8-bit Microcontroller

CMOS

F²MC-8FX MB95160 Series

MB95F166D/166D/FV100D-101

■ DESCRIPTION

The MB95160 series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURE

• F2MC-8FX CPU core

Instruction set optimized for controllers

- · Multiplication and division instructions
- 16-bit arithmetic operations
- · Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
 - Main clock
 - · Main PLL clock
 - Sub clock
 - Sub PLL clock
- Timer
 - 8/16-bit compound timer × 2 channels
 Can be used to interval timer, PWC timer, PWM timer and input capture.
 - 8/16-bit PPG × 2 channels
 - 16-bit PPG × 1 channel
 - Timebase timer × 1 channel
 - Watch prescaler × 1 channel
- LIN-UART × 1 channel
 - LIN function, clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
 - · Full duplex double buffer

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

- UART/SIO × 1 channel
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
 - Full duplex double buffer

•

- $I^2C \times 1$ channel
 - Built-in wake-up function
- External interrupt × 8 channels
 - Interrupt by edge detection (rising, falling, or both edges can be selected)
 - Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter × 8 channels
 - 8-bit or 10-bit resolution can be selected.
- LCD controller (LCDC)
 - 32 SEG × 4 COM (Max 128 pixels) (Built-in internal division resistance product)
 - With blinking function
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - · Watch mode
 - · Timebase timer mode
- I/O port
 - The number of maximum ports : Max 53
 - Port configuration
 - General-purpose I/O ports (N-ch open drain) : 2 ports
 - General-purpose I/O ports (CMOS) : 51 ports
- Programmable input voltage levels of port
 - CMOS input level/hysteresis input level
- Flash memory security function (Flash memory device only)

Protects the content of Flash memory

■ PRODUCT LINEUP

Part number Parameter		MB95F166D	MB95166D			
Тур	oe ·	Flash memory product	Mask ROM product			
RO	M capacity	32 Kbytes				
RA	M capacity	1 Kbyte				
Res	set output	No				
*uc	Clock system	Dua	l clock			
Option*	Low voltage detection reset	ı	No			
СР	U functions	Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes Data bit length : 1, 8, and 16 bits Minimum instruction execution time : 61.5 ns (at machine clock frequency 16.25 MHz) Interrupt processing time : 0.6 µs (at machine clock frequency 16.25 MHz)				
	Ports (Max 53 ports)	General-purpose I/O port (N-ch open drain) : 2 ports General-purpose I/O port (CMOS) : 51 ports Programmable input voltage levels of port. CMOS input level/hysteresis input level.				
	Timebase timer (1 channel)	Interrupt cycle: 0.5 ms, 2.1 ms, 8.2 ms, 3	32.8 ms (at main oscillation clock 4 MHz)			
	Watchdog timer	Reset generated cycle At main oscillation clock 10 MHz At sub oscillation clock 32.768 kHz (for d	: Min 105 ms lual clock product) : Min 250 ms			
ons	Wild register	Capable of replacing 3 bytes of ROM dat	ta			
eripheral functions	I ² C (1 channel)	Master/slave sending and receiving Bus error function and arbitration function Detecting transmitting direction function Start condition repeated generation and of Built-in wake-up function				
Pe	UART/SIO (1 channel)	Data transfer capable in UART/SIO Full duplex double buffer, variable data length (5/6/7/8-bit), built-in INRZ type transfer format, error detected LSB-first or MSB-first can be selected. Clock synchronous (SIO) or clock asynch				
	LIN-UART (1 channel)	Dedicated reload timer allowing a wide ra Full duplex double buffer. Capable of serial data transfer synchrono LIN functions available as the LIN master				

(Continued)

Pa	Part number	MB95F166D MB95166D		
	8/10-bit A/D converter (8 channels)	8-bit or 10-bit resolution can be selected.		
	LCD controller (LCDC)	COM output : 4 (Max) SEG output : 32 (Max) LCD drive power supply (bias) pin : 4 32 SEG × 4 COM : 128 pixels can be displayed. (Built-in internal division resistant product) Duty LCD mode Operable in LCD standby mode Built-in internal division resistance With blinking function		
Peripheral functions	8/16-bit compound timer (2 channels)	Each channel of the timer can be used as "8-bit timer × 2 channels" or "16-bit timer × 1 channel". Built-in timer function, PWC function, PWM function, capture function, and square wave form output Count clock: 7 internal clocks and external clock can be selected.		
Periph	16-bit PPG (1 channel)	PWM mode or one-shot mode can be selected. Counter operating clock : Eight selectable clock sources Support for external trigger start		
	8/16-bit PPG (2 channels)	Each channel of the PPG can be used as "8-bit PPG × 2 channels" or "16-bit PPG × 1 channel". Counter operating clock: Eight selectable clock sources		
	Watch counter	Count clock: Four selectable clock sources (125 ms, 250 ms, 500 ms, or 1 s) Counter value can be set from 0 to 63. (Capable of counting for 1 minute when selecting clock source 1 second and setting counter value to 60)		
	Watch prescaler (1 channel)	4 selectable interval times (125 ms, 250 ms, 500 ms, or 1 s)		
	External interrupt (8 channels)	Interrupt by edge detection (rising, falling, or both edges can be selected.) Can be used to recover from standby modes.		
Fla	sh memory	Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Min): 10000 times Data retention time: 20 years Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash		
Sta	indby mode	Sleep, stop, watch, and timebase timer		

^{*:} For details of option, refer to "■ MASK OPTION".

Note: Part number of the evaluation product in MB95160 series is MB95FV100D-101 (internal division resistance included). When using it, the MCU board (MB2146-301A) is required.

■ OSCILLATION STABILIZATION WAIT TIME

For the MASK ROM product, you can set the mask option when ordering MASK ROM to select the initial value of main clock oscillation stabilization wait time from among the following four values.

Note that the evaluation and Flash memory products are fixed their initial value of main clock oscillation stabilization wait time at the maximum value.

Select of oscillation stabilization wait time	Remarks
(2 ² – 2) /Fcн	0.5 μs (at main oscillation clock 4 MHz)
(2 ¹² – 2) / F сн	Approx. 1.02 ms (at main oscillation clock 4 MHz)
(2 ¹³ – 2) /Fсн	Approx. 2.05 ms (at main oscillation clock 4 MHz)
(2 ¹⁴ – 2) /Fсн	Approx. 4.10 ms (at main oscillation clock 4 MHz)

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95F166D	MB95FV100D-101	MB95166D
FPT-64P-M23	0	×	0
FPT-64P-M24	0	×	0
BGA-224P-M08	×	0	×

: Available: Unavailable

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

Notes on Using Evaluation Products

The evaluation product has not only the functions of the MB95160 series but also those of other products to support software development for multiple series and models of the F2MC-8FX family. The I/O addresses for peripheral resources not used by the MB95160 series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.

Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Also, as the read values of prohibited addresses on the evaluation product are different to the values on the Flash memory products and Mask ROM products, do not use these values in the program.

The functions corresponding to certain bits in single-byte registers may not be supported on some Flash memory products and Mask ROM products. However, reading or writing to these bits will not cause malfunction of the hardware. Also, as the evaluation, Flash memory products and Mask ROM products are designed to have identical software operation, no particular precautions are required.

Difference of Memory Spaces

If the amount of memory on the evaluation product is different from that of the Flash memory products and Mask ROM products, carefully check the difference in the amount of memory from the model to be actually used when developing software.

For details of memory space, refer to "■ CPU CORE".

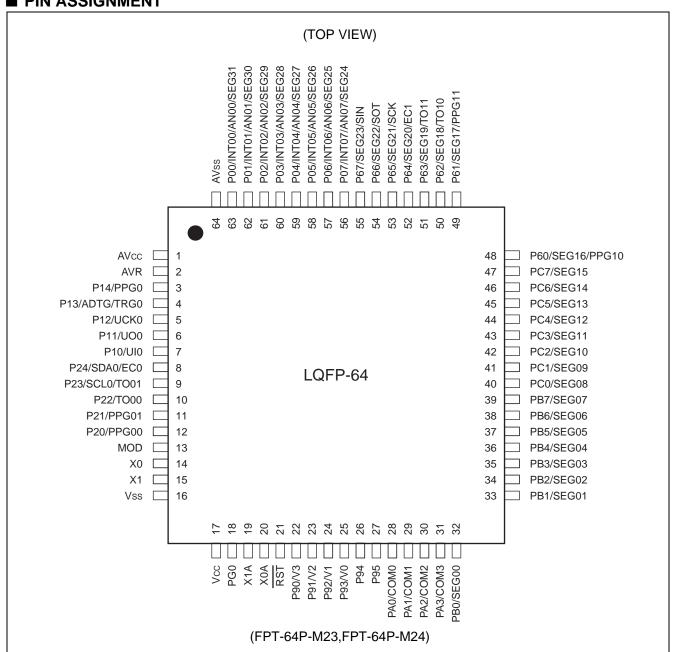
Current Consumption

For details of current consumption, refer to "

ELECTRICAL CHARACTERISTICS".

Package

For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".


Operating voltage

The operating voltage is different among the evaluation, Flash memory products and Mask ROM products. For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS"

• Difference MOD pins

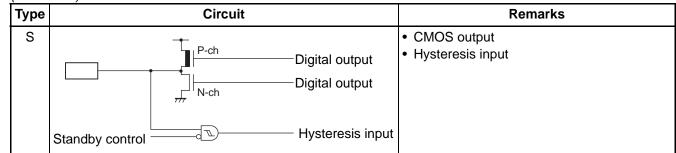
A pull-down resistor is provided for the MOD pin of the Mask ROM product.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.	Pin name	I/O circuit type*	Function	
1	AVcc	_	A/D converter power supply pin.	
2	AVR	_	A/D converter reference input pin.	
3	P14/PPG0		General-purpose I/O port. The pin is shared with 16-bit PPG ch.0 output.	
4	P13/TRG0/ ADTG	Н	General-purpose I/O port. The pin is shared with 16-bit PPG ch.0 trigger input (TRG0) and A/D trigger input (ADTG).	
5	P12/UCK0		General-purpose I/O port. The pin is shared with UART/SIO ch.0 clock I/O.	
6	P11/UO0		General-purpose I/O port. The pin is shared with UART/SIO ch.0 data output.	
7	P10/UI0	G	General-purpose I/O port. The pin is shared with UART/SIO ch.0 data input.	
8	P24/EC0/ SDA0		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 clock input (EC0) and I ² C ch.0 data I/O (SDA0) .	
9	P23/TO01/ SCL0		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 output (TO01) and I ² C ch.0 clock I/O (SCL0) .	
10	P22/TO00		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 output.	
11	P21/PPG01	Н	General-purpose I/O port. The pin is shared with 8/16-bit PPG ch.0 output.	
12	P20/PPG00		General-purpose I/O port. The pin is shared with 8/16-bit PPG ch.0 output.	
13	MOD	В	Operating mode designation pin.	
14	X0	Α	Main clock oscillation pins.	
15	X1	1 ^	IMAITI CIOCK OSCIIIATIOTI PITIS.	
16	Vss	_	Power supply pin (GND).	
17	Vcc	_	Power supply pin.	
18	PG0	Н	General-purpose I/O port.	
19	X1A	^	Sub clock oscillation pine (22 kHz)	
20	X0A	A	Sub clock oscillation pins (32 kHz).	
21	RST	B'	Reset pin.	
22	P90/V3			
23	P91/V2	R	General-purpose I/O ports.	
24	P92/V1		The pins are shared with power supply pin for LCDC drive.	
25	P93/V0			

Pin no.	Pin name	I/O circuit type*	Function	
26	P94	S	General-purpose I/O ports.	
27	P95	3		
28	PA0/COM0			
29	PA1/COM1	М	General-purpose I/O ports.	
30	PA2/COM2	IVI	The pins are shared with LCDC COM output (COM0 to COM3).	
31	PA3/COM3			
32	PB0/SEG00			
33	PB1/SEG01			
34	PB2/SEG02			
35	PB3/SEG03	N	General-purpose I/O ports.	
36	PB4/SEG04		The pins are shared with LCDC SEG output (SEG00 to SEG07).	
37	PB5/SEG05			
38	PB6/SEG06			
39	PB7/SEG07			
40	PC0/SEG08			
41	PC1/SEG09			
42	PC2/SEG10			
43	PC3/SEG11	М	General-purpose I/O ports.	
44	PC4/SEG12	IVI	The pins are shared with LCDC SEG output (SEG08 to SEG15).	
45	PC5/SEG13			
46	PC6/SEG14			
47	PC7/SEG15			
48	P60/SEG16/ PPG10		General-purpose I/O ports. The pins are shared with LCDC SEG output (SEG16, SEG17) and	
49	P61/SEG17/ PPG11	M	8/16-bit PPG ch.1 output (PPG10, PPG11).	
50	P62/SEG18/ TO10		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG18) and 8/16-t compound timer ch.1 output (TO10).	


