8-bit Proprietary Microcontroller cmos

F²MC-8L MB89800 Series

MB89803/805/P808/PV800

■ DESCRIPTION

MB89800 series is a line of single-chip microcontrollers using the F²MC-8L* CPU core which can operate at low voltage but at high speed. In addition to an LCD controller/driver allowing 240-pixel display the microcontrollers contain a variety of peripheral functions such as timers, a UART, a serial interface, and an external interrupt. The configuration of the MB89800 series is therefore best suited to control of LCD display panels.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

PACKAGES

- Minimum execution time: 0.4 μs/10 MHz (Vcc = +5.0 V)
- F²MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.

(Continued)

100 pin, Plastic LQFP 100 pin, Plastic QFP 100 pin, Ceramic MQFP

(FPT-100P-M05)

(FPT-100P-M06)

(MQP-100C-P01)

(Continued)

LCD controller/driver

Max 70 segments/4 commons

Divided resistor for LCD power supply

• Three types of timers

8-bit PWM timer (also usable as a reload timer)

8-bit pulse width count timer (also usable as a reload timer)

20-bit time-base counter

• Two serial interfaces

8-bit synchronous serial interface (Switchable transfer direction allows communication with various equipment.) UART (5-, 7-, 8-bit transfer capable)

• External interrupt: 2 channels

Capable of wake-up from low-power consumption modes (with an edge detection function)

• Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)

Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)

■ PRODUCT LINEUP

Part number Parameter	MB89803	MB89805	MB89803 MB89805 MB89P808 MB89PV800					
Classification	Mass production product (mask ROM products) One-time PROM product product for every and develop							
ROM size	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	48 K × 8 bits (internal PROM, programming with general-purpose EPROM programmer)	48 K × 8 bits (external ROM)				
RAM size	256 × 8 bits	512 × 8 bits	2 K × 8	bits				
CPU functions	Instru Instru Data Minin	ber of instructions uction bit length uction length bit length num execution time rupt processing time	: 136 instructions : 8 bits : 1 byte to 3 bytes : 1, 8, 16 bit length : 0.4 μs/10 MHz (Vcc = 5. : 3.6 μs/10 MHz (Vcc = 5.	,				
Ports	I/O ports (N-ch open-drain) : 16 (All also serve as segment pins.)*1 I/O ports (N-ch open-drain) : 6 I/O ports (CMOS) : 6 (5 ports also serve as peripheral I/O.) Input ports : 4 (1 port also serves as an external interrupt input.) Total : 32 (Max)							
PWM timer	8-bit reload timer operation (toggled output capable) 8-bit resolution PWM operation Operating clock (pulse width count timer output, 0.4 μs, 6.4 μs, 25.6 μs/10 MHz)							
Pulse width count timer	8-bit reload timer operation 8-bit pulse width count operation (continuous measurement capable, "H" width, "L" width, or single-cycle measurement capable) Operating clock(0.4 μs, 1.6 μs, 12.8 μs/10 MHz)							
Serial I/O 8 bits	One clock sel	lectable from four trar	-bit length nsfer clocks(0.8 μs, 3.2 μs, ISB first selectability	12.8 μs/10 MHz)				
UART	5-, 7-, 8- bit tra	ansfer capable, built-i	n baud-rate generator (Max	156250/10 MHz)				
LCD controller/ driver	Common output: 4 Segment output: 70 (Max) Operating mode: 1/2 bias • 1/2 duty, 1/3 bias • 1/3 duty, 1/3 bias • 1/4 duty LCD display RAM size: 70×4 bits Dividing resistor for LCD driving: Built-in(An external resistor selectable)							
External interrupt	2 channels (edge	selectable) (1 channe	el also serves as a pulse wi	dth count timer input)				
Standby mode	Sleep mode, stop mode							
Process			CMOS					
Operating voltage*2	2.2 V to 6.0 V 2.7 to 6.0 V							
EPROM for use				MBM27C512-20TV (LCC package)				

^{*1 :} The function is selected by the mask option.

^{*2 :} Varies with conditions such as the operating frequency. (See "■ELECTRICAL CHARACTERISTICS".)

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89803	MB89805	MB89P808	MB89PV800
FPT-100P-M05	0	0	0	×
FPT-100P-M06	0	0	0	×
MQP-100C-P01	×	×	×	0

∴ : Available × : Not available

Note: For more information about each package, see "■PACKAGE DIMENSIONS".

■ DIFFERENCES AMONG PRODUCTS

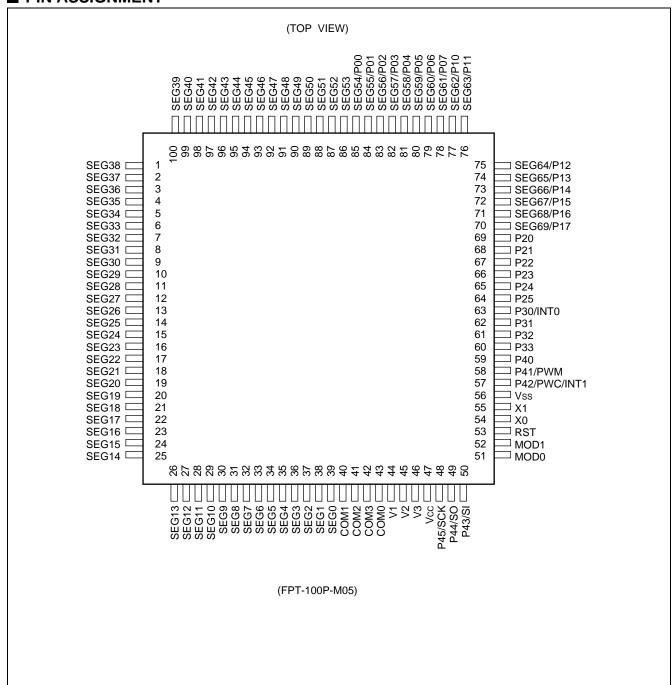
1. Memory Size

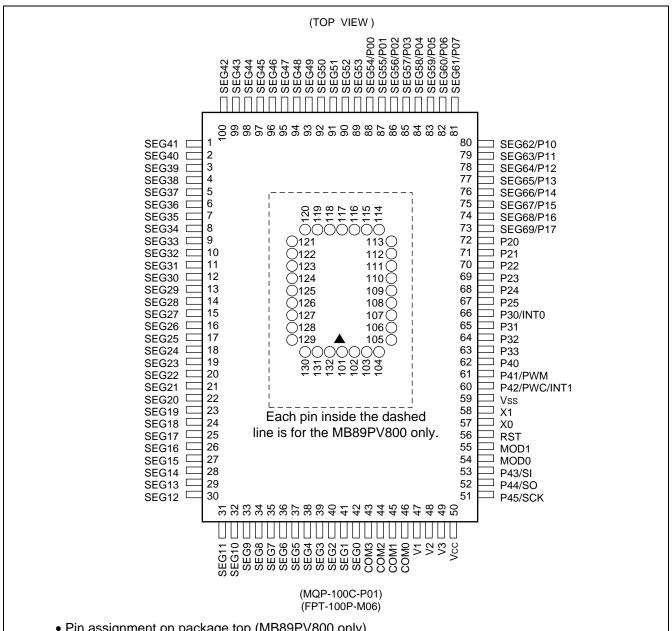
Before evaluating using the piggyback product, it is necessary to confirm its differences from the product that will actually be used.

