8-bit Proprietary Microcontrollers

CMOS

F²MC-8FX MB95130H Series

MB95F136HS/F136TS/F136HW/F136TW/ MB95FV100B-103

■ DESCRIPTION

The MB95130H series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

• F2MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- · Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
 - Main clock
 - Main PLL clock
 - Subclock (for dual clock product)
 - Sub PLL clock (for dual clock product)

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL: http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

(Continued)

- Timer
 - 8/16-bit compound timer
 - 8/16-bit PPG
 - 16-bit PPG
 - Timebase timer
 - Watch prescaler (for dual clock product)
- LIN-UART
 - Full duplex double buffer
 - Clock asynchronous or clock synchronous serial data transfer capable
- UART/SIO
 - Full duplex double buffer
 - · Clock asynchronous or clock synchronous serial data transfer capable
- External interrupt
 - Interrupt by edge detection (rising, falling, or both edges can be selected)
 - Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter
 - 8-bit or 10-bit resolution can be selected.
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - Watch mode (for dual clock product)
 - Timebase timer mode
- I/O port
 - The number of maximum ports
 - Single clock product : 20 ports
 - Dual clock product : 18 ports
 - Configuration
 - General-purpose I/O ports (COMS) : Single clock product : 20 ports

Dual clock product : 18 ports

■ PRODUCT LINEUP

Part number Parameter		MB95F136HS	MB95F136	TS	MB95F136HW	MB95F136TW		
Тур	oe		Flasi	n memory product				
RC	M capacity			32 Kb	ytes			
RA	M capacity			1 Kb	yte			
Re	set output			Ye	s			
*uc	Clock system	Single	le clock Dual clock					
Option*	Low voltage detection reset	No	Yes		No	Yes		
СР	U functions	Number of basic instr Instruction bit length Instruction length Data bit length Minimum instruction of Interrupt processing t	execution time ime	: 1, 8, a : 0.1 μs				
	General-purpose I/O port	Single clock product : 20 portsDual clock product : 18 ports						
	Timebase timer	Interrupt cycle: 0.5 ms, 2.1 ms, 8.2 ms, 32.8 ms (at main oscillation clock 4 MHz)						
	Watchdog timer	Reset generated cycle At main oscillation clock 10 MHz : Min 105 ms At sub oscillation clock 32.768 kHz (for dual clock product) : Min 250 ms						
	Wild register	Capable of replacing 3 bytes of ROM data						
Peripheral functions	UART/SIO	Data transfer capable in UART/SIO Full duplex double buffer, Variable data length (5/6/7/8-bit), built-in baud rate generator Transfer rate: 2400 bps to 1250000 bps (at machine clock 10 MHz) NRZ type transfer format, error detected function LSB-first or MSB-first can be selected. Clock synchronous (SIO) or clock asynchronous (UART) serial data transfer capable						
Perip	LIN-UART	Dedicated reload timer allowing a wide range of communication speeds to be set. Full duplex double buffer. Capable of serial data transfer synchronous or asynchronous to clock signal. LIN functions available as the LIN master or LIN slave.						
	8/10-bit A/D converter (8 channels)	8-bit or 10-bit resolution can be selected.						
	8/16-bit compound timer	Each channel of the timer can be used as "8-bit timer x 2 channels" or "16-bit timer x 1 channel". Built-in timer function, PWC function, PWM function, capture function and square wave-form output Count clock: 7 internal clocks and external clock can be selected.						

(Continued)

Pa	Part number rameter	MB95F136HS	MB95F136TS	MB95F136HW	MB95F136TW			
	16-bit PPG	PWM mode or one-shot mode can be selected. Counter operating clock: Eight selectable clock sources Support for external trigger start						
functions	8/16-bit PPG	Each channel of the PPG can be used as "8-bit PPG x 2 channels" or "16-bit PPG x 1 channel". Counter operating clock: Eight selectable clock sources						
ਗ	Watch counter (for dual clock product)	Count clock: Four selectable clock sources (125 ms, 250 ms, 500 ms, or 1 s) Counter value can be set from 0 to 63. (Capable of counting for 1 minute when selecting clock source 1 second and setting counter value to 60)						
Peripher	Watch prescaler (for dual clock product)	Four selectable interval	times (125 ms, 250 n	ns, 500 ms, or 1 s)				
	External interrupt (8 channels)	Interrupt by edge detection (rising, falling, or both edges can be selected.) Can be used to recover from standby modes.						
Sta	andby mode	Sleep, stop, watch (for	dual clock product), a	nd timebase timer				

^{*:} For details of option, refer to "■ MASK OPTIONS".

Note: Part number of evaluation device in MB95130H series is MB95FV100B-103. When using it, the MCU board (MB2146-303) is required.

■ OSCILLATION STABILIZATION WAIT TIME

The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum value is shown below.

Oscillation stabilization wait time	Remarks		
(2 ¹⁴ -2) /Fcн	Approx. 4.10 ms (at main oscillation clock 4 MHz)		

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95F136HS MB95F136TS	MB95F136HW MB95F136TW
FPT-28P-M17	0	0
BGA-224P-M08	×	×

○ : Available× : Unavailable

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

Notes on using evaluation products

The Evaluation product has not only the functions of the MB95130H series but also those of other products to support software development for multiple series and models of the F²MC-8FX. The I/O addresses for peripheral resources not used by the MB95130H series are therefore access-barred. Read/write access to those access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.

Particularly, do not use word access to an odd-numbered-byte address in the prohibited areas (If such access is used, the address may be read or written unexpectedly.)

Note that the values read from barred addresses are different between the Evaluation product and the Flash memory product. Therefore, the data must not be used for software processing.

The Evaluation product does not support the functions of some bits in single-byte registers. Read/write access to these bits does not cause hardware malfunctions. The Evaluation and Flash memory products are designed to behave completely the same way in terms of hardware and software.

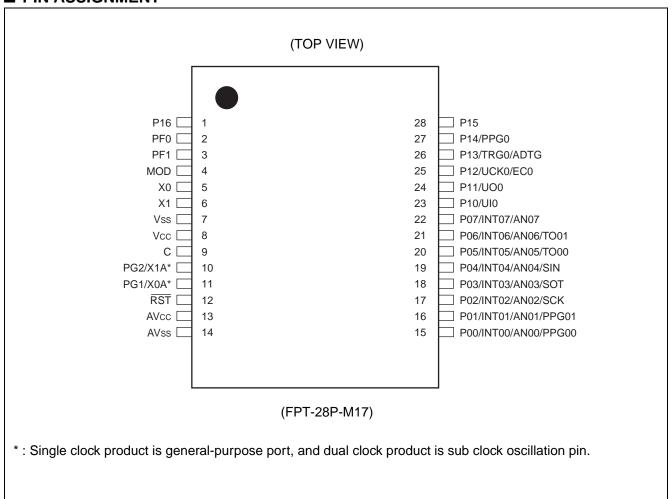
· Difference of memory spaces

If the amount of memory on the Evaluation product is different from that of the Flash memory products, carefully check the difference in the amount of memory from the model to be actually used when developing software.

For details of memory space, refer to "■ CPU CORE".

• Current consumption

For details of current consumption, refer to "■ ELECTRICAL CHARACTERISTICS".

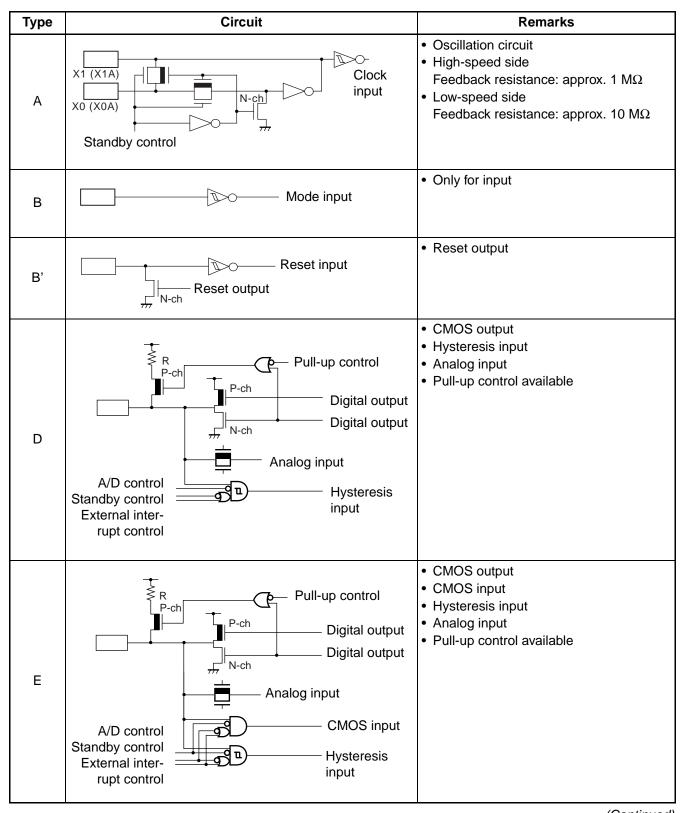

Package

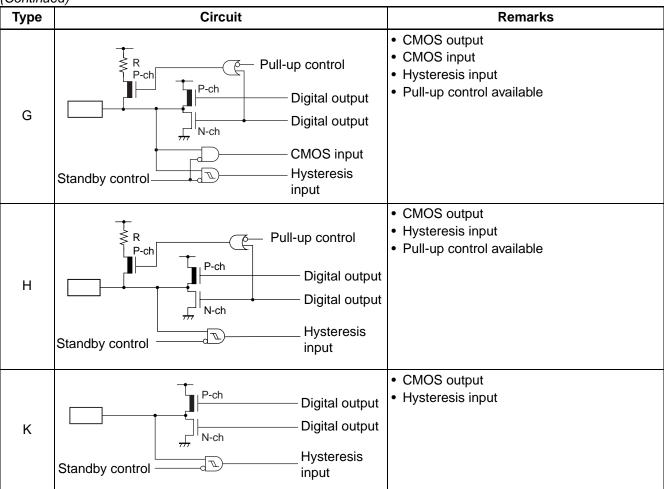
For details of information on each package, refer to "■ PACKAGE AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".

