pin. Usually fixed to L.

TEST0 to TEST3: TEST pins. Use them in an open state.

N.C.: Use this in an open state. VPDP: A TEST pin. Usually fixed to L.

■ PIN DESCRIPTION

1. PCI Bus interface (89 pins))

Function class	Pin name	1/0	Number of pins	Description
	CLK	I	1	A pin for the PCI-bus clock input. The PCI-bus interface operates in synchronization with this clock, up to 33 MHz.
System	PRST#	I	1	A pin for the PCI system reset input. A signal for PCI system reset. This signal, when asserted, initializes everything within the companion chip.
	AD[31:00]	t/s I/O	32	Pins for the address data signals. The 32 lower-order bits of PCI-bus address data.
Address data bus	C/BE[3:0]#	t/s I/O	4	Pins for the command byte enable signals for the PCI-bus. In address phase, these pins indicate a PCI-bus command. In data phase, these pins indicate the effective byte lane of AD[31:00].
	PAR	t/s I/O	1	A pin for the PCI-bus parity signal. Indicates the even parity of AD[31:00] and C/BE[3:0]#, 36 signals in total.
	FRAME#	s/t/s I/O	1	A pin for the frame signal. This signal indicates that the PCI bus cycle is being executed. This pin outputs the master (initiator) signal on the PCI bus. When the MB86943B is the initiator, this pin is used in output state.
	IRDY#	s/t/s I/O	1	A pin for the initiator ready signal. Indicates that the PCI-bus master (initiator) is ready to complete a bus cycle.
Bus control	TRDY#	s/t/s I/O	1	A pin for the target ready signal. Indicates that the accessed PCI target (resource) is ready to complete a bus cycle.
	DEVSEL#	s/t/s I/O	1	A pin for the device select signal. Indicates that a PCI target decodes the address on the AD line to respond to a bus cycle.
	STOP#	s/t/s I/O	1	A pin for the stop signal. Indicates that the accessed PCI target is waiting for the bus cycle to finish before the PCI-bus master finishes access in whole or in part.
Bus control	IDSEL	ı	1	A pin for the initialize device select signal input. The signal line AD[31:11] is used as the IDSEL signal line for each PCI resource. For this purpose, AD[31:11] are all used as an input pin for any resource. The signal lines AD[31:11] are driven by the PCI-bus master so as to select a specific PCI resource configuration space.
Arbitration control	REQ#	t/s O	1	A pin for the request signal output. A signal that conveys that the companion chip requests the PCI-bus right. With the PRST# signal asserted, this pin is put to a tristate when involved in a point-to-point signal.

(Continued)

Function class	Pin name	I/O	Number of pins	Description
Arbitration control	GNT#	_	1	A pin for the grant signal input. A signal that notifies that the companion chip gained the PCI-bus from the PCI central arbiter in response to the request for the PCI-bus right made by the companion chip. This is a point-to-point signal.
Error notifi-	PERR#	s/t/s I/O	1	A pin for the parity error signal. Indicates, in PCI-bus data phase, that a parity error occurred in data transferred on the signal lines - AD, C/BE#, PAR, and PAR64. When data are input to the companion chip, this pin is used for output. When data are output from the companion chip, this pin is used for input.
cation	SERR#	o/d	1	A pin for the system error signal. Indicates, in PCI-bus address phase, that a parity error occurred in an address transferred on the signal lines - AD, C/BE#, PAR, and PAR64. When an error occurs that the companion chip can detect, the error can be notified as an SERR# by means of making suitable settings in the PCI SERR# Enable Register.
Interrupt notification	INTA#	o/d	1	A pin for the interrupt output. A pin that notifies the PCI-bus of an interrupt. When an error occurs that the companion chip can detect, the error can be notified as an INTA# by means of making suitable settings in the PCI-bus Interrupt Enable Register.
	AD[63:32]	t/s I/O	32	Pins for the 64-bit expanded address data signals. The 32 higher-order bits of PCI-bus address data.
	C/BE[7:4]#	t/s I/O	4	Pins for the 64-bit expansion command byte enable signals. Pins for command byte enable signals for the PCI-bus. These pins are meaningless in address phase. In data phase, these pins indicate the effective byte lane of AD[63:32].
	PAR64	t/s I/O	1	A pin for the 64-bit expansion PCI-bus parity signal. Indicates the even parity of AD[63:32] and C/BE[7:4]# 36 signals in total.
PCI 64-bit expansion	REQ64#	s/t/s I/O	1	A pin for the 64-bit data access request signal. Indicates that the PCI-bus master can execute a 64-bit data bus cycle. When a high-level signal is input to the SLD64 pin with the SPAR-Clite bus being in 64-bit data operation and when the companion chip operates as the PCI bus master, the REQ64# signal is asserted concurrently with the FRAME# signal, and the 64-bit data cycles are always required.
	ACK64#	s/t/s I/O	1	A pin for the 64-bit data access enable signal. Indicates that the accessed PCI target can execute a 64-bit data bus cycle.

