Spread Spectrum Clock Generator

MB88156

■ DESCRIPTION

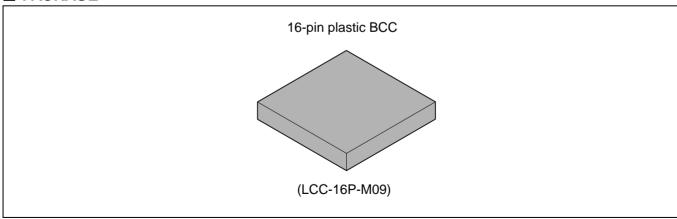
MB88156 is a clock generator for EMI (Electro Magnetic Interference) reduction. The peak of unnecessary radiation noise (EMI) can be attenuated by making the oscillation frequency slightly modulate periodically with the internal modulator. The modulation corresponds to the center spread and down spread. The multiplication ratio can be changed by the pin setting.

Also, the pin can be set whether the modulation is changed. For no modulation, it has the center-non-spread to fix to the output frequency conforming to the multiplication setting and down-non-spread to fix the output frequency to center frequency of the down spread.

■ FEATURES

Input frequency:
 12.5 MHz to 50 MHz (multiplied by 1)

12.5 MHz to 25 MHz (multiplied by 2)


12.5 MHz to 20 MHz (multiplied by 4)

Output frequency:
 CKOUT 12.5 MHz to 80 MHz

REFOUT the same as input frequency (not multiplied)

(Continued)

■ PACKAGE

(Continued)

• Modulation rate : $\pm 0.5\%$, $\pm 1.0\%$ (center spread), -1.0%, -2.0% (down spread)

• Frequency down function : -0.5%, -1.0% (for down-non-spread)

• Equipped with oscillation circuit : Oscillation range 12.5 MHz to 40 MHz (Fundamental oscillation mode)

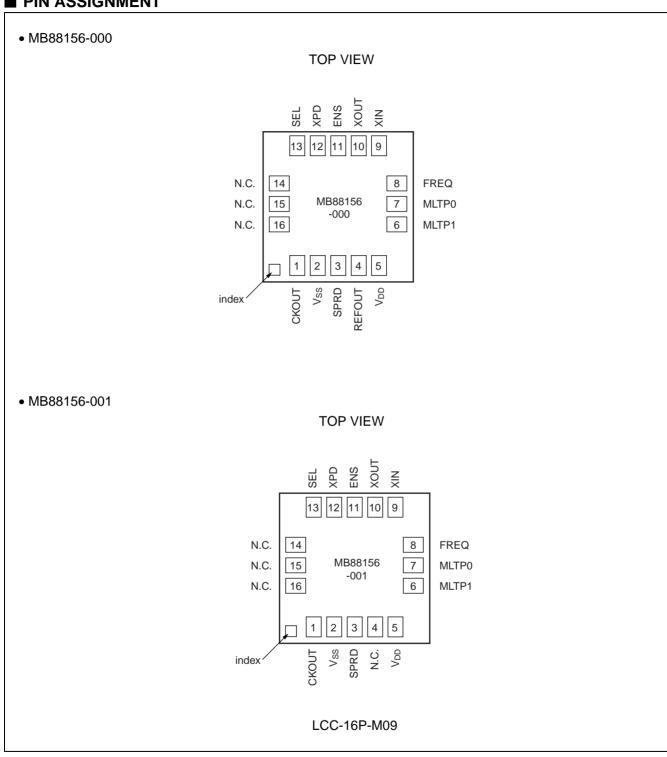
40 MHz to 48 MHz (At 3rd over tone)

Modulation clock output Duty : 40% to 60%

• Modulation clock Cycle-Cycle Jitter: Multiplied by 1 (input) 12.5 MHz to 20 MHz less than 150 ps

Multiplied by 1 (input) 20.0 MHz to 50 MHz less than 100 ps Multiplied by 2 (input) 12.5 MHz to 25 MHz less than 200 ps Multiplied by 4 (input) 12.5 MHz to 20 MHz less than 200 ps

Low current consumption by CMOS process: 5 mA (24 MHz: Typ-sample, no load)