Operating voltage

The operating voltage is different among the Evaluation and Flash memory products. For details of the operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS".

■ PIN ASSIGNMENT


■ PIN DESCRIPTION


Pin no.	Pin name	I/O circuit type*	Function
1	P16	Н	General-purpose I/O port
2	PF0	IZ.	Constal number 1/0 nort for loves a verset
3	PF1	K	General-purpose I/O port for large current
4	MOD	В	Operating mode designation pin
5	X0	۸	Main clock oscillation input pin
6	X1	A	Main clock oscillation input/output pin
7	Vss	_	Power supply pin (GND)
8	Vcc	_	Power supply pin
9	С	_	Capacity connection pin
10	PG2/X1A	H/A	Single clock product is general-purpose port (PG2) . Dual clock product is sub clock input/output oscillation pin (32 kHz) .
11	PG1/X0A	П/А	Single clock product is general-purpose port (PG1) . Dual clock product is sub clock input oscillation pin (32 kHz) .
12	RST	B'	Reset pin
13	AVcc	_	A/D converter power supply pin
14	AVss	_	A/D converter power supply pin (GND)
15	P00/INT00/ AN00/PPG00		General-purpose I/O port Shared with external interrupt input (INT00), A/D converter analog input (AN00) and 8/16-bit PPG ch.0 output (PPG00).
16	P01/INT01/ AN01/PPG01	_	General-purpose I/O port Shared with external interrupt input (INT01), A/D converter analog input (AN01) and 8/16-bit PPG ch.0 output (PPG01).
17	P02/INT02/ AN02/SCK	D	General-purpose I/O port Shared with external interrupt input (INT02), A/D converter analog input (AN02) and LIN UART clock I/O (SCK).
18	P03/INT03/ AN03/SOT		General-purpose I/O port Shared with external interrupt input (INT03), A/D converter analog input (AN03) and LIN UART data output (SOT).
19	P04/INT04/ AN04/SIN	E	General-purpose I/O port Shared with external interrupt input (INT04), A/D converter analog input (AN04) and LIN UART data input (SIN).
20	P05/INT05/ AN05/TO00		General-purpose I/O port Shared with external interrupt input (INT05 & INT06), A/D converter
21	P06/INT06/ AN06/TO01	D	analog input (AN05 & AN06) and 8/16-bit compound timer ch.0 output (TO00 & TO01).
22	P07/INT07/ AN07		General-purpose I/O port Shared with external interrupt input (INT07) and A/D converter analog input (AN07).

Pin no.	Pin name	I/O circuit type*	Function
23	P10/UIO	G	General-purpose I/O port Shared with UART/SIO ch.0 data input
24	P11/UO0		General-purpose I/O port Shared with UART/SIO ch.0 data output (UO0)
25	P12/UCK0/ EC0		General-purpose I/O port Shared with UART/SIO ch.0 clock I/O (UCK0) and 8/16-bit com- pound timer ch.0 clock input (EC0)
26	P13/TRG0/ ADTG	н	General-purpose I/O port Shared with 16-bit PPG ch.0 trigger input (TRG0) and A/D trigger input (ADTG)
27	P14/PPG0		General-purpose I/O port Shared with 16-bit PPG ch.0 output (PPG0)
28	P15		General-purpose I/O port

^{* :} For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

Preventing latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when the devices are used. Latch-up may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-withstand voltage pins or if voltage higher than the rating voltage is applied between Vcc pin and Vss pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements. Also, take care to prevent the analog power supply voltage (AVcc, AVR) and analog input voltage from exceeding the digital power supply voltage (Vcc) when the analog system power supply is turned on or off.

Stable supply voltage

Supply voltage should be stabilized.

A sudden change in power supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power supply voltage.

For stabilization, in principle, keep the variation in Vcc ripple (p-p value) in a commercial frequency range (50 / 60 Hz) not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

Precautions for use of external clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from the subclock mode or stop mode.

■ PIN CONNECTION

Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k Ω .

Any unused input/output pins may be set to the output mode and left open, or set to the input mode and treated the same as unused input pins. If there is any unused output pin, make it open.

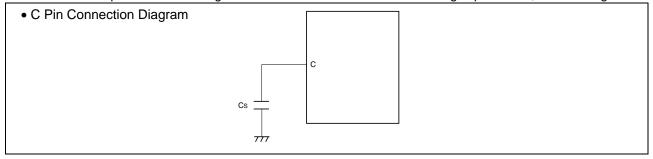
Treatment of power supply pins on A/D converter

Connect to be AVcc = Vcc and AVss = Vss even if the A/D converter is not in use.

Noise riding on the AV $_{CC}$ pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV $_{CC}$ and AV $_{SS}$ pins in the vicinity of this device.

Power Supply Pins

In products with multiple V_{CC} or V_{SS} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, all the pins must be connected to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with the V_{CC} and V_{SS} pins of this device at the low impedance.


It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between Vcc and Vss pins near this device.

Mode pin (MOD)

Connect the mode pin directly to Vcc or Vss pins.

To prevent the device unintentionally entering the test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to Vcc or Vss pins and to provide a low-impedance connection.

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of V_{CC} pin must have a capacitance value higher than C_S . For connection of smoothing capacitor C_S , see the diagram below.

Analog power supply
 Always set the same potential to AVcc and Vcc. When Vcc > AVcc, the current may flow through the AN00 to
 AN07 pins.

■ PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

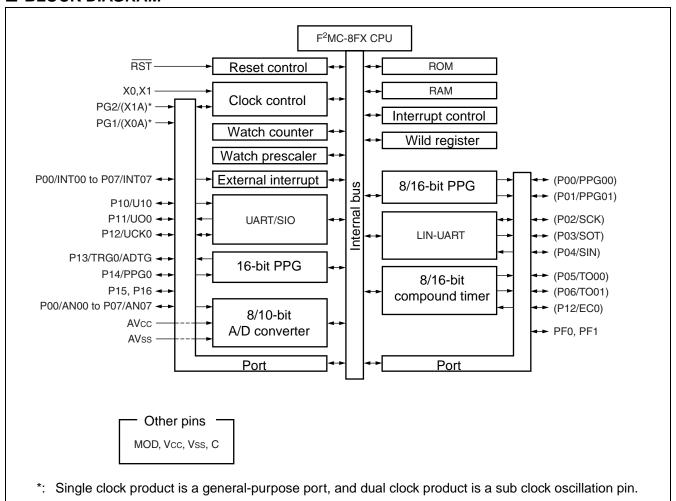
• Supported parallel programmers and adapters

The following table lists supported parallel programmers and adapters.

Package	Applicable adapter model	Parallel programmers
FPT-28P-M17	TEF110-95F136HSPF	AF9708(Ver 02.35G or greater) AF9709/B(Ver 02.35G or greater)

Note: For information about applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

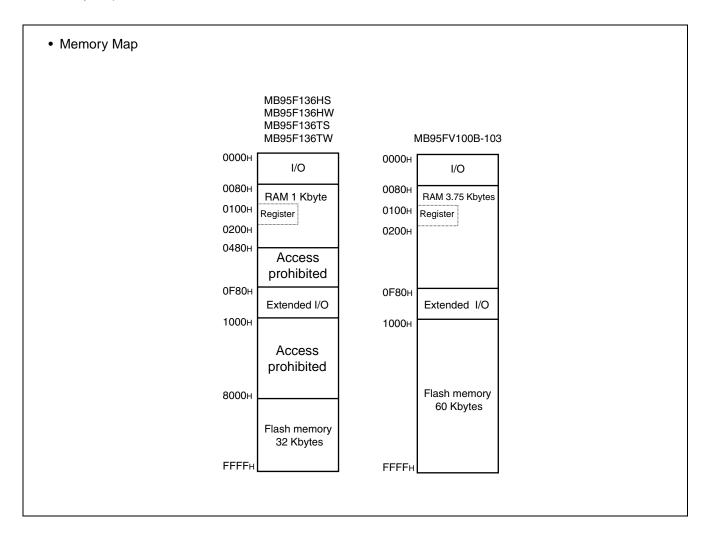
• Sector configuration


The following table shows sector-specific addresses for data access by CPU and by the parallel programmer.

FLASH memory	CPU address	Programmer address*		
32 Kbytes		18000н —		
0_ 1.10,100	<u>FFF</u> +	<u>1</u> F <u>F</u> F <u>H</u>		
*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into Flash memory. These programmer addresses are used for the parallel programmer to program or erase data in Flash memory.				

Programming method

- 1) Set the type code of the parallel programmer to "17237".
- 2) Load program data to programmer addresses 78000H to 7FFFFH.
- 3) Write data with the parallel programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

Memory space of the MB95130H series is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special-purpose areas such as the general-purpose registers and vector table. Memory map of the MB95130H series is shown below.

2. Register

The MB95130H series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as include:

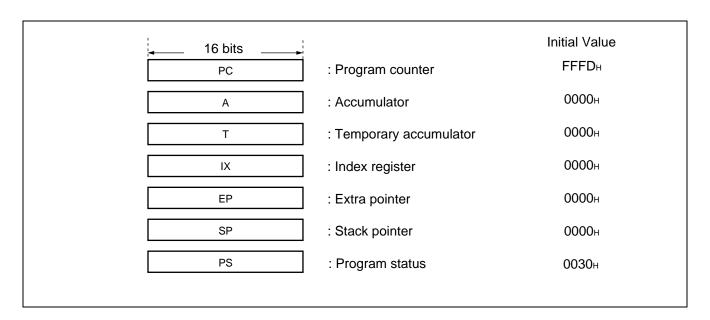
Program counter (PC) : A 16-bit register to indicate locations where instructions are stored.