Note: t/s : Used as a tri-state output driver

s/t/s : Used as a sustained tri-state output driver o/d : Used as an open drain output driver

pull up : Built-in pull-up resistance

2. SPARClite bus interface pins (138 pins)

Function class	Pin name	1/0	Number of pins	Description
System clock	CLKIN	I	1	A pin for SPARClite bus clock input. The SPARClite bus interface operates in synchronization with this clock, up to 50 MHz.
Reset	SRSTI#	l pull up	1	A pin for reset input from the SPARClite-bus. When the "L" level is input to this pin, the following operation is activated. (1) Clearing of the SL-bus Init Done bit of the SL-bus Configuration Register. (2) Clearing of the registers other than those related to the PCI Configuration. (3) Assertion of the SRSTO# signal.
		t/s O	1	A pin for the reset output to the SPARClite-bus. This pin is asserted in one of the instances given below. (1) When the PRST# signal is input. (2) When the SRSTI# signal is input. (3) When "1" is set in the Software Reset bit of the Reset Register, which is related to the PCI Configuration.
Bus definition	HOST	l pull up	1	A pin for the PCI-bus host definition. A pin that decides whether or not the SPARClite should generate PCI configuration cycles as the host CPU of the PCI-bus. This pin is an input pin fixed either to the "L" level or to the "H" level. When the "H" level is being input to this pin: The SPARClite becomes the host CPU of the PCI-bus, and the companion chip is defined as a host bridge. In this instance, use of the SL-bus configuration related PCI Configuration Address Register and the PCI Configuration Address Register allows generation of configuration cycles into the PCI-bus. When the "L" level is being input to this pin: The PCI Configuration Address Register and the PCI Configuration Data Register, which are related to the SL-bus Configuration, are ignored when written and become indeterminate registers when read, so that configuration cycles cannot be generated into the PCI-bus.
	SLD64	l pull up	1	A pin for the SPARClite data bus width definition. A pin that decides the data bus width in the SPARClite-bus cycles in which the companion chip intervenes. This pin is an input pin fixed either to the "L" level or to the "H" level. When the "H" level is being input to this pin: The SPARClite-bus is defined as a 64-bit data width - D<63:0>, BE0# to BE7#, and PARITY0 to PARITY7 are regarded as valid. When the "L" level is being input to this pin: The SPARClite-bus is defined as a 32-bit data width - D<31:0>, BE4# to BE7#, and PARITY4 to PARITY7 are regarded as valid. D<63:32>, BE0# to BE3#, and PARITY0 to PARITY3 assume the state of high input impedance.

Function class	Pin name	I/O	Number of pins	Description
Bus definition	BST8	l pul up	1	A pin for the SPARClite-bus burst transfer length definition. A pin that decides a burst transfer length in the SPARClite-bus cycles in which the companion chip intervenes. This pin is an input pin fixed either to the "L" level or to the "H" level. When the "H" level is being input to this pin: The SPARClite-bus, when subjected to a burst transfer, is defined as an 8-burst transfer. When the "L" level is being input to this pin: The SPARClite bus, when subjected to a burst transfer, is defined as a 4-burst transfer.
Interrupt notifica- tion	IRQ#	0	1	A pin for the interrupt signal to the SPARClite. When a cause of interrupt specified by the SL-bus Interrupt Enable Register occurs, this pin is switched to the "L" level to notify the interrupt.

Function class	Pin name	I/O	Number of pins	Description
Address	ADR<31:2>	I/O pull up	30	Pins for the address signal. When the companion chip has the bus right: This pin outputs an address signal. This pin is effective over a bus cycle period, and the output value during an idle cycle is not guaranteed. The value sequentially changes under a burst transfer. ADR<5:3> under burst transfer with a 64-bit bus width in operation changes as given below. [For 4-burst transfer] (1) 000→001→010→011 (2) 100→101→110→111 [For 8-burst transfer] 000→001→010→011→100→101→110→111 ADR<4:2> under a burst transfer with a 32-bit bus width in operation changes as given below. [For 4-burst transfer] (1) 000→001→010→011 (2) 100→101→110→111 [For 8-burst transfer] 000→001→010→011→100→101→110→111 When the companion chip doesn't have the bus right: This pin becomes an address input pin to be used to request the direct master access involved in internal registers. When SLD64 = "1" (a 64-bit data width specified) ADR<31:3> is regarded as a valid address in carrying out a single transfer. When a 4-burst transfer is in operation, the 2 lowerorder bits ADR<4:3> need to be 00, and when an 8-burst transfer is in operation, the 3 lower-order bits ADR<5:3> need to be 000. In other instances, a burst response called forth by the BMACK# signal is not made, but a single transfer is carried out. When SLD64 = "0" (a 32-bit data width specified) ADR<31:2> is regarded as a valid address in carrying out a single transfer. When a 4-burst transfer is carried out. When SLD64 = "0" (a 32-bit data width specified) ADR<31:2> is regarded as a valid address in carrying out a single transfer. When a 4-burst transfer is in operation, the lower order 2 bits of address ADR<3:2> need to be 00, and when an 8-burst transfer is in operation, the lower order 2 bits of address ADR<3:2> need to be 00, and when an 8-burst transfer is in operation, the lower order 3 bits of address ADR<4:2> need to be 000. In other instances, a burst response called forth by the BMACK# signal is not made, but a single transfer is carried out.

