# 16-bit Proprietary Microcontroller

**CMOS** 

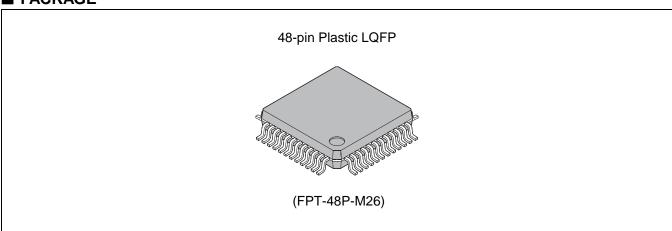
## F<sup>2</sup>MC-16LX MB90360 Series

MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS, MB90367/T/S/TS, MB90V340A-101, MB90V340A-102, MB90V340A-103, MB90V340A-104

#### **■ DESCRIPTION**

The MB90360-series with 1 channel FULL-CAN\* interface and FLASH ROM is especially designed for automotive and other industrial applications. Its main feature is the on-board CAN Interfaces, which conform to Ver 2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach. With the new 0.35  $\mu$ m CMOS technology, Fujitsu now offers on-chip FLASH-ROM program memory up to 64 Kbytes.

The power supply (3 V) is supplied to the internal MCU core from an internal regulator circuit. This creates a major advantage in terms of EMI and power consumption.


The internal PLL clock frequency multiplier provides an internal 42 ns instruction execution time from an external 4 MHz clock. Also, main and sub-clock can be monitored independently using the clock monitor function.

The unit features a 4 channel input capture unit 1 channel 16-bit free running timer, 2-channel LIN-UART, and 16-channel 8/10-bit A/D converter as the peripheral resource.

\*: Controller Area Network (CAN) - License of Robert Bosch GmbH

Note: F<sup>2</sup>MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.

#### **■ PACKAGE**





#### **■ FEATURES**

#### Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by 2 on oscillation clock and multiplication of 1 to 6 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 24 MHz).
- Operation by sub-clock (up to 50 kHz: 100 kHz oscillation clock divided two) is allowed (devices without S-suffix only).
- Minimum execution time of instruction: 42 ns (when operating with 4-MHz oscillation clock and 6-time multiplied PLL clock).

#### Clock monitor function (MB90x367x only)

- · Main clock or sub-clock is monitored independently
- Internal CR oscillation clock (100 kHz typical) can be used as sub-clock

#### Instruction system best suited to controller

- 16 Mbytes CPU memory space
- · 24-bit internal addressing
- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- · Enhanced multiply-divide instructions with sign and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

#### • Instruction system compatible with high-level language (C language) and multitask

- · Employing system stack pointer
- Enhanced various pointer indirect instructions
- · Barrel shift instructions

#### Increased processing speed

· 4-byte instruction queue

#### Powerful interrupt function

- Powerful 8-level, 34-condition interrupt feature
- Up to 8 channel external interrupts are supported

#### Automatic data transfer function independent of CPU

Expanded intelligent I/O service function (EI<sup>2</sup>OS) : up to 16 channels

#### • Low-power consumption (standby) mode

- Sleep mode (a mode that halts CPU operating clock)
- Main timer mode (timebase timer mode that is transferred from main clock mode)
- PLL timer mode (timebase timer mode that is transferred from PLL clock mode)
- Watch mode (a mode that operates sub-clock and watch timer only, devices without S-suffix)
- Stop mode (a mode that stops oscillation clock and sub-clock)
- CPU blocking operation mode

#### Process

CMOS technology

#### • I/O port

- General-purpose input/output port (CMOS output)
  - 34 ports (devices without S-suffix)
  - 36 ports (devices with S-suffix)

#### • Sub-clock pin (X0A and X1A)

- Provided (used for external oscillation), devices without S-suffix
- Not provided (used with internal CR oscillation in sub-clock mode), devices with S-suffix

#### (Continued)

#### • Timer

- Timebase timer, watch timer (device without S-suffix), watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit × 2 channels or 16-bit × 2 channels
- 16-bit reload timer: 2 channels
- 16- bit input/output timer
  - 16-bit free run timer: 1 channel (FRT0: ICU 0/1/2/3)
  - 16- bit input capture: (ICU): 4 channels

#### • Full-CAN interface : up to 1 channel

- Compliant with Ver 2.0A and Ver 2.0B CAN specifications
- Flexible message buffering (mailbox and FIFO buffering can be mixed)
- CAN wake-up function

#### • UART (LIN/SCI) : up to 2 channels

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available

#### • DTP/External interrupt : up to 8 channels, CAN wakeup : up to 1 channel

• Module for activation of expanded intelligent I/O service (EI<sup>2</sup>OS) and generation of external interrupt by external input.

#### • Delay interrupt generator module

· Generates interrupt request for task switching.

#### • 8/10-bit A/D converter : 16 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 3 μs (at 24-MHz machine clock, including sampling time)

#### • Program patch function

· Address matching detection for 6 address pointers.

#### • Low voltage/CPU operation detection reset (devices with T-suffix)

- Detects low voltage (4.0 V  $\pm$  0.3 V) and resets automatically
- Resets automatically when program is runaway and counter is not cleared within interval time (approx. 262 ms: external 4 MHz)

#### Capable of changing input voltage for port

• Automotive/CMOS-Schmitt (initial level is Automotive in single-chip mode)

#### • FLASH memory security function

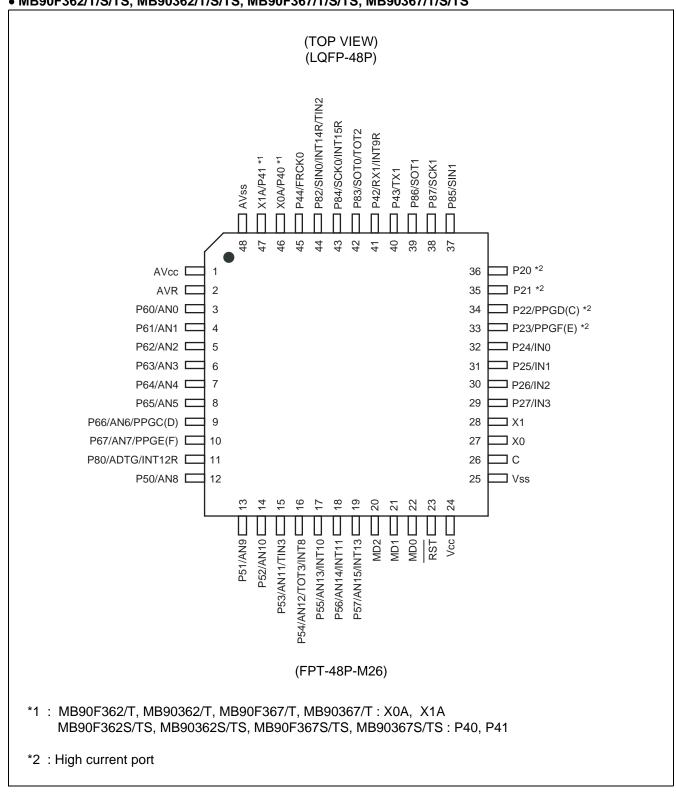
• Protects the content of FLASH memory (FLASH memory device only)

### **■ PRODUCT LINEUP**

| Features                                  | MB90362           | MB90362T                     | MB90362S            | MB90362TS                                      | MB90V340<br>A-101 | MB90V340<br>A-102 |  |
|-------------------------------------------|-------------------|------------------------------|---------------------|------------------------------------------------|-------------------|-------------------|--|
| CPU                                       |                   |                              | F <sup>2</sup> MC-1 | 6LX CPU                                        |                   |                   |  |
| System clock                              |                   |                              |                     | $3, \times 4, \times 6, 1/2$<br>2 ns (4 MHz os |                   |                   |  |
| Sub-clock pin<br>(X0A, X1A)               | Y                 | es                           | 1                   | No                                             | No                | Yes               |  |
| Clock monitor function                    |                   | No                           |                     |                                                |                   |                   |  |
| ROM                                       |                   | MASK ROM, 64 Kbytes External |                     |                                                |                   |                   |  |
| RAM capacitance                           |                   | 3 KI                         | oytes               |                                                | 30 K              | bytes             |  |
| CAN interface                             | 1 channel         |                              |                     |                                                | 3 cha             | innels            |  |
| Low voltage/CPU operation detection reset | No                | Yes                          | No                  | Yes                                            | No                |                   |  |
| Package                                   | LQFP-48P PGA-299C |                              |                     |                                                | -299C             |                   |  |
| Emulator-specific power supply *          | — Yes             |                              |                     |                                                | es                |                   |  |
| Corresponding<br>EVA product              | MB90V3            | 340A-102                     | MB90V               | 340A-101                                       | _                 | _                 |  |

<sup>\*:</sup> It is setting of Jumper switch (TOOL Vcc) when emulator (MB2147-01) is used. Please refer to the Emulator hardware manual for the details.

| Features                                  | MB90F362                                                                                                                                                                                          | MB90F362T            | MB90F362S     | MB90F362TS |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|------------|--|--|
| CPU                                       |                                                                                                                                                                                                   | F <sup>2</sup> MC-16 | 6LX CPU       |            |  |  |
| System clock                              | PLL clock multiplier $(\times 1, \times 2, \times 3, \times 4, \times 6, 1/2 \text{ when PLL stops})$ Minimum instruction execution time: 42 ns $(4 \text{ MHz oscillation clock, PLL} \times 6)$ |                      |               |            |  |  |
| Sub-clock pin<br>(X0A, X1A)               | Y                                                                                                                                                                                                 | Yes No               |               |            |  |  |
| Clock monitor function                    | No                                                                                                                                                                                                |                      |               |            |  |  |
| ROM                                       |                                                                                                                                                                                                   | Flash memo           | ry, 64 Kbytes |            |  |  |
| RAM capacitance                           |                                                                                                                                                                                                   | 3 Kt                 | oytes         |            |  |  |
| CAN interface                             |                                                                                                                                                                                                   | 1 ch                 | annel         |            |  |  |
| Low voltage/CPU operation detection reset | No Yes No Yes                                                                                                                                                                                     |                      |               |            |  |  |
| Package                                   | LQFP-48P                                                                                                                                                                                          |                      |               |            |  |  |
| Corresponding<br>EVA product              | MB90V340A-102 MB90V340A-101                                                                                                                                                                       |                      |               |            |  |  |


| Features                                  | MB90367             | MB90367T                    | MB90367S            | MB90367TS                                                 | MB90V340<br>A-103 | MB90V340<br>A-104 |  |
|-------------------------------------------|---------------------|-----------------------------|---------------------|-----------------------------------------------------------|-------------------|-------------------|--|
| CPU                                       |                     |                             | F <sup>2</sup> MC-1 | 6LX CPU                                                   |                   |                   |  |
| System clock                              |                     |                             |                     | $3$ , $\times$ 4, $\times$ 6, 1/2 w<br>42 ns (4 MHz oscil |                   |                   |  |
| Sub-clock pin<br>(X0A, X1A)               | Y                   | es                          | (internal CR osc    | No<br>cillation can be use                                | d as sub-clock)   | Yes               |  |
| Clock monitor function                    |                     | Yes                         |                     |                                                           |                   |                   |  |
| ROM                                       |                     | MASK ROM, 64 Kbytes Externa |                     |                                                           |                   |                   |  |
| RAM capacitance                           |                     | 3                           | 30 Kb               | ytes                                                      |                   |                   |  |
| CAN interface                             | 1 channel           |                             |                     |                                                           | 3 char            | nels              |  |
| Low voltage/CPU operation detection reset | No                  | Yes                         | No                  | Yes                                                       | No                |                   |  |
| Package                                   | LQFP-48P P          |                             |                     |                                                           | PGA-2             | :99C              |  |
| Emulator-specific power supply *          | — Yes               |                             |                     |                                                           | S                 |                   |  |
| Corresponding<br>EVA product              | MB90V340A-104 MB90V |                             |                     | 340A-103                                                  | _                 |                   |  |

 $<sup>^*</sup>$ : It is setting of Jumper switch (TOOL  $V_{CC}$ ) when emulator (MB2147-01) is used. Please refer to the Emulator hardware manual for the details.

| Features                                  | MB90F367                                                                                                                                   | MB90F367T            | MB90F367S     | MB90F367TS |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|------------|--|--|
| CPU                                       |                                                                                                                                            | F <sup>2</sup> MC-16 | 6LX CPU       |            |  |  |
| System clock                              | PLL clock multiplier (×1, ×2, ×3, ×4, ×6, 1/2 when PLL stops) Minimum instruction execution time: 42 ns (4 MHz oscillation clock, PLL × 6) |                      |               |            |  |  |
| Sub-clock pin<br>(X0A, X1A)               | Yes (internal CR oscillation can bused as sub-clock)                                                                                       |                      |               |            |  |  |
| Clock monitor function                    | Yes                                                                                                                                        |                      |               |            |  |  |
| ROM                                       |                                                                                                                                            | Flash memo           | ry, 64 Kbytes |            |  |  |
| RAM capacitance                           |                                                                                                                                            | 3 Kt                 | oytes         |            |  |  |
| CAN interface                             |                                                                                                                                            | 1 ch                 | annel         |            |  |  |
| Low voltage/CPU operation detection reset | No Yes No Yes                                                                                                                              |                      |               |            |  |  |
| Package                                   | LQFP-48P                                                                                                                                   |                      |               |            |  |  |
| Corresponding<br>EVA product              | MB90V340A-104 MB90V340A-103                                                                                                                |                      |               |            |  |  |