Accumulator (A) : A 16-bit register for temporary storage of arithmetic operations. In the case of

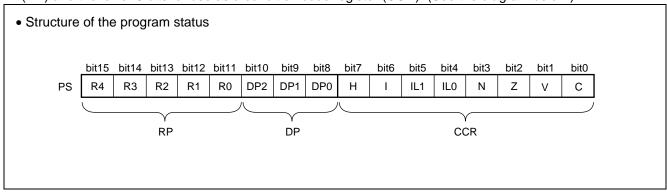
an 8-bit data processing instruction, the lower 1-byte is used.

Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator.

In the case of an 8-bit data processing instruction, the lower 1-byte is used.


Index register (IX) : A 16-bit register for index modification

Extra pointer (EP) : A 16-bit pointer to point to a memory address.


Stack pointer (SP) : A 16-bit register to indicate a stack area.

Program status (PS) : A 16-bit register for storing a register bank pointer, a direct bank pointer, and

a condition code register

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

 Rule for Conversion of Actual Addresses in the General-purpose Register Area RP upper OP code lower "0" R4 R3 R2 R1 R0 b2 b1 b0 ¥ ¥ ¥ Generated address A₁₅ A14 A13 A12 A11 A10 Α9 **A8** Α7 A6 **A**5 Α4 АЗ A2 Α1 A0

The DP specifies the area for mapping instructions (16 different types of instructions such as MOV A and dir) using direct addresses to 0080_H to 00FF_H.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area	
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)	
000 _B (initial value)	value) 0080H to 00FFH (
001в		0100н to 017Fн	
010в		0180н to 01FFн	
011в	0080н to 00FFн	0200н to 027Fн	
100в	- 0000H 10 00FFH	0280н to 02FFн	
101в		0300н to 037Fн	
110в		0380н to 03FFн	
111в		0400н to 047Fн	

The CCR consists of the bits indicating arithmetic operation results or transfer data content and the bits that control CPU operations at interrupt.

H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.

: Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0".

The flag is cleared to "0" when reset.

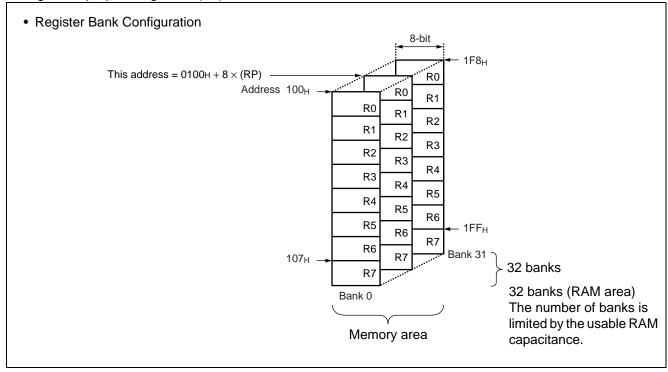
IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.

IL1	IL0	Interrupt level	Priority
0	0	0	High
0	1	1	↑
1	0	2	<u> </u>
1	1	3	Low = no interruption

N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the bit is set to "0".

Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.

I flag


V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" otherwise.

C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8-registers. Up to a total of 32 banks can be used on the MB95130H series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

■ I/O MAP

Address	dress Register abbreviation Register name		R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001н	DDR0	Port 0 direction register	R/W	0000000В
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000В
0004н		(Disabled)		_
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	0000000в
0007н	SYCC	System clock control register	R/W	1010Х011в
0008н	STBC	Standby control register	R/W	0000000В
0009н	RSRR	Reset source register	R	XXXXXXXXB
000Ан	TBTC	Timebase timer control register	R/W	000000в
000Вн	WPCR	Watch prescaler control register	R/W	0000000В
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн to 0027н	_	(Disabled)	_	_
0028н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002Ан	PDRG	Port G data register	R/W	0000000В
002Вн	DDRG	Port G direction register	R/W	0000000в
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн	PUL1	Port 1 pull-up register	R/W	0000000в
002Ен to 0034н	_	(Disabled)	_	_
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000в
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000в
0038н, 0039н	_	(Disabled)		_
003Ан	PC01	8/16-bit PPG1 control register ch.0	R/W	0000000В
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	00000000в
003Сн to 0041н	_	(Disabled)	_	_
0042н	PCNTH0	16-bit PPG control status register (Upper byte) ch.0	R/W	00000000в
0043н	PCNTL0	16-bit PPG control status register (Lower byte) ch.0	R/W	0000000В
0044н to 0047н	_	(Disabled)	_	_

Address	Register abbreviation	Register name	R/W	Initial value
0048н	EIC00	External interrupt circuit control register ch.0/ch.1	R/W	0000000в
0049н	EIC10	External interrupt circuit control register ch.2/ch.3	R/W	0000000В
004Ан	EIC20	External interrupt circuit control register ch.4/ch.5	R/W	0000000В
004Вн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	0000000в
004Сн to 004Fн	_	(Disabled)	_	_
0050н	SCR	LIN-UART serial control register	R/W	0000000В
0051н	SMR	LIN-UART serial mode register	R/W	0000000В
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	0000000В
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XXB
0056н	SMC10	UART/SIO serial mode control register 1 ch.0	R/W	0000000в
0057н	SMC20	UART/SIO serial mode control register 2 ch.0	R/W	00100000в
0058н	SSR0	UART/SIO serial status register ch.0	R/W	0000001в
0059н	TDR0	UART/SIO serial output data register ch.0	R/W	0000000в
005Ан	RDR0	UART/SIO serial input data register ch.0	R	0000000в
005Вн to 006Вн	_	(Disabled)	_	_
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в
006Ен	ADDH	8/10-bit A/D converter data register (Upper byte)	R/W	0000000в
006Fн	ADDL	8/10-bit A/D converter data register (Lower byte)	R/W	0000000в
0070н	WCSR	Watch counter status register	R/W	0000000в
0071н	_	(Disabled)	_	_
0072н	FSR	FLASH memory status register	R/W	000Х0000в
0073н	SWRE0	FLASH memory sector writing control register 0	R/W	0000000В
0074н	SWRE1	FLASH memory sector writing control register 1	R/W	0000000В
0075н	_	(Disabled)	_	_
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078н	_	(Register bank pointer (RP) Mirror of direct bank pointer (DP)	_	_

Address	Register abbreviation	Register name	R/W	Initial value
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	111111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111в
007Dн	ILR4	Interrupt level setting register 4	R/W	111111111в
007Ен	ILR5	Interrupt level setting register 5	R/W	111111111в
007Fн	_	(Disabled)		
0F80н	WRARH0	Wild register address setting register (Upper byte) ch.0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (Lower byte) ch.0	R/W	0000000в
0F82н	WRDR0	Wild register data setting register ch.0	R/W	0000000В
0F83н	WRARH1	Wild register address setting register (Upper byte) ch.1	R/W	0000000в
0F84н	WRARL1	Wild register address setting register (Lower byte) ch.1	R/W	0000000В
0F85н	WRDR1	Wild register data setting register ch.1	R/W	0000000в
0F86н	WRARH2	Wild register address setting register (Upper byte) ch.2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (Lower byte) ch.2	R/W	0000000
0F88н	WRDR2	Wild register data setting register ch.2		00000000в
0F89н to				
0F91н	_	(Disabled)		_
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch.0	R/W	00000000
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch.0	R/W	00000000В
0F94н	T01DR	8/16-bit compound timer 01 data register ch.0	R/W	00000000в
0F95н	T00DR	8/16-bit compound timer 00 data register ch.0	R/W	00000000в
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch.0	R/W	00000000в
0F97н to 0F9Вн	_	(Disabled)	_	_
0F9Cн	PPS01	8/16-bit PPG1 cycle setting buffer register ch.0	R/W	111111111
0F9Dн	PPS00	8/16-bit PPG0 cycle setting buffer register ch.0	R/W	111111111
0F9Ен	PDS01	8/16-bit PPG1 duty setting buffer register ch.0	R/W	111111111
0F9Fн	PDS00	8/16-bit PPG0 duty setting buffer register ch.0	R/W	111111111
0FA0н to 0FA3н	_	(Disabled)		_
0FA4н	PPGS	8/16-bit PPG start register	R/W	00000000в
0FА5н	REVC	8/16-bit PPG output inversion register	R/W	00000000в
0FA6н to 0FA9н	_	(Disabled)	_	_

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FAАн	PDCRH0	16-bit PPG down counter register (Upper byte) ch.0	R	0000000В
0FAВн	PDCRL0	16-bit PPG down counter register (Lower byte) ch.0	R	0000000в
0FAСн	PCSRH0	16-bit PPG cycle setting buffer register (Upper byte) ch.0		11111111в
0FADн	PCSRL0	16-bit PPG cycle setting buffer register (Lower byte) ch.0	R/W	11111111в
0FAEн	PDUTH0	16-bit PPG duty setting buffer register (Upper byte) ch.0	R/W	11111111в
0FAFн	PDUTL0	16-bit PPG duty setting buffer register (Lower byte) ch.0	R/W	11111111в
0FB0н to 0FBВн	_	(Disabled)	_	_
0FBCн	BGR1	LIN-UART baud rate generator register 1	R/W	0000000в
0FBDн	BGR0	LIN-UART baud rate generator register 0		0000000В
0FBEн	PSSR0	SSR0 UART/SIO dedicated baud rate generator prescaler selection register ch.0		0000000в
0FBFн	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch.0		00000000в
0FC0н to 0FC2н	_	(Disabled)	_	_
0FC3н	AIDRL	A/D input disable register (Lower byte)	R/W	0000000в
0FC4н to 0FE2н	_	(Disabled)	_	_
0FE3н	WCDR	Watch counter data register	R/W	00111111в
0FE4н to 0FEDн	_	(Disabled)	_	_
0FEEн	ILSR	Input level select register	R/W	0000000в
0FEFн	WICR	Interrupt pin control register	R/W	01000000в
0FF0н to 0FFFн	_	(Disabled)	_	_

• R/W access symbols

R/W : Readable / Writable

R : Read only W : Write only

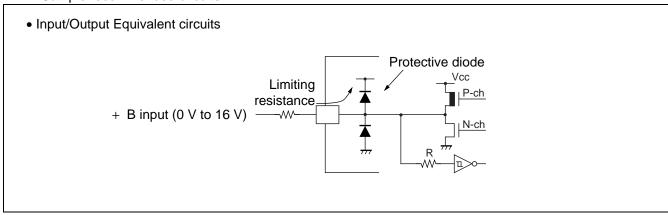
• Initial value symbols

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

Note: Do not write to the "(Disabled)". Reading the "(Disabled)" returns an undefined value.