Function class	Pin name	I/O	Number of pins	Description
Data bus	D<63:0>	I/O pull up	64	Pins for the data signal. When the companion chip has the bus right: These pin form a bidirectional data bus. If data is of double-word type, the data needs to be aligned to an address of a multiple of 8, if data is of single-word type, the data needs to be aligned to a multiple of 4. D<31:0> is used in 32-bit burst mode. When the companion chip doesn't have the bus right: These pins form a data bus used to access internal registers, the external ECS space, and the PCI space from the SPARClite. Access by use of 64-bit bus width and access by use of 32-bit bus width are supported. Reading from the SPARClite is effected in conformity with a data size requested. In writing, valid bytes are specified by use of BE0# to BE7# for a 64-bit bus width, and by use of BE4# to BE7# for a 32-bit bus width. Specifying discontinuous BE#s is forbidden.
Data bus informa- tion	BE0# to BE7#	I/O pull up	8	Pins for the byte enable signal. When SLD64 = "1" (a 64-bit data width specified) The valid bytes enabled for D<63:0> are BE0# to BE7#. When SLD64 = "0" (a 32-bit data width specified) The valid byte enabled for D<31:0> are BE4# to BE7#. When the companion chip has the bus right: These pins output "L"s to valid bytes both in write and read. These signals are effective over a bus cycle. When the companion chip doesn't have the bus right: These pins are for a signal for specifying the valid byte data. In reading, any data of 64-bit width or 32-bit width are regarded as valid. In writing, data corresponding to active BEx#s are written. Discontinuous BEx#s are forbidden.
	PARITY0 to PARITY7	I/O pull up	8	Pins for the parity signals. These are data parity signals. When SLD64 = "1" (a 64-bit data width specified) The parity bits for D<63:0> are PARITY0 to PARITY7. When SLD64 = "0" (a 32-bit data width specified) The parity bits for D<31:0> are PARITY4 to PARITY7. When the companion chip has the bus right: When reading as viewed from the companion chip, these pins work as parity input; when writing, these pins work as parity output. When the companion chip doesn't have the bus right and accessed via the companion chip: When reading as viewed from the SPARClite, these pins work as parity output; when writing, these pins work as parity input.

Function class	Pin name	I/O	Number of pins	Description
	ASI<3:0>	l pull up	4	Pins for the address space identification input signal. When the companion chip has the bus right: These signals are meaningless. When the companion chip doesn't have the bus right: These pins are input pins for the address space identification signals output from the SPARClite. These pins pass input signals used for the SPARClite to intervene in the companion chip and to identify an address space. These pins are sampled at the cycle immediately subsequent to the cycle in which AS# is asserted.
Address informa- tion	WINDOWS#	l pull up	1	A pin for the windows input signal. When the companion chip has the bus right: This signal is meaningless. When the companion chip doesn't have the bus right: Some types of SPARClite CPUs do not support every bit of ADR<31:0>. Thus, in using one of SPARClites of such type, in- putting the "L" level to this pin allows ADR<31:28> and ASI<3:0> not to be subjected to decoding. This pin is sampled at the cycle immediately subsequent to the cycle in which AS# is asserted.
	RGSL#	l pull up	1	A pin for the register select input signal. When the companion chip has the bus right: This signal is meaningless. When the companion chip doesn't have the bus right: The "L" level signal input to this pin when the SPARClite accesses internal registers of the companion chip. This pin needs to be asserted during the relevant access cycle.

Function class	Pin name	I/O	Number of pins	Description
	AS#	I/O pull up	1	A pin for the address strobe signal. When the companion chip has the bus right: An address strobe is output only when "1" is set in the SDRAM Mode bit of the SL-bus Configuration Register. An "L" is asserted for one clock cycle in the first cycle of the bus cycle. When the companion chip doesn't have the bus right: The address strobe is fed.
Cycle	RDWR#	I/O pull up	1	A pin for the read/write signal. When the companion chip has the bus right: This is a read/write signal. An "L" is output if the current cycle is a write cycle; the "H" is output over the period of a read cycle. The output level is kept up from the beginning to the end of the bus cycle. When the companion chip doesn't have the bus right: This signal specifies the read/write when the SPARClite accesses internal registers, the PCI space, and the ECS space. This pin is sampled at the cycle immediately subsequent to the cycle in which AS# is asserted. And if it is "H", then read operation is carried out; if it is "L", then write operation is carried out.
control	BMREQ#	I/O pull up	1	A pin for the burst transfer enable signal. When the companion chip has the bus right: A signal for a request for burst transfer toward the SPARClite. Either a direct slave or DMA access occurs only when "1" is set in the SDRAM Mode bit of the SL-bus Configuration Register. If the condition to carry out burst transfer is being satisfied, then make this signal "L" to request burst transfer. At the same time, the EBMREQ# signal is asserted, too. The EBMREQ# signal is deasserted at the same time with the first ready cycle. When the companion chip doesn't have the bus right: A signal for a request for burst transfer from the SPARClite. The level of this signal is determined at the cycle immediately subsequent to the cycle in which AS# is asserted. If it is "L" and if the timing permits burst transfer, then the burst transfer is performed in response to the BMACK#; if the timing doesn't permit burst transfer, then a BMACK# response is not made, and only a single transfer is carried out. In accessing an internal register or the ECS space from the SPARClite, the burst transfer is not responded even if a request for burst transfer is asserted.