Power supply voltage : 3.3 V ± 0.3 V
 Operating temperature : -40 °C to +85 °C

• Package : BCC 16-pin

■ PRODUCT LINEUP

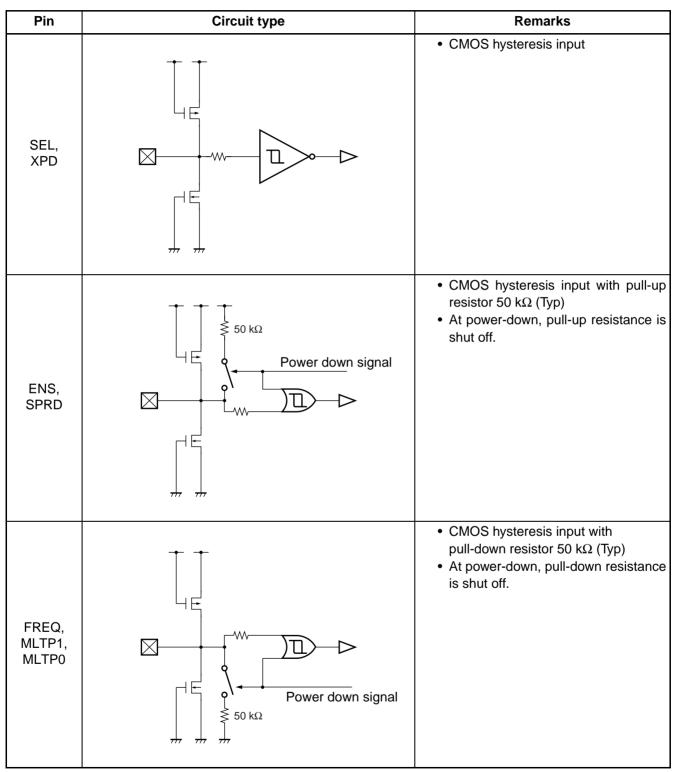
Product	Function
MB88156-000	With REFOUT
MB88156-001	Without REFOUT

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

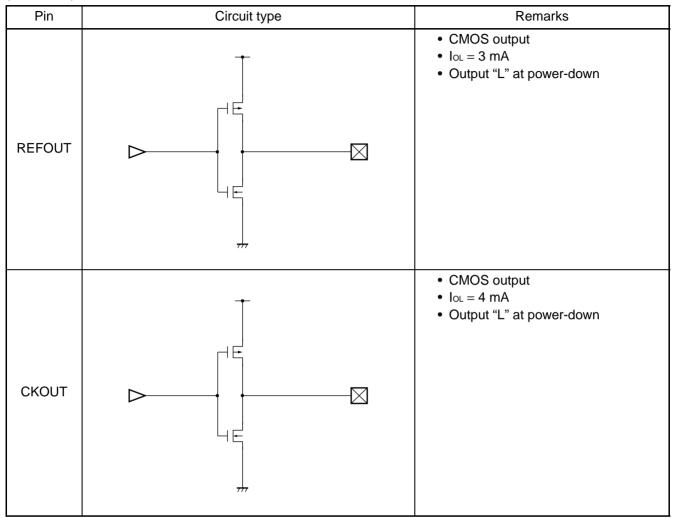
Pin no.	Pin name	I/O	Description
1	скоит	0	Modulated clock output pin Output "L" at power-down
2	Vss	_	GND pin
3	SPRD	I	Modulation type setting pin/frequency down setting SPRD = "L": Down spread/down-non-spread SPRD = "H": Center spread/center-non-spread For details, see "Setting of ENS, SPRD, and SEL".
4	REFOUT/N.C.	0	Non modulation clock output pin (output "L" at power-down) /non connection pin
5	V _{DD}	_	Power supply voltage pin
6	MLTP1	I	Multiplication rate setting pin
7	MLTP0	I	For details, see "Setting of MLTP1, MLTP0, and FREQ".
8	FREQ	I	Frequency setting pin For details, see "Setting of MLTP1, MLTP0, and FREQ".
9	XIN	I	Pin for the connection of resonator/clock input
10	XOUT	0	Connecting pin of resonator
11	ENS	I	Modulation enable setting pin ENS = "L" : Non modulation ENS = "H" : Modulation
12	XPD	I	Power down pin XPD = "L" : Power down XPD = "H" : Normal operation
13	SEL	I	Modulation rate setting pin/frequency falling width setting pin For details, see "Setting of ENS, SPRD, and SEL".
14	N.C.	_	Non connection pin
15	N.C.	_	Non connection pin
16	N.C.	_	Non connection pin

• Setting of MLTP1, MLTP0, and FREQ (Setting of multiplication rate and input frequency)


Input frequency	Output frequency	FREQ	Multiplication rate	MLTP1	MLTP0
12.5 MHz to 25 MHz	12.5 MHz to 25.0 MHz	L	Multiplied by 1	ı	1
25.0 MHz to 50 MHz	25.0 MHz to 50.0 MHz	Н	Multiplied by 1	_	L
12.5 MHz to 25 MHz	25.0 MHz to 50.0 MHz	L	Multiplied by 2	Н	L
12.5 MHz to 20 MHz	50.0 MHz to 80.0 MHz	L	Multiplied by 4	Н	Н

Note: Setting other than above is disabled.