Pin no.	Pin name	I/O circuit type*	Function	
51	P63/SEG19/ TO11		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG19) and 8/16-bit compound timer ch.1 output (TO11) .	
52	P64/SEG20/ EC1	M	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG20) and 8/16-bit compound timer ch.1 clock input (EC1).	
53	P65/SEG21/ SCK	IVI	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG21) and LIN-UART clock I/O (SCK) .	
54	P66/SEG22/ SOT		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG22) and LIN-UART data output (SOT) .	
55	P67/SEG23/ SIN	N	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG23) and LIN-UART data input (SIN) .	
56	P07/INT07/ AN07/SEG24			
57	P06/INT06/ AN06/SEG25			
58	P05/INT05/ AN05/SEG26			
59	P04/INT04/ AN04/SEG27	F	General-purpose I/O port. The pins are shared with external interrupt input (INT00 to INT07),	
60	P03/INT03/ AN03/SEG28	Г 	A/D analog input (AN00 to AN07) and LCDC SEG output (SEG24 to SEG31) .	
61	P02/INT02/ AN02/SEG29			
62	P01/INT01/ AN01/SEG30			
63	P00/INT00/ AN00/SEG31			
64	AVss	_	Power supply pin (GND) of A/D converter	

^{*:} For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 (X1A) X0 (X0A) Standby control	 Oscillation circuit High-speed side Feedback resistance : approx. 1 MΩ Low-speed side Feedback resistance : approx. 24 MΩ (Evaluation product : approx. 10 MΩ) Dumping resistance : approx.144 kΩ (Evaluation product : without dumping resistance)
В	Mode input	 Only for input Hysteresis input only for Mask ROM product Pull-down resistor only for MODE pin of Mask ROM product
B'	Reset input	Hysteresis input
F	A/D control A/D control Standby control External interrupt control	CMOS output LCD output Hysteresis input Analog input
G	Pull-up control P-ch Digital output Digital output CMOS input Hysteresis input	CMOS output CMOS input Hysteresis input With pull-up control

Туре		Circuit		Remarks
Н	R P-ch	P-ch	ip control Digital output Digital output	CMOS outputHysteresis inputWith pull-up control
	Standby control		Hysteresis input	
I		N-ch	Digital output	N-ch open drain outputCMOS inputHysteresis input
	Standby control		CMOS input Hysteresis input	
М		P-ch N-ch LCD outpu	Digital output Digital output	CMOS outputLCD outputHysteresis input
	LCD control Standby control	른	Hysteresis input	
N		N-ch	Digital output Digital output	CMOS outputLCD outputCMOS inputHysteresis input
	LCD control Standby control		t CMOS input Hysteresis input	
R				CMOS output LCD power supply Hysteresis input
	Standby control LCD control		Hysteresis input	(Continued

■ HANDLING DEVICES

Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used. Latch-up may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between Vcc pin and Vss pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements.

Stable Supply Voltage

Supply voltage should be stabilized.

A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in Vcc ripple (p-p value) in a commercial frequency range (50/60 Hz) not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

• Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Retransmit the data if an error occurs because of applying the checksum to the last data in consideration of receiving wrong data due to the noise.

PIN CONNECTION

Treatment of Unused Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.

Power Supply Pins

In products with multiple V_{CC} or V_{SS} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between Vcc and Vss pins near this device.

• Mode Pin (MOD)

Connect the MOD pin directly to Vcc or Vss.

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to Vcc or Vss and to provide a low-impedance connection.

Analog Power Supply

Always set the same potential to AVcc and Vcc pins. When Vcc > AVcc, the current may flow through the AN00 to AN07 pins.

• Treatment of Power Supply Pins on A/D Converter

Connect to be AVcc = Vcc and AVss = AVR = Vss even if the A/D converter is not in use.

Noise riding on the AV $_{\text{CC}}$ pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV $_{\text{CC}}$ and AV $_{\text{SS}}$ pins in the vicinity of this device.

■ PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

• Supported Parallel Programmers and Adapters

The following table lists supported parallel programmers and adapters.

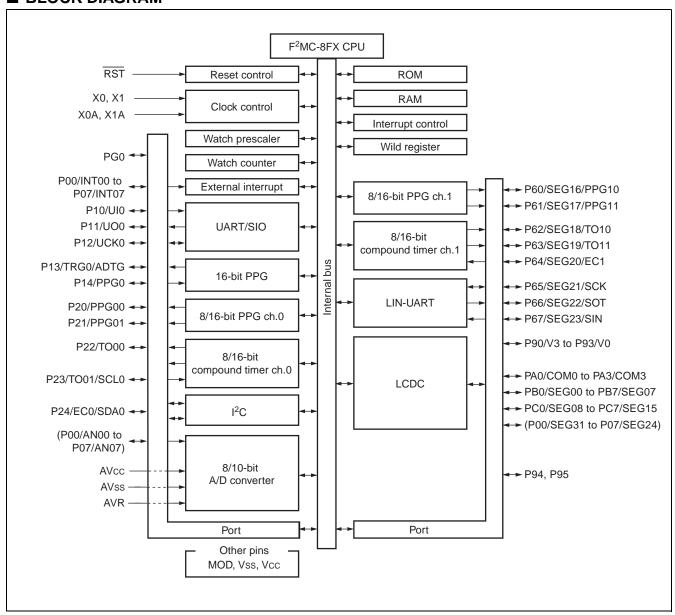
Package	Applicable adapter model	Parallel programmers
FPT-64P-M23	TEF110-95F168HPMC	AF9708 (Ver 02.35G or more)
FPT-64P-M24	TEF110-95F168HPMC1	AF9709/B (Ver 02.35G or more) AF9723+AF9834 (Ver 02.08E or more)

Note: For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

• Sector Configuration

The individual sectors of Flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

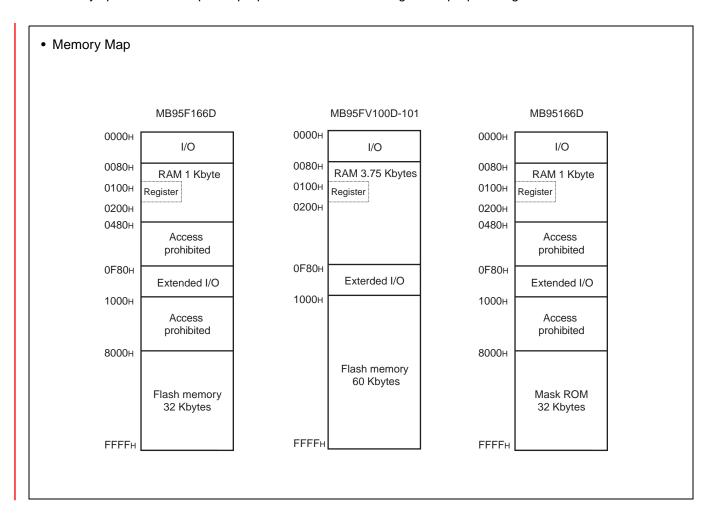
Fla	ash memory	CPU address	Programmer address*
(32 Kbytes	8000 _H	18000н
	02 Noytoo	<u>_ FF</u> FF _H	1 <u>FFFF</u> +


^{*:} Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into Flash memory.

These programmer addresses are used for the parallel programmer to program or erase data in Flash memory.

Programming Method

- 1) Set the type code of the parallel programmer to "17222".
- 2) Load program data to programmer addresses 18000_H to 1FFFF_H.
- 3) Programmed by parallel programmer


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory space

Memory space of the MB95160 series is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special-purpose areas such as the general-purpose registers and vector table.

2. Register

The MB95160 series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as follows:

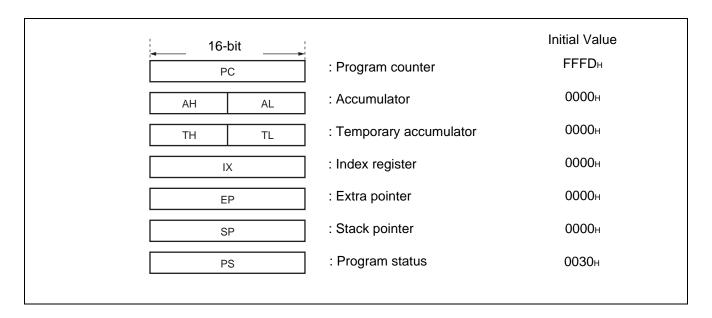
Program counter (PC) : A 16-bit register to indicate locations where instructions are stored.

Accumulator (A) : A 16-bit register for temporary storage of arithmetic operations. In the case of

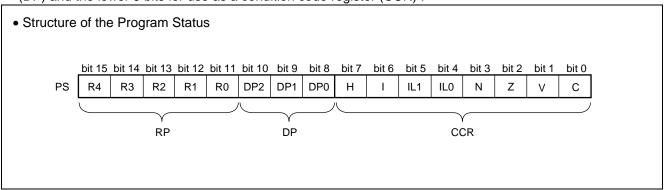
an 8-bit data processing instruction, the lower 1 byte is used.

Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator.

In the case of an 8-bit data processing instruction, the lower 1 byte is used.


Index register (IX) : A 16-bit register for index modification.

Extra pointer (EP) : A 16-bit pointer to point to a memory address.


Stack pointer (SP) : A 16-bit register to indicate a stack area.

Program status (PS) : A 16-bit register for storing a register bank pointer, a direct bank pointer, and

a condition code register.

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR).

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

 Rule for Conversion of Actual Addresses in the General-purpose Register Area RP upper OP code lower "0" "1" R4 R2 R3 R1 R0 b2 b1 b0 **V** ¥ * * **\psi** ¥ Generated address A2 A1 Α0 A15 A13 A12 A11 A10 Α9 Α8 Α7 A6 Α5 A4 АЗ A14

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080_H to 00FF_H.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)
000 _B (initial value)		0080н to 00FFн (without mapping)
001в		0100н to 017Fн
010в		0180н to 01FFн
011в	0080н to 00FFн	0200н to 027Fн
100в		0280н to 02FFн
101в		0300н to 037Fн
110в		0380н to 03FFн
111в		0400н to 047Fн

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.

Cleared to "0" otherwise. This flag is for decimal adjustment instructions.

I flag : Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0".

The flag is set to "0" when reset.

IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level

is higher than the value indicated by these bits.

IL1	IL0	Interrupt level	Priority
0	0	0	High
0	1	1	↑
1	0	2	<u> </u>
1	1	3	Low (no interruption)

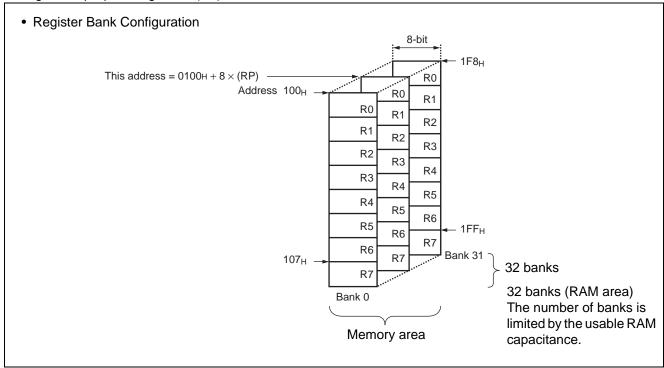
N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the

bit is set to "0".

Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.

V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0"

otherwise.