Take particular care on the following points:

- MB89803 register bank addresses upper than 0180H can not be used.
- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption


- In the case of the MB89PV800, add the current consumed by the EPROM which is connected to the top socket.
- When operating at low speed, the current consumption in the one-time PROM or EPROM model is greater than on the mask ROM models. However, the current consumption in sleep/stop modes is the same. (For more information, see "ELECTRICAL CHARACTERISTICS".)


3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check "■MASK OPTIONS".

Note that the options are fixed especially in MB89PV800 and MB89P808.

■ PIN ASSIGNMENT

Pin assignment on package top (MB89PV800 only)

Pin no.	Pin name						
101	N.C.	109	A2	117	N.C.	125	ŌĒ
102	V_{PP}	110	A1	118	O4	126	N.C.
103	A12	111	A0	119	O5	127	A11
104	A7	112	N.C.	120	O6	128	A9
105	A6	113	01	121	07	129	A8
106	A5	114	O2	122	O8	130	A13
107	A4	115	O3	123	CE	131	A14
108	А3	116	Vss	124	A10	132	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

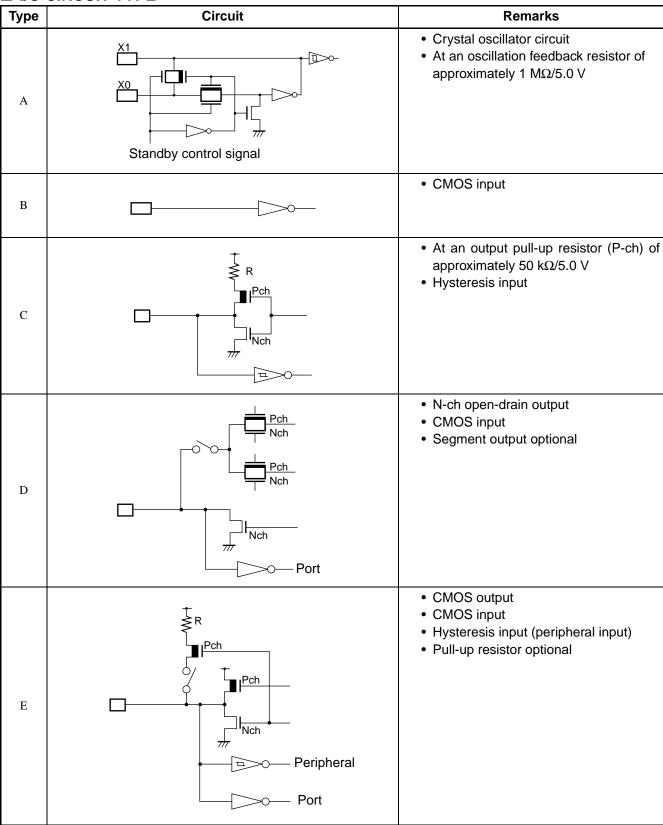
Pin no.			0 : .,	
LQFP*1	MQFP/ QFP*2	Pin name	Circuit type	Function
54	57	X0	А	Clock envetal appillator pine
55	58	X1	A	Clock crystal oscillator pins
51	54	MOD0	В	Operating mode selection pin. Connect directly to Vss.
52	55	MOD1	Ь	Operating mode selection pin. Connect directly to vss.
53	56	RST	С	This pin is an N-ch open-drain type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source (optional function). The internal circuit is initialized by the input of "L".
85 to 78	88 to 81	P00/SEG54 to P07/SEG61	D	General-purpose N-ch open-drain I/O ports. Also serve as an LCD controller/driver segment output. The port and segment output are switched by mask option in 8-bit unit.
77 to 70	80 to 73	P10/SEG62 to P17/SEG69	D	General-purpose N-ch open-drain I/O ports. Also serve as an LCD controller/driver segment output. The port and segment output are switched by mask option in 4 to 1-bit unit.
69 to 64	72 to 67	P20 to P25	F	General-purpose N-ch open-drain I/O ports. A pull-up resistor option is provided.
63	66	P30/INT0	I	General-purpose input port. The input is CMOS input. Also serves as an external interrupt input (INT0), in this case, the input is hysteresis input. A pull-up resistor option is provided.
62 to 60	65 to 63	P31 to P33	Н	General-purpose input ports. These pins are a CMOS input type. A pull-up resistor option is provided.
59	62	P40	E	General-purpose I/O port. A pull-up resistor option is provided.
58	61	P41/PWM	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as PWM timer toggle output (PWM).
57	60	P42/PWC/ INT1	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as pulse width count timer input (PWC) and an external interrupt input (INT1). The PWC and INT1 input is hysteresis input.
50	53	P43/SI	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as serial I/O and a UART data input (SI). The SI input is hysteresis input.
49	52	P44/SO	Е	General-purpose I/O port. A pull-up resistor option is provided. Also serves as a serial I/O and a UART data output (SO).

^{*1:} FPT-100P-M05

^{*2:} FPT-100P-M06/MQP-100C-P01

(Continued)

Pin	no.		Circuit	
LQFP*1	MQFP/ QFP*2	Pin name Circuit type		Function
48	51	P45/SCK	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as a serial I/O and a UART clock I/O (SCK). The SCK input is hysteresis input.
39 to 1, 100 to 86	42 to 1, 100 to 89	SEG0 to SEG53	G	LCD controller/driver segment output pins
43 to 40	46 to 43	COM0 to COM3	G	LCD controller/driver common output pins
46 to 44	49 to 47	V3 to V1		LCD driving power supply pins
47	50	Vcc		Power supply pin
56	59	Vss	_	Power supply (GND) pin


*1 : FPT-100P-M05

*2: FPT-100P-M06/MQP-100C-P01

• External EPROM pins (MB89PV800 only)

Pin no.	Pin name	I/O	Function	
102	V _{PP}	0	"H" level output pin	
103 104 105 106 107 108 109 110	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins	
113 114 115	O1 O2 O3	I	Data input pins	
116	Vss	0	Power supply (GND) pin	
118 119 120 121 122	O4 O5 O6 O7 O8	I	Data input pins	
123	CE	0	ROM chip enable pin Outputs "H" during standby.	
124	A10	0	Address output pin	
125	OE	0	ROM output enable pin Outputs "L" at all times.	
127 128 129	A11 A9 A8	0	Address output pins	
130	A13	0		
131	A14	0		
132	Vcc	0	EPROM power supply pin	
101 112 117 126	N.C.	_	Internally connected pins Be sure to leave them open.	