• Setting of ENS, SPRD, and SEL (setting of output frequency)


8	Setting pi	n	Output status			
ENS	SPRD	SEL	Modulation Modulation type		Modulation rate	Falling width
		L		Down-non-spread	_	-0.5%
	_	Н	None	Down-non-spread	_	-1.0%
_	Н	L	INOILE	Center-non-spread -	_	0.0%
	''	Н			_	0.0%
		L		Down spread	-1.0%	_
Н		Н	Provided	Down spread	-2.0%	_
''	Н	L	Fiovided	Center spread	±0.5%	_
	''	Н		Center spread	± 1.0%	_

■ I/O CIRCUIT TYPE

(Continued)

(Continued)

Note: For XIN and XOUT pins, see "■ OSCILLATION CIRCUIT".

■ HANDLING DEVICES

Preventing Latchup

A latchup can occur if, on this device, (a) a voltage higher than V_{DD} or a voltage lower than V_{SS} is applied to an input or output pin or (b) a voltage higher than the rating is applied between V_{DD} and V_{SS} . The latchup, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use this device, be very careful not to exceed the maximum rating.

Handling unused pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, using a pull-up or pull-down resistor.

Unused output pin should be opened.

The attention when the external clock is used

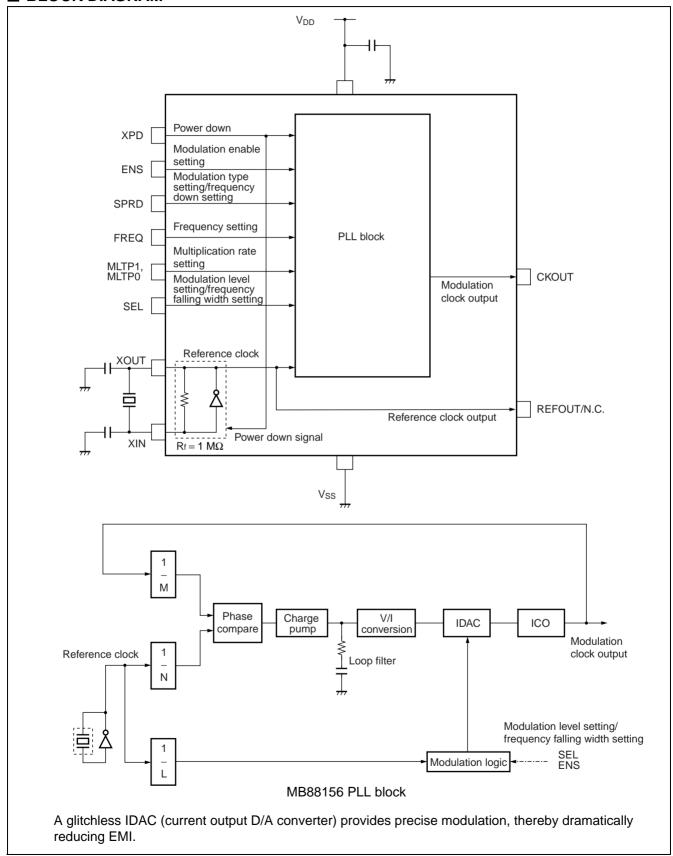
Input the clock to XIN pin, and XOUT pin should be opened when you use the external clock. Please pay attention so that an overshoot and an undershoot do not occur to an input clock of XIN pin.

Power supply pins

Please design connecting the power supply pin of this device by as low impedance as possible from the current supply source.

We recommend connecting electrolytic capacitor (about 10 μ F) and the ceramic capacitor (about 0.01 μ F) in parallel between Vss and V_{DD} near the device, as a bypass capacitor.

Oscillation circuit


Noise near the XIN and XOUT pins may cause the device to malfunction. Design printed circuit boards so that electric wiring of XIN or XOUT pin and the resonator do not intersect other wiring.

Design the printed circuit board that surrounds the XIN and XOUT pins with ground.

Handling N.C. pin

Be sure to open the N.C. pin when it is used.

■ BLOCK DIAGRAM

■ PIN SETTING

After the pin setting is changed, the stabilization wait time of the modulation clock is required. The stabilization wait time of the modulation clock takes the maximum value of Lock-Up time in "AC Characteristics" in

■ ELECTRICAL CHARACTERISTICS.