Function class	Pin name	I/O	Number of pins	Description
	BMACK#	I/O pull up	1	A pin for the burst transfer response signal. When the companion chip has the bus right: This signal is acknowledgment input from the SPARClite in burst mode. If the "L" level is input at the same cycle as READY# with burst transfer requested (with the "L" output to BMREQ#), the burst transfer mode is assumed. (This operation is feasible in both schemes - either the "L" is input in the same cycle as READY# or the "L" was input at a prior cycle and is kept until reaching the cycle of READY#.) When the companion chip doesn't have the bus right: In an instance in which the SPARClite decodes an address space accessed via the companion chip, this terminal outputs acknowledgment in burst mode.
Cycle control	BMINH#	l pull up	1	A pin for the burst transfer inhibit input signal. When the companion chip has the bus right: This signal is meaningless. When the companion chip doesn't have the bus right: An input pin for a signal to disable a burst transfer request. With the "L" input to this pin, the burst response with the BMACK# output is not performed even though a burst transfer is requested from the SPARClite. The level of this signal is determined at the cycle immediately subsequent to the cycle in which AS# is asserted; if it is "L", the BMACK# output is maintained at the "H" level.
	READY#	t/s O pull up	1	A pin for the ready signal output. When the companion chip has the bus right: If the companion chip has the bus right: This signal is output if a time-out occurs in the built-in ready timer. To make the ready timer effective, a longer time period needs to be set in the ready timer than the amount of wait given to the wait generator in each ECS space and than the setting in the external watchdog timer. When the companion chip doesn't have the bus right: In reading the internal register or the PCI space from the SPAR-Clite, the "L" is output when data is made ready on the data bus. In writing to the internal register or to the PCI space, the "L" is output when data is taken into the companion chip. In accessing the ECS space from the SPARClite, a ready output signal internally generated comes out of this pin. This pin outputs a ready signal generated by the built-in wait generator. Also, it outputs this signal when a time-out occurs in the built-in ready timer. For this reason, to make the ready timer effective, a longer time period needs to be set in the ready timer than the amount of wait given to the wait generator and than the setting in the external watchdog timer.

Function class	Pin name	I/O	Number of pins	Description
	READYIN#	l pull up	1	A pin for the ready signal input. This is a ready signal input when the companion chip has the bus right. This pin goes "L" when the data is made ready on the data bus in a read cycle or when the data is written in a write cycle. In carrying out burst transfer, ready signals need to be input a predetermined number of times with respect to a single-time assertion of AS# or EAS#.
Cycle control	RDYOUT#	l pull up	1	A pin for the SPARClite ready signal input. In using the wait generator of the SPARClite to access the ECS space from the SPARClite with no internal READY generated in the companion chip and with no READYIN# input from outside, connect RDYOUT# of the SPARClite to this pin. If the RDYOUT# output pin of the SPARClite has been connected to the READYIN# pin of the companion chip, no connection to this pin is required. In this instance, connect a pull-up resistor to this pin.
	MEXC#	t/s O pull up	1	A pin for the memory access exception signal output. A pin for outputting a memory access exception in a bus cycle of the SPARClite in which the companion chip intervenes. This signal is output together with the READY# signal when a time-out occurs in the built-in ready timer.
	ERROR#	l pull up	1	A pin for the error notification signal input. An input pin for error notification signal from the SPARClite. When "1" is set in the SPARC_Error bit of the PCI-bus Interrupt Enable Register, an INTA# interrupt into the PCI-bus is asserted when the "L" level is input to this pin. This behavior has no effect on the companion chip's operation.

Function class	Pin name	I/O	Number of pins	Description
	BREQ#	0	1	A pin for the bus use right request signal output. A request signal for the bus use right passed from the companion chip to the SAPRClite. This signal is output when a SPAR-Clite-bus request by means of DMA or a direct slave request occurs, or when the bus right is requested by a daisy-chain-connected device by means of the BRIN# signal input. The BREQ# signal is asserted when the BGRNT# signal is deasserted.
	BGRNT#	A pin for the bus grant signal input. A signal enabling the bus right passed from the SPARClite to BREQ#. When the companion chip receives this signal, it either starts a transaction or outputs BGOUT# to a daisy-chain-connected device, and enables the bus right. Once BGRNT# is asserted to BREQ#, BGRNT# must not be deasserted until BREQ# is deasserted. If violated, the operation is not guaranteed.		
Bus right control	PBREQ# I pull up 1			A pin for the bus-release request signal input. A pin for a bus-release request signal input from the SPARClite. If the "L" level is input to this pin while the companion chip retains the bus right, the bus-release request is canceled after the current cycle is completed or after the transfer on a cache line size basis is completed.
	BRIN#	l pull up	1	A pin for the bus-use right request signal input. A pin for a bus-use request signal input from a daisy-chain-connected device. The "L" level input to this pin enables the BREQ# to request for the SAPRClite-bus. If the bus right is enabled by BGRNT# at this moment, this terminal outputs BGOUT# after a round robin arbitration within the companion chip, and enables a daisy-chain-connected device to use the bus right. The assertion of BRIN# needs to be effected at the time when the BGOUT# signal is deasserted.
	BGOUT#	0	1	A pin for the bus-use right enabling signal output. A pin for a bus-use enabling signal output to a daisy-chain-connected device.

3. External ECS space control pins (6 pins)

3. Externa	External ECS space control pins			(6 pins)			
Function class	Pin name	I/O	Number of pins	Description			
	EAS#	0	1	A pin for the address strobe signal output to the ECS space. When the companion chip has the bus right: This pin outputs an address strobe. The "L" is asserted for the first one clock cycle of the bus cycle. When the companion chip doesn't have the bus right: This signal is meaningless.			
	ECS[0:2]#	0	3	Pins for outputting a chip select signal to pick the ECS space. When the companion chip has the bus right: Pins for outputting a chip select signal to pick the ECS space. This signal is effective over a bus cycle period, and is negated during an idle cycle. When the companion chip doesn't have the bus right: When the APARClite accesses the ECS space, these pins are used to output a chip select signal to pick the ECS space. This signal is effective over a bus cycle period started by EAS#, and is negated during an idle cycle.			
ECS space control	EBMREQ#	0	1	A pin for outputting a signal requesting burst transfer to the ECS space. When the companion chip has the bus right: A signal requesting the burst transfer to the ECS space. If either a direct slave or DMA access occurs and if the condition for burst transfer has been satisfied, this signal goes "L" and the burst transfer is requested. The deasserts this signal concurrently with the first ready cycle. When the companion chip doesn't have the bus right: This pin switches to "H" level output.			
	EBMACK#	I pull up	1	A pin for inputting a signal responding to burst transfer from the ECS space. When the companion chip has the bus right: This signal is acknowledgment input from the ECS space in burst transfer mode. If the "L" level is input in the same cycle as READYIN# when the burst transfer is requested by EBMREQ# (with the "L" output to EBMREQ#), the switches to burst transfer mode. (This operation is feasible in both schemes - either the "L" is input in the same cycle as READYIN# or the "L" was input in a prior cycle and is kept until reaching the cycle of READYIN#.) When the companion chip doesn't have the bus right: This signal is meaningless.			