■ INTERRUPT SOURCE TABLE


	Interrupt	Vector tab	le address	Bit name of	Same level
Interrupt source	request number	Upper	Lower	interrupt level setting register	priority order (atsimultaneous occurrence)
External interrupt ch.0	IRQ0	FFFA⊦⊦	FFFB⊦⊦	L00 [1 : 0]	High
External interrupt ch.4	IRQU	FFFAH	ГГГОН	L00 [1.0]	
External interrupt ch.1	IDO4	ГГГО	FFFO	1.04.[4 . 0]	†
External interrupt ch.5	IRQ1	FFF8 _H	FFF9 _H	L01 [1 : 0]	
External interrupt ch.2	IRQ2	FFF6⊦	FFF7 _H	1.02.[4 - 0]	
External interrupt ch.6	IRQZ	ГГГОН	ГГГ/Н	L02 [1 : 0]	
External interrupt ch.3	IRQ3	FFF4 _H	FFF5 _H	L03 [1 : 0]	
External interrupt ch.7	IRQS		ГГГЭН	LU3 [1 . U]	
UART/SIO ch.0	IRQ4	FFF2 _H	FFF3⊦	L04 [1 : 0]	
8/16-bit compound timer ch.0 (Lower)	IRQ5	FFF0⊦	FFF1н	L05 [1 : 0]	
8/16-bit compound timer ch.0 (Higher)	IRQ6	FFEEH	FFEFH	L06 [1 : 0]	
LIN-UART (reception)	IRQ7	FFECH	FFED⊦	L07 [1 : 0]	
LIN-UART (transmission)	IRQ8	FFEA _H	FFEB⊦	L08 [1 : 0]	
(Unused)	IRQ9	FFE8 _H	FFE9 _H	L09 [1 : 0]	
(Unused)	IRQ10	FFE6⊦	FFE7 _H	L10 [1 : 0]	
(Unused)	IRQ11	FFE4 _H	FFE5⊦	L11 [1 : 0]	
8/16-bit PPG ch.0 (Upper)	IRQ12	FFE2 _H	FFE3 _H	L12 [1 : 0]	
8/16-bit PPG ch.0 (Lower)	IRQ13	FFE0 _H	FFE1 _H	L13 [1 : 0]	
(Unused)	IRQ14	FFDEH	FFDF⊦	L14 [1 : 0]	
16-bit PPG ch.0	IRQ15	FFDCH	FFDD⊦	L15 [1 : 0]	
(Unused)	IRQ16	FFDA _H	FFDB⊦	L16 [1 : 0]	
(Unused)	IRQ17	FFD8 _H	FFD9⊦	L17 [1 : 0]	
8/10-bit A/D converter	IRQ18	FFD6 _H	FFD7 _H	L18 [1 : 0]	
Timebase timer	IRQ19	FFD4 _H	FFD5 _H	L19 [1 : 0]	
Watch prescaler/counter	IRQ20	FFD2 _H	FFD3 _H	L20 [1 : 0]	
(Unused)	IRQ21	FFD0 _H	FFD1 _H	L21 [1 : 0]	
(Unused)	IRQ22	FFCEH	FFCF _H	L22 [1 : 0]	▼
Flash memory	IRQ23	FFCCH	FFCD _H	L23 [1 : 0]	Low

■ ELECTRICAL CHARACTERISTICS

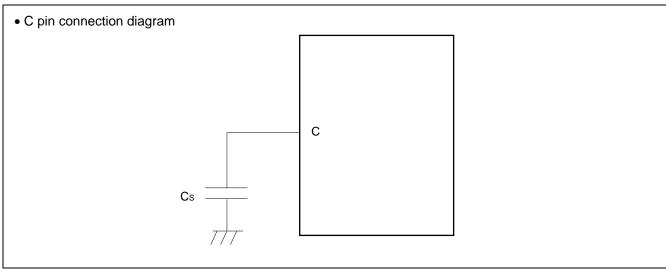
1. Absolute Maximum ratings

Doromotor	Cumbal	Rat	ting	Unit	Remarks		
Parameter	Symbol	Min	Max	Unit	Remarks		
Power supply voltage*1	Vcc AVcc	Vss - 0.3	Vss + 6.0	V	*2		
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3		
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3		
Maximum clamp current	CLAMP	- 2.0	+ 2.0	mA	Applicable to pins*4		
Total maximum clamp current	$\Sigma I_CLAMP $	_	20	mA	Applicable to pins*4		
"L" level maximum	lo _{L1}		15	m A	Other than PF0, PF1		
output current	l _{OL2}	_	15	mA	PF0, PF1		
"L" level average	lolav1		4	- mA	Other than PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
current	lolav2		12	IIIA	PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
"L" level total maximum output current	ΣΙοι	_	100	mA			
"L" level total average output current	Σ lolav	_	50	mA	Total average output current = operating current × operating ratio (Total of pins)		
"H" level maximum	І он1		– 15	m 1	Other than PF0, PF1		
output current	І он2	_	- 15	mA	PF0, PF1		
"H" level average	Iонаv1		- 4	- mA	Other than PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
current	Iонаv2	_	- 8	111/4	PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
"H" level total maximum output current	Σ loн	_	- 100	mA			
"H" level total average output current	ΣΙοнαν	_	- 50	mA	Total average output current = operating current × operating ratio (Total number of pins)		
Power consumption	Pd	_	320	mW			
Operating temperature	TA	- 40	+ 85	°C			
Storage temperature	Tstg	- 55	+ 150	°C			

- *1: The parameter is based on AVss = Vss = 0.0 V.
- *2: Apply equal potential to AVcc and Vcc. AVR should not exceed AVcc + 0.3 V.
- *3: V_I and V_O should not exceed Vcc + 0.3 V. V_I must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *4: Applicable pins: P10 to P15, PF0, PF1 (Inapplicable pins: PG1, PG2)
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - +B signal is an input signal that exceeds Vcc voltage. The + B signal should always be applied a limiting resistance placed between the + B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input
 potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects
 other devices.
 - Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the + B input pin open.
 - Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept
 +B signal input.
 - Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions


(AVss = Vss = 0.0 V)

Parameter	Sym-	Pin name	Condition		Value		Unit	Remarks	
Parameter	bol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
Power supply	Vcc,			2.5*2		5.5* ¹		At normal operation	
voltage	AVcc	_		2.3	_	5.5	V	Holds condition in stop mode	
	Vihi	P04(selectable in SIN), P10 (selectable in UI)	_	0.7 Vcc		Vcc + 0.3	٧	Hysteresis input	
"H" level input voltage	V _{IHSI}	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2	_	0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input	
	V _{ІНМ}	RST, MOD	_	0.7 Vcc		Vcc + 0.3	V	CMOS input (FLASH memory product)	
	VıL	P04(selectable in SIN), P10 (selectable in UI)	_	Vss - 0.3		0.3 Vcc	>	Hysteresis input	
"L" level input voltage	VILS	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2	_	Vss - 0.3	_	0.2 Vcc	V	Hysteresis input	
	VILM	RST, MOD	_	Vss - 0.3		0.3 Vcc	V	CMOS input (FLASH memory product)	
Smoothing capacitor	Cs		_	0.1		1.0	μF	*3	
Operating temperature	Та	_	_	- 40		+ 85	°C		

^{*1:} The value varies depending on the operating frequency.

^{*2:} The value is 2.9 V when the low-voltage detection reset is used.