ENS modulation enable/disable setting

ENS	Modulation
L	No modulation
Н	Modulation

Spectrum does not spread when "L" is set to ENS pin.

XPD power down

XPD	Status
L	Power down status
Н	Operating status

When setting "L" to XPD pin, it becomes power down mode (low power consumption mode). Both of CKOUT and REFOUT for the output pin fixes to "L" output during the power down.

SPRD modulation type setting/frequency down setting

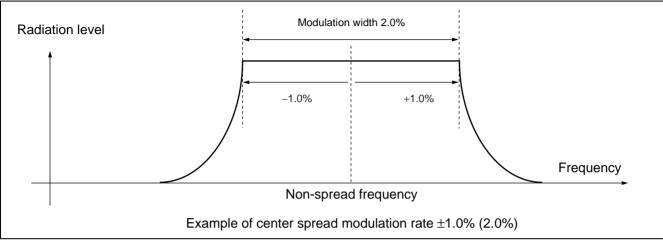
SPRD	Status
L	Down spread/down-non-spread
Н	Center spread/center-non-spread

SEL modulation level setting/frequency falling width setting

SEL	Status			
	$\pm 0.5~\%$ (at center spread) / $\pm 0.0~\%$ (at center-non-spread)			
	-1.0 % (at down spread) /-0.5 % (at down-non-spread)			
Н	±1.0 % (at center spread) /±0.0 % (at center-non-spread)			
''	-2.0 % (at down spread) /-1.0 % (at down-non-spread)			

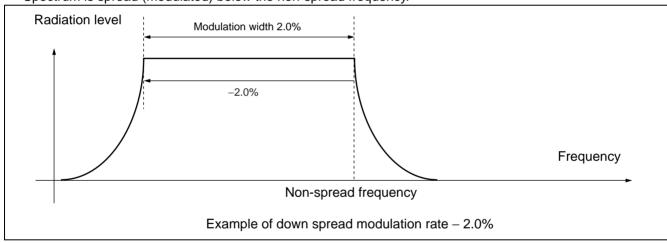
MLTP1, MLTP0 multiplication rate setting

MLTP1	MLTP0	Multiplication rate
L	L	Multiplied by 1
Н	L	Multiplied by 2
Н	Н	Multiplied by 4

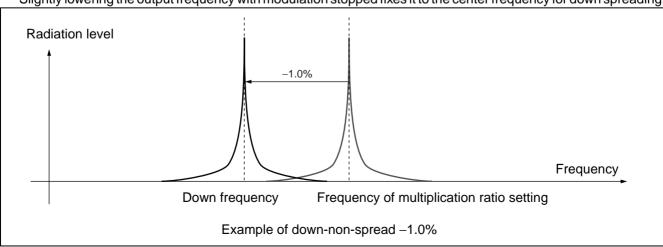

Note: REFOUT is not multiplied.

FREQ frequency setting

FREQ	Input frequency
L	12.5 MHz to 25 MHz (Multiplied by 1, 2) / 12.5 MHz to 20 MHz (Multiplied by 4)
Н	25 MHz to 50 MHz (Multiplied by 1)


• Center spread

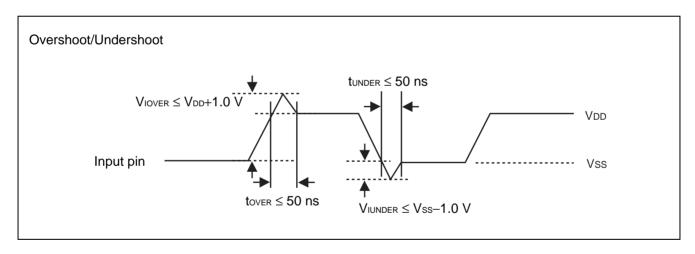
Spectrum is spread (modulated) by centering on the non-spread frequency.


• Down spread

Spectrum is spread (modulated) below the non-spread frequency.

• Down-non-spread

Slightly lowering the output frequency with modulation stopped fixes it to the center frequency for down spreading.