#### **■ PIN ASSIGNMENT**





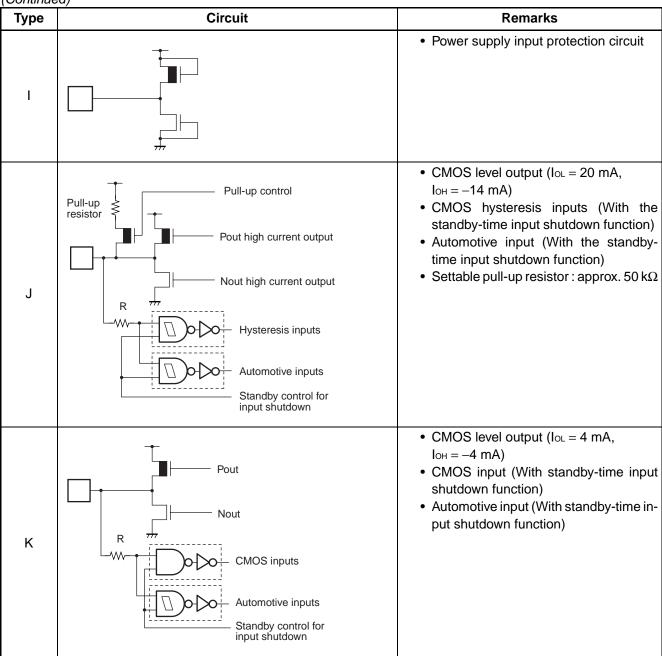
### **■ PIN DESCRIPTION**

| Pin No.   | D'                     | 0'''         | F                                                                                                                            |  |
|-----------|------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|--|
| LQFP-48P* | - Pin name             | Circuit type | Function                                                                                                                     |  |
| 1         | AVcc                   | I            | Vcc power input pin for analog circuit.                                                                                      |  |
| 2         | AVR                    | _            | Power (Vref+) input pin for A/D converter. It should be below Vcc.                                                           |  |
| 3 to 8    | P60 to P65             | Н            | General-purpose I/O port.                                                                                                    |  |
| 3 10 6    | AN0 to AN5             | П            | Analog input pin for A/D converter.                                                                                          |  |
|           | P66, P67               |              | General-purpose I/O port.                                                                                                    |  |
| 9, 10     | AN6, AN7               | Н            | Analog input pin for A/D converter.                                                                                          |  |
| 3, 13     | PPGC (D) ,<br>PPGE (F) |              | Output pin for PPG.                                                                                                          |  |
|           | P80                    |              | General-purpose I/O port.                                                                                                    |  |
| 11        | ADTG                   | F            | Trigger input pin for A/D converter.                                                                                         |  |
|           | INT12R                 |              | External interrupt request input pin for INT12.                                                                              |  |
| 12 to 14  | P50 to P52             | Н            | General-purpose I/O port. (P50 has different I/O circuit type from MB90V340A.)                                               |  |
|           | AN8 to AN10            |              | Analog input pin for A/D converter.                                                                                          |  |
|           | P53                    |              | General-purpose I/O port.                                                                                                    |  |
| 15        | AN11                   | Н            | Analog input pin for A/D converter.                                                                                          |  |
|           | TIN3                   |              | Event input pin for reload timer 3.                                                                                          |  |
|           | P54                    |              | General-purpose I/O port.                                                                                                    |  |
| 16        | AN12                   | Н            | Analog input pin for A/D converter.                                                                                          |  |
| 10        | TOT3                   | 11           | Output pin for reload timer 3                                                                                                |  |
|           | INT8                   |              | External interrupt request input pin for INT8.                                                                               |  |
|           | P55 to P57             |              | General-purpose I/O port.                                                                                                    |  |
| 17 to 19  | AN13 to AN15           | Н            | Analog input pin for A/D converter.                                                                                          |  |
|           | INT10, INT11,<br>INT13 |              | External interrupt request input pin for INT10, INT11, INT13.                                                                |  |
| 20        | MD2                    | D            | Input pin for operation mode specification.                                                                                  |  |
| 21, 22    | MD1,<br>MD0            | С            | Input pin for operation mode specification.                                                                                  |  |
| 23        | RST                    | E            | Reset input.                                                                                                                 |  |
| 24        | Vcc                    | _            | Power input pin (3.5 V to 5.5 V).                                                                                            |  |
| 25        | Vss                    | _            | Power input pin (0 V) .                                                                                                      |  |
| 26        | С                      | I            | Power supply stabilization capacitor pin. It should be connected to a higher than or equal to 0.1 $\mu F$ ceramic capacitor. |  |

\*: FPT-48P-M26

| Pin No.   | Pin name               | Circuit type                          | Function                                                                                                                                                               |
|-----------|------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LQFP-48P* |                        | o o o o o o o o o o o o o o o o o o o | 1 211011011                                                                                                                                                            |
| 27        | X0                     | A                                     | Oscillation input pin.                                                                                                                                                 |
| 28        | X1                     | , A                                   | Oscillation output pin.                                                                                                                                                |
| 29 to 32  | P27 to P24             | G                                     | General-purpose I/O port.  The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.                          |
|           | IN3 to IN0             |                                       | Event input pin for input capture 0 to 3.                                                                                                                              |
| 33, 34    | P23, P22               | J                                     | General-purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. High current output port. |
|           | PPGF (E) ,<br>PPGD (C) |                                       | Output pin for PPG.                                                                                                                                                    |
| 35, 36    | P21, P20               | J                                     | General-purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. High current output port. |
| 0.7       | P85                    | 17                                    | General-purpose I/O port.                                                                                                                                              |
| 37        | SIN1                   | K                                     | Serial data input pin for UART1.                                                                                                                                       |
| 38        | P87                    | F                                     | General-purpose I/O port.                                                                                                                                              |
| 30        | SCK1                   | <u>Г</u>                              | Clock I/O pin for UART1.                                                                                                                                               |
| 39        | P86                    | F                                     | General-purpose I/O port.                                                                                                                                              |
| 39        | SOT1                   | ]                                     | Serial data output pin for UART1.                                                                                                                                      |
| 40        | P43                    | F                                     | General-purpose I/O port.                                                                                                                                              |
| 40        | TX1                    | ]                                     | TX output pin for CAN1 interface.                                                                                                                                      |
|           | P42                    |                                       | General-purpose I/O port.                                                                                                                                              |
| 41        | RX1                    | F                                     | RX input pin for CAN1 interface.                                                                                                                                       |
|           | INT9R                  |                                       | External interrupt request input pin for INT9 (Sub) .                                                                                                                  |
|           | P83                    |                                       | General-purpose I/O port.                                                                                                                                              |
| 42        | SOT0                   | F                                     | Serial data output pin for UART0.                                                                                                                                      |
|           | TOT2                   |                                       | Output pin for reload timer 2                                                                                                                                          |
|           | P84                    |                                       | General-purpose I/O port.                                                                                                                                              |
| 43        | SCK0                   | F                                     | Clock I/O pin for UART0.                                                                                                                                               |
|           | INT15R                 |                                       | External interrupt request input pin for INT15.                                                                                                                        |

<sup>\*:</sup> FPT-48P-M26


| Pin No.   | Din nome | Circuit tune | Function                                                                                    |  |  |
|-----------|----------|--------------|---------------------------------------------------------------------------------------------|--|--|
| LQFP-48P* | Pin name | Circuit type | Function                                                                                    |  |  |
|           | P82      |              | General-purpose I/O port.                                                                   |  |  |
| 44        | SIN0     | К            | Serial data input pin for UART0.                                                            |  |  |
| 44        | INT14R   | , N          | External interrupt request input pin for INT14.                                             |  |  |
|           | TIN2     |              | Event input pin for reload timer 2.                                                         |  |  |
| 45        | P44      | F            | General-purpose I/O port. (Different I/O circuit type from MB90V340A.)                      |  |  |
|           | FRCK0    |              | Free-run timer 0 clock pin.                                                                 |  |  |
| Device    |          | F            | General-purpose I/O port. (Devices with S-suffix and MB90V340A-101/103 only.)               |  |  |
| 46, 47    | X0A, X1A | В            | Oscillation input pin for sub-clock. (Devices without S-suffix and MB90V340A-102/104 only.) |  |  |
| 48        | AVss     | I            | Vss power input pin for analog circuit.                                                     |  |  |

<sup>\*:</sup> FPT-48P-M26

### ■ I/O CIRCUIT TYPE

| Туре | Circuit                                 | Remarks                                                                                                                                                  |
|------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| А    | X1 Xout Xout Standby control signal     | Oscillation circuit • High-speed oscillation feedback resistor = approx. 1 MΩ                                                                            |
| В    | X1A Xout  X0A Standby control signal    | Oscillation circuit • Low-speed oscillation feedback resistor = approx. 10 MΩ                                                                            |
| С    | R<br>Hysteresis<br>inputs               | Mask ROM device :                                                                                                                                        |
| D    | R Hysteresis inputs  Pull-down resistor | Mask ROM device :     • CMOS hysteresis input pin     • Pull-down resistor value : approx. 50 kΩ  Flash device :     • CMOS input pin     • No Pull-down |
| Е    | Pull-up resistor  R  Hysteresis inputs  | CMOS hysteresis input pin • Pull-up resistor value : approx. 50 kΩ                                                                                       |

| Туре | Circuit                                                                                            | Remarks                                                                                                                                                                                                                                                                     |
|------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F    | Nout  R  Hysteresis inputs  Automotive inputs  Standby control for input shutdown                  | <ul> <li>CMOS level output (IoL = 4 mA, IoH = -4 mA)</li> <li>CMOS hysteresis inputs (With the standby-time input shutdown function)</li> <li>Automotive input (With the standby-time input shutdown function)</li> </ul>                                                   |
| G    | Pull-up control Pout Pout Nout R Automotive inputs Standby control for input shutdown              | <ul> <li>CMOS level output (IoL = 4 mA, IoH = -4 mA)</li> <li>CMOS hysteresis inputs (With the standby-time input shutdown function)</li> <li>Automotive input (With the standby-time input shutdown function)</li> <li>Settable pull-up resistor: approx. 50 kΩ</li> </ul> |
| Н    | Nout  Nout  Hysteresis inputs  Automotive inputs  Standby control for input shutdown  Analog input | <ul> <li>CMOS level output (IoL = 4 mA, IoH = -4 mA)</li> <li>CMOS hysteresis inputs (With the standby-time input shutdown function)</li> <li>Automotive input (With the standby-time input shutdown function)</li> <li>A/D analog input</li> </ul>                         |



#### **■ HANDLING DEVICES**

#### Special care is required for the following when handling the device :

- · Preventing latch-up
- Treatment of unused pins
- Using external clock
- · Precautions for when not using a sub-clock signal
- · Notes on during operation of PLL clock mode
- Power supply pins (Vcc/Vss)
- Pull-up/down resistors
- · Crystal oscillator circuit
- Turning-on sequence of power supply to A/D converter and analog inputs
- Connection of unused pins of A/D converter
- · Notes on energization
- Stabilization of power supply voltage
- Initialization
- Notes on using CAN Function
- · Flash security function
- Correspondence with +105 °C or more

#### 1. Preventing latch-up

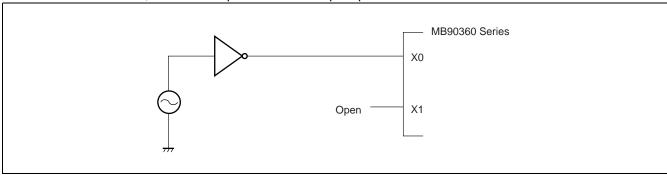
#### CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

Use meticulous care not to exceed the rating.

For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVR) exceed the digital power-supply voltage.


#### 2. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore, they must be pulled up or pulled down through resistors. In this case, those resistors should be more than  $2 \text{ k}\Omega$ .

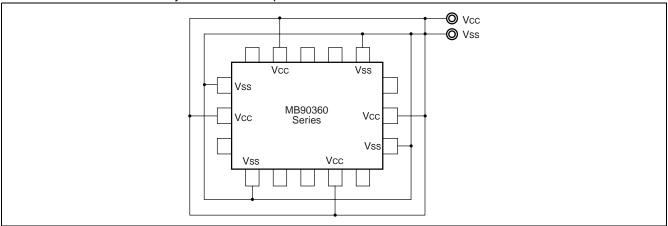
Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

#### 3. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.



#### 4. Precautions for when not using a sub-clock signal


If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin and leave the X1A pin open.

#### 5. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempts to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

#### 6. Power supply pins (Vcc/Vss)

- If there are multiple Vcc and Vss pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent such malfunctioning as latch up.
  - To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the Vcc and Vss pins to the power supply and ground externally.
- Connect Vcc and Vss to the device from the current supply source at a low impedance.
- As a measure against power supply noise, connect a capacitor of about 0.1 μF as a bypass capacitor between Vcc and Vss in the vicinity of Vcc and Vss pins of the device.



#### 7. Pull-up/down resistors

The MB90360 Series does not support internal pull-up/down resistors (Port 2 : built-in pull-up resistors) . Use external components where needed.

#### 8. Crystal oscillator circuit

Noises around X0 or X1 pin may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

#### 9. Turning-on sequence of power supply to A/D converter and analog inputs

Make sure to turn on the A/D converter power supply (AVcc and AVR) and analog inputs (AN0 to AN15) after turning-on the digital power supply (Vcc) .

Turn-off the digital power after turning off the A/D converter power supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable) .

#### 10. Connection of unused pins of A/D converter if A/D converter is used

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVR = Vss.

#### 11. Notes on energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at  $50 \mu s$  or more (0.2 V to 2.7 V)

#### 12. Stabilization of power supply voltage

A sudden change in the power supply voltage may cause the device to malfunction even within the specified  $V_{CC}$  power supply voltage operating guarantee range. Therefore, the  $V_{CC}$  power supply voltage should be stabilized.

For reference, the power supply voltage should be controlled so that Vcc ripple variations (peak-to-peak value) at commercial frequencies (50 Hz to 60 Hz) fall below 10% of the standard Vcc power supply voltage and the coefficient of transient fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

#### 13. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, turn on the power again.

#### 14. Notes on using CAN function

To use CAN function, please set '1' to DIRECT bit of CAN direct mode register (CDMR) . If DIRECT bit is set to '0' (initial value), wait states will be performed when accessing CAN registers.

Note: Please refer to Hardware Manual of MB90360 series for detail of CAN Direct Mode Register.

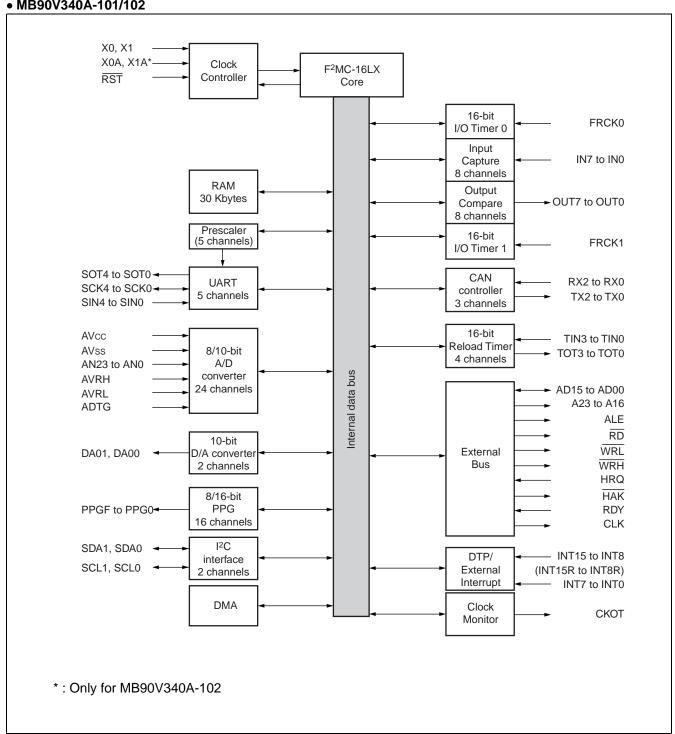
#### 15. Flash security function

The security bit is located in the area of the flash memory.

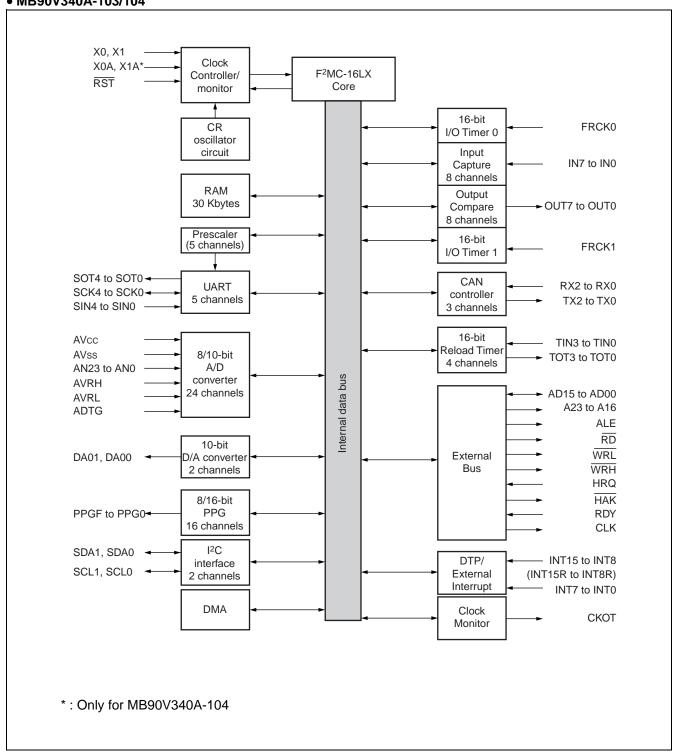
If protection code 01H is written in the security bit, the flash memory is in the protected state by security.