4. DMAC control pins (6 pins)

Function class	Pin name	I/O	Number of pins	Description	
	DREQ0#, DREQ1#	l pull up	2	Pins for DMA request signal input. A signal that requests the start of transfer when the built-in DMAC is started up in external startup mode. Since this signal is triggered at the "L" level, this signal needs to be kept asserted until the DACKO, 1# is encountered.	
DMA control	DACK0#, DACK1#	0	2	Pins for DMA acknowledgment signal output. An acknowledgment signal indicating that the DREQ0, 1# is accepted. This signal is asserted concurrently with EAS#.	
	EOP0#, EOP1# O 2		2	Pins for DMA end signal output. A signal for the end of process. This signal indicates that transfer of a descriptor basis involved in DMA has been completed. This sign is asserted over a time period where the closing READYIN# is well ed for to be input.	

5. JTAG pins (5 pins)

Function class	Pin name	I/O	Number of pins	Description
	TDI	l pull up	1	A pin for JTAG test data input. A pin for inputting data used in testing JTAG. Have this pin stay "H" level except when enabling the JTAG features.
	TMS	l pull up	1	A pin for JTAG test mode input. A pin for inputting a mode setting used in testing JTAG. Have this pin stay "H" level except when enabling the JTAG features.
JTAG	TCLK	l pull up	1	A pin for JTAG test clock input. A pin for inputting a clock used in testing JTAG. Have this pin stay "H" level except when enabling the JTAG features.
	TRST#	l pull up	1	A pin for JTAG test reset input. A pin for inputting reset used in testing JTAG. Have this pin stay "H" level except when enabling the JTAG features.
	TDO	0	1	A pin for JTAG test data output. A pin for outputting data used in testing JTAG.

6. TEST pins (4 pins)

<u> </u>				
Function class	Pin name	I/O	Number of pins	Description
TEST pins	TEST0, TEST1, TEST2, TEST3	0	4	Pins for test output. Leave them open.

■ ABSOLUTE MAXIMUM RATINGS

(Vss = 0.0 V)

Parameter	Symbol	Rat	Unit	
Farameter	Symbol	Min.	Max.	Offic
Power supply voltage (PCI I/O)	V _{DD5}	-0.5	6.0	V
Power supply voltage (SPARClite I/O, internal)	V _{DD3}	-0.5	4.0	V
Input voltage (PCI I/O)	V ₁₅	-0.5	V _{DD5} + 0.5	V
Input voltage (SPARClite I/O)	Vıз	-0.5	V _{DD3} + 0.5	V
Storage ambient temperature	Тѕтс	-55	125	°C
Overshoot	_	Within V _{DD} + 0.1 V (Within 50 ns)		_
Undershoot	_	Within Vss – 0.1 V (Within 50 ns)		_

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

(Vss = 0.0 V)

Param	Symbol		Unit			
Faiaii		Min.	Тур.	Max.		
Power supply voltage	$V_{DD5} = 5 V$	V _{DD5}	4.75	5.0	5.25	V
(PCI I/O)	V _{DD5} = 3.3 V		3.15	3.3	3.45	V
Power supply voltage (S	V _{DD3}	3.15	3.3	3.45	V	
"L" level input voltage	VıL	-0.3	_	0.8	V	
"H" level input voltage (F	V _{IH5}	2.0	_	V _{DD5} + 0.3	V	
"H" level input voltage (S	V _{IH3}	2.0	_	V _{DD3} + 0.3	V	
Operating ambient temp	erature	Та	0	25	70	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating conditionranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRIC CHARACTERISTICS

1. DC Characteristics

(Vss = 0.0 V, Ta = 0 °C to +70 °C)

Parameter	Symbol	Conditions		Unit		
raiametei	Syllibol	Conditions	Min.	Тур.	Max.	Offic
"L" level input voltage	VıL	_	0		0.8	V
"H" level input voltage (PCI)	V _{IH5}	_	2.0	_	V _{DD5}	V
"H" level input voltage	VIH3	_	2.0	_	V _{DD3}	V
"L" level output voltage	Vol	IoL = 2 mA	0	_	0.4	V
"H" level output voltage (PCI)	V _{OH5}	Iон = −2 mA	V _{DD5} - 0.5	_	V _{DD5}	V
"H" level output voltage	Vонз	Iон = −2 mA	V _{DD3} - 0.5	_	V _{DD3}	V
Input leakage current	Iы	VIN = 0 or VDD	-5	_	5	μΑ
Trial state output leakage current	lız	Vout = 0 or VDD	-5	_	5	μΑ
Power supply current (VDD5)	IDD	_	_	TBD	TBD	mA
Power supply current (VDD3)	IDD	_	_	TBD	TBD	mA
Power consumption (VDD5 + VDD3)	P _D	_	_	TBD	TBD	W
Pin capacity (PCI pin)	CPIN	$V_{DD5} = V_{DD3} = V_1 = 0,$	_	_	18	n E
Pin capacity (pins other than PCI pin)	CPIN	f = 1 MHz, 25 °C			16	pF

2. AC Characteristics

Cautions for the measurement are as follows:

- Each parameter, unless otherwise specified, is valid within the specified temperature range and power supply range.
- Each voltage is measured with respect to the GND (Vss = 0 V) level. The reference point for measuring timing is 1.5 V, the input level is from 0.4 V through 2.4 V, the rise time and the fall time of incoming signal are not more than 1.5 V ns.
- Do not short-circuit two or more output pins for one second or longer.
- The external output capacitive load is 50 pF.