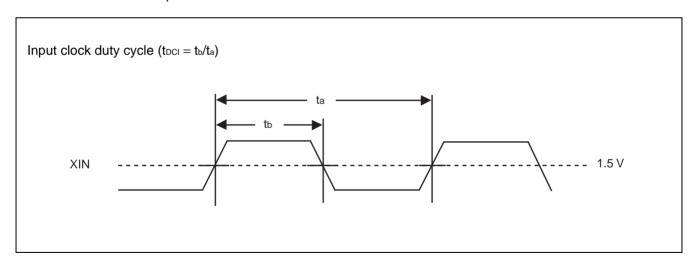
■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit		
rarameter	Symbol Min		Max	Oille	
Power supply voltage*	V _{DD}	- 0.5	+4.0	V	
Input voltage*	Vı	Vss - 0.5	V _{DD} + 0.5	V	
Output voltage*	Vo	Vss - 0.5 Vpp + 0.5		V	
Storage temperature	Тѕт	– 55	- 55 +125		
Operation junction temperature	ΤJ	- 40	+125	°C	
Output current	lo	- 14	+14	mA	
Overshoot	Viover	_	V _{DD} + 1.0 (tover ≤ 50 ns)	V	
Undershoot	Viunder	$Vss - 1.0$ (tunder ≤ 50 ns)	_	V	

^{*:} The parameter is based on $V_{SS} = 0.0 \text{ V}$.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS


(Vss = 0.0 V)

Parameter	Symbol	Pin	Conditions	Value			Unit
Farameter	Symbol	FIII	Conditions	Min	Тур	Max	
Power supply voltage	V _{DD}	V _{DD}	_	3.0	3.3	3.6	V
"H" level input voltage	Vін	XIN, SEL, ENS, FREQ, MLTP1, MLTP0, SPRD, XPD	_	V _{DD} × 0.8	_	V _{DD} + 0.3	V
"L" level input voltage	VıL	XIN, SEL, ENS, FREQ, MLTP1, MLTP0, SPRD, XPD	_	Vss	_	V _{DD} × 0.2	V
Input clock duty cycle	toci	XIN	12.5 MHz to 50 MHz	40	50	60	%
Operating temperature	Та	_	_	-40	_	+85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

• DC Characteristics

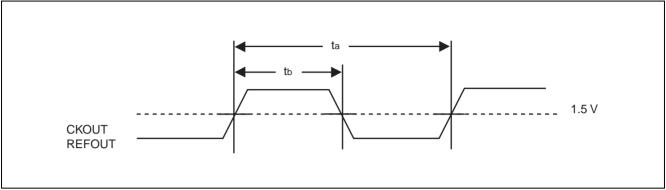
(Ta = -40 °C to +85 °C, V_{DD} = 3.3 V \pm 0.3 V, Vss = 0.0 V)

	(1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						ı	
Parameter	Symbol	Pin	Conditions	Value			Unit	
Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Power supply current	Icc	V _{DD}	24 MHz output No load capacitance	_	5.0	7.0	mA	
			At power-down	_	10	_	μΑ	
Output voltage	Vонс	скоит	"H" level output Іон = –4 mA	V _{DD} – 0.5		V_{DD}	V	
	Vohr	REFOUT	"H" level output Іон = –3 mA	V DD — U.5		V DD	V	
	Volc	CKOUT	"L" level output Io∟ = 4 mA	Vss —		0.4	V	
	Volr	REFOUT	"L" level output loL = 3 mA	VSS		0.4	V	
Output impedance	Zoc	CKOUT	12.5 MHz to 80 MHz	_	45	_	0	
	Zor	REFOUT	12.5 MHz to 50 MHz	_	70	_	Ω	
Input capacitance	Cin	SEL, ENS, FREQ, MLTP1, MLTP0, SPRD, XPD	EQ, MLTP1, $V_{DD} = V_{I} = 0.0 \text{ V}$ FP0, SPRD, $f = 1 \text{ MHz}$		_	16	pF	
Pull-up resistor	Rpu	ENS, SPRD	_	25	50	200	kΩ	
Pull-down resistor	R _{PD}	FREQ, MLTP1, MLTP0	_	25	50	200	kΩ	
Load capacitance	CL	REFOUT	12.5 MHz to 50 MHz	_	_	15		
		СКОПТ	12.5 MHz to 50 MHz	_	<u> </u>		pF	
			50 MHz to 80 MHz	_	_	7		

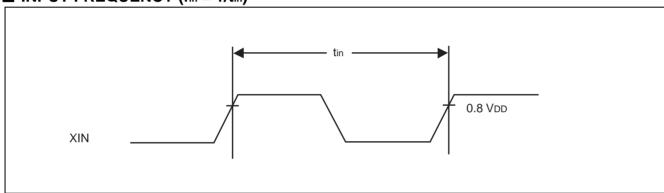
AC Characteristics

$$(Ta = -40 \, ^{\circ}C \text{ to } + 85 \, ^{\circ}C, \, V_{DD} = 3.3 \, \text{V} \pm 0.3 \, \text{V}, \, \text{Vss} = 0.0 \, \text{V})$$