■ I/O CIRCUIT TYPE

Type	Circuit	Remarks
F	Pch Nch	 Nch open-drain output CMOS input Pull-up resistor optional
G	Pch Nch Nch	LCDC output
Н	R O/ O/	CMOS input Pull-up resistor optional
I	Port External Interrupt	CMOS input (port) , Hysterisis input (interrupt) Pull-up resistor optional

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

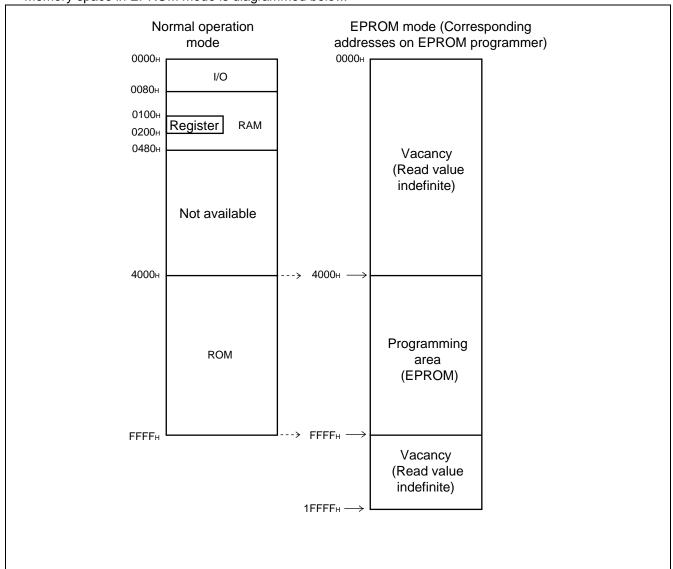
4. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P808

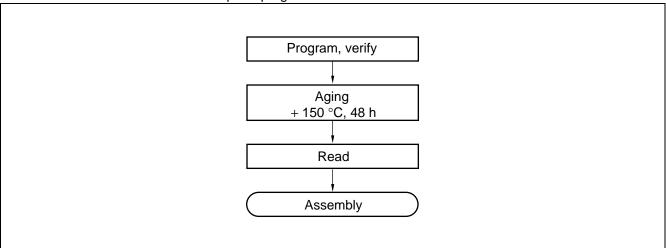

The MB89P808 is an OTPROM (one-time PROM) version for the MB89800 series.

1. Features

- 48-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C1001A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.


3. Programming to the EPROM

In EPROM mode, the MB89P808 functions equivalent to the MBM27C1001A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- · Programming procedure
- (1) Set the EPROM programmer to the MBM27C1001A.
- (2) Load option data into addresses 4000H to FFFFH of the EPROM programmer.
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-100P-M05	ROM-100SQF-32DP-8LA3
FPT-100P-M06	ROM-100QF-32DP-8LA2

Inquiry: Sunhayato Co., Ltd.: TEL +81-3-3984-7791

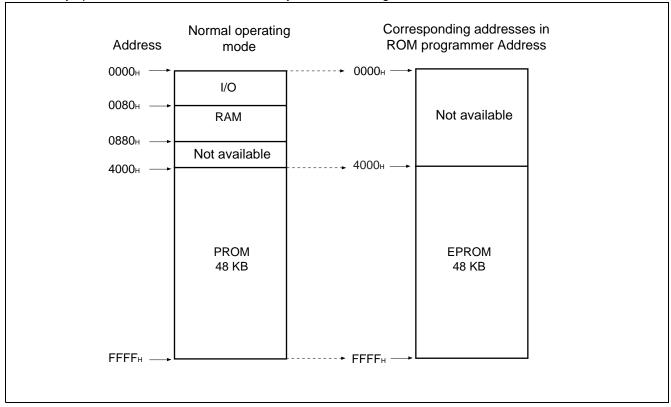
Note : With some EPROM programmers, stability of programming performance is enhanced by placing an 0.1 μ F capacitor between the V_{PP} and V_{SS} pins or the V_{CC} and V_{SS} pins.