Therefore, please do not write 01<sub>H</sub> in this address if you do not use the security function.

Please refer to following table for the address of the security bit.


|                                                                                                      | Flash memory size              | Address for security bit |
|------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|
| MB90F362<br>MB90F362S<br>MB90F362T<br>MB90F362TS<br>MB90F367<br>MB90F367S<br>MB90F367T<br>MB90F367TS | Embedded 512 Kbit Flash Memory | FF0001н                  |

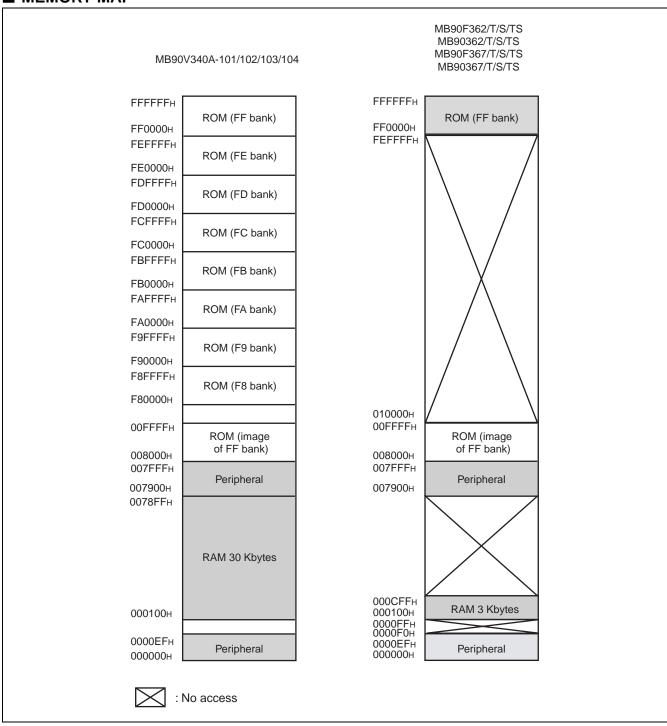
#### 16. Correspondence with +105 °C or more


If used exceeding  $T_A = +105$  °C, please contact Fujitsu for reliability limitations.

#### **■ BLOCK DIAGRAMS**

#### • MB90V340A-101/102




#### • MB90V340A-103/104



#### • MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS, MB90367/T/S/TS X0, X1 Clock F<sup>2</sup>MC-16LX X0A, X1A\*1 Controller/ monitor \*3 Core RST CR Input oscillator Capture IN0 to IN3 circuit 4 channels Low voltage detection \*2 CPU operation detection \* 16-bit I/O FRCK0 Timer 0 RAM 3 Kbytes CAN RX1 Internal data bus controller TX1 1 channels ROM 64 Kbytes 16-bit TIN2, TIN3 Reload TOT2, TOT3 Timer 2 channels Prescaler (2 channels) SOT0, SOT1 UART SCK0, SCK1 2 channels SIN0, SIN1 **AVcc AVss** 8/10-bit AN15 to AN0 A/D converter AVR 16 channels ADTG INT8, INT9R DTP/ INT10, INT11 External INT12R, INT13 8/16-bit PPGF(E), PPGD(C), Interrupt INT14R, INT15R PPGC(D), PPGE(F) PPG 2 channels

- \*1 : Only for devices without S-suffix
- \*2 : Only for devices with T-suffix
- \*3: CR oscillation circuit/clock monitor correspond to MB90F367/T/S/TS and MB90367/T/S/TS only.

#### **■ MEMORY MAP**



Note: The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referred without using the far specification in the pointer declaration.

For example, an attempt to access 00C000H accesses the value at FFC000H in ROM.

The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.

The image between FF8000 $_{\rm H}$  and FFFFF $_{\rm H}$  is visible in bank 00, while the image between FF0000 $_{\rm H}$  and FF7FFF $_{\rm H}$  is visible only in bank FF.

### ■ I/O MAP

(Address: 000000H-0000FFH)

| Address                  | Register                            | Abbrevia-<br>tion | Access | Resource name | Initial value         |
|--------------------------|-------------------------------------|-------------------|--------|---------------|-----------------------|
| 000000н,<br>000001н      | Reserved                            |                   |        |               | ,                     |
| 000002н                  | Port 2 Data Register                | PDR2              | R/W    | Port 2        | XXXXXXXX              |
| 000003н                  | Reserved                            |                   |        |               | 1                     |
| 000004н                  | Port 4 Data Register                | PDR4              | R/W    | Port 4        | XXXXXXXX              |
| 000005н                  | Port 5 Data Register                | PDR5              | R/W    | Port 5        | XXXXXXXX              |
| 000006н                  | Port 6 Data Register                | PDR6              | R/W    | Port 6        | XXXXXXXX              |
| 000007н                  | Reserved                            | -1                |        |               | 1                     |
| 000008н                  | Port 8 Data Register                | PDR8              | R/W    | Port 8        | XXXXXXXX              |
| 000009н,<br>00000Ан      | Reserved                            | ,                 |        |               |                       |
| 00000Вн                  | Port 5 Analog Input Enable Register | ADER5             | R/W    | Port 5, A/D   | 11111111в             |
| 00000Сн                  | Port 6 Analog Input Enable Register | ADER6             | R/W    | Port 6, A/D   | 11111111в             |
| 00000Дн                  | Reserved                            | <b>'</b>          | 1      |               | 1                     |
| 00000Ен                  | Input Level Select Register         | ILSR0             | R/W    | Ports         | XXXX0XXX <sub>B</sub> |
| 00000Fн                  | Input Level Select Register         | ILSR1             | R/W    | Ports         | XXXXXXXX              |
| 000010н,<br>000011н      | Reserved                            |                   |        |               |                       |
| 000012н                  | Port 2 Direction Register           | DDR2              | R/W    | Port 2        | 0000000В              |
| 000013н                  | Reserved                            | 1                 |        |               | 1                     |
| 000014н                  | Port 4 Direction Register           | DDR4              | R/W    | Port 4        | ХХХ00000в             |
| 000015н                  | Port 5 Direction Register           | DDR5              | R/W    | Port 5        | 00000000В             |
| 000016н                  | Port 6 Direction Register           | DDR6              | R/W    | Port 6        | 00000000в             |
| 000017н                  | Reserved                            | 1                 |        |               | 1                     |
| 000018н                  | Port 8 Direction Register           | DDR8              | R/W    | Port 8        | 000000Х0в             |
| 000019н                  | Reserved                            |                   |        |               |                       |
| 00001Ан                  | Port A Direction Register           | DDRA              | W      | Port A        | XXX00XXX <sub>B</sub> |
| 00001Вн<br>to<br>00001Dн | Reserved                            |                   |        |               | •                     |
| 00001Ен                  | Port 2 Pull-up Control Register     | PUCR2             | R/W    | Port 2        | 0000000В              |
| 00001Fн                  | Reserved                            | <u> </u>          | 1      |               | 1                     |

| Address                  | Register                                     | Abbrevia-<br>tion | Access       | Resource name                | Initial value         |
|--------------------------|----------------------------------------------|-------------------|--------------|------------------------------|-----------------------|
| 000020н                  | Serial Mode Register 0                       | SMR0              | W, R/W       |                              | 0000000В              |
| 000021н                  | Serial Control Register 0                    | SCR0              | W, R/W       |                              | 0000000В              |
| 000022н                  | Reception/Transmission Data Register 0       | RDR0/<br>TDR0     | R/W          |                              | 00000000в             |
| 000023н                  | Serial Status Register 0                     | SSR0              | R, R/W       | UART0                        | 00001000в             |
| 000024н                  | Extended Communication Control Register 0    | ECCR0             | R, W,<br>R/W | UARTU                        | 000000XXB             |
| 000025н                  | Extended Status/Control Register 0           | ESCR0             | R/W          |                              | 00000100в             |
| 000026н                  | Baud Rate Generator Register 00              | BGR00             | R/W, R       |                              | 0000000В              |
| 000027н                  | Baud Rate Generator Register 01              | BGR01             | R/W, R       |                              | 0000000В              |
| 000028н                  | Serial Mode Register 1                       | SMR1              | W, R/W       |                              | 0000000В              |
| 000029н                  | Serial Control Register 1                    | SCR1              | W, R/W       | UART1                        | 0000000В              |
| 00002Ан                  | Reception/Transmission Data Register 1       | RDR1/<br>TDR1     | R/W          |                              | 00000000в             |
| 00002Вн                  | Serial Status Register 1                     | SSR1              | R, R/W       |                              | 00001000в             |
| 00002Сн                  | Extended Communication Control<br>Register 1 | ECCR1             | R, W,<br>R/W |                              | 000000XX <sub>B</sub> |
| 00002Dн                  | Extended Status/Control Register 1           | ESCR1             | R/W          |                              | 00000100в             |
| 00002Ен                  | Baud Rate Generator Register 10              | BGR10             | R/W, R       |                              | 0000000В              |
| 00002Fн                  | Baud Rate Generator Register 11              | BGR11             | R/W, R       |                              | 0000000В              |
| 000030н<br>to<br>00003Ан | Reserved                                     |                   |              |                              |                       |
| 00003Вн                  | Address Detect Control Register 1            | PACSR1            | R/W          | Address Match<br>Detection 1 | 00000000в             |
| 00003Сн<br>to<br>000047н | Reserved                                     |                   |              |                              |                       |
| 000048н                  | PPG C Operation Mode Control Register        | PPGCC             | W, R/W       |                              | 0Х000ХХ1в             |
| 000049н                  | PPG D Operation Mode Control Register        | PPGCD             | W, R/W       | 16-bit PPG C/D               | 0Х00001в              |
| 00004Ан                  | PPG C/PPG D Count Clock Select<br>Register   | PPGCD             | R/W          | 10 2.811 0 0/2               | 000000Х0в             |
| 00004Вн                  | Reserved                                     |                   |              |                              |                       |
| 00004Сн                  | PPG E Operation Mode Control Register        | PPGCE             | W, R/W       |                              | 0Х000ХХ1в             |
| 00004Дн                  | PPG F Operation Mode Control Register        | PPGCF             | W, R/W       | 16-bit PPG E/F               | 0Х000001в             |
| 00004Ен                  | PPG E/PPG F Count Clock Select<br>Register   | PPGEF             | R/W          | 10 510 1 5 2/1               | 000000Х0в             |
| 00004Fн                  | Reserved                                     |                   | •            |                              | •                     |

| Address                  | Register                                                      | Abbrevia-<br>tion | Access   | Resource name                             | Initial value         |
|--------------------------|---------------------------------------------------------------|-------------------|----------|-------------------------------------------|-----------------------|
| 000050н                  | Input Capture Control Status 0/1                              | ICS01             | R/W      | Input Capture 0/1                         | 0000000В              |
| 000051н                  | Input Capture Edge 0/1                                        | ICE01             | R/W, R   | input Capture 0/1                         | XXX0X0XX <sub>B</sub> |
| 000052н                  | Input Capture Control Status 2/3                              | ICS23             | R/W      | Input Conture 2/2                         | 0000000В              |
| 000053н                  | Input Capture Edge 2/3                                        | ICE23             | R        | Input Capture 2/3                         | XXXXXXXXB             |
| 000054н<br>to<br>000063н | Reserved                                                      |                   |          |                                           |                       |
| 000064н                  | Timer Control Status 2                                        | TMCSR2            | R/W      | 16-bit Reload Timer                       | 0000000В              |
| 000065н                  | Timer Control Status 2                                        | TMCSR2            | R/W      | 2                                         | XXXX0000B             |
| 000066н                  | Timer Control Status 3                                        | TMCSR3            | R/W      | 16-bit Reload Timer                       | 0000000В              |
| 000067н                  | Timer Control Status 3                                        | TMCSR3            | R/W      | 3                                         | XXXX0000B             |
| 000068н                  | A/D Control Status 0                                          | ADCS0             | R/W      |                                           | 000XXXX0 <sub>B</sub> |
| 000069н                  | A/D Control Status 1                                          | ADCS1             | R/W, W   |                                           | 000000Хв              |
| 00006Ан                  | A/D Data 0                                                    | ADCR0             | R        | A/D Converter                             | 0000000В              |
| 00006Вн                  | A/D Data 1                                                    | ADCR1             | R        | A/D Converter                             | XXXXXX00 <sub>B</sub> |
| 00006Сн                  | ADC Setting 0                                                 | ADSR0             | R/W      |                                           | 0000000В              |
| 00006Dн                  | ADC Setting 1                                                 | ADSR1             | R/W      |                                           | 0000000В              |
| 00006Ен                  | Low Voltage/CPU Operation Detection<br>Reset Control Register | LVRC              | R/W, W   | Low voltage/CPU operation detection reset | 00111000в             |
| 00006Fн                  | ROM Mirror Function Select                                    | ROMM              | W        | ROM Mirror                                | XXXXXXX1 <sub>B</sub> |
| 000070н<br>to<br>00007Fн | Reserved                                                      |                   |          |                                           |                       |
| 000080н<br>to<br>00008Fн | Reserved for CAN Interface 1. Refer to                        | "■ CAN CON        | NTROLLER | S"                                        |                       |
| 000090н<br>to<br>00009Dн | Reserved                                                      |                   |          |                                           |                       |
| 00009Ен                  | Address Detect Control Register 0                             | PACSR0            | R/W      | Address Match<br>Detection 0              | 0000000в              |
| 00009Fн                  | Delayed Interrupt/Release Register                            | DIRR              | R/W      | Delayed Interrupt generation module       | XXXXXXX0 <sub>B</sub> |
| 0000А0н                  | Low-power Consumption Mode<br>Control Register                | LPMCR             | W, R/W   | Low-Power consumption Control Circuit     | 00011000в             |
| 0000А1н                  | Clock Selection Register                                      | CKSCR             | R, R/W   | Low-Power consumption Control Circuit     | 11111100в             |