C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared

to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8-register. Up to a total of 32 banks can be used on the MB95160 series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	0000000В
0003н	DDR1	Port 1 direction register	R/W	0000000В
0004н	_	(Disabled)	_	_
0005н	WATR	Oscillation stabilization wait time setting register	R/W	111111111в
0006н	PLLC	PLL control register	R/W	0000000В
0007н	SYCC	System clock control register	R/W	1010X011в
0008н	STBC	Standby control register	R/W	0000000В
0009н	RSRR	Reset factor register	R/W	XXXXXXXX
000Ан	TBTC	Timebase timer control register	R/W	0000000В
000Вн	WPCR	Watch prescaler control register	R/W	0000000В
000Сн	WDTC	Watchdog timer control register	R/W	0000000В
000Дн	_	(Disabled)	_	_
000Ен	PDR2	Port 2 data register	R/W	0000000В
000Fн	DDR2	Port 2 direction register	R/W	0000000В
0010н to 0015н	_	(Disabled)	-	_
0016н	PDR6	Port 6 data register	R/W	00000000в
0017н	DDR6	Port 6 direction register	R/W	0000000В
0018н to 001Вн	_	(Disabled)	_	_
001Сн	PDR9	Port 9 data register	R/W	00000000в
001Dн	DDR9	Port 9 direction register	R/W	0000000В
001Ен	PDRA	Port A data register	R/W	0000000В
001Гн	DDRA	Port A direction register	R/W	0000000В
0020н	PDRB	Port B data register	R/W	0000000В
0021н	DDRB	Port B direction register	R/W	0000000В
0022н	PDRC	Port C data register	R/W	0000000В
0023н	DDRC	Port C direction register	R/W	0000000В
0024н to 0029н	_	(Disabled)	_	_

Address	Register abbreviation	Register name	R/W	Initial value
002Ан	PDRG	Port G data register	R/W	0000000В
002Вн	DDRG	Port G direction register	R/W	0000000В
002Сн	_	(Disabled)	_	_
002Dн	PUL1	Port 1 pull-up register	R/W	0000000В
002Ен	PUL2	Port 2 pull-up register	R/W	0000000В
002Fн to 0034н	_	(Disabled)	_	_
0035н	PULG	Port G pull-up control register	R/W	0000000В
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000В
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000В
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch.1	R/W	0000000В
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch.1	R/W	0000000В
003Ан	PC01	8/16-bit PPG1 control register ch.0	R/W	0000000В
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	0000000В
003Сн	PC11	8/16-bit PPG1 control register ch.1	R/W	0000000В
003Dн	PC10	8/16-bit PPG0 control register ch.1	R/W	0000000В
003Ен to 0041н	_	(Disabled)	_	_
0042н	PCNTH0	16-bit PPG status control register (upper byte) ch.0	R/W	0000000В
0043н	PCNTL0	16-bit PPG status control register (lower byte) ch.0	R/W	0000000В
0044н to 0047н	_	(Disabled)	_	_
0048н	EIC00	External interrupt circuit control register ch.0/ch.1	R/W	0000000В
0049н	EIC10	External interrupt circuit control register ch.2/ch.3	R/W	0000000В
004Ан	EIC20	External interrupt circuit control register ch.4/ch.5	R/W	0000000В
004Вн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	0000000В
004Сн to 004Fн	_	(Disabled)	_	_
0050н	SCR	LIN-UART serial control register	R/W	0000000В
0051н	SMR	LIN-UART serial mode register	R/W	0000000В
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	0000000В
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в

Address	Register abbreviation	Register name	R/W	Initial value
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XXB
0056н	SMC10	UART/SIO serial mode control register 1 ch.0	R/W	0000000В
0057н	SMC20	UART/SIO serial mode control register 2 ch.0	R/W	00100000в
0058н	SSR0	UART/SIO serial status register ch.0	R/W	0000001в
0059н	TDR0	UART/SIO serial output data register ch. 0	R/W	00000000в
005Ан	RDR0	UART/SIO serial input data register ch.0	R	00000000в
005Вн to 005Fн	_	(Disabled)	_	_
0060н	IBCR00	I ² C bus control register 0 ch.0	R/W	0000000В
0061н	IBCR10	I ² C bus control register 1 ch.0	R/W	0000000В
0062н	IBSR0	I ² C bus status register ch.0	R	00000000в
0063н	IDDR0	I ² C data register ch.0	R/W	00000000в
0064н	IAAR0	I ² C address register ch.0	R/W	00000000В
0065н	ICCR0	I ² C clock control register ch.0	R/W	00000000В
0066н to 006Вн	_	(Disabled)	_	_
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000В
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000В
006Ен	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	00000000в
006Fн	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	00000000в
0070н	WCSR	Watch counter status register	R/W	00000000в
0071н	_	(Disabled)	_	_
0072н	FSR*	Flash memory status register	R/W	000Х0000в
0073н	_	(Disabled)		
0074н	_	(Disabled)	_	
0075н	_	(Disabled)		
0076н	WREN	Wild register address compare enable register	R/W	0000000В
0077н	WROR	Wild register data test setting register	R/W	0000000В
0078н	_	Register bank pointer (RP) , Mirror of direct bank pointer (DP)	_	_
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111в

Address	Register abbreviation	Register name	R/W	Initial value
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111В
007Ен	ILR5	Interrupt level setting register 5	R/W	11111111в
007Fн	_	(Disabled)		_
0F80н	WRARH0	Wild register address setting register (upper byte) ch.0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (lower byte) ch.0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch.0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (upper byte) ch.1	R/W	0000000В
0F84н	WRARL1	Wild register address setting register (lower byte) ch.1	R/W	00000000в
0F85н	WRDR1	Wild register data setting register ch.1	R/W	0000000В
0F86н	WRARH2	Wild register address setting register (upper byte) ch.2	R/W	0000000В
0F87н	WRARL2	Wild register address setting register (lower byte) ch.2	R/W	0000000В
0F88н	WRDR2	Wild register data setting register ch.2	R/W	0000000В
0F89н to 0F91н	_	(Disabled)	_	_
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch.0		0000000В
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch.0	R/W	00000000в
0F94н	T01DR	8/16-bit compound timer 01 data register ch.0	R/W	00000000в
0F95н	T00DR	8/16-bit compound timer 00 data register ch.0	R/W	0000000В
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch.0	R/W	0000000В
0F97н	T11CR0	8/16-bit compound timer 11 control status register 0 ch.1	R/W	0000000В
0F98н	T10CR0	8/16-bit compound timer 10 control status register 0 ch.1	R/W	0000000В
0F99н	T11DR	8/16-bit compound timer 11 data register ch.1	R/W	0000000В
0F9Ан	T10DR	8/16-bit compound timer 10 data register ch.1	R/W	0000000в
0F9Вн	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch.1	R/W	00000000в
0F9Cн	PPS01	8/16-bit PPG1 cycle setting buffer register ch.0	R/W	11111111В
0F9Dн	PPS00	8/16-bit PPG0 cycle setting buffer register ch.0	R/W	11111111В
0F9Eн	PDS01	8/16-bit PPG1 duty setting buffer register ch.0	R/W	11111111в
0F9Fн	PDS00	8/16-bit PPG0 duty setting buffer register ch.0	R/W	11111111В
0FA0н	PPS11	8/16-bit PPG1 cycle setting buffer register ch.1	R/W	11111111В
0FA1н	PPS10	8/16-bit PPG0 cycle setting buffer register ch.1	R/W	11111111В
0FA2н	PDS11	8/16-bit PPG1 duty setting buffer register ch.1	R/W	11111111В
0FАЗн	PDS10	8/16-bit PPG0 duty setting buffer register ch.1	R/W	11111111В
0FA4н	PPGS	8/16-bit PPG start register	R/W	0000000В

Address	Register abbreviation	Register name	R/W	Initial value
0FA5н	REVC	8/16-bit PPG output inversion register	R/W	00000000В
0FA6н to 0FA9н	_	(Disabled)	_	_
0FAАн	PDCRH0	16-bit PPG down counter register (upper byte) ch.0	R	0000000В
0FAВн	PDCRL0	16-bit PPG down counter register (lower byte) ch.0	R	0000000В
0FАСн	PCSRH0	16-bit PPG cycle setting buffer register (upper byte) ch.0	R/W	11111111в
0FADн	PCSRL0	16-bit PPG cycle setting buffer register (lower byte) ch.0	R/W	11111111в
0FAEн	PDUTH0	16-bit PPG duty setting buffer register (upper byte) ch.0	R/W	11111111в
0FAFн	PDUTL0	16-bit PPG duty setting buffer register (lower byte) ch.0	R/W	11111111в
0FB0н to 0FBBн	_	(Disabled)	_	_
0FBCн	BGR1	LIN-UART baud rate generator register 1	R/W	00000000В
0FBDн	BGR0	LIN-UART baud rate generator register 0	R/W	00000000В
0FВЕн	PSSR0	UART/SIO dedicated baud rate generator prescaler selecting register ch.0	R/W	0000000В
0FBFн	BRSR0	UART/SIO dedicated baud rate generator setting register ch.0	R/W	00000000В
0FC0н to 0FC2н	_	(Disabled)	_	_
0FС3н	AIDRL	A/D input disable register (lower byte)	R/W	0000000В
0FС4н	LCDCC	LCDC control register	R/W	00010000в
0FC5н	LCDCE1	LCDC enable register 1	R/W	00110000в
0FC6н	LCDCE2	LCDC enable register 2	R/W	0000000В
0FC7н	LCDCE3	LCDC enable register 3	R/W	00000000В
0FC8н	LCDCE4	LCDC enable register 4	R/W	00000000В
0FС9н	LCDCE5	LCDC enable register 5	R/W	00000000В
0FСАн	_	(Disabled)	_	_
0FCBн	LCDCB1	LCDC blinking setting register 1	R/W	0000000В
0FCСн	LCDCB2	LCDC blinking setting register 2	R/W	0000000В
0FCDн to 0FDCн	LCDRAM	LCDC display RAM	R/W	00000000в
0FDDн to 0FE2н	_	(Disabled)		_
0FE3н	WCDR	Watch counter data register	R/W	00111111в

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FE4н to 0FEDн	_	(Disabled)	_	_
0FEEн	ILSR	Input level selecting register	R/W	0000000В
0FEFн	WICR	Interrupt pin control register	R/W	01000000в
0FF0н to 0FFFн	_	(Disabled)	_	_

• R/W access symbols

R/W : Readable/Writable

R : Read only W : Write only

• Initial value symbols

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

Note: Do not write to the "(Disabled)". Reading the "(Disabled)" returns an undefined value.

*: Only for Flash product

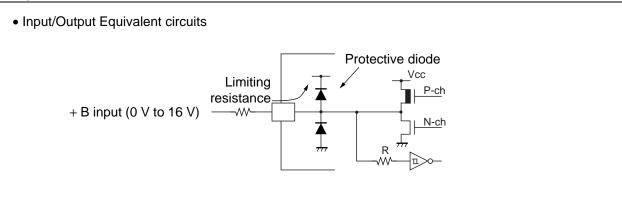
■ INTERRUPT SOURCE TABLE

	Interrupt	Vector tab	le address	Bit name of	Same level
Interrupt source	request number	Upper	Lower	interrupt level setting register	priority order (atsimultaneous occurrence)
External interrupt ch.0	IRQ0	FFFA _H	FFFB⊦	L00 [1 : 0]	High
External interrupt ch.4	IKQU	FFFAH	ГГГОН	L00 [1.0]	A
External interrupt ch.1	IRQ1	FFF8 _H	FFF9⊦	L01 [1 : 0]	1
External interrupt ch.5	IKQI	ГГГОН	ГГГЭН	L01[1.0]	
External interrupt ch.2	IRQ2	EEE6	ГГГ7.	1 02 [4 . 0]	
External interrupt ch.6	IRQZ	FFF6⊦	FFF7 _H	L02 [1 : 0]	
External interrupt ch.3	IRQ3	EEE4	EEE5	1 02 [4 · 0]	
External interrupt ch.7	IKUS	FFF4 _H	FFF5 _H	L03 [1 : 0]	
UART/SIO ch.0	IRQ4	FFF2 _H	FFF3 _H	L04 [1:0]	
8/16-bit compound timer ch.0 (Lower)	IRQ5	FFF0 _H	FFF1 _H	L05 [1:0]	
8/16-bit compound timer ch.0 (Upper)	IRQ6	FFEEH	FFEFH	L06 [1:0]	
LIN-UART (reception)	IRQ7	FFECH	FFEDH	L07 [1:0]	
LIN-UART (transmission)	IRQ8	FFEAH	FFEB⊦	L08 [1:0]	
8/16-bit PPG ch.1 (Lower)	IRQ9	FFE8 _H	FFE9 _H	L09 [1:0]	
8/16-bit PPG ch.1 (Upper)	IRQ10	FFE6 _H	FFE7 _H	L10 [1:0]	
(Unused)	IRQ11	FFE4 _H	FFE5⊦	L11 [1:0]	
8/16-bit PPG ch.0 (Upper)	IRQ12	FFE2 _H	FFE3 _H	L12 [1 : 0]	
8/16-bit PPG ch.0 (Lower)	IRQ13	FFE0 _H	FFE1 _H	L13 [1 : 0]	
8/16-bit compound timer ch.1 (Upper)	IRQ14	FFDEH	FFDF _H	L14 [1 : 0]	
16-bit PPG ch.0	IRQ15	FFDCH	FFDD⊦	L15 [1 : 0]	
I ² C ch.0	IRQ16	FFDA _H	FFDB _H	L16 [1 : 0]	
(Unused)	IRQ17	FFD8 _H	FFD9 _H	L17 [1:0]	
8/10-bit A/D converter	IRQ18	FFD6 _H	FFD7 _H	L18 [1 : 0]	
Timebase timer	IRQ19	FFD4 _H	FFD5 _H	L19 [1 : 0]	
Watch prescaler/Watch counter	IRQ20	FFD2 _H	FFD3 _H	L20 [1 : 0]	
(Unused)	IRQ21	FFD0 _H	FFD1 _H	L21 [1 : 0]]
8/16-bit compound timer ch.1 (Lower)	IRQ22	FFCEH	FFCFH	L22 [1 : 0]	▼
Flash memory	IRQ23	FFCCH	FFCDH	L23 [1 : 0]	Low