■ PROGRAMMING TO THE EPROM WITH PIGGY-BACK/EVALUATION CHIPS

1. EPROM for Use

MBM27C512-20TV

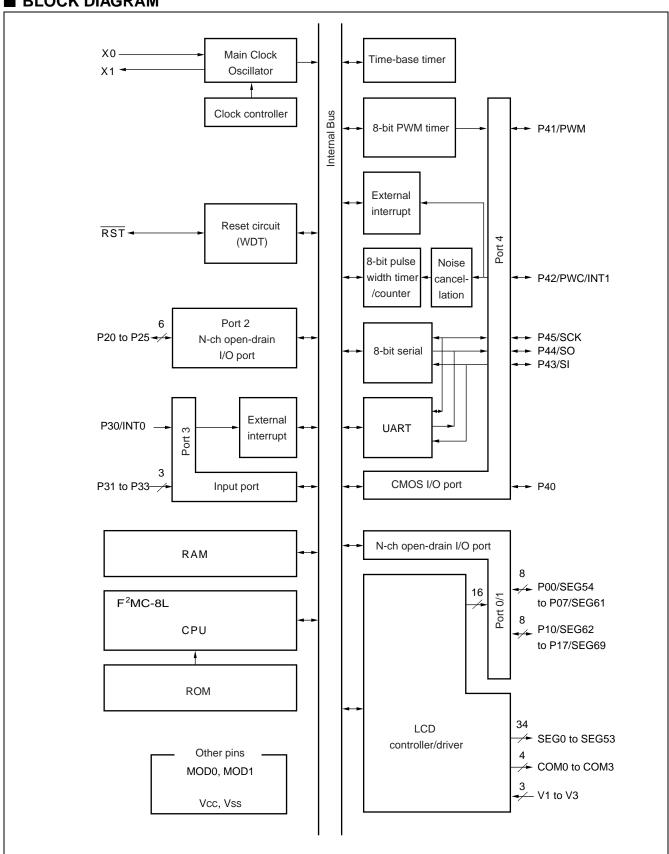
2. Programming Socket Adapter


To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

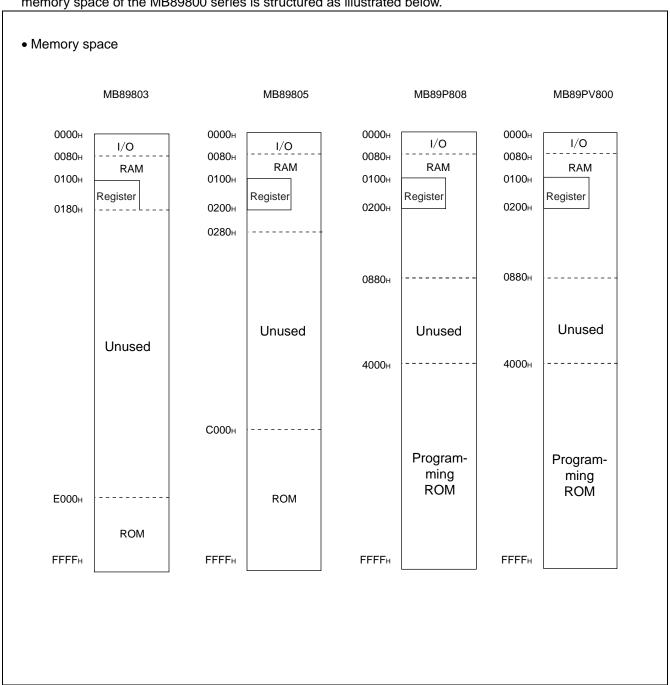
Inquiry: Sunhayato Co., Ltd.: TEL +81-3-3984-7791

3. Memory Space


Memory space in each mode, such as 48 Kbyte PROM is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C512.
- (2) Load program data into the EPROM programmer at 4000 H to FFFFH.
- (3) Program to 4000_{H} to FFFFH with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89800 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89800 series is structured as illustrated below.

2. Registers

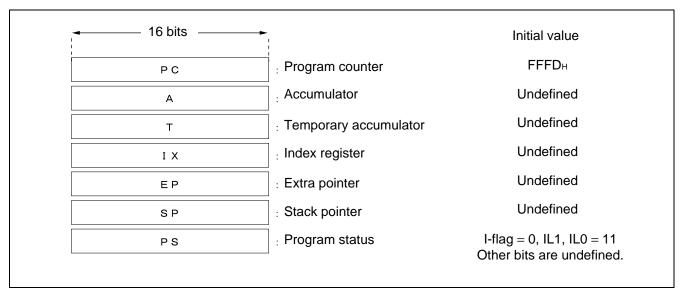
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC) : A 16-bit register for indicating instruction storage positions

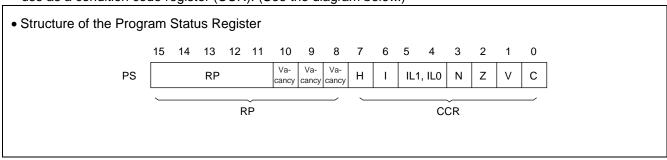
Accumulator (A) : A 16-bit temporary register for storing arithmetic operations, etc.

When the instruction is an 8-bit data processing instruction, the lower byte is used.

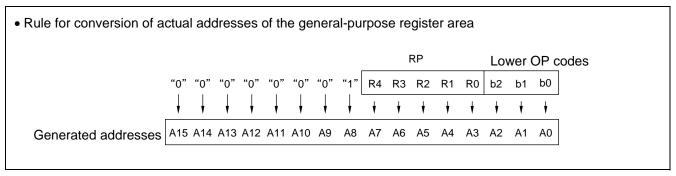
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator.


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX) : A 16-bit register for index modification


Extra pointer (EP) : A 16-bit pointer for indicating a memory address

Stack pointer (SP) : A 16-bit register for indicating a stack area


Program status (PS) : A 16-bit register for storing a register pointer and a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to 1 when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

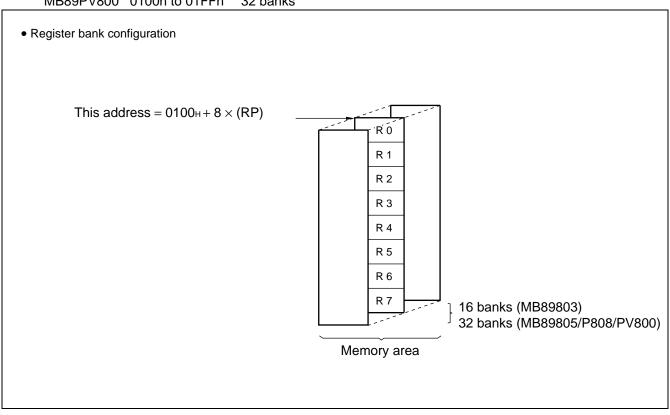
IL1	IL0	Interrupt level	High-low		
0	0	1	High •		
0	1		Ţ		
1	0	2	•		
1	1	3	Low = no interrupt		

N-flag: Set to 1 if the highest bit is set to 1 as the result of an arithmetic operation. Cleared to 0 when the bit is set to 0.

Z-flag: Set to 1 when an arithmetic operation results in 0. Cleared to 0 otherwise.

V-flag: Set to 1 if the complement on 2 overflows as a result of an arithmetic operation. Cleared to 0 if the overflow does not occur.

C-flag: Set to 1 when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to 0 otherwise. Set to the shift-out value in the case of a shift instruction.


The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89803 (RAM 256×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

MB89803 0100h to 017Fh 16 banks MB89805 0100h to 01FFh 32 banks MB89P808 0100h to 01FFh 32 banks MB89PV800 0100h to 01FFh 32 banks

■ I/O MAP

Address	Read/write	Register name	Register description		
00н	(R/W)	PDR0	Port 0 data register		
01н			Vacancy		
02н	(R/W)	PDR1	Port 1 data register		
03н			Vacancy		
04н	(R/W)	PDR2	Port 2 data register		
05н			Vacancy		
06н			Vacancy		
07н			Vacancy		
08н	(R/W)	STBC	Standby control register		
09н	(R/W)	WDTC	Watchdog timer control register		
ОАн	(R/W)	TBCR	Time-base timer control register		
0Вн			Vacancy		
0Сн	(R)	PDR3	Port 3 data register		
0Dн	Vacancy				
0Ен	(R/W)	PDR4	Port 4 data register		
0Fн	(W)	DDR4	Port 4 data direction register		
10н	Vacancy				
11н			Vacancy		
12н	(R/W)	CNTR	PWM timer control register		
13н	(W)	COMR	PWM timer compare register		
14н	(R/W)	PCR1	PWC pulse width control register 1		
15н	(R/W)	PCR2	PWC pulse width control register 2		
16н	(R/W)	RLBR	PWC reload buffer register		
17н	(R/W)	NCCR	PWC noise cancellation control register 1		
18н	Vacancy				
19н	Vacancy				
1Ан	Vacancy				
1Вн	Vacancy				
1Сн	(R/W)	SMR	Serial mode register		
1Dн	(R/W)	SDR	Serial data register		
1Ен	Vacancy				
1F _H			Vacancy		