^{*3:} Use ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of Vcc pin must have a capacitance value higher than Cs. For connection of smoothing capacitor Cs, see the diagram below.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Vcc = AVcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

Doromotor	Sym-	Din nome	Condition	\	/alue		Unit	Remarks	
Parameter	bol	Pin name	Condition	Min	Тур	Max	Unit	Kemarks	
"H" level output	V _{OH1}	Output pin other than PF0, PF1	lон = − 4.0 mA	Vcc - 0.5		_	V		
voltage	V _{OH2}	PF0, PF1	$I_{OH} = -8.0 \text{ mA}$	Vcc - 0.5	_		V		
"L" level output voltage	V _{OL1}	Output pin other than PF0 to PF7, RST	IoL = 4.0 mA	_		0.4	V		
	V _{OL2}	PF0, PF1	IoL = 12 mA	_	_	0.4	V		
Input leakage current (Hi-Z output leakage current)	lu	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2	0.0 V < Vı < Vcc	- 5	_	+ 5	μΑ	When the pull-up prohibition setting	
Pull-up resistor	Rpull	P00 to P07, P10 to P16, PG1, PG2	V _I = 0.0 V	25	50	100	kΩ	When the pull-up permission setting	
	Icc	Vcc = 5.5 V Fcн = 20 MHz Fмр = 10 MHz		9.5	12.5	mA	At other than Flash memory writing and erasing		
		1	Main clock mode (divided by 2)	_	30	35	mA	At Flash memory writing and erasing	
Power supply	Iccs	Vcc (External clock	Vcc = 5.5 V FcH = 20 MHz FMP = 10 MHz Main Sleep mode (divided by 2)		4.5	7.5	mA		
current*	Iccl	operation)	$Vcc = 5.5 V$ $FcL = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ $Subclock mode$ $(divided by 2),$ $T_{A} = +25 \text{ °C}$	_	45	100	μА	Dual clock product only	
	Iccls		$V_{CC} = 5.5 \text{ V}$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Sub sleep mode (divided by 2), $T_{A} = +25 \text{ °C}$	_	10	81	μΑ	Dual clock product only	

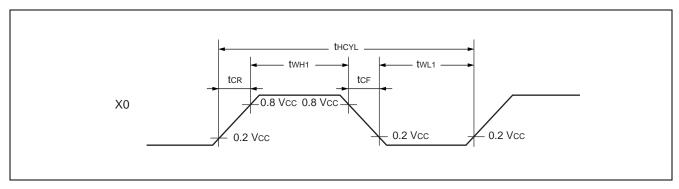
(Continued)

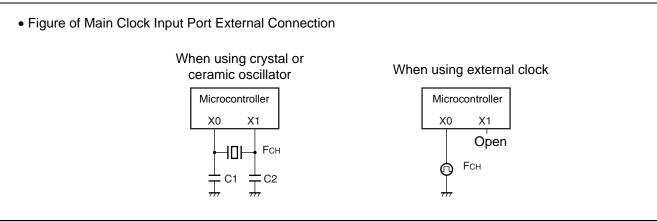
(Vcc = AVcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

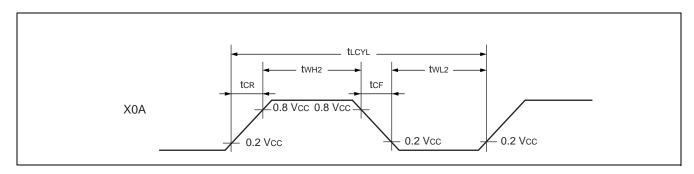
Parameter	Sym-	Pin name	Condition	Value				Remarks
Parameter	bol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	Ісст		$V_{CC} = 5.5 \text{ V}$ $F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25 \text{ °C}$		4.6	27	μА	Dual clock product only
	ICCMPLL		Vcc = 5.5 V FcH = 4 MHz FMP = 10 MHz Main PLL mode (multiplied by 2.5)	_	9.3	12.5	mA	Flash memory product
	Iccspll	Vcc (External clock operation)	$V_{CC} = 5.5 \text{ V}$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 128 \text{ kHz}$ $Sub PLL mode$ $(multiplied by 4),$ $T_{A} = +25 \text{ °C}$		160	400	μА	Dual clock product only
Power supply current*	Істѕ		$V_{CC} = 5.5 \text{ V}$ $F_{CH} = 10 \text{ MHz}$ $T_{IM} = 10 \text{ Ta}$ $T_{A} = 10 \text{ Ta}$	_	0.15	1.1	mA	
	Іссн		$V_{CC} = 5.5 \text{ V}$ Sub stop mode $T_A = +25 \text{ °C}$		5	20	μΑ	Main stop mode for single clock product
	la		Vcc = 5.5 V FcH = 10 MHz When A/D conversion is in operation		2.4	4.7	mA	
	Іан	AVcc	Vcc = 5.5 V FcH = 10 MHz When A/D conversion is stopped TA = + 25 °C	_	1	5	μΑ	
Input capacity	Cin	Other than AVcc, AVss, C, Vcc and Vss	f = 1 MHz	_	5	15	pF	

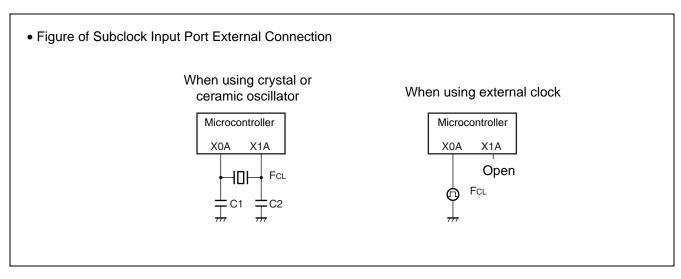
^{*: •} The power-supply current is determined by the external clock. When both low voltage detection option is selected, the power-supply current will be a value of adding current consumption of the low voltage detection circuit (ILVD) to the specified value.

[•] Refer to "4. AC Characteristics: (1) Clock Timing" for Fch and Fcl.

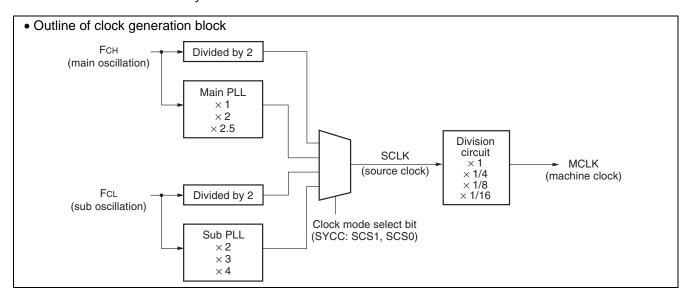

[•] Refer to "4. AC Characteristics: (2) Source Clock/Machine Clock" for FMP and FMPL.

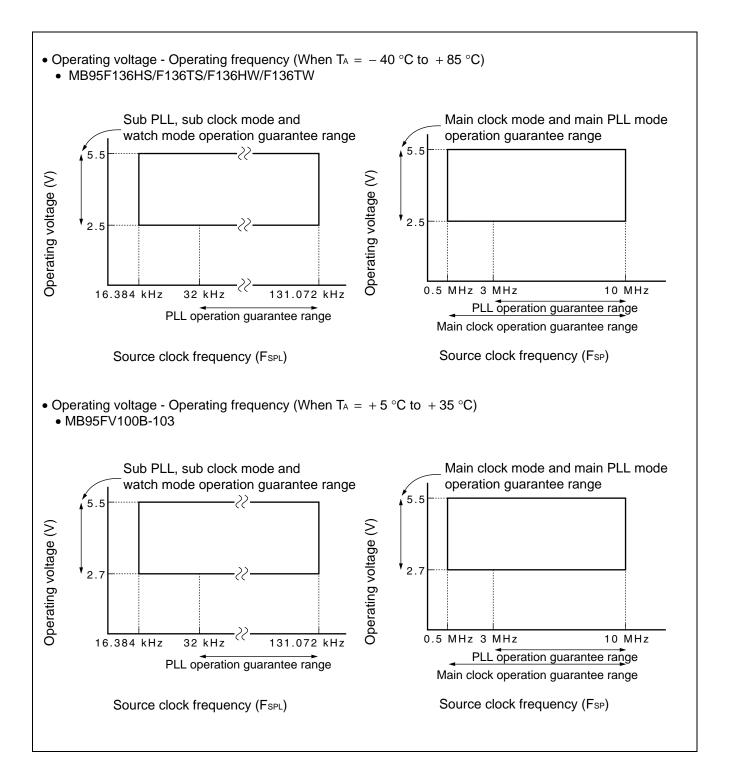

4. AC Characteristics

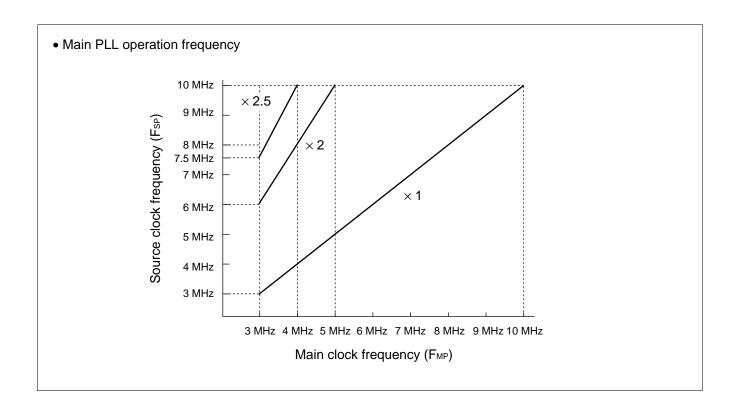

(1) Clock Timing


(Vcc = 2.5 V to 5.0 V, AVss = Vss = 0.0 V, TA = -40 °C to +85 °C)

Parameter	Sym-	Pin name	Condi-		Value		Unit	Remarks
Parameter	bol	Pili Haille	tion	Min	Тур	Max	Offic	Remarks
				1	_	10	MHz	When using main oscillation circuit
	_	V0 V4		1		20	MHz	When using external clock
	Fсн	X0, X1		3		10	MHz	Main PLL multiplied by 1
Clock frequency				3		5	MHz	Main PLL multiplied by 2
- Clock Hoquericy				3		4	MHz	Main PLL multiplied by 2.5
	FcL	X0A, X1A			32.768	_	kHz	When using sub oscillation circuit
	FCL	FCL XOA, XTA			32.768		kHz	When using sub PLL Vcc = 2.3 V to 3.6 V
	t HCYL	X0, X1	_	100	_	1000	ns	When using main oscillation circuit
Clock cycle time				50		1000	ns	When using external clock
	t LCYL	X0A, X1A			30.5		μs	When using sub oscillation circuit
Input clock pulse width	twh1	X0		10	_		ns	When using external clock
input clock pulse width	twH2	X0A			15.2		μs	duty ratio is about 30% to 70%.
Input clock rise/fall time	tcr tcf	X0, X0A				5	ns	When using external clock

