8-bit Microcontroller

CMOS

F²MC-8FX MB95200H/210H Series

MB95F204H/F204K/F203H/F203K/F202H/F202K MB95F214H/F214K/F213H/F213K/F212H/F212K

DESCRIPTION

MB95200H/210H is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources.

Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

• F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.
- Clock
 - Selectable main clock source Main OSC clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz) External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz) Main internal CR clock (1/8/10/12.5 MHz ± 2%, maximum machine clock frequency: 12.5 MHz)
 - Selectable subclock source Sub-OSC clock (32.768 kHz) External clock (32.768 kHz) Sub-internal CR clock (typ: 100 kHz, min: 50 kHz, max: 200 kHz)

(Continued)

The information for microcontroller supports is shown in the following homepage. Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

http://edevice.fujitsu.com/micom/en-support/

- Timer
 - 8/16-bit composite timer
 - Timebase timer
 - Watch prescaler
- LIN-UART (MB95F204H/F204K/F203H/F203K/F202H/F202K)
 - Full duplex double buffer
 - Capable of clock-synchronized serial data transfer and clock-asynchronized serial data transfer
- External interrupt
 - Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
 - Can be used to wake up the device from different low-power consumption (standby) modes
- 8/10-bit A/D converter
 - 8-bit or 10-bit resolution can be selected.
- Low power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - Watch mode
 - Timebase timer mode
- I/O port (max: 17) (MB95F204K/F203K/F202K)
 - General-purpose I/O ports (max): CMOS I/O: 15, N-ch open drain: 2
- I/O port (max: 16) (MB95F204H/F203H/F202H)
 - General-purpose I/O ports (max): CMOS I/O: 15, N-ch open drain: 1
- I/O port (max: 5) (MB95F214K/F213K/F212K)
 - General-purpose I/O ports (max): CMOS I/O: 3, N-ch open drain: 2
- I/O port (max: 4) (MB95F214H/F213H/F212H)
 - General-purpose I/O ports (max):
 - CMOS I/O: 3, N-ch open drain: 1
- On-chip debug
 - 1-wire serial control
 - Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
- Built-in hardware watchdog timer
- Low-voltage detection reset circuit
 - Built-in low-voltage detector
- Clock supervisor counter
 - Built-in clock supervisor counter function
- Programmable port input voltage level
 - CMOS input level / hysteresis input level
- Flash memory security function
 - Protects the contents of flash memory

■ PRODUCT LINE-UP

MB95 F212K								
F212K								
4 KB								
240 B								
1								
elect								
: 5								
: 2								
6 ch. 2 ch.								
Clock-synchronized serial data transfer and clock-asynchronized serial data transfer is enabled. No LIN-UART The LIN function can be used as a LIN master or a LIN slave. 2 ch. 6 ch. 2 ch. 8-bit or 10-bit resolution can be selected. 2 ch. 2 ch. 1 ch. The timer can be configured as an "8-bit timer x 2 channels" or a "16-bit timer x 1 channel". It has built-in timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave. 6 ch. 2 ch. Interrupt by edge detection (rising edge, falling edge, or both edges can be selected.) It can be used to wake up the device from standby modes. 1-wire serial control It supports serial writing. (asynchronous mode)								

(Continucu)												
Part number	MB95 F204H	MB95 F203H	MB95 F202H	MB95 F204K	MB95 F203K	MB95 F202K	MB95 F214H	MB95 F213H	MB95 F212H	MB95 F214K	MB95 F213K	MB95 F212K
Parameter												
Watch prescaler	Eight di	fferent ti	me inter	vals car	be sele	ected.						
	write/era It has a Number Data re For writ	It supports automatic programming, Embedded Algorithm, write/erase/erase-suspend/resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles (min): 100000 Data retention time: 20 years For write/erase, external Vpp(+10 V) input is required. Flash Security Feature for protecting the contents of the flash										
Standby mode	Sleep n	node, sto	op mode	, watch	mode, ti	mebase	timer m	ode				
Package (Width, Length, Height, Pitch)			-	P-24 P-20						P-8 P-8		

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95 F204H	MB95 F203H	MB95 F202H	MB95 F204K	MB95 F203K	MB95 F202K	MB95 F214H	MB95 F213H	MB95 F212H	MB95 F214K	MB95 F213K	MB95 F212K
24-pin plastic SDIP	0	0	0	0	0	0	Х	Х	х	Х	Х	Х
20-pin plastic SOP	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х
8-pin plastic DIP	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0
8-pin plastic SOP	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0

O : Available

X : Unavailable

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/program. For details of current consumption, see "■ ELECTRICAL CHARACTERISTICS".