(1) SPARClite-IF

All SPARClite interface AC characteristics are defined from the rising edge of the CLKIN signal.

Clock input

Parameter	Pin name	Va	Unit	
Farameter	Fill Hallie	Min.	Max.	Offic
CLKIN period	CLKIN	20	CLK period × 3	ns
CLKIN "H" time	CLKIN	8	_	ns
CLKIN "L" time	CLKIN	8	_	ns
CLKIN rise time	CLKIN	_	2	ns
CLKIN fall time	CLKIN	_	2	ns

• Output

(Ta = 0 °C to +70 °C)

D	4	D'	Value		11
Parameter		Pin name	Min.	Max.	Unit
Data signal	Output valid delay	D .C2.0	_	13	
Data signal	Output hold	− D<63:0>	2	_	— ns
An address signal	Output valid delay	ADR<31:2>	_	13	no
An address signal	Output hold	ADR<31.2>	2	_	ns
Parity signals	Output valid delay	PARITY0 to	_	13	ns
Failty Signais	Output hold	PARITY7	2	_	115
A signal for byte enabling	Output valid delay	BE0# to BE7#	_	13	nc
A signal for byte enabling	Output hold		2	_	— ns
A signal for address strobe	Output valid delay	AS#	_	13	ns
A signal for address strobe	Output hold		2	_	115
Read/write signal	Output valid delay	RDWR#		13	ns
intead/write signal	Output hold	NDWN#	2	_	115
Bus use right request	Output valid delay	utput valid delay BREQ#	_	13	ns
signal	Output hold	DIVEQ#	2	_	
A signal for burst transfer	Output valid delay	BMREQ#	_	13	ns
request	Output hold	DIVINLQ#	2	_	
A signal for burst transfer	Output valid delay	BMACK#		13	ns
response	Output hold	- BIVIACK#	2	_	115
Ready signal output	Output valid delay	READY#		13	ns
Ready Signal Odipul	Output hold	TREADI#	2	_	115
Memory access exception	Output valid delay	MEXC#	_	13	ns
signal output	Output hold	IVILXO#	2	_	115
Bus use right enable	Output valid delay	BGOUT#	_	13	ne
signal	Output hold		2	_	ns ns
An interrupt signal	Output valid delay	- IRQ#		13	ns
TAIT III.GITUPL SIGNAL	Output hold	π	2		115
Bus reset output signal	Output valid delay	SRSTO#		13	ns
Dus reset output signal	Output hold	51.010#	2	_	1113

• Input

D		D'	Val	(1a = 0 ° 0 10	,	
Parame	ter	Pin name	Min.	Max.	Unit	
A signal for address space	Input setup time	ASI<3:0>	6	_	no	
identification input	Input hold time	A3I<3.0>	2	_	ns	
An address signal	Input setup time	ADD -24-0-	6	_	ns	
An address signal	Input hold time	—— ADR<31:2>	2	_	ns	
Data sisual	Input setup time	D 00.0	6	_		
Data signal	Input hold time	— D<63:0>	2	_	ns	
Davita aireal	Input setup time	PARITY0 to	6	_		
Parity signal	Input hold time	PARITY7	2	_	ns	
A sincel for but a publica	Input setup time	DE0# +- DE7#	6	_		
A signal for byte enabling	Input hold time	BE0# to BE7#	2	_	ns	
A : 16 11	Input setup time	10"	6	_		
A signal for address strobe	Input hold time	—AS#	2		ns	
A signal for burst transfer	Input setup time	DIADEO#	6			
request	Input hold time	BMREQ#	2	_	ns	
A signal for burst transfer	Input setup time	D144 014#	6			
response	Input hold time	BMACK#	2		ns	
	Input setup time		6		- ns	
Bus grant signal	Input hold time	BGRNT#	2			
Bus-use right request signal	Input setup time	BRIN#	6			
	Input hold time		2		ns	
Bus-release request signal	Input setup time	DDDEO#	6			
	Input hold time	— PBREQ#	2	_	- ns	
Bara Lada adda a f	Input setup time	DE A DVINIII	6			
Ready signal input	Input hold time		2		ns	
SPARClite ready signal	Input setup time	DDVOLIT#	6			
input	Input hold time		2		ns	
A signal for register select	Input setup time	DCCI #	6	_		
input	Input hold time		2	_	ns	
A signal for windows in put	Input setup time	WINDOWO !!	6	_		
A signal for windows input	Input hold time		2	_	ns	
A signal for burst transfer	Input setup time	DMINILL#	6	_		
inhibit input	Input hold time	BMINH#	2	_	ns	
Fanon a stiffication of an al	Input setup time	EDDOD#	6	_		
Error notification signal	Input hold time	ERROR#	2	_	ns	
Due need investeined	Input setup time	CDCT!#*	Asynch	ronous		
Bus reset input signal	Input hold time	— SRSTI#*	Only the width specified		ns	
Data bus width definition	Input setup time	CL DC4	Used by being t	ied to "H" or "L"		
signal	Input hold time	SLD64	Used by being t	ied to "H" or "L"	⊣ ns i	
Due heat definition signal	Input setup time	LICCT	Used by being t	ied to "H" or "L"		
Bus host definition signal	Input hold time	— HOST		ied to "H" or "L"	⊣ ns i	
Bus burst transfer length	Input setup time	рсто		ied to "H" or "L"	ne	
signal	Input hold time	BST8	Used by being t			

^{*:} RESET input from SPARClite-bus (SRSTI#) requires at least 16 CLKIN cycles.