| Address                  | Register                                                            | Abbrevia-<br>tion | Access | Resource name        | Initial value         |
|--------------------------|---------------------------------------------------------------------|-------------------|--------|----------------------|-----------------------|
| 0000A2н<br>to<br>0000A7н | Reserved                                                            | •                 |        |                      |                       |
| 0000А8н                  | Watchdog Control Register                                           | WDTC              | R, W   | Watchdog Timer       | XXXXX111 <sub>B</sub> |
| 0000А9н                  | Timebase Timer Control Register                                     | TBTC              | W, R/W | Timebase Timer       | 1ХХ00100в             |
| 0000ААн                  | Watch Timer Control register                                        | WTC               | R, R/W | Watch Timer          | 1Х001000в             |
| 0000ABн<br>to<br>0000ADн | Reserved                                                            |                   |        |                      |                       |
| 0000АЕн                  | Flash Control Status<br>(Flash Devices only.<br>Otherwise reserved) | FMCS              | R, R/W | Flash Memory         | 000Х0000в             |
| 0000АFн                  | Reserved                                                            |                   |        |                      |                       |
| 0000В0н                  | Interrupt Control Register 00                                       | ICR00             | W, R/W |                      | 00000111в             |
| 0000В1н                  | Interrupt Control Register 01                                       | ICR01             | W, R/W |                      | 00000111в             |
| 0000В2н                  | Interrupt Control Register 02                                       | ICR02             | W, R/W |                      | 00000111в             |
| 0000ВЗн                  | Interrupt Control Register 03                                       | ICR03             | W, R/W |                      | 00000111в             |
| 0000В4н                  | Interrupt Control Register 04                                       | ICR04             | W, R/W |                      | 00000111в             |
| 0000В5н                  | Interrupt Control Register 05                                       | ICR05             | W, R/W |                      | 00000111в             |
| 0000В6н                  | Interrupt Control Register 06                                       | ICR06             | W, R/W |                      | 00000111в             |
| 0000В7н                  | Interrupt Control Register 07                                       | ICR07             | W, R/W | Interrupt Control    | 00000111в             |
| 0000В8н                  | Interrupt Control Register 08                                       | ICR08             | W, R/W | interrupt Control    | 00000111в             |
| 0000В9н                  | Interrupt Control Register 09                                       | ICR09             | W, R/W |                      | 00000111в             |
| 0000ВАн                  | Interrupt Control Register 10                                       | ICR10             | W, R/W |                      | 00000111в             |
| 0000ВВн                  | Interrupt Control Register 11                                       | ICR11             | W, R/W |                      | 00000111в             |
| 0000ВСн                  | Interrupt Control Register 12                                       | ICR12             | W, R/W |                      | 00000111в             |
| 0000ВDн                  | Interrupt Control Register 13                                       | ICR13             | W, R/W |                      | 00000111в             |
| 0000ВЕн                  | Interrupt Control Register 14                                       | ICR14             | W, R/W |                      | 00000111в             |
| 0000ВFн                  | Interrupt Control Register 15                                       | ICR15             | W, R/W |                      | 00000111в             |
| 0000C0н<br>to<br>0000C9н | Reserved                                                            |                   |        |                      |                       |
| 0000САн                  | External Interrupt Enable 1                                         | ENIR1             | R/W    |                      | 0000000В              |
| 0000СВн                  | External Interrupt Source 1                                         | EIRR1             | R/W    |                      | XXXXXXX               |
| 0000ССн                  | Detection Level Setting 1                                           | ELVR1             | R/W    | External Interrupt 1 | 0000000В              |
| 0000СДн                  | Detection Level Setting 1                                           | ELVKI             | F\/ VV |                      | 0000000в              |
| 0000СЕн                  | External Interrupt Source Select                                    | EISSR             | R/W    |                      | 0000000В              |

| Address                  | Register                      | Abbrevia-<br>tion | Access | Resource name | Initial value         |
|--------------------------|-------------------------------|-------------------|--------|---------------|-----------------------|
| 0000СFн                  | PLL/Subclock Control Register | PSCCR             | W      | PLL           | XXXX0000 <sub>B</sub> |
| 0000D0н<br>to<br>0000FFн | Reserved                      |                   |        |               |                       |

(Address: 7900H-7FFFH)

| Address              | : 7900н-7FFFн)<br>Register | Abbrevia-<br>tion | Access | Resource name     | Initial value |
|----------------------|----------------------------|-------------------|--------|-------------------|---------------|
| 7900н<br>to<br>7917н | Reserved                   |                   |        |                   |               |
| 7918н                | Reload Register LC         | PRLLC             | R/W    |                   | XXXXXXX       |
| 7919н                | Reload Register HC         | PRLHC             | R/W    | 40 hit DDO 0/D    | XXXXXXX       |
| 791Ан                | Reload Register LD         | PRLLD             | R/W    | 16-bit PPG C/D    | XXXXXXX       |
| 791Вн                | Reload Register HD         | PRLHD             | R/W    |                   | XXXXXXX       |
| 791Сн                | Reload Register LE         | PRLLE             | R/W    |                   | XXXXXXX       |
| 791 Дн               | Reload Register HE         | PRLHE             | R/W    | 40 L'' DDO E/E    | XXXXXXX       |
| 791Ен                | Reload Register LF         | PRLLF             | R/W    | 16-bit PPG E/F    | XXXXXXX       |
| 791Fн                | Reload Register HF         | PRLHF             | R/W    |                   | XXXXXXX       |
| 7920н                | Input Capture 0            | IPCP0             | R      |                   | XXXXXXX       |
| 7921н                | Input Capture 0            | IPCP0             | R      | 1                 | XXXXXXX       |
| 7922н                | Input Capture 1            | IPCP1             | R      | Input Capture 0/1 | XXXXXXX       |
| 7923н                | Input Capture 1            | IPCP1             | R      |                   | XXXXXXX       |
| 7924н                | Input Capture 2            | IPCP2             | R      |                   | XXXXXXX       |
| 7925н                | Input Capture 2            | IPCP2             | R      | 1                 | XXXXXXX       |
| 7926н                | Input Capture 3            | IPCP3             | R      | Input Capture 2/3 | XXXXXXX       |
| 7927н                | Input Capture 3            | IPCP3             | R      |                   | XXXXXXX       |
| 7928н<br>to<br>793Fн | Reserved                   |                   |        |                   |               |
| 7940н                | Timer Data 0               | TCDT0             | R/W    |                   | 0000000В      |
| 7941н                | Timer Data 0               | TCDT0             | R/W    | I/O Timor O       | 0000000В      |
| 7942н                | Timer Control Status 0     | TCCSL0            | R/W    | I/O Timer 0       | 0000000В      |
| 7943н                | Timer Control Status 0     | TCCSH0            | R/W    |                   | 0XXXXXXX      |
| 7944н<br>to<br>794Вн | Reserved                   |                   |        |                   |               |
| 794Сн                | Timer 2/Daland 2           | TMR2/             | R/W    | 16-bit Reload     | XXXXXXX       |
| 794Dн                | Timer 2/Reload 2           | TMRLR2            | R/W    | Timer 2           | XXXXXXX       |
| 794Ен                | Time an O/Dalas d O        | TMR3/             | R/W    | 16-bit Reload     | XXXXXXX       |
| 794Гн                | Timer 3/Reload 3           | TMRLR3            | R/W    | Timer 3           | XXXXXXX       |
| 7950н<br>to<br>795Fн | Reserved                   | •                 |        |                   |               |

| Address              | Register                                    | Abbrevia-<br>tion       | Access   | Resource name             | Initial value         |
|----------------------|---------------------------------------------|-------------------------|----------|---------------------------|-----------------------|
| 7960н                | Clock Monitor Function Control<br>Register  | CSVCR                   | R, R/W   | Clock monitor             | 00011100в             |
| 7961н<br>to<br>796Dн | Reserved                                    |                         |          |                           |                       |
| 796Ен                | CAN Direct Mode Register<br>(MB90V340 only) | CDMR                    | R/W      | CAN clock sync            | XXXXXXX0 <sub>B</sub> |
| 796Fн<br>to<br>79DFн | Reserved                                    |                         |          |                           |                       |
| 79Е0н                | Detect Address Setting 0                    | PADR0                   | R/W      |                           | XXXXXXXX              |
| 79Е1н                | Detect Address Setting 0                    | PADR0                   | R/W      |                           | XXXXXXXX              |
| 79Е2н                | Detect Address Setting 0                    | PADR0                   | R/W      |                           | XXXXXXXX              |
| 79ЕЗн                | Detect Address Setting 1                    | PADR1                   | R/W      |                           | XXXXXXXX              |
| 79Е4н                | Detect Address Setting 1                    | PADR1                   | R/W      | Address Match Detection 0 | XXXXXXXX              |
| 79Е5н                | Detect Address Setting 1                    | PADR1                   | R/W      | Detection                 | XXXXXXXX              |
| 79Е6н                | Detect Address Setting 2                    | PADR2                   | R/W      |                           | XXXXXXXX              |
| 79Е7н                | Detect Address Setting 2                    | PADR2                   | R/W      |                           | XXXXXXXX              |
| 79Е8н                | Detect Address Setting 2                    | PADR2                   | R/W      |                           | XXXXXXXX              |
| 79Е9н<br>to<br>79ЕГн | Reserved                                    |                         |          |                           |                       |
| 79F0н                | Detect Address Setting 3                    | PADR3                   | R/W      |                           | XXXXXXXX              |
| 79F1н                | Detect Address Setting 3                    | PADR3                   | R/W      |                           | XXXXXXXX              |
| 79F2н                | Detect Address Setting 3                    | PADR3                   | R/W      |                           | XXXXXXXX              |
| 79F3н                | Detect Address Setting 4                    | PADR4                   | R/W      |                           | XXXXXXXX              |
| 79F4н                | Detect Address Setting 4                    | PADR4                   | R/W      | Address Match Detection 1 | XXXXXXX               |
| 79F5н                | Detect Address Setting 4                    | PADR4                   | R/W      | Detection                 | XXXXXXXX              |
| 79F6н                | Detect Address Setting 5                    | PADR5                   | R/W      |                           | XXXXXXXX              |
| 79F7н                | Detect Address Setting 5                    | PADR5                   | R/W      |                           | XXXXXXXX              |
| 79F8н                | Detect Address Setting 5                    | PADR5                   | R/W      |                           | XXXXXXXX              |
| 79F9н<br>to<br>7BFFн | Reserved                                    | 1                       |          |                           | 1                     |
| 7С00н<br>to<br>7СFFн | Reserved for CAN Interface 1. Refer         | r to " <b>■</b> CAN CON | TROLLERS | 5"                        |                       |

### (Continued)

| Address              | Register                                                   | Abbrevia-<br>tion | Access | Resource name | Initial value |  |
|----------------------|------------------------------------------------------------|-------------------|--------|---------------|---------------|--|
| 7D00н<br>to<br>7DFFн | Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS" |                   |        |               |               |  |
| 7E00н<br>to<br>7FFFн | Reserved                                                   |                   |        |               |               |  |

Notes: • Initial value of "X" represents unknown value.

• Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

#### **■ CAN CONTROLLERS**

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
  - Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
  - 29-bit ID and 8-byte data
  - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
  - 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbps/s to 2 Mbps/s (when input clock is at 16 MHz)

#### **List of Control Registers (1)**

| Address | Pogiator            | Abbreviation | Access                                | Initial Value  |
|---------|---------------------|--------------|---------------------------------------|----------------|
| CAN1    | - Register          | Abbreviation | Access                                | illitial value |
| 000080н | Message buffer      | BVALR        | R/W                                   | 0000000в       |
| 000081н | valid register      | DVALK        | I I I I I I I I I I I I I I I I I I I | 0000000В       |
| 000082н | Transmit request    | TREQR        | R/W                                   | 0000000в       |
| 000083н | register            | INEQN        | IN/VV                                 | 0000000в       |
| 000084н | Transmit cancel     | TCANR        | W                                     | 0000000в       |
| 000085н | register            | ICANK        | VV                                    | 0000000в       |
| 000086н | Transmission        | TCR          | R/W                                   | 0000000в       |
| 000087н | complete register   | TOR          | IX/VV                                 | 0000000в       |
| 000088н | Receive complete    | RCR          | R/W                                   | 0000000в       |
| 000089н | register            | KOK          | IX/VV                                 | 0000000в       |
| 00008Ан | Remote request      | RRTRR        | R/W                                   | 0000000в       |
| 00008Вн | receiving register  | KKTKK        | IX/VV                                 | 0000000в       |
| 00008Сн | Receive overrun     | ROVRR        | R/W                                   | 0000000в       |
| 00008Дн | register            | NOVIN        | FX/VV                                 | 0000000В       |
| 00008Ен | Reception interrupt | RIER         | R/W                                   | 0000000в       |
| 00008Fн | enable register     | MEN          | IX/VV                                 | 0000000в       |

### **List of Control Registers (2)**

| Address | Dominton                   | Abbassistica | A      | Initial Value |
|---------|----------------------------|--------------|--------|---------------|
| CAN1    | Register                   | Abbreviation | Access | Initial Value |
| 007D00н | Control status             | CSR          | R/W, W | 0XXXX0X1в     |
| 007D01н | register                   | CSIX         | R/W, R | 00XXX000в     |
| 007D02н | Last event                 | LEIR         | R/W    | 000Х0000в     |
| 007D03н | indicator register         | LLIIX        | 17/77  | XXXXXXX       |
| 007D04н | Receive and transmit       | RTEC         | R      | 0000000в      |
| 007D05н | error counter              | KILO         | IX     | 0000000В      |
| 007D06н | Bit timing                 | BTR          | R/W    | 11111111в     |
| 007D07н | register                   | DIK          | 17/77  | Х1111111в     |
| 007D08н | IDE register               | IDER         | R/W    | XXXXXXXXB     |
| 007D09н | IDL Tegistei               | IDLK         | 17/ 7/ | XXXXXXX       |
| 007D0Ан | Transmit RTR               | TRTRR        | R/W    | 0000000в      |
| 007D0Вн | register                   | TIVINI       | 17/ 7/ | 0000000в      |
| 007D0Сн | Remote frame               |              |        | XXXXXXX       |
| 007D0Dн | receive waiting register   | RFWTR        | R/W    | XXXXXXX       |
| 007D0Ен | Transmit interrupt         | TIER         | R/W    | 0000000в      |
| 007D0Fн | enable register            | HEK          | FX/VV  | 0000000В      |
| 007D10н |                            |              |        | XXXXXXXXB     |
| 007D11н | Acceptance mask            | AMSR         | R/W    | XXXXXXXXB     |
| 007D12н | select register            | AIVISK       |        | XXXXXXXXB     |
| 007D13н |                            |              |        | XXXXXXXXB     |
| 007D14н |                            |              |        | XXXXXXXXB     |
| 007D15н | Acceptance mask            | AMR0         | R/W    | XXXXXXXXB     |
| 007D16н | register 0                 | AIVIRU       | K/VV   | XXXXXXXXB     |
| 007D17н |                            |              |        | XXXXXXXXB     |
| 007D18н | Acceptance mask register 1 |              |        | XXXXXXXXB     |
| 007D19н |                            | AMR1         | D ///  | XXXXXXXXB     |
| 007D1Ан |                            | AIVIR I      | R/W    | XXXXXXXXB     |
| 007D1Вн |                            |              |        | XXXXXXXXB     |