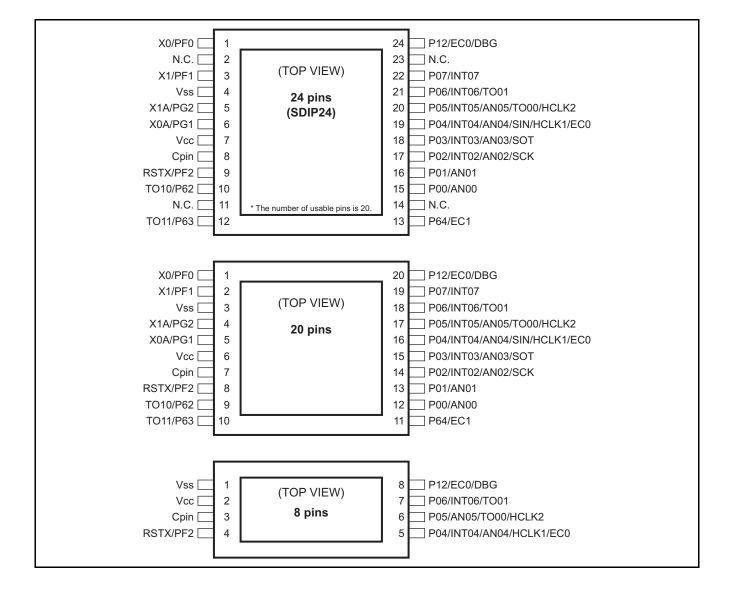
Package

For details of information on each package, see "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSION".

Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not.

For details of the operating voltage, see "■ ELECTRICAL CHARACTERISTICS".


• On-chip debug function

The on-chip debug function requires that V_{CC} , V_{SS} and 1 serial-wire be connected to an evaluation tool. In addition, if the flash memory data has to be updated, the RSTX/PF2 pin must also be connected to the same evaluation tool.

PRELIMINARY

MB95200H/210H Series

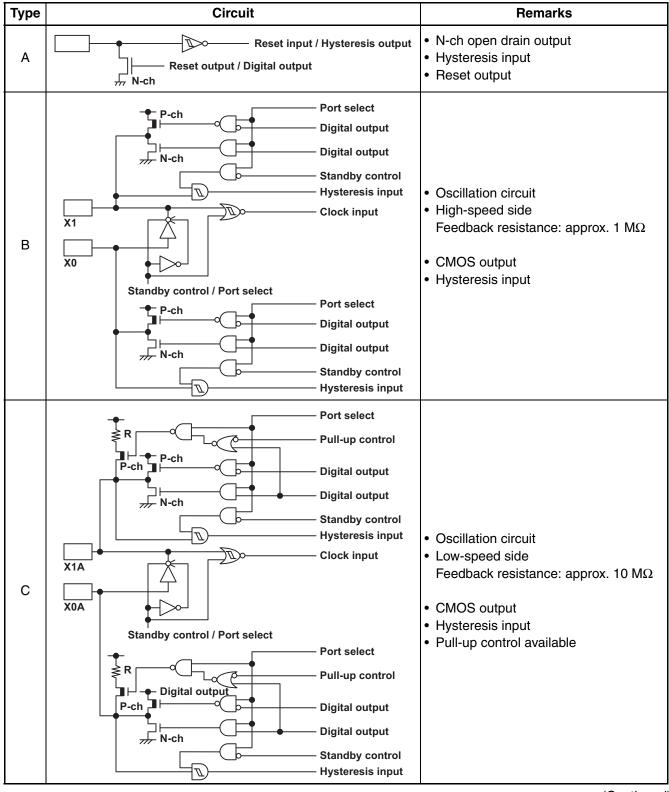
■ PIN ASSIGNMENT

■ PIN DESCRIPTION (MB95200H Series)