(Continued)

Address	Read/write	Register name	Register description		
20н	(R/W)	SMC1	UART serial mode control register 1		
21н	(R/W)	SRC	UART serial rate control register		
22н	(R/W)	SSD	UART serial status/data register		
23н	(R/W)	SIDR/SODR	UART serial data register		
24н	(R/W)	SMC2	UART serial mode control register 2		
25н			Vacancy		
26н			Vacancy		
27н			Vacancy		
28н			Vacancy		
29н	Vacancy				
2Ан	Vacancy				
2Вн	Vacancy				
2Сн	Vacancy				
2Dн	Vacancy				
2Ен	Vacancy				
2Fн			Vacancy		
30н	(R/W)	EIC1	External interrupt 1 control register 1		
31н to 4Fн			Vacancy		
50н to 72н	(R/W)	VRAM	Display data RAM		
79н	(R/W)	LCR1	LCD controller/driver control register		
7Ан	(R/W)	SEGR	Segment output selection register		
7Вн	Vacancy				
7Сн	(W)	ILR1	Interrupt level setting register 1		
7Dн	(W)	ILR2	Interrupt level setting register 2		
7Е н	(W) ILR3 Interrupt level setting register 3				
7 Fн	Vacancy				

R/W = Available Read and Write

R = Read only W = Write only

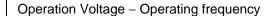
Note: Do not use vacancies.

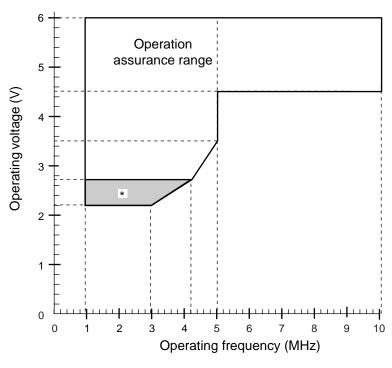
■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = 0.0 V)

Demonstra	0	Rat	ing	1124	Dament a
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 7.0	V	
LCD power supply voltage	Vз	Vss - 0.3	Vss + 7.0	V	V3 to V1 Pin
	Vıı	Vss - 0.3	Vcc + 0.3	V	With pull-up resistor of P20 to P25 in selecting. Must not exceed Vss + 7.0 V.
Input voltage	V _{I2}	Vss - 0.3	Vss + 7.0	٧	Without pull-up resistor of P20 to P25 in selecting.
input voltage	Vı3	Vss - 0.3	V ₃ + 0.3	V	Adapt to P00 to P07 and P10 to P17 in MB89P808 and MB89PV800. Must not exceed Vss + 7.0 V.
	V _{I4}	Vss - 0.3	Vcc + 0.3	>	Other pins. Must not exceed Vss + 7.0 V.
	V ₀₁	Vss - 0.3	Vcc + 0.3	V	With pull-up resistor of P20 to P25 in selecting. Must not exceed Vss + 7.0 V.
Output voltage	V _{O2}	Vss - 0.3	Vss + 7.0	٧	Without pull-up resistor of P20 to P25 in selecting.
Output voltage	Vo3	Vss - 0.3	V ₃ + 0.3	V	Adapt to P00 to P07 and P10 to P17 in MB89P808 and MB89PV800. Must not exceed Vss + 7.0 V.
	V _{O4}	Vss - 0.3	Vcc + 0.3	>	Other pins. Must not exceed Vss + 7.0 V.
"L" level output current	lol		+ 10	mA	Except power supply pins
"L" level average output current	lolav	l	+ 4	mA	Average value (operating current×operating duty), adapt to all pins except for power supply.
Total "L" level output current	Σ loL	_	+ 40	mA	
"H" level output current	Іон	_	- 5	mA	Except power supply pins
"H" level average output current	Іонаv	_	-2	mA	Average value (operating currentxoperating duty), adapt to all pins except for power supply.
Total "H"level output current	ΣΙοн		– 10	mA	
Power consumption	Pd		+ 300	mW	
Operating temperature	Та	- 40	+ 85	°C	
Storage temperature	Tstg	- 55	+ 150	°C	


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.


2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks		
raiailletei	Syllibol	Min	Max	Oilit	Kemarks		
Dower aupply voltage	Vcc	2.2*	6.0*	V	Normal operation assurance range		
Power supply voltage	VCC	1.5	6.0	V	Retains the RAM state in stop mode		
LCD power supply voltage	V ₃	Vss	6.0	V	V3 pin The optimum value is dependent on the element in use.		
Operating temperature	TA	- 40	+ 85	°C			

*: The minimum operating power supply voltage varies with the operating frequency.

*: The shaded area is assured only for the MB89803/805.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Vcc = V3 = +5.0 V, Vss = 0.0 V, TA = -40 °C to +85 °C)

Danamatan.	Sym	Din nome	0		Value		l linit	Dama anta-
Parameter	bol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level input	Vін	P00 to P07, P10 to P17, P20 to P25, P30 to P33, P40 to P45	_	0.7 Vcc*1	_	Vcc + 0.3	V	CMOS input
Voltage		RST, MOD0 to MOD1, INT0, SCK, SI, PWC/ INT1		0.8 Vcc	_	Vcc + 0.3	٧	CMOS hysterisis input
"L" level input	VıL	P00 to P07, P10 to P17, P20 to P25, P30 to P33, P40 to P45	_	Vcc - 0.3	_	0.3 Vcc*1	V	CMOS input
voltage	VILS	RST, MOD0 to MOD1, INT0, SCK, SI, PWC/ INT1	_	Vss - 0.3	_	0.2 Vcc	V	CMOS hysterisis input
	V _{D1}	P20 to P25	Without pull-up resistor	Vss - 0.3	_	Vss + 6.0	V	
Open-drain output pin application		P00 to P07,		Vss - 0.3	_	Vss + 6.0	V	Adapt to MB89803/805
voltage	V _{D2}	P10 to P17	_	Vss - 0.3	_	V ₃ *1	V	Adapt to MB89PV800/ P808
"H"level output voltage	Vон	P40 to P45	Iон = – 2 mA	2.4	_	_	V	
"L"level output voltage	V _{OL1}	P00 to P07, P10 to P17, P20 to P25, P40 to P45	lo _L = 1.8 mA	_	_	0.4	٧	
	V _{OL2}	RST	IoL = 4.0 mA		_	0.4	V	