### List of Message Buffers (ID Registers) (1)

| Address       | - Register          | Abbreviation | Access | Initial Value   |
|---------------|---------------------|--------------|--------|-----------------|
| CAN1          | Register            | Appreviation | Access | ililiai value   |
| 007С00н       |                     |              |        | XXXXXXXXB       |
| to<br>007С1Fн | General-purpose RAM | _            | R/W    | to<br>XXXXXXXXB |
| 007С20н       |                     |              |        | XXXXXXXXB       |
| 007С21н       | ID register 0       | IDR0         | R/W    | XXXXXXXXB       |
| 007С22н       | - ID register 0     | IDRU         | K/VV   | XXXXXXXXB       |
| 007С23н       |                     |              |        | XXXXXXXXB       |
| 007С24н       |                     |              |        | XXXXXXXXB       |
| 007С25н       | ID register 1       | IDR1         | R/W    | XXXXXXXXB       |
| 007С26н       | - ID register 1     | IDKI         | K/VV   | XXXXXXXXB       |
| 007С27н       |                     |              |        | XXXXXXXXB       |
| 007С28н       |                     |              |        | XXXXXXXXB       |
| 007С29н       | ID register 2       | IDR2         | R/W    | XXXXXXX         |
| 007С2Ан       | - ID register 2     | IDR2         | R/VV   | XXXXXXXXB       |
| 007С2Вн       | -                   |              |        | XXXXXXX         |
| 007С2Сн       |                     |              |        | XXXXXXXXB       |
| 007С2Dн       | ID register 2       | IDR3         | R/W    | XXXXXXXXB       |
| 007С2Ен       | - ID register 3     | וטאט         | K/VV   | XXXXXXXXB       |
| 007С2Гн       | -                   |              |        | XXXXXXXXB       |
| 007С30н       |                     |              |        | XXXXXXXXB       |
| 007С31н       | ID register 4       | IDR4         | R/W    | XXXXXXXXB       |
| 007С32н       | - ID register 4     |              |        | XXXXXXXXB       |
| 007С33н       |                     |              |        | XXXXXXXXB       |
| 007С34н       |                     |              |        | XXXXXXXXB       |
| 007С35н       | ID register F       | IDR5         | R/W    | XXXXXXX         |
| 007С36н       | - ID register 5     | IDKS         | K/VV   | XXXXXXXXB       |
| 007С37н       |                     |              |        | XXXXXXX         |
| 007С38н       |                     |              |        | XXXXXXXXB       |
| 007С39н       | ID register 6       | IDR6         | R/W    | XXXXXXXXB       |
| 007С3Ан       | - ID register 6     | וטעט         | I K/VV | XXXXXXXXB       |
| 007С3Вн       |                     |              |        | XXXXXXX         |
| 007С3Сн       |                     |              |        | XXXXXXXXB       |
| 007С3Dн       | ID                  | 1003         | DA4    | XXXXXXX         |
| 007С3Ен       | - ID register 7     | IDR7         | R/W    | XXXXXXXXB       |
| 007С3Гн       |                     |              |        | XXXXXXXXB       |

### List of Message Buffers (ID Registers) (2)

| Address | Register           | Abbreviation | Access | Initial Value |
|---------|--------------------|--------------|--------|---------------|
| CAN1    | Negistei           | Appleviation | Access | ilitiai value |
| 007С40н | ID as sister 0     |              |        | XXXXXXXXB     |
| 007С41н |                    | IDR8         | R/W    | XXXXXXXXB     |
| 007С42н | ID register 8      | IDRO         | R/VV   | XXXXXXXXB     |
| 007С43н |                    |              |        | XXXXXXXXB     |
| 007С44н |                    |              |        | XXXXXXXXB     |
| 007С45н | ID register 0      | IDR9         | R/W    | XXXXXXXXB     |
| 007С46н | ID register 9      | IDR9         | R/VV   | XXXXXXXXB     |
| 007С47н |                    |              |        | XXXXXXXXB     |
| 007С48н |                    |              |        | XXXXXXXXB     |
| 007С49н | ID register 10     | IDD10        | DAM    | XXXXXXXXB     |
| 007С4Ан | ID register 10     | IDR10        | R/W    | XXXXXXXXB     |
| 007С4Вн |                    |              |        | XXXXXXXXB     |
| 007С4Сн |                    |              |        | XXXXXXXXB     |
| 007С4Dн | ID ve sister 44    | IDR11        | R/W    | XXXXXXXXB     |
| 007С4Ен | ID register 11     |              |        | XXXXXXXXB     |
| 007С4Гн |                    |              |        | XXXXXXXXB     |
| 007С50н |                    |              |        | XXXXXXXXB     |
| 007С51н | ID                 | IDR12        | R/W    | XXXXXXXXB     |
| 007С52н | ID register 12     |              |        | XXXXXXXXB     |
| 007С53н |                    |              |        | XXXXXXXXB     |
| 007С54н |                    |              |        | XXXXXXXXB     |
| 007С55н | ID '-1 40          | IDD40        | DAM    | XXXXXXXXB     |
| 007С56н | ID register 13     | IDR13        | R/W    | XXXXXXXX      |
| 007С57н |                    |              |        | XXXXXXXXB     |
| 007С58н |                    |              |        | XXXXXXXX      |
| 007С59н | ID we wis to a 4.4 | IDD44        | D AA   | XXXXXXXXB     |
| 007С5Ан | ID register 14     | IDR14        | R/W    | XXXXXXXX      |
| 007С5Вн |                    |              |        | XXXXXXXXB     |
| 007С5Сн |                    |              |        | XXXXXXXX      |
| 007С5Dн | ID register 15     | 10045        | R/W    | XXXXXXXXB     |
| 007С5Ен |                    | IDR15        |        | XXXXXXXXB     |
| 007С5Fн |                    |              |        | XXXXXXX       |

### List of Message Buffers (DLC Registers and Data Registers) (1)

| Address | Dogiotor        | Abbreviation | A      | Initial Value |
|---------|-----------------|--------------|--------|---------------|
| CAN1    | Register        | Appreviation | Access | initial value |
| 007С60н | DLC register 0  | DLCR0        | R/W    | XXXXXXXX      |
| 007С61н | DLO register o  | DLONG        | IX/VV  | XXXXXXX       |
| 007С62н | DLC register 1  | DLCR1        | R/W    | XXXXXXXXB     |
| 007С63н | DEO register i  | DEOICI       | 17,44  | XXXXXXXXX     |
| 007С64н | DLC register 2  | DLCR2        | R/W    | XXXXXXX       |
| 007С65н | DLO register 2  | DLONZ        | IX/VV  | XXXXXXX       |
| 007С66н | DLC register 3  | DLCR3        | R/W    | XXXXXXXXB     |
| 007С67н | DLC register 3  | DLORS        | IN/VV  | VVVVVVR       |
| 007С68н | DLC register 4  | DLCR4        | R/W    | XXXXXXX       |
| 007С69н | DLC register 4  | DLCR4        | R/VV   | AAAAAAAB      |
| 007С6Ан | DI C register F | DI CDE       | DAM    | VVVVVV-       |
| 007С6Вн | DLC register 5  | DLCR5        | R/W    | XXXXXXXB      |
| 007С6Сн | DI C register 6 | DLCR6        | R/W    | XXXXXXXXB     |
| 007С6Dн | DLC register 6  | DLCRO        | IN/VV  | VVVVVVR       |
| 007С6Ен | DLC register 7  | DLCR7        | R/W    | XXXXXXX       |
| 007С6Fн | DLC register 7  | DLON         | IN/VV  | VVVVVVR       |
| 007С70н | DLC register 8  | DLCR8        | R/W    | XXXXXXXB      |
| 007С71н | DLC register o  | DLCRo        | K/VV   | VVVVVVR       |
| 007С72н | DLC register 9  | DLCR9        | R/W    | XXXXXXXB      |
| 007С73н | DLC register 9  | DLOR9        | IN/VV  | VVVVVVR       |
| 007С74н | DLC register 10 | DLCR10       | R/W    | XXXXXXXB      |
| 007С75н | DLC register 10 | DLCKTO       | IN/VV  | VVVVVVR       |
| 007С76н | DLC register 11 | DLCR11       | R/W    | XXXXXXXB      |
| 007С77н | DLC register 11 | DLCKTI       | IN/VV  | VVVVVVR       |
| 007С78н | DLC register 12 | DLCR12       | R/W    | XXXXXXXB      |
| 007С79н | DLC register 12 | DLCK12       | IN/VV  | VVVVVVR       |
| 007С7Ан | DLC register 13 | DLCR13       | R/W    | XXXXXXXB      |
| 007С7Вн | DEC register 13 | DLCKIS       | IN/VV  | VVVVVV        |
| 007С7Сн | DLC register 14 | DLCR14       | R/W    | XXXXXXXB      |
| 007С7Dн | DLC register 14 | DLCK14       | IN/VV  | VVVVVVV       |
| 007С7Ен | DLC register 15 | DLCR15       | R/W    | XXXXXXXB      |
| 007С7Гн | DLC register to | DLCK15       | F\/ VV | ^^^^^A        |

### List of Message Buffers (DLC Registers and Data Registers) (2)

| Address                  | Dogiston                      | A la la va viati a la | A      | loitial Value                |
|--------------------------|-------------------------------|-----------------------|--------|------------------------------|
| CAN1                     | Register                      | Abbreviation          | Access | Initial Value                |
| 007С80н<br>to<br>007С87н | Data register 0<br>(8 bytes)  | DTR0                  | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |
| 007С88н<br>to<br>007С8Fн | Data register 1<br>(8 bytes)  | DTR1                  | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |
| 007С90н<br>to<br>007С97н | Data register 2<br>(8 bytes)  | DTR2                  | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |
| 007С98н<br>to<br>007С9Fн | Data register 3<br>(8 bytes)  | DTR3                  | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |
| 007СА0н<br>to<br>007СА7н | Data register 4<br>(8 bytes)  | DTR4                  | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |
| 007СА8н<br>to<br>007САFн | Data register 5<br>(8 bytes)  | DTR5                  | R/W    | XXXXXXXB<br>to<br>XXXXXXXB   |
| 007СВ0н<br>to<br>007СВ7н | Data register 6<br>(8 bytes)  | DTR6                  | R/W    | XXXXXXXB<br>to<br>XXXXXXXB   |
| 007СВ8н<br>to<br>007СВFн | Data register 7<br>(8 bytes)  | DTR7                  | R/W    | XXXXXXXB<br>to<br>XXXXXXXXB  |
| 007СС0н<br>to<br>007СС7н | Data register 8<br>(8 bytes)  | DTR8                  | R/W    | XXXXXXXB<br>to<br>XXXXXXXXB  |
| 007СС8н<br>to<br>007ССFн | Data register 9<br>(8 bytes)  | DTR9                  | R/W    | XXXXXXXB<br>to<br>XXXXXXXXB  |
| 007CD0н<br>to<br>007CD7н | Data register 10<br>(8 bytes) | DTR10                 | R/W    | XXXXXXXB<br>to<br>XXXXXXXXB  |
| 007CD8н<br>to<br>007CDFн | Data register 11<br>(8 bytes) | DTR11                 | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |
| 007СЕ0н<br>to<br>007СЕ7н | Data register 12<br>(8 bytes) | DTR12                 | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |
| 007СЕ8н<br>to<br>007СЕFн | Data register 13<br>(8 bytes) | DTR13                 | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB |

### List of Message Buffers (DLC Registers and Data Registers) (3)

| Address                  | Pagistar                      | Abbreviation | Access | Initial Value               |  |
|--------------------------|-------------------------------|--------------|--------|-----------------------------|--|
| CAN1                     | Register                      | Appreviation | Access |                             |  |
| 007СF0н<br>to<br>007СF7н | Data register 14<br>(8 bytes) | DTR14        | R/W    | XXXXXXXB<br>to<br>XXXXXXXXB |  |
| 007СF8н<br>to<br>007СFFн | Data register 15<br>(8 bytes) | DTR15        | R/W    | XXXXXXXB<br>to<br>XXXXXXXB  |  |

### ■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

| Interrupt cause                | El <sup>2</sup> OS corresponding | Interrupt vector |                     | Interrupt control register |         |
|--------------------------------|----------------------------------|------------------|---------------------|----------------------------|---------|
| -                              | corresponding                    | Number           | Address             | Number                     | Address |
| Reset                          | N                                | #08              | FFFFDCH             | _                          | _       |
| INT9 instruction               | N                                | #09              | FFFFD8 <sub>H</sub> |                            | _       |
| Exception                      | N                                | #10              | FFFFD4 <sub>H</sub> | _                          | _       |
| Reserved                       | N                                | #11              | FFFFD0 <sub>H</sub> | ICR00                      | 0000В0н |
| Reserved                       | N                                | #12              | FFFFCCH             | ICKUU                      |         |
| CAN 1 reception                | N                                | #13              | FFFFC8 <sub>H</sub> | ICR01                      | 0000В1н |
| CAN 1 transmission/node status | N                                | #14              | FFFFC4 <sub>H</sub> |                            |         |
| Reserved                       | N                                | #15              | FFFFC0 <sub>H</sub> | ICR02                      | 0000В2н |
| Reserved                       | N                                | #16              | FFFFBCH             |                            |         |
| Reserved                       | N                                | #17              | FFFFB8 <sub>H</sub> | ICR03                      | 0000ВЗн |
| Reserved                       | N                                | #18              | FFFFB4 <sub>H</sub> |                            |         |
| 16-bit reload timer 2          | Y1                               | #19              | FFFFB0 <sub>H</sub> | ICR04                      | 0000В4н |
| 16-bit reload timer 3          | Y1                               | #20              | FFFFACH             |                            |         |
| Reserved                       | N                                | #21              | FFFFA8 <sub>H</sub> | ICR05                      | 0000В5н |
| Reserved                       | N                                | #22              | FFFFA4 <sub>H</sub> |                            |         |
| PPG C/D                        | N                                | #23              | FFFFA0 <sub>H</sub> | - ICR06                    | 0000В6н |
| PPG E/F                        | N                                | #24              | FFFF9C <sub>H</sub> |                            |         |
| Timebase timer                 | N                                | #25              | FFFF98 <sub>H</sub> | 10007                      | 0000В7н |
| External interrupt 8 to 11     | Y1                               | #26              | FFFF94 <sub>H</sub> | ICR07                      |         |
| Watch timer                    | N                                | #27              | FFFF90 <sub>H</sub> | ICR08                      | 0000В8н |
| External interrupt 12 to 15    | Y1                               | #28              | FFFF8C <sub>H</sub> | ICKUO                      |         |
| A/D converter                  | Y1                               | #29              | FFFF88 <sub>H</sub> | ICR09                      | 0000В9н |
| I/O timer 0                    | N                                | #30              | FFFF84 <sub>H</sub> | ICKU9                      |         |
| Reserved                       | N                                | #31              | FFFF80 <sub>H</sub> | ICR10                      | 0000ВАн |
| Reserved                       | N                                | #32              | FFFF7C <sub>H</sub> |                            |         |
| Input capture 0 to 3           | Y1                               | #33              | FFFF78 <sub>H</sub> | IOD44                      | 0000ВВн |
| Reserved                       | N                                | #34              | FFFF74 <sub>H</sub> | ICR11                      |         |
| UART 0 reception               | Y2                               | #35              | FFFF70⊦             | ICD40                      | 0000ВСн |
| UART 0 transmission            | Y1                               | #36              | FFFF6C <sub>H</sub> | ICR12                      |         |
| UART 1 reception               | Y2                               | #37              | FFFF68 <sub>H</sub> | ICD40                      | 0000ВDн |
| UART 1 transmission            | Y1                               | #38              | FFFF64 <sub>H</sub> | ICR13                      |         |

#### (Continued)

| Interrupt cause                     | El <sup>2</sup> OS<br>corresponding | Interrupt vector |                     | Interrupt control register |         |
|-------------------------------------|-------------------------------------|------------------|---------------------|----------------------------|---------|
|                                     |                                     | Number           | Address             | Number                     | Address |
| Reserved                            | N                                   | #39              | FFFF60⊦             | ICR14                      | 0000ВЕн |
| Reserved                            | N                                   | #40              | FFFF5C <sub>H</sub> | ICK14                      |         |
| Flash memory                        | N                                   | #41              | FFFF58⊦             | ICR15                      | 0000ВFн |
| Delayed interrupt generation module | N                                   | #42              | FFFF54 <sub>H</sub> | ICK15                      |         |

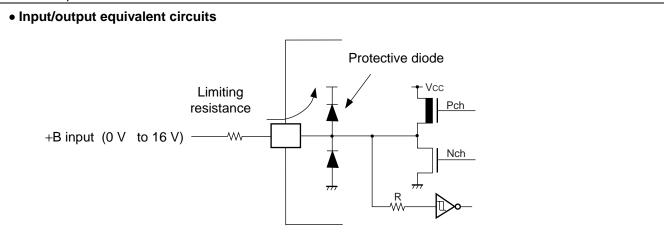
Y1: Usable

Y2: Usable, with El2OS stop function

N : Unusable

Notes: • The peripheral resources sharing the ICR register have the same interrupt level.