Pin no.	Pin name	I/O circuit type*	Function
1	PF0/X0	В	General-purpose I/O port This pin is also used as the main clock input oscillation pin.
2	PF1/X1	В	General-purpose I/O port This pin is also used as the main clock input/output oscillation pin.
3	Vss	—	Power supply pin (GND)
4	PG2/X1A	С	General-purpose I/O port This pin is also used as the subclock input/output oscillation pin.
5	PG1/X0A	С	General-purpose I/O port This pin is also used as the subclock input oscillation pin.
6	Vcc		Power supply pin
7	Cpin		Capacitor connection pin
8	PF2/RSTX	А	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F204H/F203H/F202H.
9	P62/TO10	D	General-purpose I/O port High-current port This pin is also used as the 8/16-bit composite timer ch. 1 output.
10	P63/TO11	D	General-purpose I/O port High-current port This pin is also used as the 8/16-bit composite timer ch. 1 output.
11	P64/EC1	D	General-purpose I/O port This pin is also used as the 8/16-bit composite timer ch. 1 clock input.
12	P00/AN00	E	General-purpose I/O port This pin is also used as the A/D converter analog input.
13	P01/AN01	E	General-purpose I/O port This pin is also used as the A/D converter analog input.
14	P02/INT02/AN02/ SCK	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART clock I/O.
15	P03/INT03/AN03/ SOT	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART data output.
16	P04/INT04/AN04/ SIN/HCLK1/EC0	F	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART data input. This pin is also used as the external clock input. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

(Continued)

Pin no.	Pin name	I/O circuit type*	Function
17	P05/INT05/AN05/ TO00/HCLK2	E	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the 8/16-bit composite timer ch. 0 output. This pin is also used as the external clock input.
18	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
19	P07/INT07	G	General-purpose I/O port This pin is also used as the external interrupt input.
20	P12/EC0/DBG	Н	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.


* : For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

■ PIN DESCRIPTION (MB95210H Series)

Pin no.	Pin name	I/O circuit type*	Function
1	Vss		Power supply pin (GND)
2	Vcc		Power supply pin
3	Cpin		Capacitor connection pin
4	RSTX/PF2	А	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F214H/F213H/F212H.
5	P04/INT04/AN04/ HCLK1/EC0	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the external clock input. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.
6	P05/AN05/TO00/ HCLK2	E	General-purpose I/O port High-current port This pin is also used as the A/D converter analog input. This pin is also used as the 8/16-bit composite timer ch. 0 output. This pin is also used as the external clock input.
7	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
8	P12/EC0/DBG	Н	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

* : For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit		Remarks
D	P-ch P-ch N-ch	— Digital output — Digital output — Standby control — Hysteresis input	CMOS outputHysteresis input
E	R P-ch N-ch	 Pull-up control Digital output Digital output Analog input A/D control Standby control Hysteresis input 	 CMOS output Hysteresis input Pull-up control available
F	R P-ch P-ch T N-ch	 Pull-up control Digital output Digital output Analog input A/D control Standby control Hysteresis input CMOS input 	 CMOS output Hysteresis input CMOS input Pull-up control available
G	R P-ch N-ch	— Pull-up control — Digital output — Digital output — Standby control — Hysteresis input	 Hysteresis input CMOS output Pull-up control available
Н	Digital output	— Standby control — Hysteresis input	N-ch open drain outputHysteresis input

NOTES ON DEVICE HANDLING

Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of ELECTRICAL CHARACTERISTICS" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

• Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{cc} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{cc} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

• Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

PIN CONNECTION

• Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

• Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{cc} pin and the V_{ss} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{cc} pin and the V_{ss} pin and the V_{ss} pin with low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between the V_{cc} pin and the V_{ss} pin at a location close to this device.

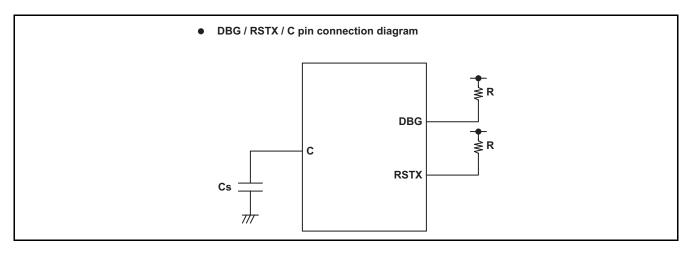
DBG pin

Connect the DBG pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{cc} or V_{ss} pin when designing the layout of the printed circuit board.