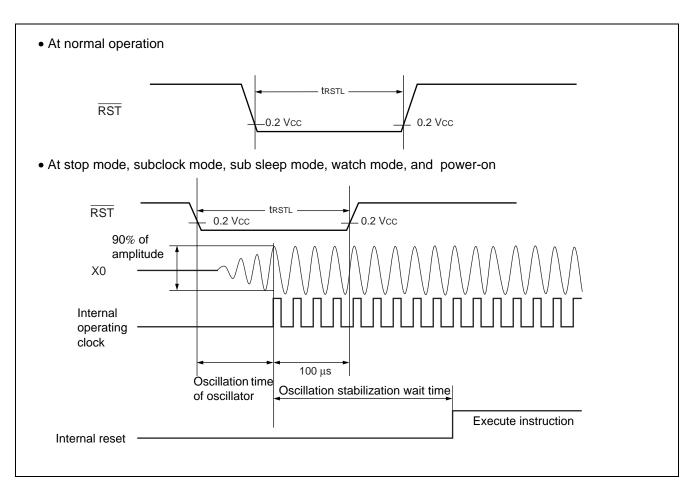



(2) Source Clock/Machine Clock


$$(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$$

Parameter	Sym-	Pin		Value		Unit	Remarks
Farameter	bol	name	Min	Тур	Max	Oilit	Remarks
Source clock cycle time*1	t sclk		100		2000	ns	When using main clock Min: FcH = 10 MHz, PLL multiplied by 1 Max: FcH = 1 MHz, divided by 2
(Clock before setting division)	ISCLK		7.6		61.0	μs	When using subclock Min : $F_{CL} = 32$ kHz, PLL multiplied by 4 Max : $F_{CL} = 32$ kHz, divided by 2
Source clock	Fsp	_	0.5	_	10.0	MHz	When using main clock
frequency	FSPL	_	16.384	_	131.072	kHz	When using subclock
Machine clock cycle time*2	tmclk		100		32000	ns	When using main clock Min: F _{SP} = 10 MHz, no division Max: F _{SP} = 0.5 MHz, divided by 16
(Minimum instruction execution time)	IMCLK	_	7.6		976.5	μs	When using subclock Min: F _{SPL} = 131 kHz, no division Max: F _{SPL} = 16 kHz, divided by 16
Machine clock	F _{MP}		0.031		10.000	MHz	When using main clock
frequency	FMPL		1.024		131.072	kHz	When using subclock

- *1: Clock before setting division due to machine clock division ratio selection bit (SYCC: DIV1 and DIV0). This source clock is divided by the machine clock division ratio selection bit (SYCC: DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.
 - Main clock divided by 2
 - PLL multiplication of main clock (select from 1, 2, 2.5 multiplication)
 - Sub clock divided by 2
 - PLL multiplication of sub clock (select from 2, 3, 4 multiplication)
- *2: Operation clock of the microcontroller. Machine clock can be selected as follows.
 - Source clock (no division)
 - Source clock divided by 4
 - Source clock divided by 8
 - Source clock divided by 16

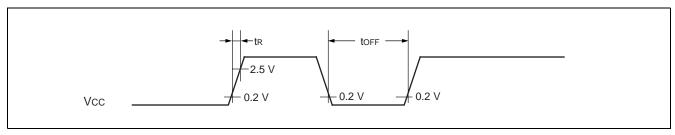


(3) External Reset

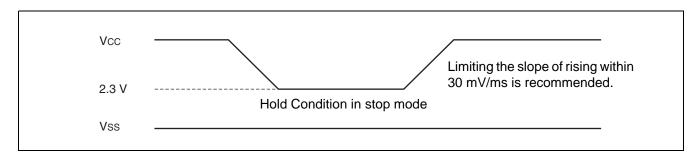
$$(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$$

Parameter	Symbol	Value		Unit	Remarks
Farameter	Syllibol	Min	Max	Oilit	Remarks
RST "L" level pulse width		2 tmcLK*1	_	ns	At normal operation
	t RSTL	Oscillation time of oscillator*2 + 100	_	μs	At stop mode, subclock mode, sub sleep mode & watch mode
		100	_	μs	At timebase timer mode

- *1 : Refer to "(2) Source Clock/Machine Clock" for tmclk.
- *2 : Oscillation start time of oscillator is the time that the amplitude reaches 90 %. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μ s and several ms. In the external clock, the oscillation time is 0 ms.



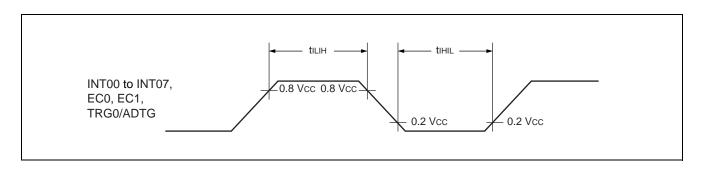
(4) Power-on Reset


$$(AVss = Vss = 0.0 \text{ V}, T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C})$$

Parameter	Symbol	Condition	Val	lue	Unit	Remarks
raiailletei	Syllibol	Condition	Min	Max	Onne	Nemarks
Power supply rising time	t R		_	50	ms	
Power supply cutoff time	toff	_	1		ms	Waiting time until power-on

Note: Complete the power-on process within the selected oscillation stabilization wait time.

Note: Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 30 mV/ms as shown below.

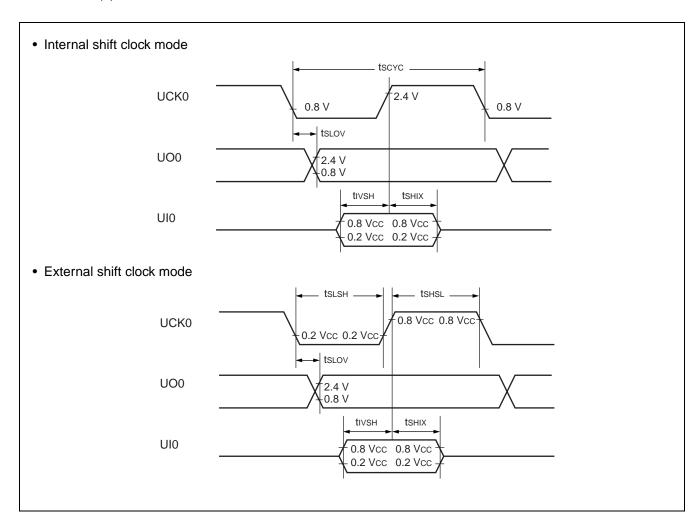


(5) Peripheral Input Timing

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

Parameter	Symbol	Pin name	Va	lue	Unit	Remarks
Farameter	Syllibol	r III IIailie	Min	Max	Oilit	Nemarks
Peripheral input "H" pulse	tılıн	INT00 to INT07,	2 t мськ*	_	ns	
Peripheral input "L" pulse	tıнıL	EC0, EC1, TRG0/ADTG	2 t мськ*		ns	

^{*:} Refer to "(2) Source Clock/Machine Clock" for tmclk.



(6) UART/SIO Serial I/O Timing

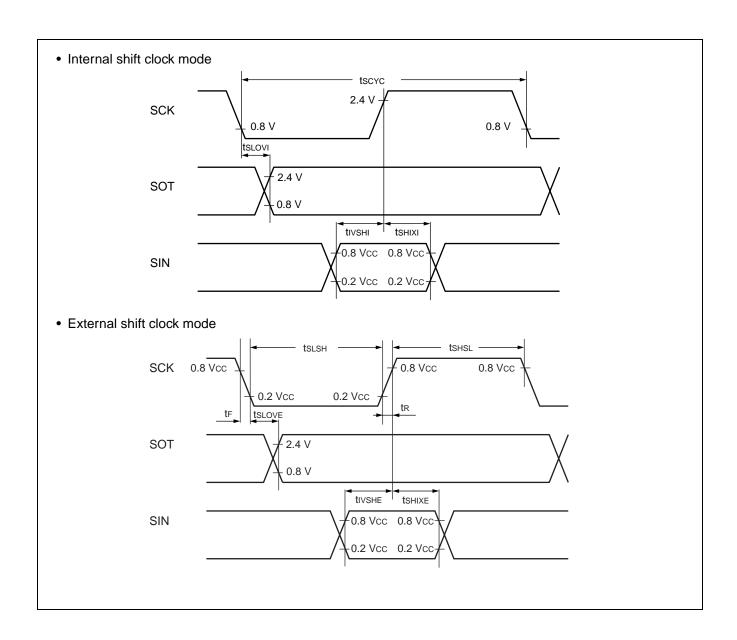
 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
raiailletei	Symbol Fin hame		Condition	Min	Max	Oilit	Remarks
Serial clock cycle time	tscyc	UCK0, SCK		4 tmclk*	_	ns	
$UCK\downarrow \to UO$ time	tsLov	UCK0, UO0	Internal clock	- 190	+190	ns	
Valid UI → UCK ↑	tıvsн	UCK0, UI0	operation output pin : $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	2 tmclk*		ns	
UCK ↑→ valid UI hold time	t sнıx	UCK0, UI0		2 tмськ*		ns	
Serial clock "H" pulse width	t shsl	UCK0, SCK		4 tmclk*		ns	
Serial clock "L" pulse width	t slsh	UCK0, SCK	External clock	4 tмськ*	_	ns	
$UCK \downarrow \to UO$ time	t sLov	UCK0, UO0	operation output pin :		190	ns	
Valid UI → UCK ↑	t ıvsh	UCK0, UI0	C _L = 80 pF + 1 TTL.	2 tmclk*	_	ns	
UCK ↑→ valid UI hold time	t sнıx	UCK0, UI0		2 tmclk*		ns	

^{*:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

(7) LIN-UART Timing

Sampling at the rising edge of sampling $clock^{*1}$ and prohibited serial clock delay*² (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)