- When 2 peripheral resources share the ICR register, only one can use extended intelligent I/O service at a time.
- When either of the 2 peripheral resources sharing the ICR register specifies extended intelligent I/O service, the other one cannot use interrupts.


## **■ ELECTRICAL CHARACTERISTICS**

## 1. Absolute Maximum Ratings

| Parameter                                  | Symbol               | Rat       | ing       | Unit | Remarks                               |
|--------------------------------------------|----------------------|-----------|-----------|------|---------------------------------------|
| Parameter                                  | Syllibol             | Min       | Max       | Onit | Remarks                               |
|                                            | Vcc                  | Vss - 0.3 | Vss + 6.0 | V    |                                       |
| Power supply voltage*1                     | AVcc                 | Vss - 0.3 | Vss + 6.0 | V    | Vcc = AVcc*2                          |
|                                            | AVR                  | Vss - 0.3 | Vss + 6.0 | V    | AVcc ≥ AVR*2                          |
| Input voltage*1                            | Vı                   | Vss - 0.3 | Vss + 6.0 | V    | *3                                    |
| Output voltage*1                           | Vo                   | Vss - 0.3 | Vss + 6.0 | V    | *3                                    |
| Maximum clamp current                      | ICLAMP               | -2.0      | +2.0      | mΑ   | *6                                    |
| Total Maximum clamp current                | $\Sigma  I_{CLAMP} $ | _         | 40        | mA   | *6                                    |
| "I " lovel acquire use quitavit cumulat    | lol1                 | _         | 15        | mA   | *4                                    |
| "L" level maximum output current           | lol2                 | _         | 40        | mA   | *5                                    |
| (4.2.1                                     | lolav1               | _         | 4         | mA   | *4                                    |
| "L" level average output current           | lolav2               |           | 30        | mA   | *5                                    |
| (i) 2                                      | Σlol1                | _         | 125       | mA   | *4                                    |
| "L" level maximum overall output current   | Σl <sub>OL2</sub>    | _         | 160       | mA   | *5                                    |
|                                            | $\Sigma$ lolav1      | Σlolav1   |           | A    | *4 +105 °C < T <sub>A</sub> ≤ +125 °C |
| (1.2.1                                     | $\Sigma$ lolav2      | _         | 40        | mA   | *5 +105 °C < T <sub>A</sub> ≤ +125 °C |
| "L" level average overall output current   | $\Sigma$ lolav1      |           | 40        | A    | *4 -40 °C ≤ T <sub>A</sub> ≤ +105 °C  |
|                                            | $\Sigma$ lolav2      | _         | 40        | mA   | *5 -40 °C ≤ T <sub>A</sub> ≤ +105 °C  |
| (112)                                      | <b>І</b> он1         | _         | -15       | mA   | *4                                    |
| "H" level maximum output current           | <b>І</b> он2         | _         | -40       | mA   | *5                                    |
| "I !" lovel every content every            | lohav1               | _         | -4        | mΑ   | *4                                    |
| "H" level average output current           | lohav2               | _         | -30       | mΑ   | *5                                    |
| (III)                                      | $\Sigma$ loh1        | _         | -125      | mA   | *4                                    |
| "H" level maximum overall output current   | $\Sigma$ loh2        |           | -160      | mA   | *5                                    |
|                                            | ΣΙομαν1              |           | 40        | A    | *4 +105 °C < T <sub>A</sub> ≤ +125 °C |
| "I !" lovel evere se everell everet everet | $\Sigma$ lohav2      | _         | -40       | mA   | *5 +105 °C < T <sub>A</sub> ≤ +125 °C |
| "H" level average overall output current   | ΣΙομαν1              |           | 40        | A    | *4 -40 °C ≤ T <sub>A</sub> ≤ +105 °C  |
|                                            | ΣI <sub>OHAV2</sub>  |           | -40       | mA   | *5 -40 °C ≤ T <sub>A</sub> ≤ +105 °C  |
| Power consumption                          | PD                   | —         | 300       | mW   | MB90F362/T/S/TS,<br>MB90F367/T/S/TS   |
| Operating temperature                      | т.                   | -40       | +105      | °C   |                                       |
| Operating temperature                      | TA                   | -40       | +125      | °C   | *7                                    |
| Storage temperature                        | Тѕтс                 | -55       | +150      | °C   |                                       |

#### (Continued)

- \*1: This parameter is based on Vss = AVss = 0 V.
- \*2: Set AVcc and Vcc to the same voltage. Make sure that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.
- \*3: V<sub>I</sub> and V<sub>O</sub> should not exceed V<sub>CC</sub> + 0.3 V. V<sub>I</sub> should not exceed the specified ratings. However, if the maximun current to/from an input is limited by some means with external components, the I<sub>CLAMP</sub> rating supersedes the V<sub>I</sub> rating.
- \*4: Applicable to pins: P24 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87
- \*5: Applicable to pins: P20 to P23
- \*6: Applicable to pins: P20 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87
  - Use within recommended operating conditions.
  - Use at DC voltage (current) .
  - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
  - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
  - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
  - Note that if a +B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
  - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
  - Care must be taken not to leave the +B input pin open.
  - Sample recommended circuits :



\*7 : If used exceeding  $T_A = +105$  °C, please contact Fujitsu for reliability limitations.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

#### 2. Recommended Conditions

(Vss = AVss = 0 V)

| Parameter             | Symbol       |     | Value |      | Unit  | Remarks                                                                                                                                   |
|-----------------------|--------------|-----|-------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter             | Syllibol     | Min | Тур   | Max  | Offic | Remarks                                                                                                                                   |
|                       |              | 4.0 | 5.0   | 5.5  | V     | Under normal operation                                                                                                                    |
| Power supply voltage  | Vcc,<br>AVcc | 3.5 | 5.0   | 5.5  | V     | Under normal operation when not using the A/D converter and not Flash programming.                                                        |
|                       |              | 3.0 |       | 5.5  | V     | Maintains RAM data in stop mode                                                                                                           |
| Smooth capacitor      | Cs           | 0.1 | _     | 1.0  | μF    | Use a ceramic capacitor or capacitor of better AC characteristics. Bypass capacitor at the Vcc pin should be greater than this capacitor. |
| Operating temperature | TA           | -40 |       | +105 | °C    |                                                                                                                                           |
| Operating temperature | IA           | -40 | _     | +125 | °C    | *                                                                                                                                         |

<sup>\*:</sup> If used exceeding  $T_A = +105$  °C, please contact Fujitsu for reliability limitations.



WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

### 3. DC Characteristics

(TA = -40 °C to +125 °C, Vcc = 5.0 V  $\pm$  10%, fcp  $\leq$  24 MHz, Vss = AVss = 0 V)

| Damamatan             | Sym-  | D:                       | Condition                                                |           | Value |           | 11:4 | Damanta                                                                            |
|-----------------------|-------|--------------------------|----------------------------------------------------------|-----------|-------|-----------|------|------------------------------------------------------------------------------------|
| Parameter             | bol   | Pin                      | Condition                                                | Min       | Тур   | Max       | Unit | Remarks                                                                            |
|                       | Vihs  | _                        | _                                                        | 0.8 Vcc   |       | Vcc + 0.3 | V    | Pin inputs if CMOS<br>hysteresis input levels<br>are selected (except<br>P82, P85) |
| Input "H"             | Viha  | _                        | _                                                        | 0.8 Vcc   | _     | Vcc + 0.3 | V    | Pin inputs if<br>Automotive input<br>levels are selected                           |
| voltage               | Vihs  | _                        | _                                                        | 0.7 Vcc   | _     | Vcc + 0.3 | V    | P82, P85<br>inputs if CMOS input<br>levels are selected                            |
|                       | VIHR  | _                        | _                                                        | 0.8 Vcc   | _     | Vcc + 0.3 | V    | RST input pin (CMOS hysteresis)                                                    |
|                       | Vінм  | _                        | _                                                        | Vcc - 0.3 | _     | Vcc + 0.3 | V    | MD input pin                                                                       |
|                       | VILS  | _                        | _                                                        | Vss - 0.3 |       | 0.2 Vcc   | V    | Pin inputs if CMOS<br>hysteresis input levels<br>are selected (except<br>P82, P85) |
| Input "L"             | VILA  | _                        | _                                                        | Vss - 0.3 | _     | 0.5 Vcc   | V    | Pin inputs if<br>Automotive input<br>levels are selected                           |
| voltage               | VILS  | _                        | _                                                        | Vss - 0.3 | _     | 0.3 Vcc   | V    | P82, P85<br>inputs if CMOS input<br>levels are selected                            |
|                       | VILR  | _                        | _                                                        | Vss - 0.3 | _     | 0.2 Vcc   | V    | RST input pin (CMOS hysteresis)                                                    |
|                       | VILM  |                          |                                                          | Vss - 0.3 | _     | Vss + 0.3 | V    | MD input pin                                                                       |
| Output "H"<br>voltage | Vон   | Other than<br>P20 to P23 | $V_{CC} = 4.5 \text{ V},$<br>$I_{OH} = -4.0 \text{ mA}$  | Vcc - 0.5 | _     | _         | V    |                                                                                    |
| Output "H" voltage    | Vоні  | P20 to P23               | $V_{CC} = 4.5 \text{ V},$<br>$I_{OH} = -14.0 \text{ mA}$ | Vcc - 0.5 | _     |           | V    |                                                                                    |
| Output "L" voltage    | Vol   | Other than<br>P20 to P23 | $V_{CC} = 4.5 \text{ V},$<br>$I_{OL} = 4.0 \text{ mA}$   | _         | _     | 0.4       | V    |                                                                                    |
| Output "L" voltage    | Voli  | P20 to P23               | $V_{CC} = 4.5 \text{ V},$<br>$I_{OL} = 20.0 \text{ mA}$  | _         |       | 0.4       | V    |                                                                                    |
| Input leak current    | IIL   | _                        | Vcc = 5.5 V, Vss<br>< Vı < Vcc                           | -1        |       | 1         | μΑ   |                                                                                    |
| Pull-up resistance    | Rup   | P20 to P27,<br>RST       | _                                                        | 25        | 50    | 100       | kΩ   |                                                                                    |
| Pull-down resistance  | RDOWN | MD2                      | _                                                        | 25        | 50    | 100       | kΩ   | Except Flash devices                                                               |

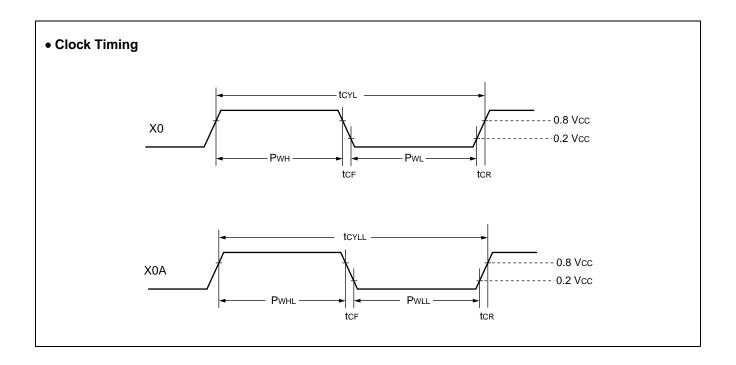
(Ta = -40 °C to +125 °C, Vcc = 5.0 V  $\pm$  10%, fcp  $\leq$  24 MHz, Vss = AVss = 0 V)

| Danamatan    | Sym-     | Pin  | Conditi                                                                                          |                                  |     | Value | •   | 11:4:4 | Domostro                                    |
|--------------|----------|------|--------------------------------------------------------------------------------------------------|----------------------------------|-----|-------|-----|--------|---------------------------------------------|
| Parameter    | bol      | PIN  | Conditi                                                                                          | on                               | Min | Тур   | Max | Unit   | Remarks                                     |
|              |          |      | Vcc = 5.0 V,<br>Internal frequency : 24 MHz,<br>At normal operation.                             |                                  |     | 35    | 45  | mA     |                                             |
|              | Icc      |      | Vcc = 5.0 V,<br>Internal frequency :<br>At writing FLASH m                                       |                                  | _   | 50    | 60  | mA     | Flash devices                               |
|              |          |      | Vcc = 5.0 V,<br>Internal frequency :<br>At erasing FLASH r                                       |                                  | _   | 50    | 60  | mA     | Flash devices                               |
|              | Iccs     |      | Vcc = 5.0 V,<br>Internal frequency :<br>At sleep mode.                                           | 24 MHz,                          | _   | 12    | 20  | mA     |                                             |
|              |          |      | Vcc = 5.0 V,                                                                                     |                                  |     | 0.3   | 0.8 |        | Without T model                             |
|              | Істѕ     |      | Internal frequency: At main timer mode                                                           |                                  |     | 0.4   | 1.0 | mA     | With T model                                |
|              | ICTSPLL6 |      | Vcc = 5.0 V,<br>Internal frequency : 24 MHz,<br>At PLL timer mode,<br>External frequency = 4 MHz |                                  |     | 4     | 7   | mA     |                                             |
| Power supply |          | Vcc  | Vcc = 5.0 V                                                                                      | Stopping clock monitor function  | _   | 40    | 100 |        | MB90F362, MB90F367,<br>MB90362, MB90367     |
| current*     |          | • 00 | Internal frequency:                                                                              | Operating clock monitor function | _   | 60    | 150 | ^      | MB90F367, MB90367                           |
|              | ICCL     |      | 8 kHz,<br>At sub operation,                                                                      | Stopping clock monitor function  | _   | 90    | 200 | μΑ     | MB90F362T, MB90F367T,<br>MB90362T, MB90367T |
|              |          |      | T <sub>A</sub> = +25°C                                                                           | Operating clock monitor function |     | 110   | 250 |        | MB90F367T, MB90367T                         |
|              |          |      | Vcc = 5.0 V                                                                                      | Stopping clock monitor function  |     | 10    | 50  |        | MB90F362, MB90F367,<br>MB90362, MB90367     |
|              |          |      | Internal frequency:                                                                              | Operating clock monitor function |     | 30    | 100 | ^      | MB90F367, MB90367                           |
|              | Iccls    |      | 8 kHz,<br>At sub sleep,                                                                          | Stopping clock monitor function  |     | 60    | 150 | μΑ     | MB90F362T, MB90F367T,<br>MB90362T, MB90367T |
|              |          |      | T <sub>A</sub> = +25°C                                                                           | Operating clock monitor function | _   | 80    | 200 |        | MB90F367T, MB90367T                         |
|              |          |      | Vcc = 5.0 V                                                                                      | Stopping clock monitor function  | _   | 8     | 30  |        | MB90F362, MB90F367,<br>MB90362, MB90367     |
|              | la       |      | Internal frequency:                                                                              | Operating clock monitor function |     | 30    | 70  | ^      | MB90F367, MB90367                           |
|              | Ісст     |      | 8 kHz,<br>At watch mode,                                                                         | Stopping clock monitor function  |     | 60    | 130 | μΑ     | MB90F362T, MB90F367T,<br>MB90362T, MB90367T |
|              |          |      | T <sub>A</sub> = +25°C                                                                           | Operating clock monitor function | _   | 80    | 170 |        | MB90F367T, MB90367T                         |
|              | Іссн     |      | Vcc = 5.0 V,                                                                                     |                                  |     | 5     | 25  | μΑ     | Without T model                             |
|              | ЮСП      |      | At stop mode, T <sub>A</sub> = -                                                                 | +25°C                            | _   | 50    | 130 | μΑ     | With T model                                |

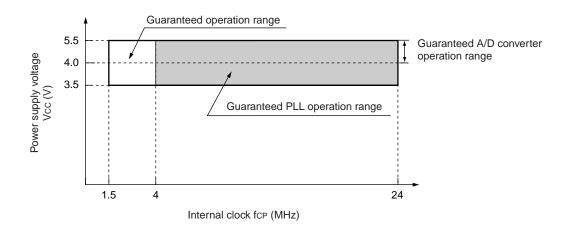
<sup>\*:</sup> The power supply current is measured with an external clock.