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating			Remarks		
Farameter	Зуньон	Min Max		Unit	Remarks		
Power supply voltage*1	Vcc, AVcc	Vss - 0.3	Vss + 4.0	V	*2		
	AVR	Vss - 0.3	Vss + 4.0		*2		
Power supply voltage for LCD	V0 to V3	Vss - 0.3	Vss + 4.0	V	*3		
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	P23, P24*4		
input voitage	VI	Vss - 0.3	Vss + 4.0	V	Other than P23, P24*4		
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*4		
Maximum clamp current	CLAMP	- 2.0	+ 2.0	mA	Applicable to pins*5		
Total maximum clamp current	$\Sigma I_CLAMP $	_	20	mA	Applicable to pins*5		
"L" level maximum output current	loL	_	15	mA	Applicable to pins*5		
"L" level average current	lolav	_	4	mA	Applicable to pins*5 Average output current = operating current × operating ratio (1 pin)		
"L" level total maximum output current	ΣΙοι	_	100	mA			
"L" level total average output current	Σ lolav	_	50	mA	Total average output current = operating current × operating ratio (Total of pins)		
"H" level maximum output current	І он	_	– 15	mA	Applicable to pins*5		
"H" level average current	Іонач	_	- 4	mA	Applicable to pins*5 Average output current = operating current × operating ratio (1 pin)		
"H" level total maximum output current	Σ loн	_	- 100	mA			
"H" level total average output current	ΣΙομαν	_	- 50	mA	Total average output current = operating current × operating ratio (Total of pins)		
Power consumption	Pd	_	320	mW			
Operating temperature	TA	- 40	+ 85	°C			
Storage temperature	Tstg	- 55	+ 150	°C			


^{*1 :} The parameter is based on Vss = 0.0 V.

 $^{^*2}$: Apply equal potential to AVcc and Vcc. AVR should not exceed AVcc + 0.3 V.

(Continued)

- *3 : V0 to V3 should not exceed Vcc + 0.3 V.
- *4: V_I and Vo should not exceed V_{CC} + 0.3 V. V_I must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *5 : Applicable to pins :
 - P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - +B signal is an input signal that exceeds Vcc voltage. The + B signal should always be applied a limiting resistance placed between the + B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects other devices.
 - Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the + B input pin open.
 - Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept
 + B signal input.
 - Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Conditions		Value		Unit	Remarks
Farameter	Symbol	Conditions	Min	Тур	Max	Oilit	Remarks
			1.8*	_	3.3		At normal operating, $T_A = -10 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$
Power supply	Vcc,		2.0*	_	3.3	V	At normal operating, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$
voltage	AVcc		2.6	_	3.6		MB95FV100D-101, T _A = +5 °C to +35 °C
		_	1.5	_	3.3		Retain status of stop mode operation
Power supply voltage for LCD	V0 to V3		Vss	_	Vcc	V	The optimal value depends on liquid crystal display elements used.
A/D converter reference input voltage	AVR		1.8	_	AVcc	V	
Operating temperature	Та		- 40	_	+ 85	°C	

^{*:} The values vary with the operating frequency, machine clock or analog guarantee range.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

(Vcc = 3.3 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C}$)

	I_			,	Value		,	= 40 °C (0 + 65 °C)		
Parameter	Sym- bol	Pin name	Conditions	Min	Typ	Max	Unit	Remarks		
	VIH1	P10, P67	_	0.7 Vcc	<u>тур</u> —	Vcc + 0.3	V	When selecting CMOS input level		
	V _{IH2}	P23, P24		0.7 Vcc		Vss + 6.0	V	OWIGO III pat 10 voi		
"H" level input voltage	ViHS1	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	_	0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input		
	V _{IHS2}	P23, P24	_	0.8 Vcc	—	Vss + 5.5	V			
	Viine	RST, MOD		0.7 Vcc		Vcc + 0.3	٧	CMOS input (Flash Memory product)		
	Vінм	Vінм	VIHM	K31, WOD	_	0.8 Vcc		Vcc + 0.3	٧	Hysteresis input (Mask ROM product)
	Vıl	P10,P23, P24,P67	_	Vss - 0.3		0.3 Vcc	٧	When selecting CMOS input level		
"L" level input voltage	VILS	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	_	Vss - 0.3	_	0.2 Vcc	V	Hysteresis input		
	VILM	RST, MOD		Vss - 0.3	_	0.2 Vcc	V	Hysteresis input (Mask ROM product)		
	VILM	K31, WOD	_	Vss - 0.3		0.3 Vcc	V	CMOS input (Flash Memory product)		
"H" level output voltage	Vон	Output pins other than P23, P24	Iон = 4.0 mA	2.4	_	_	V			
"L" level output voltage	Vol	Output pins other than RST	I _{OL} = 4.0 mA	_	_	0.4	V			
Input leakage current (Hi-Z output leakage current)	lu	Ports other than P23, P24	0.0 V < Vı < Vcc	- 5	_	+ 5	μΑ	When the pull-up prohibition setting		

 $(Vcc = 3.3 \text{ V,Vss} = 0.0 \text{ V, T}_{A} = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$

_	Sym-		,	Value				$= -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C}$					
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks					
Open-drain output leakage current	ILIOD	P23, P24	0.0 V < V _I < V _{SS} + 5.5 V	_	_	5	μΑ						
Pull-up resistor	RPULL	P10 to P14, P20 to P22	Vı = 0.0 V	25	50	100	kΩ	When the pull-up permission setting					
Pull-down resistor	RMOD	MOD	Vı = Vcc	25	50	100	kΩ	Mask ROM product					
Input capacitance	Cin	Other than AVcc, AVss, AVR, Vcc, Vss	f = 1 MHz	_	5	15	pF						
			F _{CH} = 20 MHz F _{MP} = 10 MHz	_	11.0	14.0	mA	MB95F166D At other than Flash memory writing and erasing					
			Main clock mode (divided by 2)		30.0	35.0	mA	MB95F166D At Flash memory writing and erasing					
	Icc				7.3	10.0	mA	MB95166D					
	ICC	icc	ice			F _{CH} = 32 MHz F _{MP} = 16 MHz	_	17.6	22.4	mA	MB95F166D At other than Flash memory writing and erasing		
											Vcc	Main clock mode (divided by 2)	
Power supply		(External clock			11.7	16.0	mA	MB95166D					
current*	operation)		`	$F_{CH} = 20 \text{ MHz}$ $F_{MP} = 10 \text{ MHz}$ Main Sleep mode (divided by 2)		4.5	6.0	mA					
			$F_{CH} = 32 \text{ MHz}$ $F_{MP} = 16 \text{ MHz}$ Main Sleep mode (divided by 2)	_	7.2	9.6	mA						
	Iccl		F _{CL} = 32 kHz F _{MPL} = 16 kHz Sub clock mode (divided by 2)	_	25	35	μΑ						
	Iccls	F _{CL} = 32 kHz F _{MPL} = 16 kHz Sub sleep mode (divided by 2)	_	7	15	μΑ							

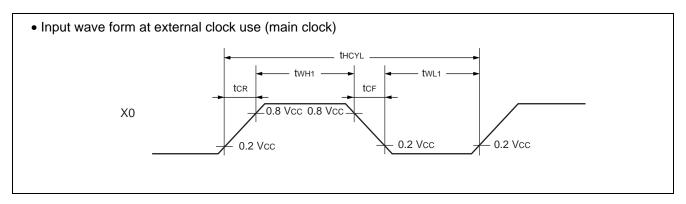
(Continued)

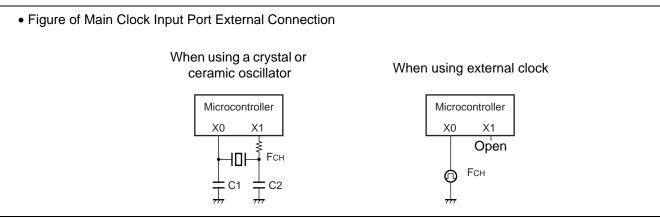
(Vcc = 3.3 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C}$)

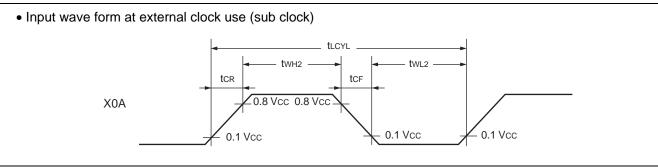
Parameter	Sym- bol		Canditions	Value				
		Pin name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	Ісст	Vcc (External clock operation)	FcL = 32 kHz Watch mode		2	10	μΑ	Flash memory product
			Main stop mode $T_A = +25 ^{\circ}C$		1	5	μА	MASK ROM product
	ICCMPLL		F _{CH} = 4 MHz F _{MP} = 10 MHz		10	14	mA	Flash memory product
			Main PLL mode (multiplied by 2.5)	_	6.7	10	mA	MASK ROM product
			F _{CH} = 6.4 MHz F _{MP} = 16 MHz	_	16.0	22.4	mA	Flash memory product
			Main PLL mode (multiplied by 2.5)	_	10.8	16.0	mA	MASK ROM product
	Iccspll		$F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 128 \text{ kHz}$ Sub PLL mode (multiplied by 4), $T_{A} = +25 \text{ °C}$		190	250	μΑ	
	Істѕ		$F_{CH} = 10 \text{ MHz}$ Timebase timer mode $T_A = +25 ^{\circ}\text{C}$		0.4	0.5	mA	
	Іссн		Sub stop mode $T_A = +25$ °C		1	5	μА	
	lΑ		F _{CH} = 16 MHz At operating of A/D conversion		1.3	2.2	mA	
	І ан	AVcc	$F_{CH} = 16 \text{ MHz}$ At stopping of A/D conversion $T_A = +25 ^{\circ}\text{C}$		1	5	μА	
LCD internal division resistance	RLCD	_	Between V3 and Vss		300		kΩ	
COM0 to COM3 output impedance	Rvcoм	COM0 to COM3	V1 to V3 = 5.0 V	_	_	5	kΩ	
SEG00 to SEG31 output impedance	Rvseg	SEG00 to SEG31	V 1 10 V 3 — 3.0 V	_		7	kΩ	
LCD leak current	ILCDL	V0 to V3, COM0 to COM3 SEG00 to SEG31	_	– 1	_	+ 1	μΑ	

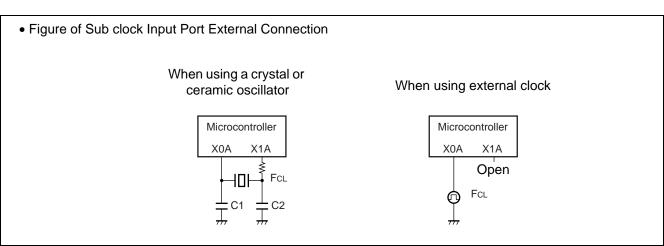
^{*: •} The power-supply current is determined by the external clock.

[•] Refer to "4. AC Characteristics (1) Clock Timing" for FcH and FcL.