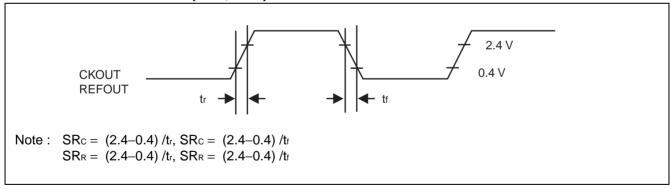
D	Sym- bol	D'	Conditions		Value			1114
Parameter		Pin			Min	Тур	Max	Unit
Oscillation fraguency		XIN, XOUT	Fundamental oscillation		12.5	_	40	MHz
Oscillation frequency	fx		3rd overtone		40	—	48	
Input frequency	fin			Multiplied by 1	12.5	_	25	- MHz
		XIN	FREQ = 0	Multiplied by 2	12.5	_	25	
				Multiplied by 4	12.5	_	20	
			FREQ = 1	Multiplied by 1	25	_	50	
Output frequency	fouт	REFOUT	FREQ = 0	Multiplied by 1	12.5	_	25	- MHz
				Multiplied by 2	12.5	_	25	
				Multiplied by 4	12.5	_	20	
			FREQ = 1	Multiplied by 1	25	_	50	
		скоит	FREQ = 0	Multiplied by 1	12.5	_	25	
				Multiplied by 2	25	_	50	
				Multiplied by 4	50	_	80	
			FREQ = 1	Multiplied by 1	25	_	50	
Output slew rate	SRc	СКОИТ	Load capacitance 15 pF 0.4 to 2.4 V		0.4		4.0) //
	SRR	REFOUT	Load capacitance 15pF 0.4 to 2.4 V		0.3		2.0	- V/ns
Output clock Duty Cycle	t DCC	CKOUT	1.5 V reference level		40	_	60	~
	tdcr	REFOUT	1.5 V reference level		t _{DCI} - 10*1		t _{DCI} + 10*1	%
Modulation frequency	fмор	CKOUT	Input frequency	at 24 MHz	_	32.4	_	kHz
Lock-Up time*2	t LK	CKOUT	_		_	2	5	ms
Cycle-cycle jitter	tuc	CKOUT	Multiplied by 1 No load capacitance Standard deviation σ	Input frequency 12.5 MHz to 20 MHz	_		150	- ps
				Input frequency 20 MHz to 50 MHz	_		100	
			Multiplied by 2 No load capacitance Standard deviation σ	Input frequency 12.5 MHz to 25 MHz	_		200	
			Multiplied by 4 No load capacitance Standard deviation σ	Input frequency 12.5 MHz to 20 MHz	_	_	200	


^{*1:} Because the duty of REFOUT pin output depends on tool of the input clock duty, it is assured only when either A or B condition is used as follow:

A: Resonator input: When the resonator is connected to the XIN pin and XOUT pin and oscillates normally.

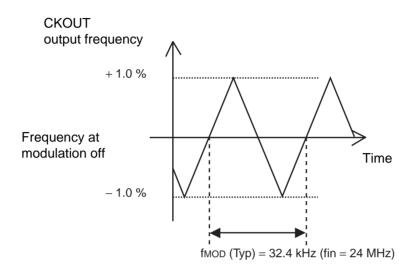

B: External clock input: The input level is full swing $(V_{SS} - V_{DD})$.

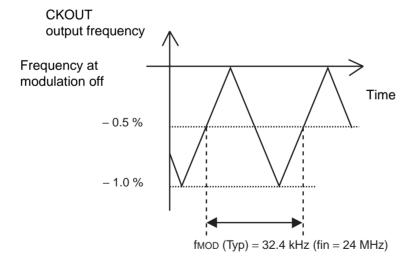
^{*2:} After power on and release of power down or changing the pin setting (SEL, ENS, FREQ, MLTP1 and MLTP0, and SPRD), the stabilization wait time of the modulation clock is required. The stabilization wait time of the modulation clock takes the maximum value of Lock-Up time.