## (Continued)

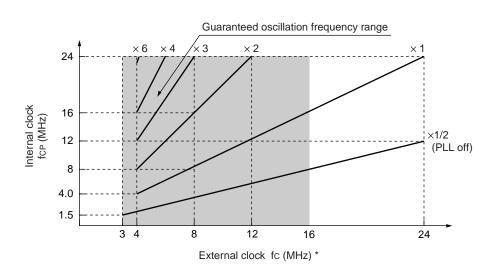
(TA = -40 °C to +125 °C, Vcc = 5.0 V  $\pm$  10%, fcp  $\leq$  24 MHz, Vss = AVss = 0 V)


| Parameter      | Sym- | Pin                                              | Condition | Value |   |     | Unit  | Remarks |  |
|----------------|------|--------------------------------------------------|-----------|-------|---|-----|-------|---------|--|
| lalameter      | bol  |                                                  | Condition | Min   |   | Max | Oiiit | Kemarks |  |
| Input capacity | Cin  | Other than<br>AVcc, AVss,<br>AVR, Vcc, Vss,<br>C | _         | _     | 5 | 15  | pF    |         |  |

### 4. AC Characteristics


## (1) Clock Timing

(TA = -40 °C to +125 °C, Vcc = 5.0 V  $\pm$  10%, fcp  $\leq$  24 MHz, Vss = AVss = 0 V)


| <b>D</b> 1                     |              | <b>D</b> . |       | Value  |     |      |                                                                                                          |
|--------------------------------|--------------|------------|-------|--------|-----|------|----------------------------------------------------------------------------------------------------------|
| Parameter                      | Symbol       | Pin        | Min   | Тур    | Max | Unit | Remarks                                                                                                  |
|                                |              |            | 3     | _      | 16  | MHz  | 1/2 when PLL stops,<br>When using an oscillation circuit                                                 |
|                                |              |            | 4     |        | 16  | MHz  | $\begin{array}{l} \text{PLL} \times \textbf{1}, \\ \text{When using an oscillation circuit} \end{array}$ |
|                                |              | X0, X1     | 4     |        | 12  | MHz  | $\begin{array}{c} \text{PLL} \times 2, \\ \text{When using an oscillation circuit} \end{array}$          |
|                                |              | 70, 71     | 4     | _      | 8   | MHz  | $\begin{array}{c} \text{PLL} \times 3, \\ \text{When using an oscillation circuit} \end{array}$          |
|                                |              |            | 4     | _      | 6   | MHz  | $\begin{array}{c} \text{PLL} \times \text{4,} \\ \text{When using an oscillation circuit} \end{array}$   |
|                                | <b>f</b> c   |            | 4     |        | 4   | MHz  | $\begin{array}{l} \text{PLL} \times 6, \\ \text{When using an oscillation circuit} \end{array}$          |
| Clock frequency                |              |            | 3     | 1      | 24  | MHz  | 1/2 when PLL stops,<br>When using an external clock                                                      |
|                                |              |            | 4     |        | 24  | MHz  | PLL × 1,<br>When using an external clock                                                                 |
|                                |              | X0, X1     | 4     | _      | 12  | MHz  | PLL × 2,<br>When using an external clock                                                                 |
|                                |              |            | 4     |        | 8   | MHz  | PLL × 3,<br>When using an external clock                                                                 |
|                                |              |            | 4     |        | 6   | MHz  | PLL × 4,<br>When using an external clock                                                                 |
|                                |              |            | 4     |        | 4   | MHz  | PLL × 6,<br>When using an external clock                                                                 |
|                                | fcL          | X0A, X1A   |       | 32.768 | 100 | kHz  |                                                                                                          |
|                                | <b>t</b> cyL | X0, X1     | 62.5  |        | 333 | ns   | When using an oscillation circuit                                                                        |
| Clock cycle time               | tore         | X0, X1     | 41.67 |        | 333 | ns   | When using an external clock                                                                             |
|                                | tcyll        | X0A, X1A   | 10    | 30.5   |     | μs   |                                                                                                          |
| Input clock pulse width        | Pwh, Pwl     | X0         | 10    | _      |     | ns   | Duty ratio is about 30% to 70%.                                                                          |
| mpat olook palso width         | Pwhl, Pwll   | X0A        | 5     | 15.2   |     | μs   | Daty 14110 10 40041 00 // 10 10 //.                                                                      |
| Input clock rise and fall time | tcr, tcf     | X0         | _     | _      | 5   | ns   | When using external clock                                                                                |
| Internal operating clock       | <b>f</b> cp  |            | 1.5   |        | 24  | MHz  | When using main clock                                                                                    |
| frequency (machine clock)      | fcpl         |            |       | 8.192  | 50  | kHz  | When using sub clock                                                                                     |
| Internal operating clock       | <b>t</b> CP  | _          | 41.67 | _      | 666 | ns   | When using main clock                                                                                    |
| cycle time (machine clock)     | <b>t</b> CPL | _          | 20    | 122.1  |     | μs   | When using sub clock                                                                                     |



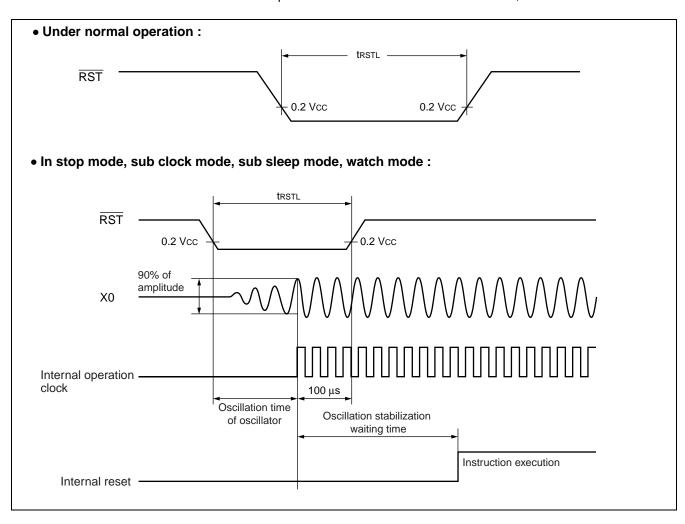
### • Guaranteed PLL Operation Range



#### **Guaranteed operation range of MB90360 series**



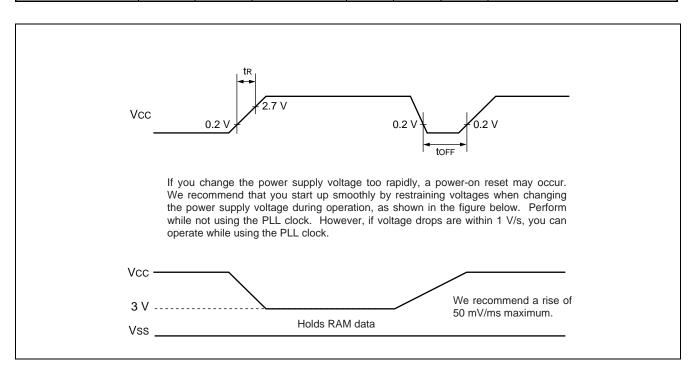
\*: When using the oscillation circuit, the maximum oscillation clock frequency is 16 MHz.


#### (2) Reset Standby Input

(TA = -40 °C to +125 °C, Vcc = 5.0 V  $\pm$  10%, fcp  $\leq$  24 MHz, Vss = AVss = 0 V)

| Parameter        | Symbol        | Din  | Value           Min         M               |   | Unit  | Remarks                                                           |  |
|------------------|---------------|------|---------------------------------------------|---|-------|-------------------------------------------------------------------|--|
| rarameter        | Syllibol      | FIII |                                             |   | o iii |                                                                   |  |
|                  |               |      | 500                                         |   | ns    | Under normal operation                                            |  |
| Reset input time | <b>t</b> RSTL | RST  | Oscillation time of oscillator*<br>+ 100 μs | _ | ns    | In stop mode, sub clock<br>mode, sub sleep mode<br>and watch mode |  |
|                  |               |      | 100                                         | _ | μs    | In timebase timer mode                                            |  |

\*: Oscillation time of oscillator is the time that the amplitude reaches 90%.


In the crystal oscillator, the oscillation time is between several ms and tens of ms. In FAR / ceramic oscillators, the oscillation time is between hundreds of µs and several ms. With an external clock, the oscillation time is 0 ms.

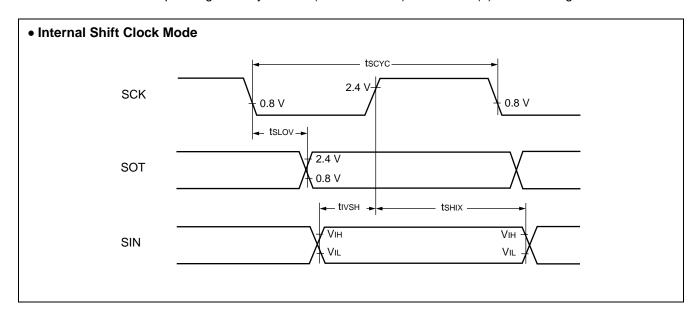


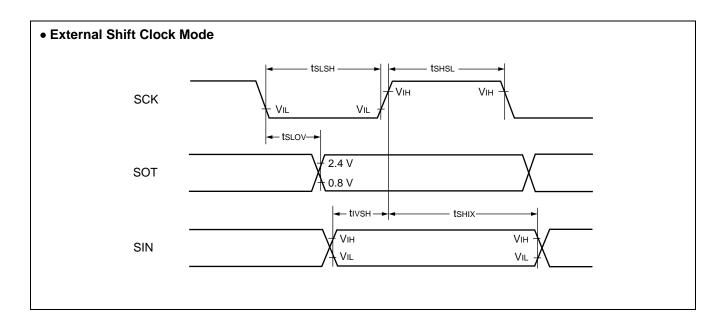
#### (3) Power-on Reset

 $(T_A = -40 \, ^{\circ}\text{C} \text{ to } +125 \, ^{\circ}\text{C}, \, \text{Vcc} = 5.0 \, \text{V} \pm 10\%, \, \text{fcp} \le 24 \, \text{MHz}, \, \text{Vss} = \text{AVss} = 0 \, \text{V})$ 

| Parameter          | Symbol       | Pin  | Condition | Va   | lue | Unit  | Remarks                     |
|--------------------|--------------|------|-----------|------|-----|-------|-----------------------------|
| Farameter          | Syllibol     | FIII | Condition | Min  | Max | Offic | Remarks                     |
| Power on rise time | <b>t</b> R   | Vcc  |           | 0.05 | 30  | ms    |                             |
| Power off time     | <b>t</b> off | Vcc  | _         | 1    | _   | ms    | Due to repetitive operation |




### (4) UART0/1

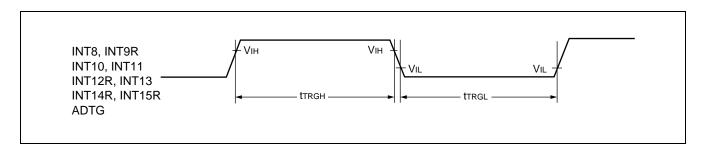

(TA = -40 °C to +125 °C, Vcc = 5.0 V  $\pm$  10%, fcp  $\leq$  24 MHz, Vss = 0 V)

| Parameter                                       | Symbol        | Pin                       | Condition                                  | Va    | lue | Unit  | Remarks |
|-------------------------------------------------|---------------|---------------------------|--------------------------------------------|-------|-----|-------|---------|
| Parameter                                       | Syllibol      | PIII                      | Condition                                  | Min   | Max | Offic | Remarks |
| Serial clock cycle time                         | tscyc         | SCK0, SCK1                |                                            | 8 tcp | _   | ns    |         |
| $SCK \downarrow \; 	o \; SOT \; delay \; time$  | <b>t</b> sLOV | SCK0, SCK1,<br>SOT0, SOT1 | Internal shift clock<br>mode output pins   | -80   | +80 | ns    |         |
| Valid SIN → SCK ↑                               | <b>t</b> ıvsh | SCK0, SCK1,<br>SIN0, SIN1 | are<br>C <sub>L</sub> = 80 pF + 1 TTL.     | 100   | _   | ns    |         |
| $SCK \uparrow \to Valid \; SIN \; hold \; time$ | <b>t</b> sнıx | SCK0, SCK1,<br>SIN0, SIN1 |                                            | 60    | _   | ns    |         |
| Serial clock "H" pulse width                    | <b>t</b> shsl | SCK0, SCK1                |                                            | 4 tcp | _   | ns    |         |
| Serial clock "L" pulse width                    | <b>t</b> slsh | SCK0, SCK1                |                                            | 4 tcp |     | ns    |         |
| $SCK \downarrow \; 	o \; SOT \; delay \; time$  | <b>t</b> sLOV | SCK0, SCK1,<br>SOT0, SOT1 | External shift clock mode output pins      | _     | 150 | ns    |         |
| Valid SIN → SCK ↑                               | <b>t</b> ıvsh | SCK0, SCK1,<br>SIN0, SIN1 | are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$ | 60    |     | ns    |         |
| $SCK\!\!\uparrow 	o ValidSINholdtime$           | <b>t</b> sнıx | SCK0, SCK1,<br>SIN0, SIN1 |                                            | 60    |     | ns    |         |

Notes: • AC characteristic in CLK synchronized mode.

- C<sub>L</sub> is load capacity value of pins when testing.
- tcp is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".