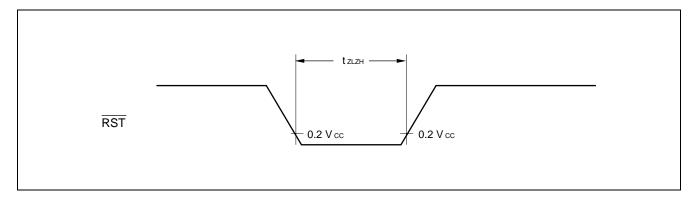
(Vcc = V3 = +5.0 V, Vss = 0.0 V, TA = -40 °C to +85 °C)

Damamatan	Sym-	D:	Complision		Value		I Incit	Damada
Parameter	bol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
		MOD0, MOD1, P30 to P33, P40 to P45	0.45 V < V _I < V _{CC} Without pull-up resistor	_	_	± 5	μА	
Input leakage current (Hi-z output	ILI1	P00 to P07, P10 to P17	0.45 V < V _I < V _{CC}	_	_	± 5	μΑ	Adapt to MB89PV800/ P808
leakage current)	I _{L12}	P20 to P25	0.45 V < V _I < 6 V Without pull-up resistor	_	_	± 1	μА	
		P00 to P07, P10 to P17	0.45 < V _I < 6 V		_	± 1	μΑ	Adapt to MB89803/805
Pull-up Resistance	RPULL	P20 to P25, P30 to P33, P40 to P45, RST	V _I = 0 V With pull-up resistor	25	50	100	kΩ	
Common output impedance	Rусом	COM0 to COM3	V1 to V3 = +5.0 V	_	_	2.5	kΩ	
Segment output impedance	Rvseg	SEG0 to SEG49	V1 to V3 = +5.0 V	_	_	15	kΩ	
LCD divided resistance	RLCD	_	V3 to Vss	30	60	120	kΩ	
LCD leakage current	ILCDL	V1 to V3, COM0 to COM3, SEG0 to SEG69	_	_	_	± 1	μΑ	
			RUN mode Fc = 5 MHz	_	4.5	6	mA	Adapt to MB89803/805/ PV800
Power supply	la -	Vcc	$t_{\text{inst}} = 0.8~\mu\text{s}$		9	15	mA	Adapt to MB89P808
current*2	Icc1	V CC	RUN mode Fc = 10 MHz	_	9	12	mA	Adapt to MB89803/805/ PV800
			$t_{\text{inst}} = 0.4~\mu\text{s}$	_	13	20	mA	Adapt to MB89P808

$$(Vcc = V_3 = +5.0 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$$

Parameter	Sym-	Pin name	Condition		Value		Unit	Remarks
Parameter	bol	Pili liaille	Condition	Min	Тур	Max	Ullit	Remarks
			RUN mode Fc = 5 MHz	_	0.6	0.9	mA	Adapt to MB89803/805/ PV800
	lcc2	Vcc	$t_{inst} = 12.8 \ \mu s$		3.5	7	mA	Adapt to MB89P808
ICC2 VCC	RUN mode Fc = 10 MHz	_	1.2	1.8	mA	Adapt to MB89803/805/ PV800		
	$t_{inst} = 6.4 \ \mu s$		4	8	mA	Adapt to MB89P808		
Power cumbly	Iccs ₁	Vcc	Sleep mode Fc = 5 MHz tinst = 0.8 µs	_	1.5	2	mA	
Power supply current*2	ICCS1	V CC	Sleep mode Fc = 10 MHz tinst = 0.4 μs	_	3	4	mA	
	Iccs ₂	Vcc	Sleep mode Fc = 5 MHz t _{inst} = 12.8 μs	_	0.4	0.8	mA	
	ICCS2	VCC	Sleep mode Fc = 10 MHz tinst = 6.4 μs	_	0.8	1.6	mA	
			Stop mpde	_	0.1	1	μΑ	Adapt to MB89803/805
	Іссн	Vcc	T _A = +25 °C	_	0.1	10	μА	Adapt to MB89P808/ PV800
Input capaci- tance	Cin	Except Vcc and Vss	_		10	_	pF	

^{*1 :} The input voltage to P00 to P07 and P10 to P17 for the MB89P800/PV808 must not exceed the LCD power supply voltage (V3 pin voltage).

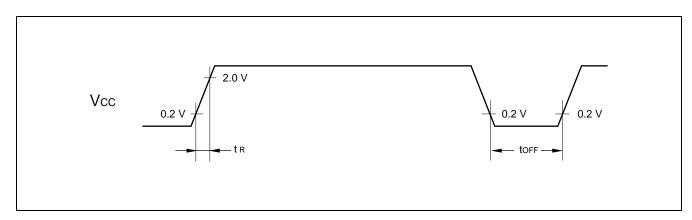

^{*2 :} The measurement condition of power supply current is as follows: the external clock, open output pins and the external LCD dividing resistor. In the case of the MB89PV800, the current consumed by the connected EPROM and ICE is not included.

4. AC Characteristics

(1) Reset Timing

$$(Vcc = +5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 °C to +85 °C)$$

Parameter	Symbol	Condi-	Va	lue	Unit	Remarks	
raiailletei	Syllibol	tion	Min	Max	Offic	ivelliai va	
RST "L" pulse width	tzlzh		48 txcyl		ns		

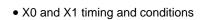

(2) Power-on Reset

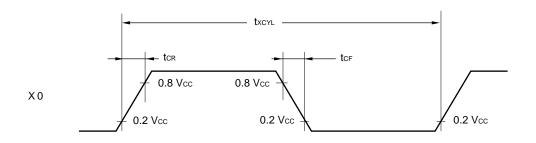
$$(Vss = 0.0 V, T_A = -40 °C to +85 °C)$$

Parameter	Symbol	Condi-	Val	ue	Unit	Remarks
i arameter	Symbol	tion	Min	Max	Offic	Nemarks
Power supply rising time	tr		_	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	_	ms	Due to repeated operation

Note: Make sure that power supply rises within the selected oscillation stabilization time.