 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Sym-	Pin name	Condition	Va	lue	Unit
Parameter	bol	Pili liallie	Condition	Min	Max	Onit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³		ns
$SCK \downarrow \to SOT$ delay time	t sLOVI	SCK, SOT	Internal clock	- 95	+95	ns
Valid SIN → SCK↑	tıvsнı	SCK, SIN	operation output pin : C _L = 80 pF + 1 TTL.	tmcLK*3 + 190		ns
SCK ↑→ valid SIN hold time	t shixi	SCK, SIN		0		ns
Serial clock "L" pulse width	t slsh	SCK		3 tмськ*3 — tr		ns
Serial clock "H" pulse width	tshsl	SCK		tмськ*3 + 95	_	ns
$SCK \downarrow \to SOT$ delay time	tslove	SCK, SOT	External clock	_	2 tмськ*3 + 95	ns
Valid SIN → SCK↑	tivshe	SCK, SIN	operation output pin:	190		ns
SCK↑→ valid SIN hold time	t shixe	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	tmclk*3 + 95		ns
SCK fall time	t⊧	SCK		_	10	ns
SCK rise time	t R	SCK			10	ns

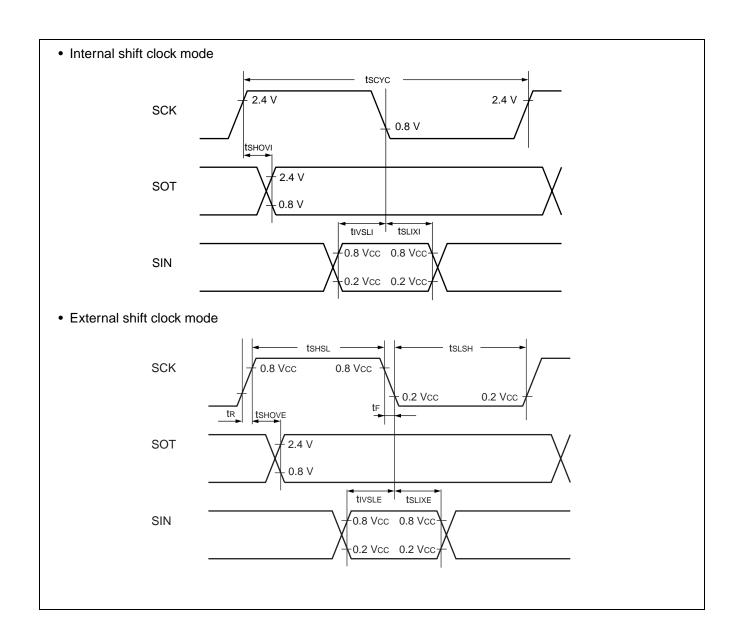
^{*1 :} Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

^{*2 :} Serial clock delay function is used to delay half clock for the output signal of serial clock.

^{*3:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2

(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

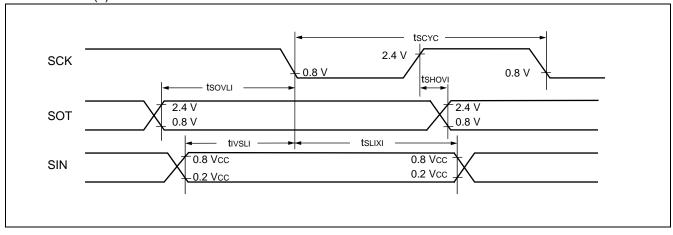

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Sym-	Pin name	Condition	Va	lue	Unit
raiailletei	bol	Fill Hallie	Condition	Min	Max	Offic
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
SCK↑→ SOT delay time	t shovi	SCK, SOT	Internal clock operation output pin :	– 95	+95	ns
Valid SIN \rightarrow SCK↓	tıvslı	SCK, SIN	C _L = 80 pF + 1 TTL.	tmcLK*3 + 190		ns
$SCK \downarrow \to valid SIN hold time$	t slixi	SCK, SIN	-	0		ns
Serial clock "H" pulse width	t shsl	SCK		$3 \text{ t}_{\text{MCLK}}^{*3} - \text{t}_{\text{R}}$	_	ns
Serial clock "L" pulse width	t slsh	SCK		tмськ*3 + 95	_	ns
SCK↑→ SOT delay time	t shove	SCK, SOT	External clock		2 tmclk*3 + 95	ns
Valid SIN \rightarrow SCK↓	tivsle	SCK, SIN	operation output pin :	190		ns
$SCK \downarrow \to valid SIN hold time$	t SLIXE	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	tmclk*3 + 95		ns
SCK fall time	t F	SCK		_	10	ns
SCK rise time	t R	SCK		_	10	ns

^{*1:} Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

^{*2:} Serial clock delay function is used to delay half clock for the output signal of serial clock.

^{*3:} Refer to " (2) Source Clock/Machine Clock" for tmclk.

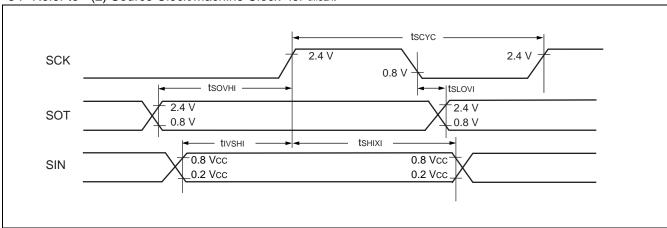


Sampling at the rising edge of sampling clock*1 and enabled serial clock delay*2 (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Sym-	Pin name	Condition	Valu	Unit	
raiailletei	bol	Fin name	Condition	Min	Max	Onn
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
SCK↑→ SOT delay time	t shovi	SCK, SOT	Internal clock	– 95	+95	ns
Valid SIN → SCK \downarrow	tıvslı	SCK, SIN	operation output pin :	tмськ*3 + 190	_	ns
$SCK \downarrow \to valid SIN hold time$	t slixi	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0		ns
$SOT \to SCK \downarrow delay time$	tsovu	SCK, SOT		_	4 tмськ*3	ns

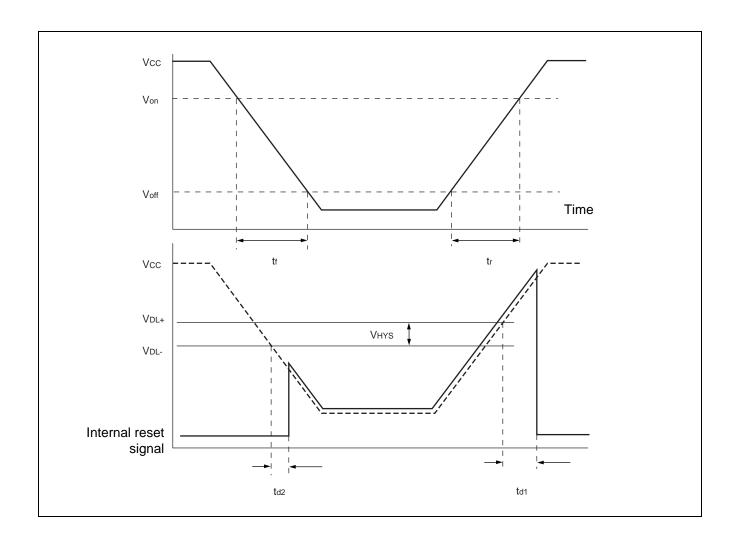
- *1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
- *2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
- *3: Refer to "(2) Source Clock/Machine Clock" for tmclk.


Sampling at the falling edge of sampling clock*1 and enabled serial clock delay*2

(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Sym-	Pin name	Condition	Valu	Unit	
Parameter	bol	riii iiaiiie	Condition	Min	Max	Onit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK \downarrow \to SOT$ delay time	t sLovi	SCK, SOT	Internal clock	– 95	+95	ns
Valid SIN → SCK↑	t ıvsнı	SCK, SIN	operating output pin:	tмськ*3 + 190	_	ns
SCK↑→ valid SIN hold time	t shixi	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0	_	ns
SOT → SCK↑ delay time	tsovні	SCK, SOT		_	4 tмськ*3	ns


- *1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
- *2: Serial clock delay function is used to delay half clock for the output signal of serial clock.
- *3: Refer to "(2) Source Clock/Machine Clock" for tmclk.

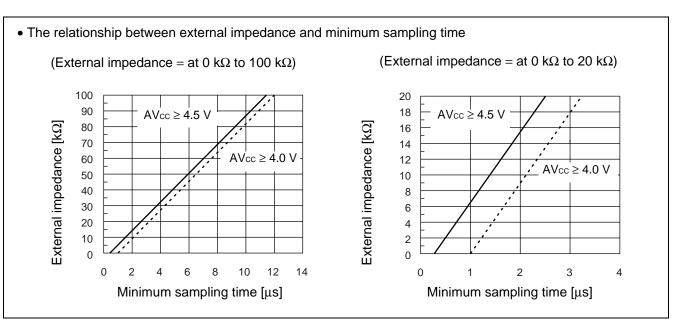
(8) Low voltage Detection

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C})$

	Sym-		Value			
Parameter	bol	Min	Тур	Max	Unit	Remarks
Release voltage	V_{DL^+}	2.55	2.70	2.85	V	At power-supply rise
Detection voltage	V _{DL} -	2.45	2.60	2.75	V	At power-supply fall
Hysteresis width	V _{HYS}	70	100		mV	
Power-supply start voltage	Voff	_	_	2.3	V	
Power-supply end voltage	Von	4.9		_	V	
Power-supply voltage		0.3	_		μs	Slope of power supply that reset re- lease signal generates
change time (at power supply rise)	tr		3000		μs	Slope of power supply that reset release signal generates within rating (V _{DL+})
Power-supply voltage		300	_	_	μs	Slope of power supply that reset detection signal generates
change time (at power supply fall)	t f	_	300	_	μs	Slope of power supply that reset detection signal generates within rating (V _{DL} -)
Reset release delay time	t d1	_		400	μs	
Reset detection delay time	t d2	_		30	μs	
Consumption current	ILVD	_	38	50	μА	Consumption current of low voltage detection circuit only