### (5) Trigger Input Timing

(Ta = -40 °C to +125 °C, Vcc = 5.0 V  $\pm$  10%, fcp  $\leq$  24 MHz, Vss = 0 V)

| Parameter         | Symbol Pin     |                                                                        | Condition | Va    | lue | Unit  | Remarks |
|-------------------|----------------|------------------------------------------------------------------------|-----------|-------|-----|-------|---------|
| rarameter         | Syllibol       | FIII                                                                   | Condition | Min   | Max | Oilit | Nemarks |
| Input pulse width | ttrgh<br>ttrgl | INT8, INT9R<br>INT10, INT11<br>INT12R, INT13<br>INT14R, INT15R<br>ADTG | _         | 5 tcp |     | ns    |         |

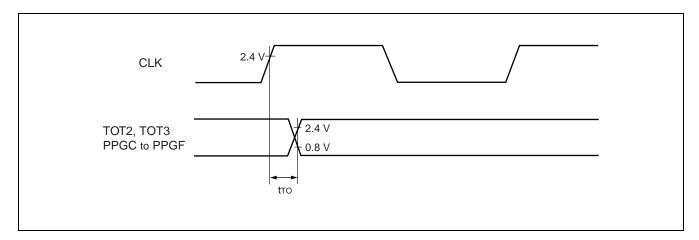
Note: tcp is internal operating clock cycle time (machine clock). Refer to "(1) Clock Timing".



### (6) Timer Related Resource Input Timing

 $(T_A = -40 \, ^{\circ}\text{C to} + 125 \, ^{\circ}\text{C}, \, \text{Vcc} = 5.0 \, \text{V} \pm 10\%, \, \text{fcp} \le 24 \, \text{MHz}, \, \text{Vss} = 0 \, \text{V})$ 

| Symbol     | Din                      | Condition        | Value         |                                                        | Unit                                 | Remarks                                                    |  |
|------------|--------------------------|------------------|---------------|--------------------------------------------------------|--------------------------------------|------------------------------------------------------------|--|
| Symbol Pin |                          | Condition        | Min           | Max                                                    | 5                                    |                                                            |  |
| tтıwн      | TIN2, TIN3<br>IN0 to IN3 | _                | <b>4 t</b> cp | _                                                      | ns                                   |                                                            |  |
|            | Symbol ttiwh ttiwL       | tTIWH TIN2, TIN3 | TIN2, TIN3    | Symbol Pin Condition Min  TIN2, TIN3 IN0 to IN3  4 tcp | Symbol   Pin   Condition   Min   Max | Symbol Pin Condition Min Max Unit  TIN2, TIN3 — 4 tcp — ns |  |


Note: tcp is internal operating clock cycle time (machine clock). Refer to "(1) Clock Timing".



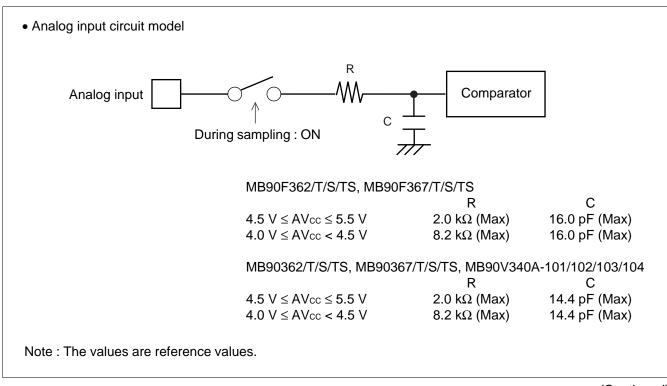
### (7) Timer Related Resource Output Timing

 $(T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ Vcc} = 5.0 \text{ V} \pm 10\%, \text{ fcp} \le 24 \text{ MHz}, \text{ Vss} = 0 \text{ V})$ 

| Parameter                                   | Symbol Pin  |                            | Condition | Val | ue  | Unit  | Remarks |
|---------------------------------------------|-------------|----------------------------|-----------|-----|-----|-------|---------|
| Faranietei                                  |             |                            | Condition | Min | Max | Ollic | Kemarks |
| $CLK  \! \uparrow  	o  T_OUT  change  time$ | <b>t</b> TO | TOT2, TOT3<br>PPGC to PPGF | _         | 30  | _   | ns    |         |

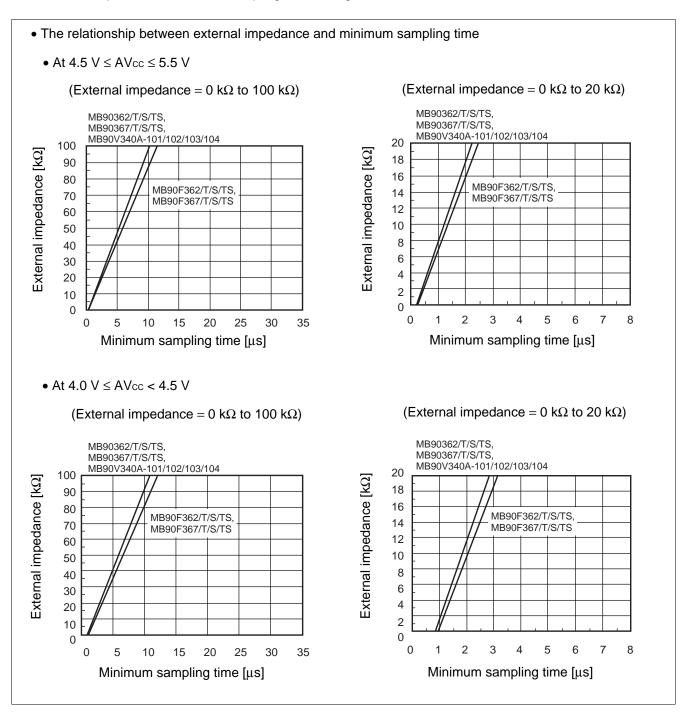


### 5. A/D Converter


 $(T_{\text{A}} = -40 \,\,^{\circ}\text{C to } + 125 \,\,^{\circ}\text{C}, \, 3.0 \,\,\text{V} \leq \text{AVR} - \,\text{AVss}, \, \text{Vcc} = \text{AVcc} = 5.0 \,\,\text{V} \pm \,10\%, \, \text{fcp} \leq 24 \,\,\text{MHz}, \, \text{Vss} = \text{AVss} = 0 \,\,\text{V})$ 

| Parameter                        | Symbol | Pin         | Value      |            |            |      | Remarks              |
|----------------------------------|--------|-------------|------------|------------|------------|------|----------------------|
| Farameter                        |        |             | Min        | Тур        | Max        | Unit | Remarks              |
| Resolution                       |        | _           | _          | _          | 10         | bit  |                      |
| Total error                      | _      |             | _          | _          | ±3.0       | LSB  |                      |
| Nonlinearity error               | _      | _           | _          | _          | ±2.5       | LSB  |                      |
| Differential nonlinearity error  | _      | _           | _          | _          | ±1.9       | LSB  |                      |
| Zero reading voltage             | Vот    | AN0 to AN15 | AVss - 1.5 | AVss + 0.5 | AVss + 2.5 | LSB  |                      |
| Full scale reading voltage       | VFST   | AN0 to AN15 | AVR - 3.5  | AVR – 1.5  | AVR + 0.5  | LSB  |                      |
| Compare time                     | _      | _           | 1.0        |            | 16,500     | μs   | 4.5 V ≤ AVcc ≤ 5.5 V |
|                                  |        |             | 2.0        | _          |            |      | 4.0 V ≤ AVcc < 4.5 V |
| Sampling time                    | _      | _           | 0.5        |            | 8          | μs   | 4.5 V ≤ AVcc ≤ 5.5 V |
|                                  |        |             | 1.2        | _          |            |      | 4.0 V ≤ AVcc < 4.5 V |
| Analog port input current        | lain   | AN0 to AN15 | -0.3       | _          | +0.3       | μΑ   |                      |
| Analog input voltage range       | Vain   | AN0 to AN15 | AVss       | _          | AVR        | V    |                      |
| Reference voltage range          | _      | AVR         | AVss + 2.7 | _          | AVcc       | V    |                      |
| Power supply current             | lΑ     | AVcc        | _          | 3.5        | 7.5        | mA   |                      |
|                                  | Іан    | AVcc        | _          | _          | 5          | μΑ   | *                    |
| Reference voltage supply current | IR     | AVR         | _          | 600        | 900        | μΑ   |                      |
|                                  | IRH    | AVR         | _          | _          | 5          | μΑ   | *                    |
| Offset between input channels    | _      | AN0 to AN15 | _          | _          | 4          | LSB  |                      |

<sup>\*:</sup> If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc = AVcc = AVR = 5.0 V).


#### • About the external impedance of analog input and its sampling time

• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage changed to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.



#### (Continued)

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.



• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

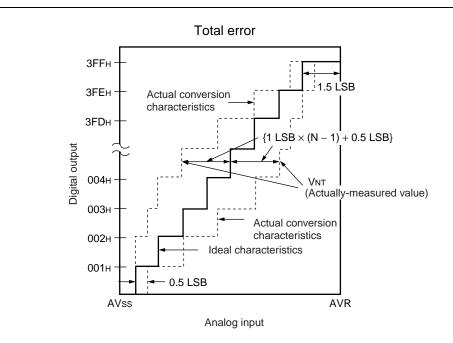
#### About errors

As | AVR – AVss | becomes smaller, values of relative errors grow larger.

#### 6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.

Non linearity : Deviation between a line across zero-transition line ( "00 0000 0000 $_{\rm B}$ "  $\leftarrow$   $\rightarrow$  "00 0000 0001 $_{\rm B}$ ") error and full-scale transition line ( "11 1111 1110 $_{\rm B}$ "  $\leftarrow$   $\rightarrow$  "11 1111 1111 $_{\rm B}$ ") and actual conversion


characteristics.

Differential : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal

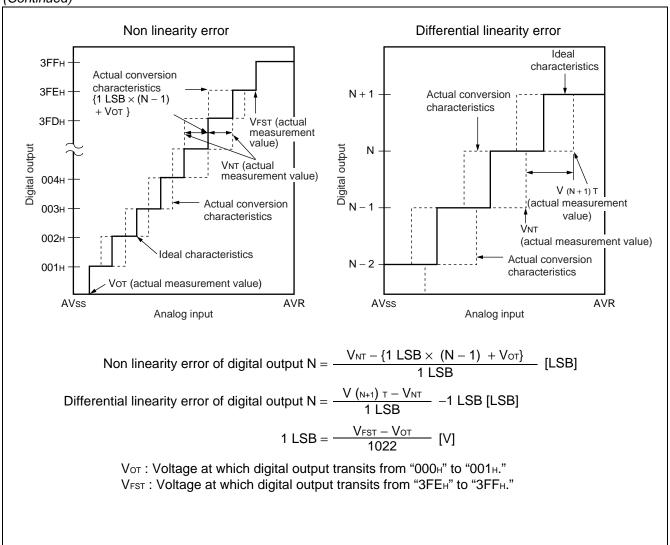
linearity error value.

Total error : Difference between an actual value and an theoretical value. A total error includes zero transi-

tion error, full-scale transition error, and linear error.



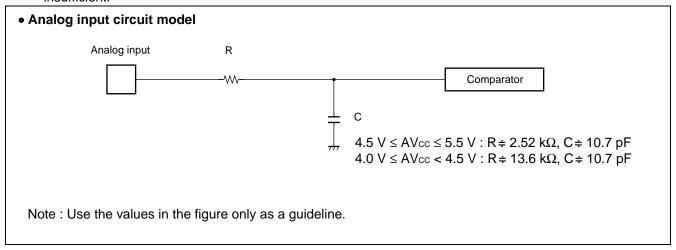
$$Total \ error \ of \ digital \ output \ "N" = \frac{V_{NT} - \{1 \ LSB \times \ (N-1) \ + 0.5 \ LSB\}}{1 \ LSB} \quad [LSB]$$


1 LSB = (Ideal value) 
$$\frac{AVR - AVss}{1024}$$
 [V]

Vor (Ideal value) = AVss + 0.5 LSB [V]

V<sub>FST</sub> (Ideal value) = AVR - 1.5 LSB [V]

 $V_{NT}$ : A voltage at which digital output transits from (N-1) to N.





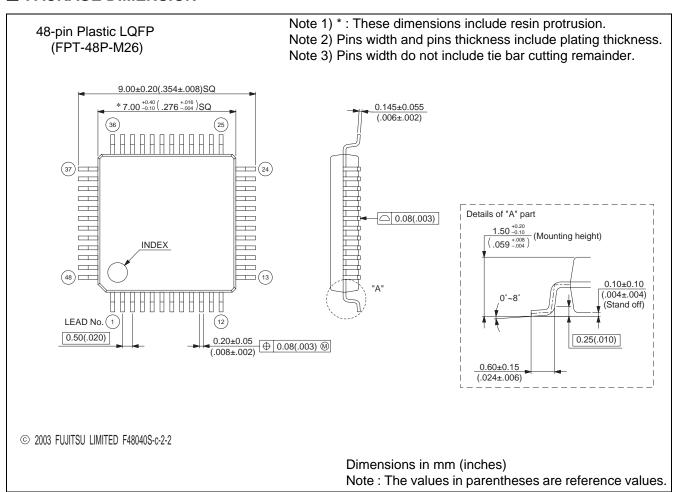

#### 7. Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

- Recommended output impedance of external circuits are : Approx. 1.5 k $\Omega$  or lower (4.0 V  $\leq$  AVcc  $\leq$  5.5 V, sampling period = 0.5  $\mu$ s)
- If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.
- If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.



#### 8. Flash Memory Program/Erase Characteristics


| Parameter                            | Canditions                         |        | Value |       | Unit  | Remarks                                          |
|--------------------------------------|------------------------------------|--------|-------|-------|-------|--------------------------------------------------|
| Parameter                            | Conditions                         | Min    | Тур   | Max   | Unit  |                                                  |
| Chip erase time                      | T <sub>A</sub> = +25 °C            | _      | 1     | 15    | S     | Excludes programming prior to erasure            |
| Word (16-bit width) programming time | Vcc = 5.0 V                        | _      | 16    | 3,600 | μs    | Except for the overhead time of the system level |
| Program/Erase cycle                  | _                                  | 10,000 | _     | _     | cycle |                                                  |
| Flash memory data retention time     | Average<br>T <sub>A</sub> = +85 °C | 20     | _     | _     | Year  | *                                                |

 $<sup>^*</sup>$ : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85  $^{\circ}$ C) .

## **■** ORDERING INFORMATION

| Part number   | Package             | Remarks        |  |  |
|---------------|---------------------|----------------|--|--|
| MB90F362PMT   |                     |                |  |  |
| MB90F362TPMT  |                     |                |  |  |
| MB90F362SPMT  |                     |                |  |  |
| MB90F362TSPMT |                     |                |  |  |
| MB90F367PMT   |                     |                |  |  |
| MB90F367TPMT  |                     |                |  |  |
| MB90F367SPMT  |                     |                |  |  |
| MB90F367TSPMT | 48-pin Plastic LQFP |                |  |  |
| MB90362PMT    | (FPT-48P-M26)       |                |  |  |
| MB90362TPMT   |                     |                |  |  |
| MB90362SPMT   |                     |                |  |  |
| MB90362TSPMT  |                     |                |  |  |
| MB90367PMT    |                     |                |  |  |
| MB90367TPMT   |                     |                |  |  |
| MB90367SPMT   |                     |                |  |  |
| MB90367TSPMT  |                     |                |  |  |
| MB90V340A-101 |                     |                |  |  |
| MB90V340A-102 | 299-pin Ceramic PGA | For evaluation |  |  |
| MB90V340A-103 | (PGA-299C-A01)      |                |  |  |
| MB90V340A-104 |                     |                |  |  |

#### **■ PACKAGE DIMENSION**



## **FUJITSU LIMITED**

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

#### F0501