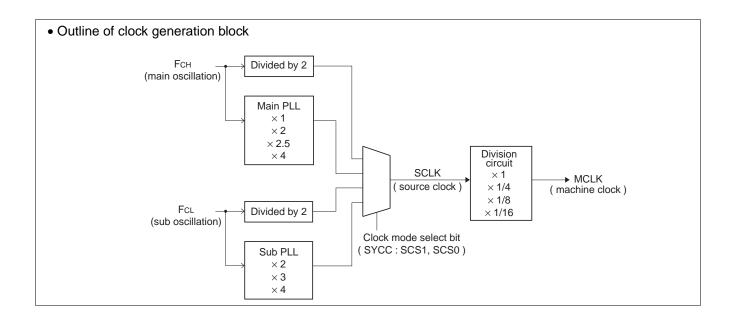

[•] Refer to "4. AC Characteristics (2) Source Clock/Machine Clock" for FMP and FMPL.

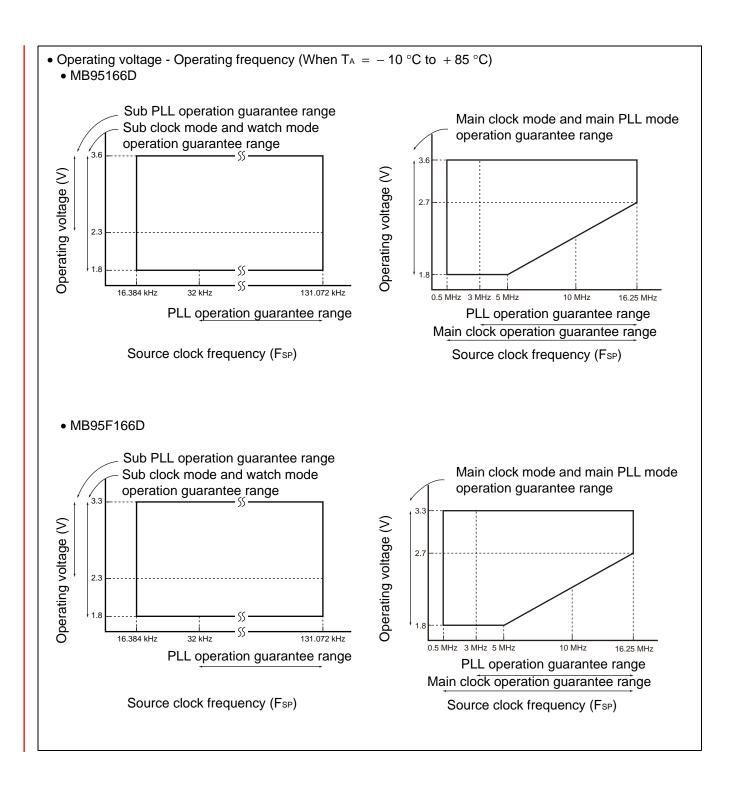

4. AC Characteristics

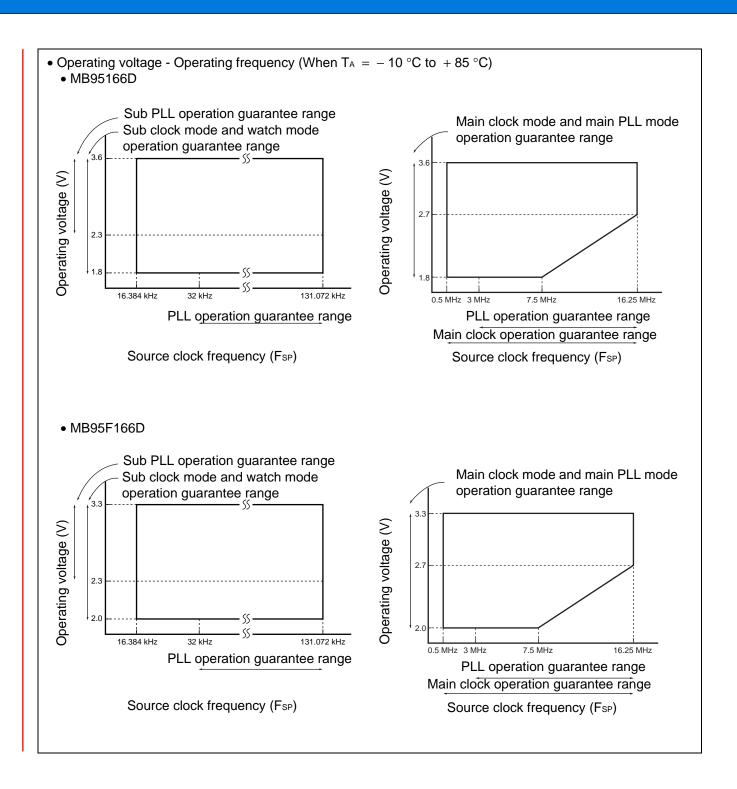

(1) Clock Timing

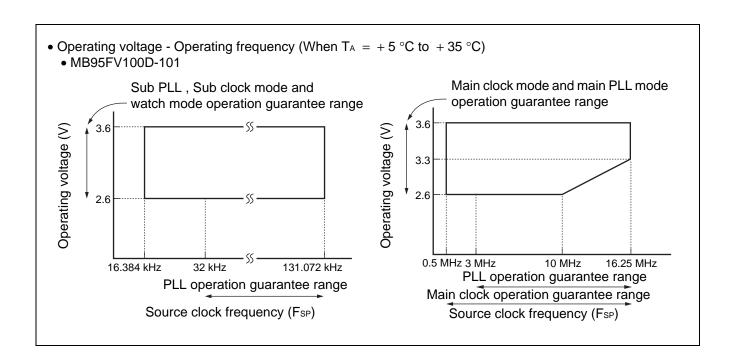

(Vcc = 3.3 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C}$)

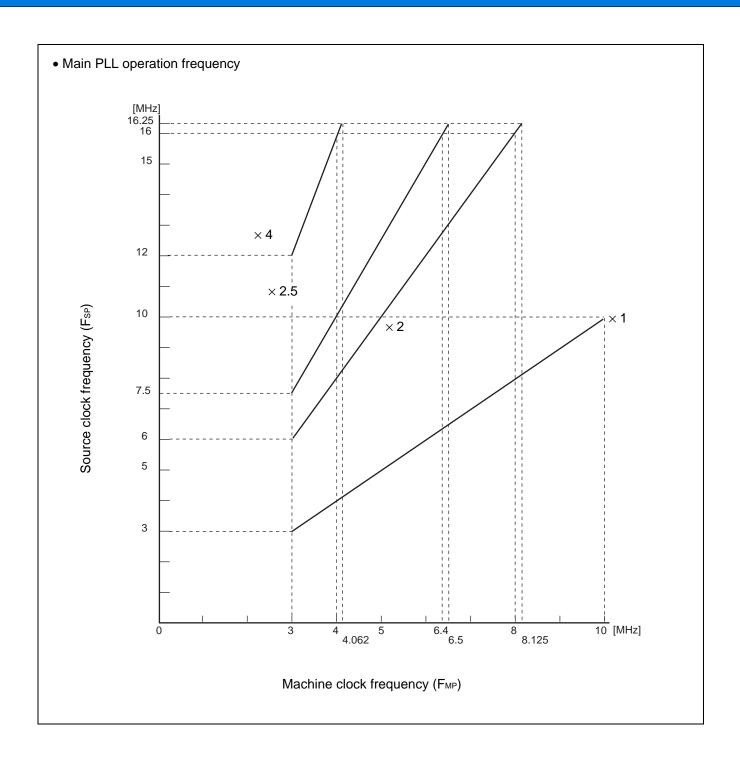
	Sym- bol	Pin name	Conditions	Value				,	
Parameter				Min	Тур	Max	Unit	Remarks	
Clock frequency	Fсн	X0, X1		1.00	_	16.25	MHz	When using main oscillation circuit	
				1.00		32.50	MHz	When using external clock	
				3.00	_	10.00	MHz	Main PLL multiplied by 1	
				3.00	_	8.13	MHz	Main PLL multiplied by 2	
				3.00	_	6.50	MHz	Main PLL multiplied by 2.5	
				3.00	_	4.06	MHz	Main PLL multiplied by 4	
	FcL	X0A, X1A			32.768		kHz	When using sub oscillation circuit	
				_	32.768	_	kHz	When using sub PLL	
Clock cycle time	thcyL	X0, X1	_	61.5	_	1000	ns	When using oscillation circuit	
				30.8	_	1000	ns	When using external clock	
	t LCYL	X0A, X1A			30.5		μs	When using sub clock, When using external clock	
Input clock pulse width	twH1	X0		61.5	_		ns	When using external clock	
	twH2	X0A			15.2		μs	Duty ratio is about 30% to 70%.	
Input clock rise time and fall time	tcr tcf	X0, X0A				5	ns	When using external clock	

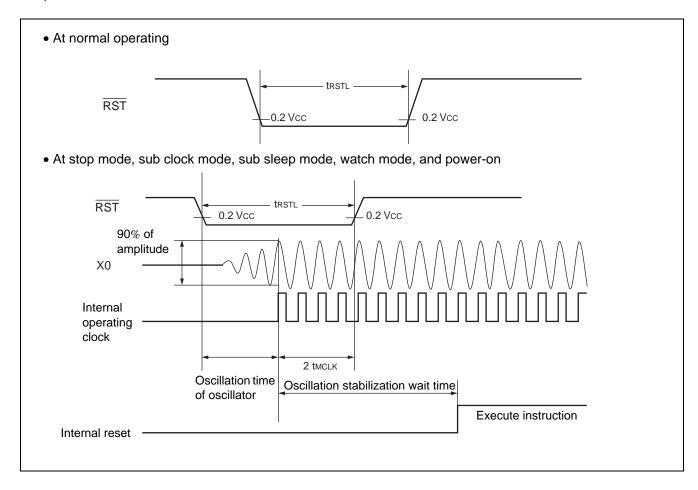

(2) Source Clock/Machine Clock


 $(Vcc = 3.3 \text{ V, Vss} = 0.0 \text{ V, T}_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C})$


Parameter	Sym-	Condi-		Value	!	Unit	Remarks
Farameter	bol	tions	Min	Тур	Max	Ollic	Kemarks
Source clock cycle time*1 (Clock before	t sclk		61.5		2000	ns	When using main clock Min: FcH = 8.125 MHz, PLL multiplied by 2 Max: FcH = 1 MHz, divided by 2
setting division)			7.6		61.0	μs	When using sub clock Min : $F_{CL} = 32$ kHz, PLL multiplied by 4 Max : $F_{CL} = 32$ kHz, divided by 2
Source clock	Fsp		0.50		16.25	MHz	When using main clock
frequency	F _{SPL}		16.384		131.072	kHz	When using sub clock
Machine clock cycle time*2 (Minimum	t MCLK		61.5	l	32000	ns	When using main clock Min : F _{SP} = 16.25 MHz, no division Max : F _{SP} = 0.5 MHz, divided by 16
instruction execution time)	UMCLK		7.6		976.5	μs	When using sub clock Min : Fspl = 131 kHz, no division Max : Fspl = 16 kHz, divided by 16
Machine clock	Fмp		0.031		16.250	MHz	When using main clock
frequency	FMPL		1.024	_	131.072	kHz	When using sub clock


^{*1:} Clock before setting division due to machine clock division ratio selection bit (SYCC: DIV1 and DIV0). This source clock is divided by the machine clock division ratio selection bit (SYCC: DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.

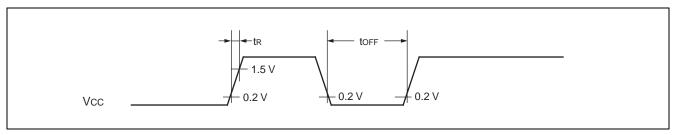

- Main clock divided by 2
- PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)
- *2: Operation clock of the microcontroller. Machine clock can be selected as follows.
 - Source clock (no division)
 - Source clock divided by 4
 - Source clock divided by 8
 - Source clock divided by 16

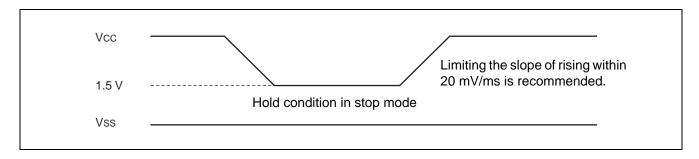

(3) External Reset

$$(Vcc = 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C})$$

Parameter	Parameter Symbol Pi		Pin Condi-	Value		Unit	Remarks		
Farameter	Syllibol	name tions		name tions Min		Max	Oilit	Kemarks	
				2 tмськ*1	_	ns	At normal operating		
RST "L" level pulse width	t rstl	RST	_	Oscillation time of oscillator*2 + 100	_	μs	At stop mode, sub clock mode, sub sleep mode, and watch mode		

^{*1 :} Refer to "(2) Source Clock/Machine Clock" for tmclk.