■ OUTPUT CLOCK Duty Cycle (tocc, tocr = tb/ta)

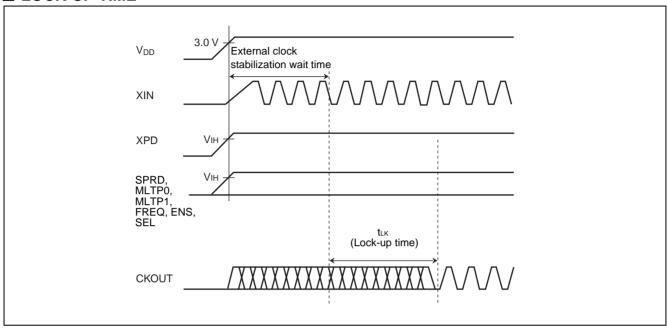
■ INPUT FREQUENCY (fin = 1/tin)

■ OUTPUT SLEW RATE (SRc, SRR)


■ CYCLE-CYCLE JITTER $(t_{JC} = |t_n-t_{n+1}|)$

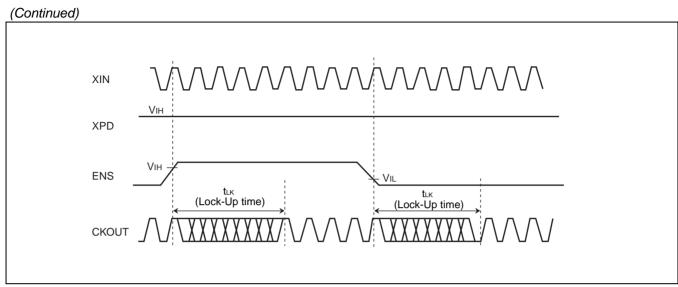

Note: Cycle-cycle jitter indicates the difference between a certain cycle and the immediately succeeding (or preceding) cycle.

■ MODULATION WAVEFORM


• Modulation rate ±1.0%, example of center spread


• Modulation rate −1.0%, example of down spread

■ LOCK-UP TIME



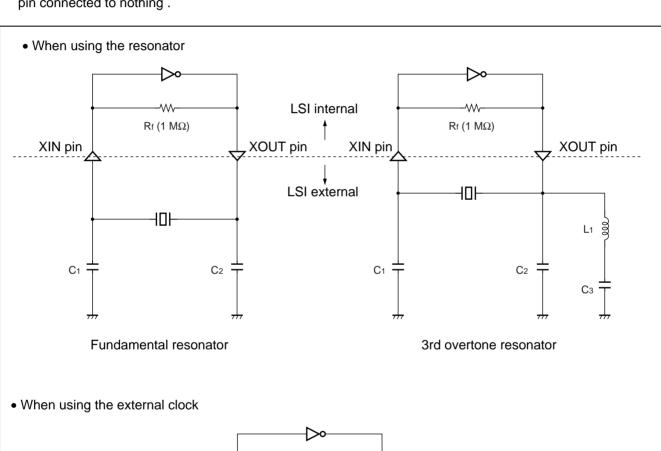
If the XPD pin is fixed at the "H" level, the maximum time after the power is turned on until the set clock signal is output from CKOUT pin is (the stabilization wait time of input clock to XIN pin) + (the lock-up time "tlk"). For the input clock stabilization time, check the characteristics of the resonator or oscillator used.

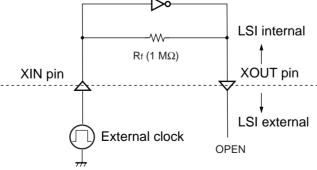
If the XPD pin is used for power-down control, the set clock signal is output from the CKOUT pin at most the lock-up time "tlk" after the XPD pin goes "H" level.

(Continued)

If the ENS pin is used for modulation enable control during normal operation, the set clock signal is output from the CKOUT pin at most the lock-up time "tlk" after the level at the ENS pin is determined.

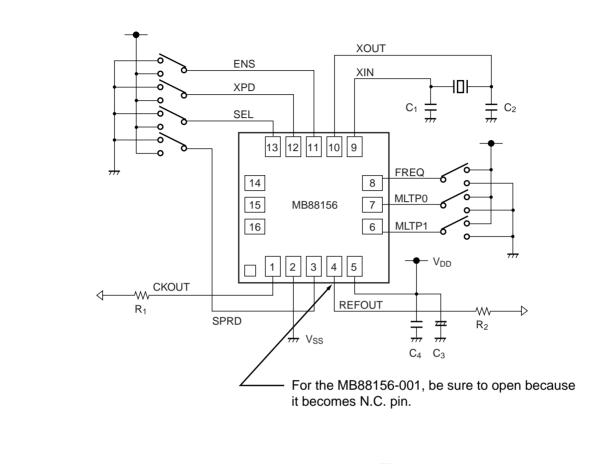
Note: The wait time for the clock signal output from the CKOUT pin to become stable is required after the IC is released from power-down mode by the XPD pin or after another pin's setting is changed. During the period until the output clock signal becomes stable, neither of the output frequency, output clock duty cycle, modulation period, and cycle-cycle jitter characteristic cannot be guaranteed. It is therefore advisable to take action, such as cancelling a device reset at the stage after the lock-up time has passed.