(2) External ECS Space Control Signals

All AC characteristics of the signals given below are defined from the rising edge of the CLKIN signal.

 $(Ta = 0 \, ^{\circ}C \text{ to } +70 \, ^{\circ}C)$

Parameter		Pin name	Val	Unit	
		Fill Hallie	Min.	Max.	Oille
An address strobe signal	Output valid delay	EAS#	_	13	nc
to the ECS space	Output hold	LAS#	2	_	ns
A chip select signal to	t signal to Output valid delay ECS0# to ECS2#	_	13	no	
pick the ECS space	Output hold	EC30# 10 EC32#	2	_	ns
A signal requesting burst	Output valid delay	EBMREQ#	_	13	nc
transfer to the ECS	Output hold	LDIVINLQ#	2	_	ns
A signal responding to burst transfer from the	Input setup time	EBMACK#	6	_	nc
	Input hold time		2	_	ns

(3) DMAC Control Signals

All AC characteristics of the signals given below are defined from the rising edge of the CLKIN signal.

 $(Ta = 0 \, ^{\circ}C \text{ to } +70 \, ^{\circ}C)$

Parameter		Pin name	Valu	Unit	
		Pili lialile	Min.	Max.	Unit
DMA acknowledgment	Output valid delay	DACK0#,	_	13	nc
signal	Output hold	DACK1#	2	_	ns
DMA and signal	Output valid delay EOP0#	EOP0#,	_	13	nc
DMA end signal	Output hold	EOP1#	2	_	ns
DMA request signal	Input setup time	DRQ0#,	6		ns
	Input hold time	DRQ1#	2	_	115

(4) PCIbus-IF

All PCIbus interface AC characteristics are defined from the rising edge of the CLKIN signal.

Clock input

		Value				
Parameter	Pin name	V	D5 = 3.3 V	$V_{DD5} = 5 V$		Unit
		Min.	Max.	Min.	Max.	
CLKIN period	CLK	30	CLKIN period × 3	30	CLKIN period × 3	ns
CLKIN "H" time	CLK	13	_	13	_	ns
CLKIN "L" time	CLK	13	_	13	_	ns
CLKIN rise time	CLK	_	2	_	2	ns
CLKIN fall time	CLK		2	_	2	ns

• Output

				Va	lue	<u>a – 0 – 0 10</u>	
Parameter		Pin name	V _{DD5} =	= 3.3 V	V _{DD5}	= 5 V	Unit
			Min.	Max.	Min.	Max.	
Address data signal	Output valid delay	AD[31:00]		12	_	14	no
Address data signal	Output hold	AD[31.00]	2	_	2	_	ns
Command byte	Output valid delay	C/BE[3:0]#		12	_	14	no
enable signal	Output hold	- C/BE[3.0]#	2	_	2	_	ns
PCI bus parity signal	Output valid delay	PAR		12	_	14	no
PCI bus parity signal	Output hold	TAK	2	_	2	_	ns
Eromo cianol	Output valid delay	- FRAME#		11	_	11	no
Frame signal	Output hold	- FRAIVIE#	2	_	2	_	ns
Initiator roady signal	Output valid delay	IRDY#		11	_	11	- ns
Initiator ready signal	Output hold		2	_	2	_	
Torget ready signal	Output valid delay	TDDV		11	_	11	ns
Target ready signal	Output hold	TRDY#	2	_	2	_	
Stop signal	Output valid delay	STOP#	_	11	_	11	— ns
Stop signal	Output hold	310F#	2	_	2	_	
Dovice colect signal	Output valid delay	- DEVSEL#	_	11	_	11	no
Device select signal	Output hold	DEVSEL#	2	_	2	_	ns
Request signal	Output valid delay	- REQ#	_	11	_	11	no
Request signal	Output hold	REQ#	2	_	2	_	ns
Parity error signal	Output valid delay	PERR#	_	11	_	11	nc
Failty error signal	Output hold	- PEKK#	2	_	2	_	ns
System error signal	Output valid delay	- SERR#	Asynchronous				ne
System error signal	Output hold	JUNN#	1 CLK cycle at the minimum			ns	
Interrupt notification	Output valid delay	- INTA#		Λονροί	ronous		nc
signal	Output hold] IIN I /\#	Asynchronous			ns	

• 64-bit expansion output

				Va	lue		
Parame	ter	Pin name	V _{DD5} = 3.3 V		$V_{DD5} = 5 V$		Unit
			Min.	Max.	Min.	Max.	
64-bit expanded address	Output valid delay	AD[63:32]	_	12	_	14	ne
data signals	Output hold	AD[03.32]	2	_	2	_	ns
64-bit expansion com-	Output valid delay	- C/BE[7:4]#	_	12	_	14	- ns
mand byte enable signals	Output hold		2	_	2	_	
64-bit expansion PCI bus	Output valid delay	- PAR64	_	12	_	14	nc
parity signal	Output hold	FAR04	2	_	2	_	- ns
64-bit data access	Output valid delay	REQ64#	_	12	_	14	20
request signal	Output hold	REQ64#	2	_	2	_	ns
64-bit data access enable signal	Output valid delay	ACK64#	_	12	_	14	ne
	Output hold	ACIO4#	2		2	_	ns