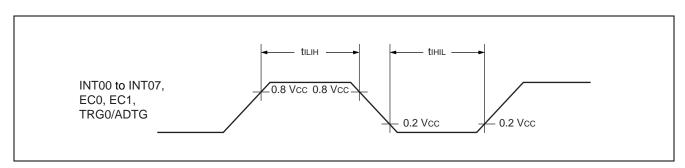

^{*2 :} Oscillation time of oscillator is the time that the amplitude reaches 90 %. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of µs and several ms. In the external clock, the oscillation time is 0 ms.


(4) Power-on Reset

(Vss = 0.0 V,
$$T_A = -40 \, ^{\circ}\text{C}$$
 to $+85 \, ^{\circ}\text{C}$)

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Max	Offic	Remarks
Power supply rising time	t R	Vcc		_	36	ms	
Power supply cutoff time	toff	V CC	_	1	_	ms	Waiting time until power-on

Note: Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 20 mV/ms as shown below.

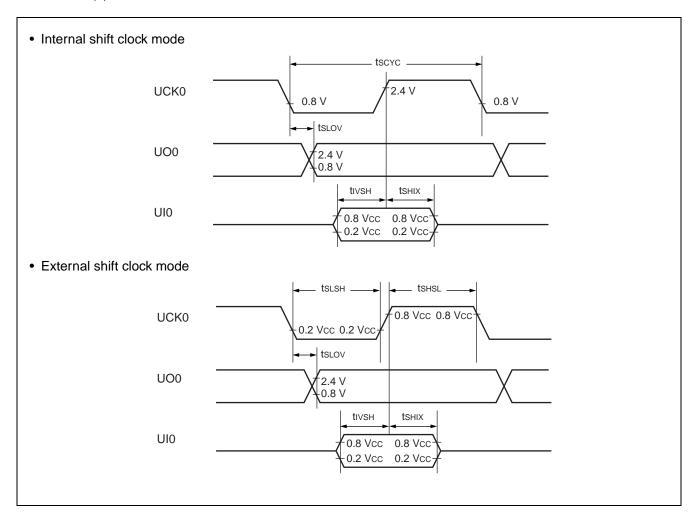


(5) Peripheral Input Timing

(Vcc = 3.3 V, Vss = 0.0 V, $T_A = -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Conditions	Val	Unit	
	Symbol	r III IIdille	Conditions	Min	Max	Oilit
Peripheral input "H" pulse width	tıшн	INT00 to INT07,		2 tmclk*	_	ns
Peripheral input "L" pulse width	tıнı∟	EC0, EC1, TRG0/ADTG	_	2 tmclk*	_	ns

^{*:} Refer to "(2) Source Clock/Machine Clock" for tmclk.



(6) UART/SIO, Serial I/O Timing

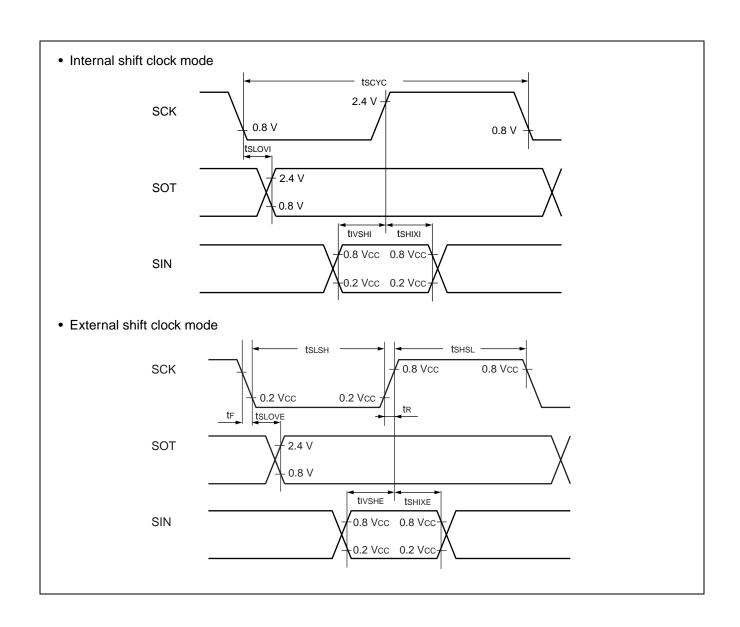
(Vcc = 3.3 V, Vss = 0.0 V, $T_A = -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Conditions	Va	Unit	
Farameter	Syllibol	riii iiaiiie	Conditions	Min	Max	Onn
Serial clock cycle time	t scyc	UCK0	Internal clock	4 t мськ*	_	ns
$UCK\ \downarrow\ \to UO\ time$	t sLov	UCK0, UO0	operation	- 190	+ 190	ns
Valid UI → UCK ↑	tıvsн	UCK0, UI0	output pin : C∟ = 80 pF + 1TTL.	2 t мськ*		ns
$UCK \uparrow \to valid \; UI \; hold \; time$	tsніх	UCK0, UI0	+ IIIL.	2 t мськ*	_	ns
Serial clock "H" pulse width	t shsl	UCK0		4 t мськ*	_	ns
Serial clock "L" pulse width	t slsh	UCK0	External clock	4 t мськ*		ns
$UCK \downarrow \to UO$ time	t sLov	UCK0, UO0	operation output pin : C∟= 80 pF		190	ns
Valid UI → UCK ↑	tıvsн	UCK0, UI0	+ 1TTL.	2 t мськ*		ns
$UCK \uparrow \to valid \; UI \; hold \; time$	t shix	UCK0, UI0		2 t мськ*		ns

^{*:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

(7) LIN-UART Timing

Sampling at the rising edge of sampling $clock^{*1}$ and prohibited serial clock delay*² (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)


(Vcc = 3.3 V, Vss = 0.0 V, $T_A = -40$ °C to +85 °C)

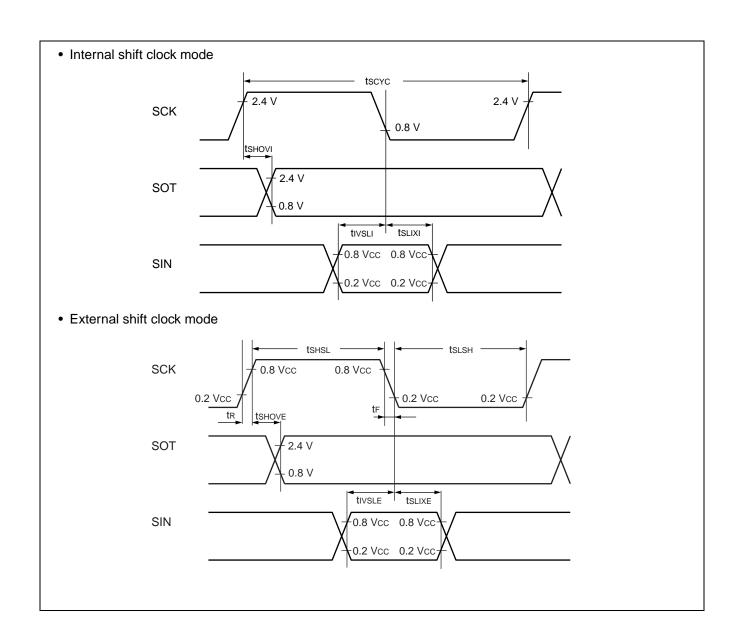
Parameter	Sym-	Pin name	Conditions	Va	lue	Unit
raiailletei	bol	riii iiaiiie	Conditions	Min	Max	Onit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK \downarrow \to SOT$ delay time	t slovi	SCK, SOT	Internal clock	-95	+ 95	ns
Valid SIN → SCK ↑	tıvsнı	SCK, SIN	operation output pin : C∟ = 80 pF + 1 TTL.	tмськ*3 + 190	_	ns
$SCK \uparrow \rightarrow valid SIN hold time$	t shixi	SCK, SIN	•	0	_	ns
Serial clock "L" pulse width	t slsh	SCK		$3 \text{ tmcLK}^{*3} - \text{tr}$	_	ns
Serial clock "H" pulse width	t shsl	SCK		t мськ*3 + 95	_	ns
$SCK \downarrow \to SOT$ delay time	tslove	SCK, SOT	External clock	_	2 tmclk*3 + 95	ns
Valid SIN → SCK ↑	tivshe	SCK, SIN	operation output pin:	190	_	ns
$SCK \! \uparrow \to valid SIN hold time$	t shixe	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ*3 + 95	_	ns
SCK fall time	t⊧	SCK		_	10	ns
SCK rise time	t R	SCK		_	10	ns

^{*1 :} Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

^{*2:} Serial clock delay function is used to delay half clock for the output signal of serial clock.

^{*3:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2 (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

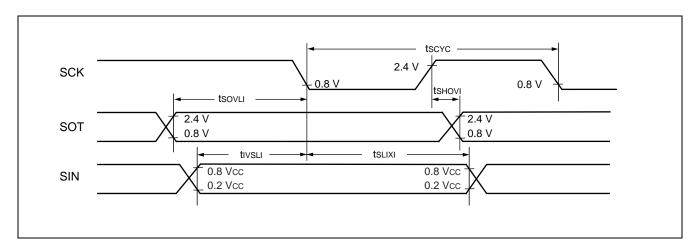

 $(Vcc = 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$

Parameter	Sym-	Pin name	Conditions	Va	lue	Unit
raiailletei	bol	Fill Hallie	Conditions	Min	Max	Offic
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK \uparrow \to SOT$ delay time	t shovi	SCK, SOT	Internal clock operation output pin :	-95	+ 95	ns
Valid SIN \rightarrow SCK $↓$	tıvslı	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ*3 + 190	_	ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	t slixi	SCK, SIN		0	_	ns
Serial clock "H" pulse width	t shsl	SCK		3 tмськ*3 — tR		ns
Serial clock "L" pulse width	t slsh	SCK		tмськ*3 + 95	_	ns
$SCK \uparrow \rightarrow SOT$ delay time	t shove	SCK, SOT	External clock	_	2 tmclk*3 + 95	ns
Valid SIN \rightarrow SCK $↓$	tivsle	SCK, SIN	operation output pin :	190	_	ns
$SCK \downarrow \to valid SIN hold time$	t SLIXE	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ*3 + 95	_	ns
SCK fall time	t F	SCK		_	10	ns
SCK rise time	t R	SCK		_	10	ns

^{*1 :} Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

^{*2:} Serial clock delay function is used to delay half clock for the output signal of serial clock.

^{*3:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

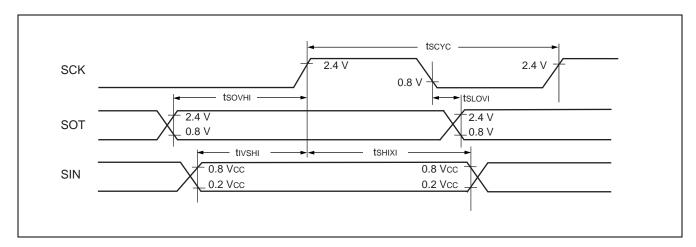


Sampling at the rising edge of sampling $clock^{*1}$ and enabled serial clock delay*² (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

 $(Vcc = 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$

Parameter	Sym-	Pin name	Conditions	Valu	Unit	
Parameter	bol	Pin name	Conditions	Min	Max	Onit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK \uparrow \to SOT$ delay time	t shovi	SCK, SOT	Internal clock	-95	+ 95	ns
Valid SIN \rightarrow SCK $↓$	tıvslı	SCK, SIN	operation output pin :	tмськ*3 + 190		ns
$SCK \downarrow \rightarrow valid SIN hold time$	t slixi	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0	_	ns
$SOT \to SCK \downarrow delay\ time$	tsovu	SCK, SOT		_	4 tmclk*3	ns

- *1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
- *2: Serial clock delay function is used to delay half clock for the output signal of serial clock.
- *3: Refer to "(2) Source Clock/Machine Clock" for tmclk.