■ OSCILLATION CIRCUIT


The following schematic on the left-hand side shows a sample connection of a general resonator. The oscillation circuit contains a feedback resistor (1 $M\Omega$). The values of capacitors (C_1 and C_2) must be adjusted to the optimum constant of the resonator used.

The following schematic on the right-hand side shows a sample connection of a 3rd overtone resonator. The values of capacitors (C_1 , C_2 , and C_3) and inductor (L_1) must be adjusted to the optimum constant of the resonator used.

The most suitable value is different by individual resonator. Please refer to the resonator manufacturer which you use for the most suitable value.


To use an external clock signal (without using the resonator), input the clock signal to the XIN pin with the XOUT pin connected to nothing.

Note: Note that the jitter characteristic of the input clock signal may affect the cycle-cycle jitter characteristic.

■ INTERCONNECTION CIRCUIT EXAMPLE

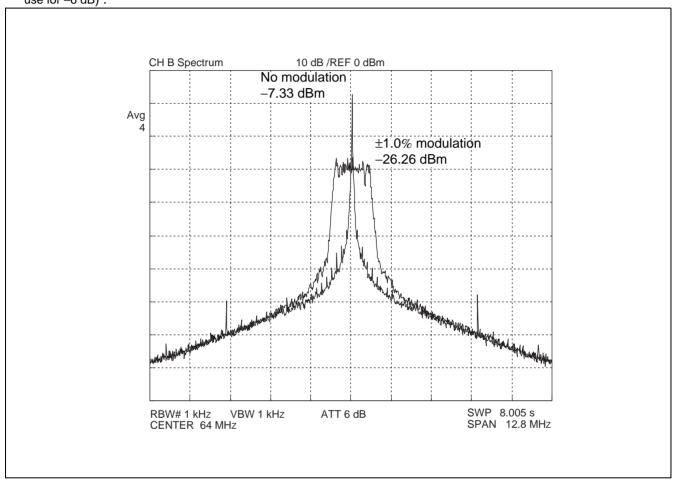
C₁, C₂ : Oscillation stabilization capacitance (see ■ OSCILLATION CIRCUIT)

 C_3 : Capacitor of 10 μF or higher

 C_4 : Capacitor of about 0.01 μF (connect a capacitor of good high frequency

property (ex. laminated ceramic capacitor) to close to this device)

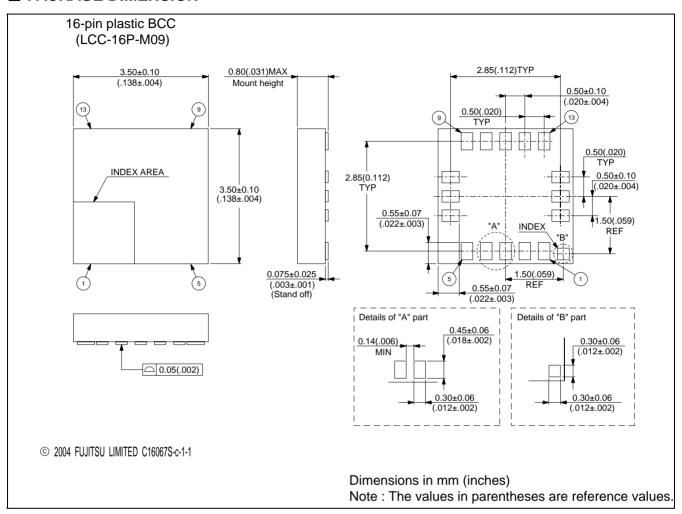
 $R_1,\,R_2$: Impedance matching resistor for board pattern


21

■ SPECTRUM EXAMPLE CHARACTERISTICS

The condition of the examples of the characteristic is shown as follows: Input frequency = 16 MHz (Output frequency = 64 MHz: Using MB88156-001 (Multiplied by 4))

Power-supply voltage = 3.3 V, None load capacity. Modulation rate = \pm 1.0% (center spread).


Spectrum analyzer HP4396B is connected with CKOUT. The result of the measurement with RBW = 1 kHz (ATT use for -6 dB).

■ ORDERING INFORMATION

Part number	REFOUT pin Package		Emboss taping	
MB88156PV-G-000-EFE1	Provided		EF type	
MB88156PV-G-000-ERE1	Flovided	16-pin plastic BCC	ER type	
MB88156PV-G-001-EFE1	None	(LCC-16P-M09)	EF type	
MB88156PV-G-001-ERE1	None		ER type	

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0503