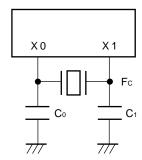
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

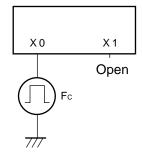



(3) Clock Timing

 $(Vss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Sym	Pin	Con-		Value		Unit	Remarks	
raiailletei	bol	name	dition	Min	Тур	Max	Oilit	Remarks	
Clock frequency	Fc			1	_	10	MHz		
Clock cycle time	txcyL	X0, X1		100		1000	ns	Crystal or ceramic resonator	
Input clock duty ratio*	duty			30		70	%	External clock	
Input clock rising/falling time	tcr tcf	X0				10	ns	External clock	


^{*:} $duty = Pwh / t_{HCYL}$



• Clock conditions

When a crystal or ceramic resonator is used

When an external clock in use

(4) Instruction Cycle

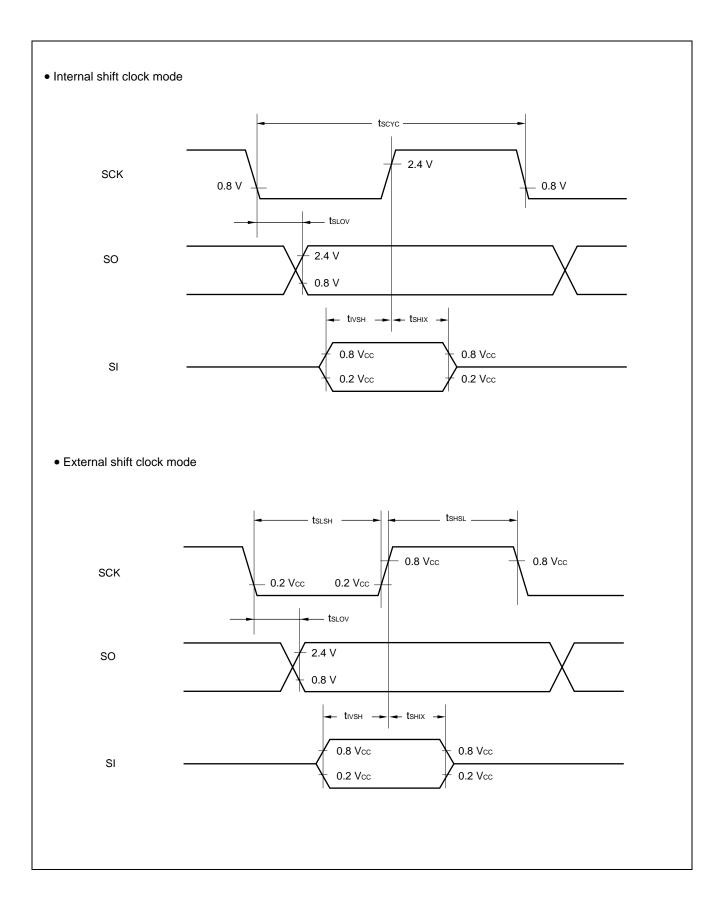
(Vss = 0.0 V, $T_A = -40$ °C to +85 °C)

Parameter	Sym-	Val	lue	Unit	Remarks	
	bol	Min	Max	Offic		
Minimum execution time (Instruction cycle)	tinst	4/F c	64/F c	μs	64/Fc, 16/Fc, 8/Fc, 4/Fc	

(5) Serial I/O Timing

 $(V_{CC} = +5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

Parameter	Sym-	Pin name	Condition	VI	ue	Unit	Remarks
Farameter	bol	Finitianie	Condition	Min	Max	Oilit	Remarks
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs	
SCK↓→SO time	tslov	SCK, SO	Internal shift clock	- 200	+200	ns	
Valid SI → SCK↑	tıvsн	SI, SCK	mode	0.5 tinst*	_	μs	
SCK↑→valid SI hold time	t shix	SCK, SI		0.5 tinst*	_	μs	
Serial clock "H" pulse width	t shsl	SCK		t inst*	_	μs	
Serial clock "L" pulse width	t slsh	SUK	External	tinst*	_	μs	
SCK↓→SO time	tslov	SCK, SO	shift clock	0	200	ns	
Valid SI → SCK↑	tıvsн	SI, SCK	mode	0.5 tinst*	_	μs	
SCK↑→valid SI hold time	tshix	SCK, SI		0.5 tinst*	_	μs	

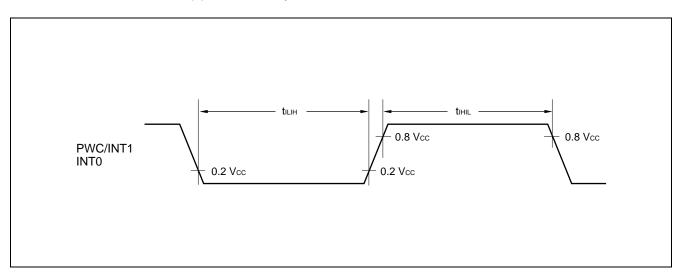

^{*:} For information on tinst, see "(4) Instruction Cycle".

(6) UART Timing

(Vcc = +5.0 V±10%, Vss = 0.0 V, TA = -40 °C to +85 °C)

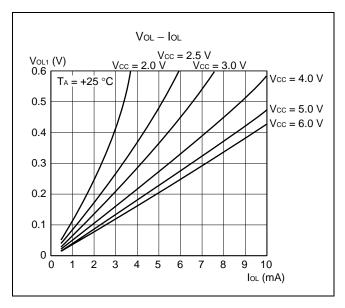
Parameter	Sym-	Pin name	Condition	Vlue		Unit	Remarks
Farameter	bol	Fili Ilaille	Condition	Min	Max	Ollic	Iveillaiks
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs	
SCK↓→SO time	tslov	SCK, SO	Internal shift clock	- 200	+200	ns	
Valid SI → SCK↑	t ıvsH	SI, SCK	mode	0.5 tinst*		μs	
SCK↑→valid SI hold time	t shix	SCK, SI		0.5 tinst*		μs	
Serial clock "H" pulse width	t shsl	SCK		t inst*		μs	
Serial clock "L" pulse width	t slsh	SUK	External	tinst*		μs	
SCK↓→SO time	tslov	SCK, SO	shift clock	0	200	ns	
Valid SI → SCK↑	t ivsH	SI, SCK	mode	0.5 tinst*		μs	
SCK↑→valid SI hold time	t shix	SCK, SI		0.5 tinst*	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle".

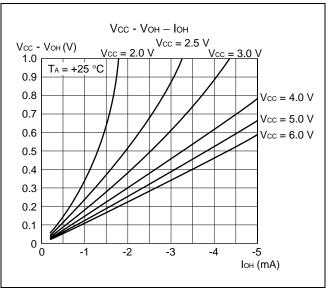


(7) Peripheral Input Timing

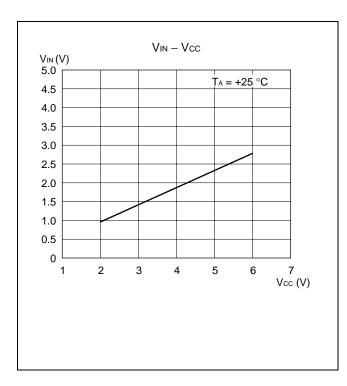
 $(Vcc = +5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 °C to +85 °C)$

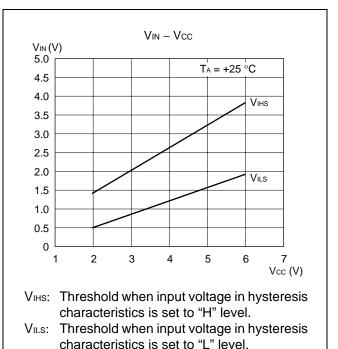

Parameter	Sym-	Pin name	Condi-	VI	ue	Unit	Remarks
Farameter	bol	Finitianie	tion	Min	Max	Oiiit	Kemarks
Peripheral input "H" level pulse width	tшн	PWC/INT1		2 t inst *	_	μs	
Peripheral input "L" level pulse width	tihil	INT0		2 t inst *		μs	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle".