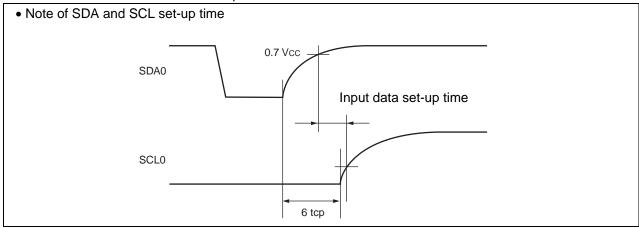


Sampling at the falling edge of sampling clock*1 and enabled serial clock delay*2 (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

 $(V_{CC} = 3.3 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40 \, ^{\circ}\text{C to } + 85 \, ^{\circ}\text{C})$

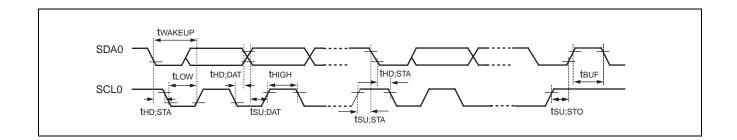
Parameter	Sym-	Pin name	Conditions	Valu	Unit	
raiailletei	bol	Fill Hallie	Conditions	Min	Max	Offic
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK \downarrow \to SOT$ delay time	tslovi	SCK, SOT	Internal clock	-95	+ 95	ns
Valid SIN → SCK ↑	tıvsнı	SCK, SIN	operation output pin :	tmclk*3 + 190	_	ns
$SCK \uparrow \to valid \; SIN \; hold \; time$	t shixi	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0	_	ns
$SOT \to SCK \uparrow delay time$	t sovнı	SCK, SOT			4 tmclk*3	ns

- *1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
- *2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
- *3: Refer to "(2) Source Clock/Machine Clock" for tmclk.



(8) I2C Timing

$$(Vcc = 3.3 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C})$$


					Va	ue		Unit
Parameter	Symbol	Pin name	Conditions	Standar	d-mode	Fast-	mode	
				Min	Max	Min	Max	
SCL clock frequency	fscL	SCL0		0	100	0	400	kHz
(Repeat) Start condition hold time SDA \downarrow \rightarrow SCL \downarrow	t hd;sta	SCL0 SDA0		4.0		0.6		μs
SCL clock "L" width	t LOW	SCL0		4.7	_	1.3	_	μs
SCL clock "H" width	t HIGH	SCL0		4.0	_	0.6		μs
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL0 SDA0	R = 1.7 kΩ,	4.7		0.6	_	μs
Data hold time SCL \downarrow \rightarrow SDA \downarrow \uparrow	t hd;dat	SCL0 SDA0	C = 50 pF*1	0	3.45*2	0	0.9*3	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t su;dat	SCL0 SDA0		0.25*4		0.1*4		μs
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t su;sто	SCL0 SDA0		4.0		0.6	_	μs
Bus free time between stop condition and start condition	t BUF	SCL0 SDA0		4.7	_	1.3		μs

- *1: R, C: Pull-up resistor and load capacitor of the SCL and SDA lines.
- *2: The maximum thd:DAT have only to be met if the device dose not stretch the "L" width (tLow) of the SCL signal.
- *3 : A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement tsu:pat ≥ 250 ns must then be met.
- *4: Refer to " Note of SDA and SCL set-up time".

Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

 $(Vcc = 3.3 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C})$

Danie 1	Sym-	Pin	Condi-	· ·	0%, AVss = Vss = 0.0 V, $0%$			
Parameter	bol	name	tions	Min	Max	Unit	Remarks	
SCL clock "L" width	tLOW	SCL0		(2 + nm / 2) t _{MCLK} - 20	_	ns	Master mode	
SCL clock "H" width	t HIGH	SCL0		(nm / 2) tmcLK - 20	(nm / 2) t _{MCLK} + 20	ns	Master mode	
Start condition hold time	thd;sta	SCL0 SDA0		(-1 + nm / 2) t _{MCLK} - 20	(-1 + nm) t _{MCLK} + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.	
Stop condition setup time	t su;sто	SCL0 SDA0			(1 + nm / 2) tmcLK - 20	(1 + nm / 2) tmcLK + 20	ns	Master mode
Start condition setup time	t su;sta	SCL0 SDA0		(1 + nm / 2) tmcLK - 20	(1 + nm / 2) tmcLk + 20	ns	Master mode	
Bus free time between stop condition and start condition	t BUF	SCL0 SDA0		(2 nm + 4) tmcLK - 20	_	ns		
Data hold time	thd;dat	SCL0 SDA0		3 tмськ — 20	_	ns	Master mode	
Data setup time	tsu;dat	SCL0 SDA0	$R = 1.7 k\Omega$, $C = 50 pF^{*1}$	(-2+nm/2) t _{MCLK} - 20	(-1 + nm / 2) tmcLk + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.	
Setup time between clearing interrupt and SCL rising	tsu;int	SCL0		(nm / 2) t _{MCLK} – 20	(1 + nm / 2) tmclk + 20	ns	Minimum value is applied to interrupt at 9th SCL↓. Maximum value is applied to interrupt at 8th SCL↓.	
SCL clock "L" width	tLOW	SCL0		4 tmclk - 20	_	ns	At reception	
SCL clock "H" width	t HIGH	SCL0		4 tmclk - 20	_	ns	At reception	
Start condition detection	t hd;sta	SCL0 SDA0		2 tmcLK - 20	_	ns	Undetected when 1 tmclk is used at reception	

(Continued)

(Continued)

$$(Vcc = 3.3 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$$

Parameter	Sym-	Pin	Condi-	Value*	2	Unit	Remarks
Farameter	bol	name	tions	Min	Max	Oilit	Remarks
Stop condition detection	t su;sто	SCL0 SDA0		2 tмськ — 20	_	ns	Undetected when 1 tmclk is used at reception
Restart condition detection condition	tsu;sta	SCL0 SDA0		2 tmcLK - 20	_	ns	Undetected when 1 tmclk is used at reception
Bus free time	t BUF	SCL0 SDA0		2 tmcLK - 20	_	ns	At reception
Data hold time	t hd;dat	SCL0 SDA0	,	2 tmcLK - 20	_	ns	At slave transmission mode
Data setup time	t su;dat	SCL0 SDA0	$C = 50 \text{ pF}^{*1}$	tLOW - 3 tMCLK - 20		ns	At slave transmission mode
Data hold time	t hd;dat	SCL0 SDA0		0		ns	At reception
Data setup time	t su;dat	SCL0 SDA0		tмсLк — 20	_	ns	At reception
SDA $\downarrow \rightarrow$ SCL \uparrow (at wakeup function)	t wakeup	SCL0 SDA0		Oscillation stabilization wait time + 2 tmclk – 20	_	ns	

^{*1:} R, C: Pull-up resistor and load capacitor of the SCL and SDA lines.

- *2: Refer to "(2) Source Clock/Machine Clock" for tmclk.
 - m is CS4 bit and CS3 bit (bit 4 and bit 3) of I²C clock control register (ICCR).
 - n is CS2 bit to CS0 bit (bit 2 to bit 0) of I²C clock control register (ICCR).
 - Actual timing of I²C is determined by m and n values set by the machine clock (tmclk) and CS4 to CS0 of ICCR0 register.
 - Standard-mode:

m and n can be set at the range : $0.9 \text{ MHz} < t_{\text{MCLK}}$ (machine clock) < 10 MHz. Setting of m and n determines the machine clock that can be used below.

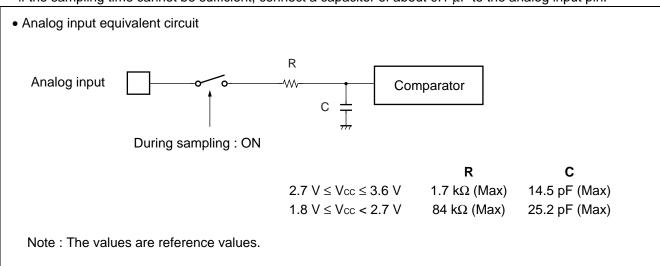
• Fast-mode :

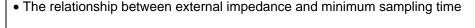
m and n can be set at the range : $3.3~MHz < t_{MCLK}$ (machine clock) < 10~MHz. Setting of m and n determines the machine clock that can be used below.

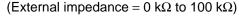
```
\begin{array}{lll} (m,\,n) \,=\, (1,\,8) & : \, 3.3 \,\, \text{MHz} < t_{\text{MCLK}} \le 4 \,\, \text{MHz} \\ (m,\,n) \,=\, (1,\,22) \,, & (5,\,4) & : \, 3.3 \,\, \text{MHz} < t_{\text{MCLK}} \le 8 \,\, \text{MHz} \\ (m,\,n) \,=\, (6,\,4) & : \, 3.3 \,\, \text{MHz} < t_{\text{MCLK}} \le 10 \,\, \text{MHz} \end{array}
```

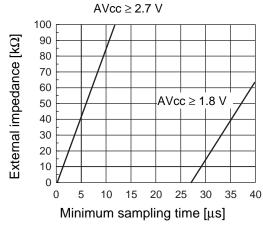
5. A/D Converter

(1) A/D Converter Electrical Characteristics

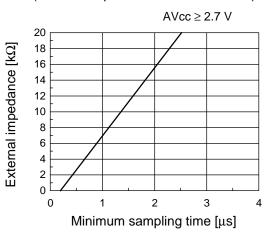

(AVcc = Vcc = 1.8 V to 3.3 V, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)


Parameter	Sym- bol	Condi- tions	Value				Downselse	
Parameter			Min	Тур	Max	Unit	Remarks	
Resolution			_	_	10	bit		
Total error	-		- 3.0		+ 3.0	LSB		
Linearity error	-		- 2.5	_	+ 2.5	LSB		
Differential linear error			- 1.9	_	+ 1.9	LSB		
Zero transition	Vот		AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	2.7 V ≤ AVcc ≤ 3.3 V	
voltage			AVss – 0.5 LSB	AVss + 1.5 LSB	AVss + 3.5 LSB	V	1.8 V ≤ AVcc < 2.7 V	
Full-scale	VFST		AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	2.7 V ≤ AVcc ≤ 3.3 V	
transition voltage			AVR – 2.5 LSB	AVR – 0.5 LSB	AVR + 1.5 LSB	>	1.8 V ≤ AVcc < 2.7 V	
Compare time	_		0.6	_	140	μs	2.7 V ≤ AVcc ≤ 3.3 V	
Compare time				20	_	140	μs	1.8 V ≤ AVcc < 2.7 V
Sampling time	_		_	0.4	_	∞	μs	$2.7 \text{ V} \le \text{AVcc} \le 3.3 \text{ V},$ At external impedance < 1.8 k Ω
Sampling time			30		∞	μs	$ \begin{array}{l} \text{1.8 V} \leq \text{AVcc} < \text{2.7 V}, \\ \text{At external} \\ \text{impedance} < \text{14.8 k} \Omega \\ \end{array} $	
Analog input current	Iain		-0.3		+0.3	μΑ		
Analog input voltage	Vain		AVss	_	AVR	V		
Reference voltage	_		AVss + 1.8	_	AVcc	٧	AVR pin	
Reference	IR		_	400	600	μΑ	AVR pin, During A/D operation	
voltage supply current	I RH		_	_	5	μΑ	AVR pin, At stop mode	


(2) Notes on Using A/D Converter


. About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.



(External impedance =
$$0 \text{ k}\Omega$$
 to $20 \text{ k}\Omega$)

• About errors

As |Vcc - Vss| becomes smaller, values of relative errors grow larger.

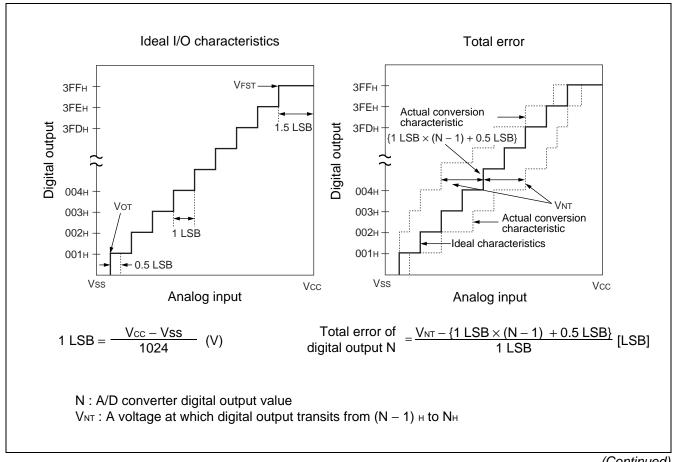
(3) Definition of A/D Converter Terms

Resolution

The analog quantity to be monitored by the A/D converter.