• Input

(Ta = 0 °C to +70 °C)

Donon		Din nama	Va	lue	l lmi4
Paran	neter	Pin name	Min.	Max.	Unit
An address data signal	Input setup time AD[31:00]		7	_	ns
All addiess data signal	Input hold time	AD[31.00]	1	_	113
Command byte enable	Input setup time	C/BE[3:0]#	7		ns
signal	Input hold time	0/BE[3.0]#	1		113
PCI bus parity signal	Input setup time	— PAR	7		ns
1 Of bus parity signal	Input hold time	1 AIX	1		113
Frame signal	Input setup time	FRAME#	7		ns
Traine Signal	Input hold time	1 IVAIVIL#	1		113
Initiator ready signal	Input setup time	IRDY#	7	_	ns
initiator ready signar	Input hold time	INDI#	1	_	115
Target ready signal	Input setup time	TRDY#	7	_	ns
Target ready Signal	Input hold time	TRD1#	1		113
Stop signal	Input setup time	STOP#	7	_	ns
Stop signal	Input hold time	3101#	1	_	
Device select signal	Input setup time	DEVSEL#	7	_	ns
Device select signal	Input hold time	DL V SLL#	1	_	
Request signal	Input setup time	REQ#	7	_	no
Nequest signal	Input hold time	INEQ#	1	_	ns
Parity error signal	Input setup time	PERR#	7	_	ns
ranty entor signal	Input hold time	F LIXIX#	1	_	113
System error signal	Input setup time	SERR#	7	_	ne
Input hold time	JLINI#	1	_	ns	
Initialize device select	Input setup time	IDSEL#	7		ns
signal	Input hold time	IDSLL#	1		113
PCI system reset signal	Input setup time	PRST#*		ronous	ns
Tor system reset signal	Input hold time	11101#	Only the width specified		115

^{*:} RESET input for PCI-bus (PRST#)requires at least 16 CLK cycles.

• 64-bit expansion input

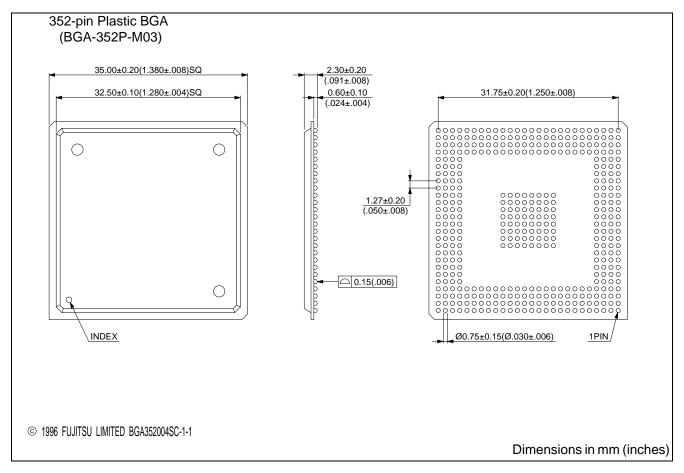
 $(Ta = 0 \, {}^{\circ}C \, to + 70 \, {}^{\circ}C)$

Parameter		Pin name	Value		Unit
		Fill Hallie	Min.	Max.	Oilit
64-bit expanded address	Input setup time	AD[63:32]	7	_	ns
data signals	Input hold time	AD[03.32]	1		113
64-bit expansion command	4-bit expansion command Input setup time	7		ns	
byte enable signals	Input hold time	C/BE[7:4]#	1	_	113
64-bit expansion PCI bus	Input setup time	PAR64	7	_	ns
parity signal	Input hold time		1		
64-bit data access request	Input setup time	REQ64#	7		ns
signal	Input hold time		1	_	113
64-bit data access enable	Input setup time	ACK64#	7		ns
signal	Input hold time	A0104#	1	_	113

(5) Other Signals

Parameter	Pin name	Val	Unit	
Farameter	raiametei riii name		Max.	Oille
Test pin	TEST0, TEST1, TEST2, TEST3	Open		_

■ CAUTIONS AS TO BOARD WRITING


- In connecting the power source and GND, use multiple V_{DD} and V_{SS} pins. For the system board in which MB86943B is used, use a multi-layer board that includes the power (V_{DD}) and GND (V_{SS}) so as to supply stable power. Leave pins labeled "N.C." non-connected.
- Insert a sufficient decoupling capacitor close to MB86943B. There is a possibility that the fluctuations in output level on a number of pins (especially those with a large capacitive load) among output pins of MB86943B have an effect that causes power supply to vary.
- For a system that operates at a high frequency, a low-inductance capacitor and interconnection are recommended. The inductance can be decreased by means of making the distance between MB86943B and the decoupling capacitor short.
- MB86943B requires two power supply systems V_{DD5} (5 V or 3.3 V system) and V_{DD3} (3.3 V system). To power on or shut off them, follow the steps in sequence given below.

```
To power on V_{DD3} \rightarrow V_{DD5} \rightarrow Signal To shut off Signal \rightarrow V_{DD5} \rightarrow V_{DD3}
```

■ ORDERINGINFORMATION

Part number	Package	Remarks
MB86943BPB	352-pin Plastic BGA (BGA-352P-M03)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan

Tel: +81-44-754-3763 Fax: +81-44-754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, USA

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

F0002

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.