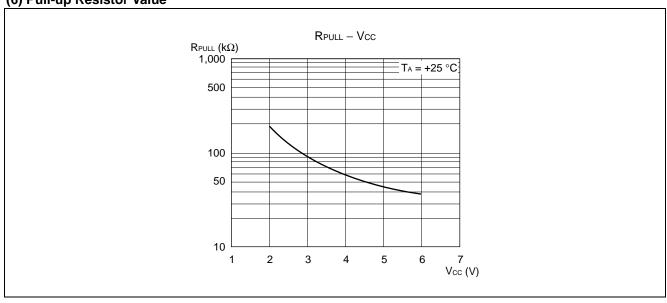


■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage


(2) "H" Level Output Voltage

((3) "H" Level Input Voltage/ "L" Level Input Votage (CMOS Input)

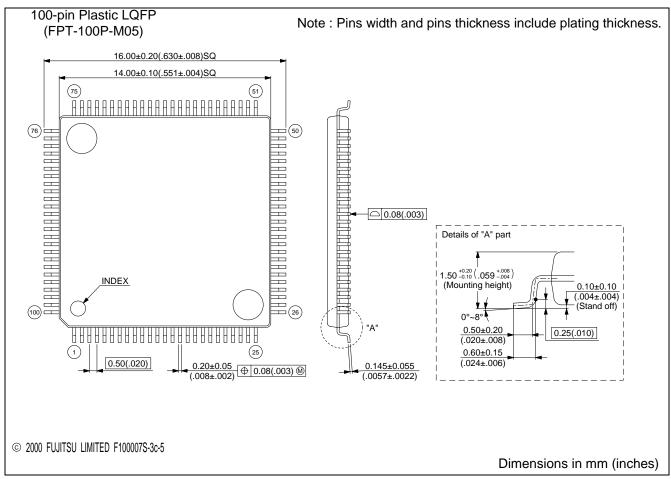

(4) "H" Level Input Voltage / "L" Level Input Voltage (CMOS Hysterisis Input)

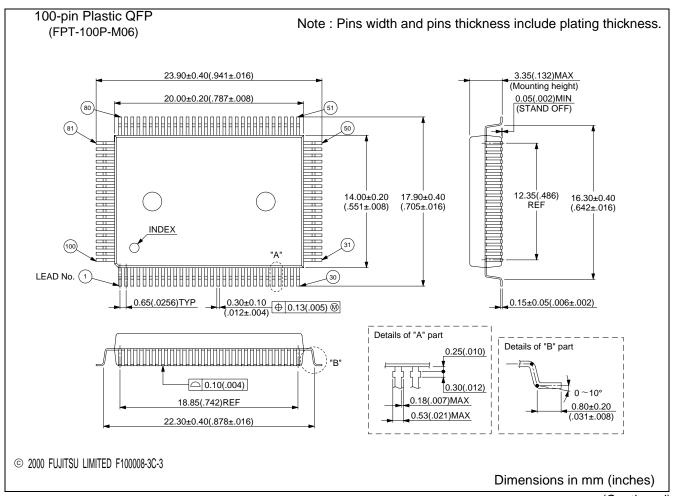
■ MASK OPTIONS

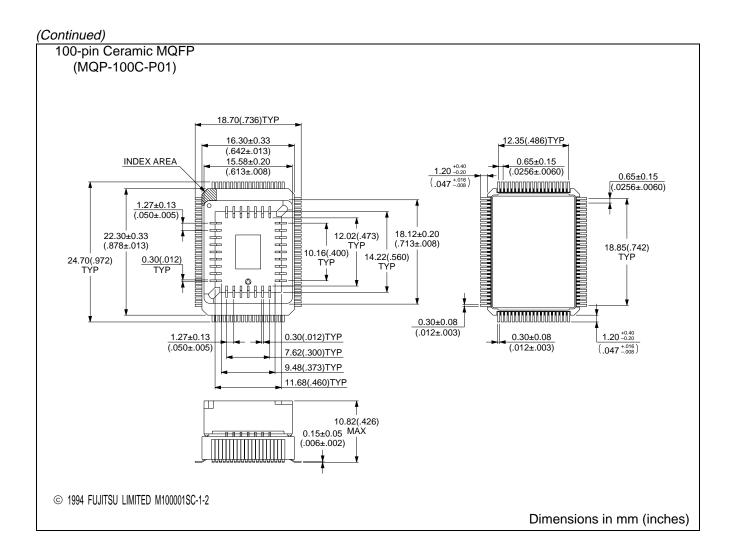
No	Part number	MB89803/805	MB89P808, MB89PV800
	Method of specification	Mask Option	Fixed
1	Pull-up resistors P20 to P25, P30 to P33, P40 to P45	Selectable by pin	No
2	Power-on reset With power-on reset Without power-on reset	Selectable	With power-on reset
3	Oscillation stabilization time*1 Approx. 2 ¹⁷ /F _c (Approx. 13.1 ms) Approx. 2 ¹³ /F _c (Approx. 0.81 ms)	Selectable	2 ¹⁷ /Fc
4	Reset pin output With reset output Without reset output	Selectable	With reset output
5	Segment output switching 70 segments: No port selection 69 segments: Selection of P17 68 segments: Selection of P17 to P16 66 segments: Selection of P17 to P14 62 segments: Selection of P17 to P10 54 segments: Selection of P17 to P10, P07 to P00	Selectable* ²	Selectable*3

^{*1 :} The oscillation settling time is generated by dividing the oscillation clock frequency. Since the oscillation period is not stable immediately after oscillation has been started, therefore, the oscillation settling time in the above list should be regarded as a reference.

Ports are set by the register setting of the segment output selection register of LCD controller.


■ ORDERING INFORMATION


Part Number	Package	Remarks
MB89803PF MB89805PF MB89P808PF	100-pin Plastic QFP (FPT-100P-M06)	
MB89803PFV MB89805PFV MB89P808PFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB89PV800CF	100-pin Ceramic MQFP (MQP-100C-P01)	


^{*2 :} Port selection must be same setting of the segment output selection register of LCD controller.

^{*3 :} Note that, when ports are set, the input voltage value for the port pins are different from those for mask ROM products.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0112 © FUJITSU LIMITED Printed in Japan