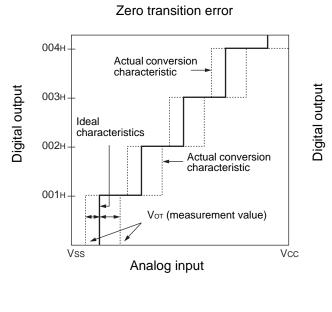
When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

• Linearity error (unit: LSB)

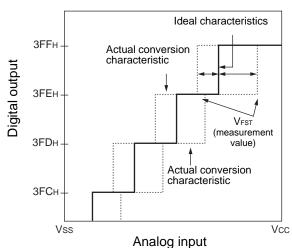

The deviation between the value along a straight line connecting the zero transition point ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") of a device and the full-scale transition point ("11 1111 1111" \leftarrow \rightarrow "11 1111 1110") compared with the actual conversion values obtained.

• Differential linear error (Unit : LSB)

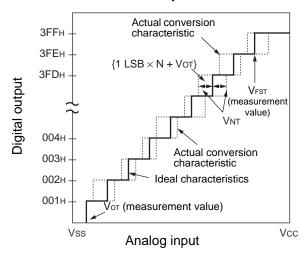
Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

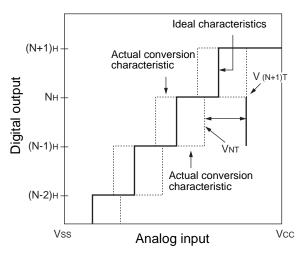

Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.



(Continued)


(Continued)


Full-scale transition error

Linearity error

Differential linear error

$$\frac{\text{Linearity error in}}{\text{digital output N}} = \frac{V_{\text{NT}} - \{1 \text{ LSB} \times \text{N} + \text{Vot}\}}{1 \text{ LSB}}$$

Differential linear error in digital output N =
$$\frac{V_{(N + 1)T} - V_{NT}}{1 \text{ LSB}}$$
 - 1

N: A/D converter digital output value

 V_{NT} : A voltage at which digital output transits from $(N-1)_H$ to N_H

Vot (Ideal value) = Vss + 0.5 LSB [V]

V_{FST} (Ideal value) = V_{CC} - 1.5 LSB [V]

6. Flash Memory Program/Erase Characteristics

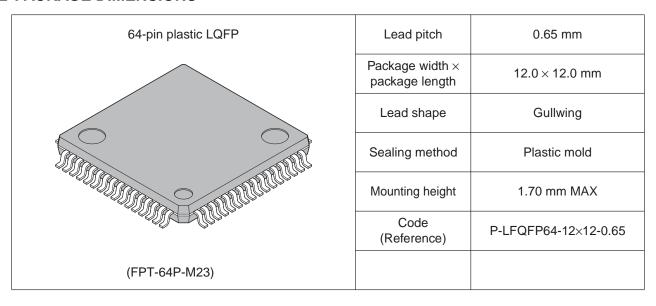
Parameter	Value			Unit	Domouko	
rarameter	Min	Тур	Max	Unit	Remarks	
Chip erase time	_	1*1	15* ²	S	Excludes 00 _H programming prior erasure.	
Byte programming time	_	32	3600*2	μs	Excludes system-level overhead.	
Erase/program cycle	10000	_	_	cycle		
Power supply voltage at erase/ program	2.7		3.3	V		
Flash memory data retention time	20*3	_	_	year	Average T _A = +85 °C	

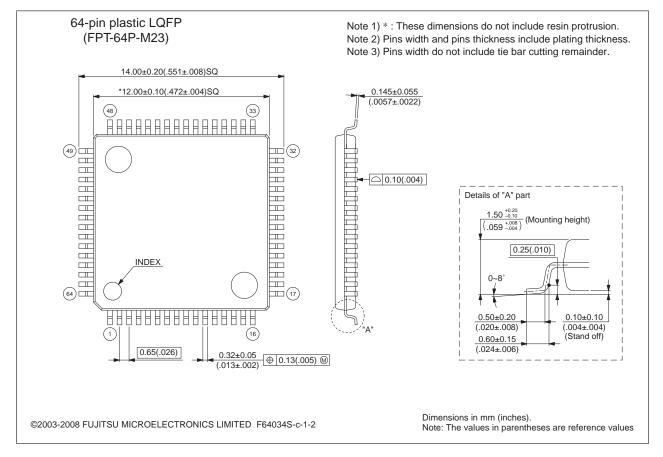
^{*1 :} $T_A = +25$ °C, $V_{CC} = 3.0$ V, 10000 cycles

^{*2 :} $T_A = +85 \, ^{\circ}C$, $V_{CC} = 2.7 \, V$, 10000 cycles

 $^{^*3}$: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 $^\circ$ C) .

■ MASK OPTION

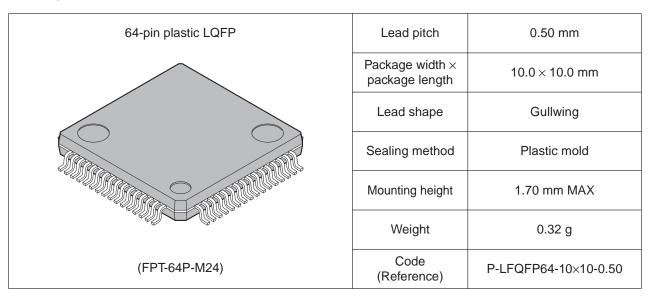

No.	Part number	MB95F166D	MB95FV100D-101	MB95166D	
	Specifying procedure	Setting disabled	Setting disabled	Specifying when ordering MASK	
1	Clock mode select Single-system clock mode Dual-system clock mode	Dual-system clock mode	Changing by the switch on MCU board	Dual-system clock mode	
2	Low voltage detection reset* • With low voltage detection reset • Without low voltage detection reset	No	No	No	
3	Clock supervisor* • With clock supervisor • Without clock supervisor	No	No	No	
4	Selection of oscillation stabilization wait time • Selectable the initial value of main clock oscillation stabilization wait time	Fixed to oscillation stabilization wait time of $(2^{14}-2)$ /FcH	Fixed to oscillation stabilization wait time of (2 ¹⁴ – 2) /F _{CH}	Selectable: 1: (2 ² - 2) / FcH 2: (2 ¹² - 2) / FcH 3: (2 ¹³ - 2) / FcH 4: (2 ¹⁴ - 2) / FcH	

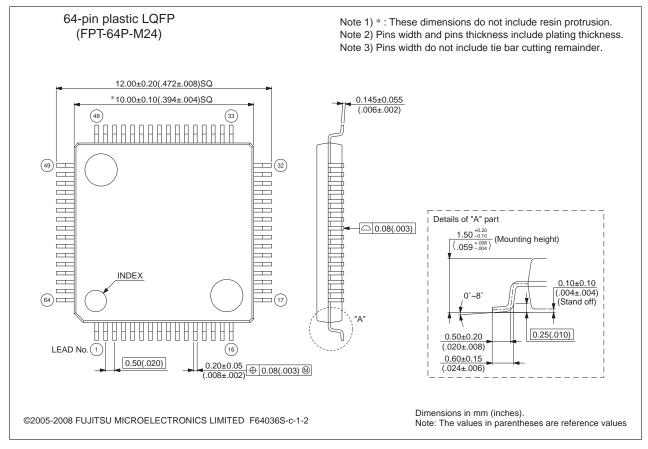

^{*:} Low voltage detection reset and clock supervisor are options of 5-V products.

■ ORDERING INFORMATION

Part number	Package		
MB95F166DPMC/MB95166DPMC	64-pin plastic LQFP (FPT-64P-M23)		
MB95F166DPMC1/MB95166DPMC1	64-pin plastic LQFP (FPT-64P-M24)		
MB2146-301A (MB95FV100D-101PBT)	MCU board (224-ball plastic PFBGA (BGA-224P-M08)		

■ PACKAGE DIMENSIONS

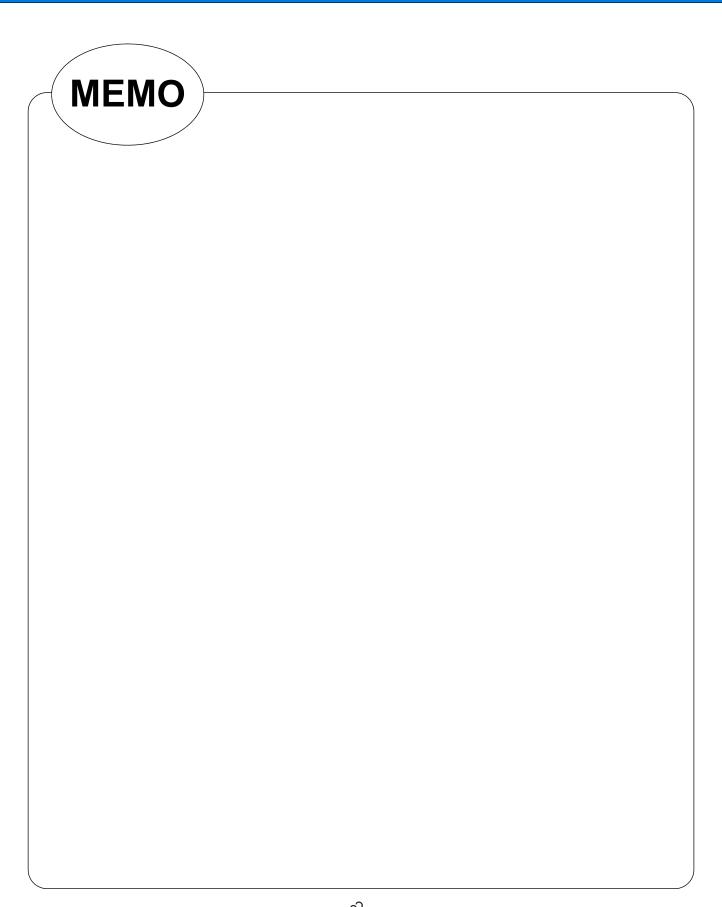




Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

(Continued)



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
	_	Added the part number; (MB95166D)
2	■ FEATURE	Changed as follows. (• Flash memory security function → • Flash memory security function (Flash memory device only))
3, 4	■ PRODUCT LINEUP	Added the row of MB95166D.
3		Changed the Reset output. (Yes \rightarrow No)
_	■ OSCILLATION STABILIZATION WAIT TIME	Changed the "■ OSCILLATION STABILIZATION WAIT TIME"
5	■ PACKAGES AND CORRESPOND- ING PRODUCTS	Added the row of MB95166D.
6	■ DIFFERENCES AMONG PROD- UCTS AND NOTES ON SELECTING PRODUCTS	 Changed the Notes on Using Evaluation Products Changed the Difference of Memory Spaces Changed the Operating voltage Added the Difference MOD pins
11	■ I/O CIRCUIT TYPE	Changed the Type B
13		Changed the Type S (• LCD power supply was deleted)
14	■ HANDLING DEVICES	Added the item of "• Serial Communication".
17	■ CPU CORE	Added the MB95166D in "• Memory Map".
23	■ I/O MAP	Changed the Address 0073н, 0074н.
28	■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	Changed the Remarks of "Power supply voltage for LCD" (Products with LCD internal division resistance* $^3 \rightarrow ^*3$)
31	3. DC Characteristics	Changed the row of Symbol VIHM and VILM.
32		Added the row of Pull-down resistor (RMOD).
32, 33		Changed the Power supply current.
38, 39	AC Characteristics (2) Source Clock/Machine Clock	 Changed the Operating voltage - Operating frequency (When T_A = −10 °C to +85 °C) (◆ Added the graph of MB95166D)
61	■ MASK OPTION	Added the row of MB95166D.
62	■ ORDERING INFORMATION	Changed the part numbers. (MB95F166DPMC → MB95F166DPMC/MB95166DPMC) (MB95F166DPMC1 → MB95F166DPMC1/MB95166DPMC1)

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3347 Fax: +81-3-5322-3387

http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

http://www.fma.fujitsu.com/

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel: +86-21-6146-3688 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong

Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department