5. A/D Converter

(1) A/D Converter Electrical Characteristics


(AVcc = Vcc = 4.0 V to 5.5 V, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)

		`		•	,	
Parameter	Sym-		Value		Unit	Remarks
Parameter	bol	Min Typ M		Max	Offic	Remarks
Resolution		_	_	10	bit	
Total error		- 3.0		+ 3.0	LSB	
Linearity error	_	- 2.5		+ 2.5	LSB	
Differential linear error		- 1.9	_	+ 1.9	LSB	
Zero transition voltage	Vот	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	
Full-scale transition voltage	VFST	AVcc – 4.5 LSB	AVcc – 1.5 LSB	AVcc + 0.5 LSB	V	
Compare time		0.9	_	16500	μs	4.5 V ≤ AVcc ≤ 5.5 V
Compare time		1.8		16500	μs	4.0 V ≤ AVcc < 4.5 V
Sampling time		0.6	_	∞	μs	$4.5 \text{ V} \le \text{ AVcc} \le 5.5 \text{ V},$ At external impedance < at 5.4 k Ω
Sampling time		1.2	_	∞	μs	$4.0 \text{ V} \le \text{AVcc} \le 4.5 \text{ V},$ At external impedance < at 2.4 k Ω
Analog input current	Iain	- 0.3	_	+ 0.3	μΑ	
Analog input voltage	Vain	AVss	_	AVcc	V	

(2) Notes on Using A/D Converter

- External impedance of analog input and its sampling time
 - A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.

• Errors

As |AVcc - AVss| becomes smaller, values of relative errors grow larger.

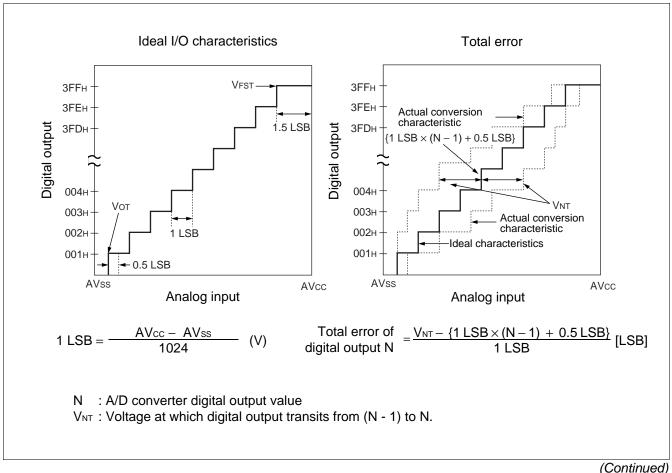
(3) Definition of A/D Converter Terms

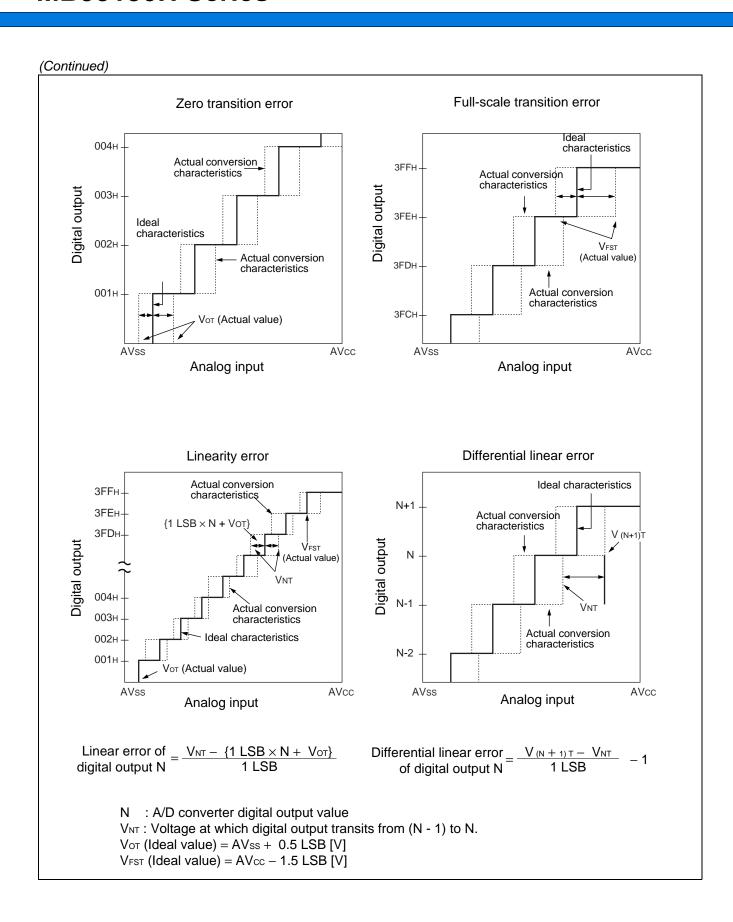
Resolution

The level of analog variation that can be distinguished by the A/D converter.

When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

• Linearity error (unit : LSB)


The deviation between the value along a straight line connecting the zero transition point ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") of a device and the full-scale transition point ("11 1111 1111" \leftarrow \rightarrow "11 1111 1110") compared with the actual conversion values obtained.


• Differential linear error (Unit : LSB)

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

• Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

6. Flash Memory Program/Erase Characteristics

Parameter	Parameter Value Unit		Remarks		
Parameter	Min	Тур	Max	Offic	Remarks
Chip erase time	_	1.0*1	15.0*2	S	Excludes 00н programming prior erasure.
Byte programming time	_	32	3600	μs	Excludes system-level overhead.
Erase/program cycle	10000	_	_	cycle	
Power supply voltage at erase/ program	4.5		5.5	V	
Flash memory data retention time	20*3	_		year	Average T _A = +85 °C

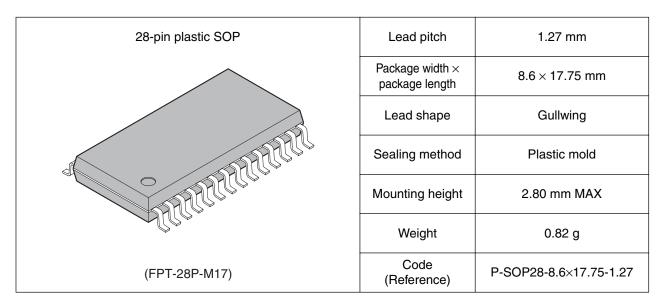
^{*1 :} $T_A = +25$ °C, $V_{CC} = 5.0$ V, 10000 cycles

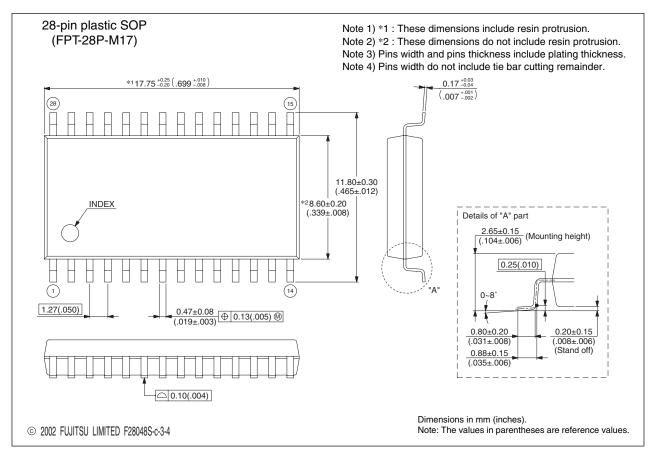
^{*2 :} $T_A = +85 \, ^{\circ}C$, $V_{CC} = 4.5 \, V$, 10000 cycles

 $^{^*3}$: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 $^{\circ}$ C).

■ MASK OPTION

No.	Part number	MB95F136HS MB95F136TS	MB95F136HW MB95F136TW	MB95FV100B-103
INO.	Specifying procedure	Specifying procedure Setting disabled		Setting disabled
1	Clock mode select Single-system clock mode Dual-system clock mode	Single-system clock mode	Dual-system clock mode	Changing by the switch on MCU board
2	 Low voltage detection reset* With low voltage detection reset Without low voltage detection reset 	Specified by part number	Specified by part number	Change by the switch on MCU board
3	Oscillation stabilization wait time	Fixed to oscillation stabilization wait time of (214-2) /FcH	Fixed to oscillation stabilization wait time of (2 ¹⁴ -2) /FcH	Fixed to oscillation stabilization wait time of (2 ¹⁴ - 2) /FcH


^{*:} Refer to table below about clock mode select, low voltage detection reset, and reset output.


Part number	Clock mode select	Low-voltage detection reset	Reset output
MB95F136HS	Single system	No	Yes
MB95F136TS	Single - system	Yes	Yes
MB95F136HW	Dual avetem	No	Yes
MB95F136TW	Dual - system	Yes	Yes
		No	Yes
	Single - system	Yes	Yes
MB95FV100B-103		Yes	No
WD93F V 100D-103		No	Yes
	Dual - system	Yes	Yes
		Yes	No

■ ORDERING INFORMATION

Part number	Package	Remarks
MB95F136HSPFV MB95F136TSPFV MB95F136HWPFV MB95F136TWPFV	28-pin plastic SOP (FPT-28P-M17)	
MB2146-303 (MB95FV100B-103PBT)	MCU board (224-pin plastic PFBGA (BGA-224P-M08)	

■ PACKAGE DIMENSION

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

Edited Business Promotion Dept.