The DBG pin should not stay at "L" level after power-on until the reset output is released.

RSTX pin


Connect the RSTX pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the RSTX pin and the Vcc or Vss pin when designing the layout of the printed circuit board.

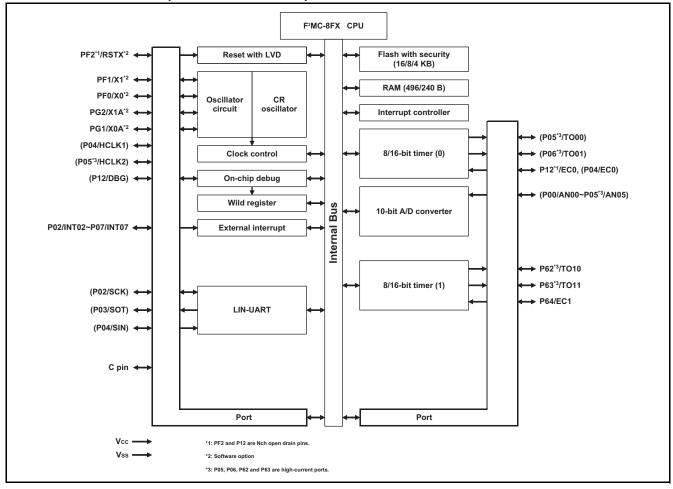
The RSTX/PF2 pin functions as the reset input/output pin after power-on. In addition, the reset output can be enabled by the RSTOE bit of the SYSC register, and the reset input function or the general purpose I/O function can be selected by the RSTEN bit of the SYSC register.

• C pin

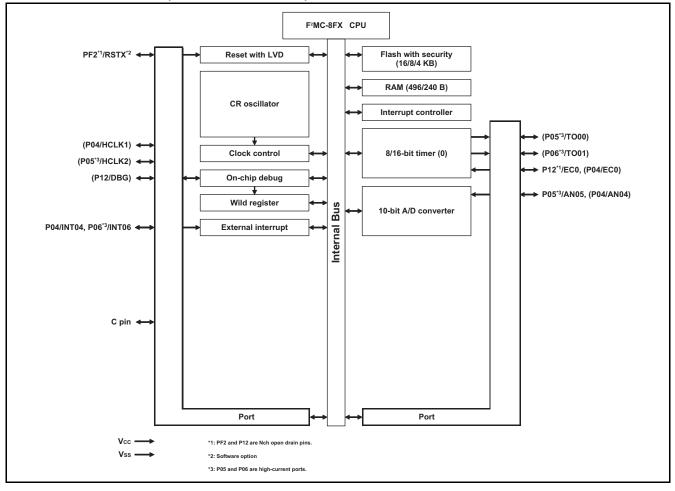
Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_s. For the connection to a smoothing capacitor C_s, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_s and the distance between C_s and the V_{ss} pin when designing the layout of a printed circuit board.

■ PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING SERIAL PROGRAMMER

• Serial programmers and adapters supported

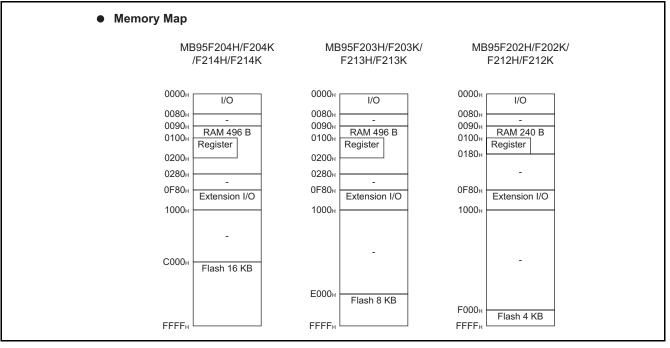

The following table shows serial programmers and adapters supported.

Package	Applicable adapter model	Serial programmer
SDIP 24	TBD	TBD
SOP 20	TBD	TBD
DIP 8	TBD	TBD
SOP 8	TBD	TBD


• Programming method

TBD

■ BLOCK DIAGRAM (MB95200H Series)


■ BLOCK DIAGRAM (MB95210H Series)

■ CPU CORE

1. Memory Space

The memory space of the MB95200H/210H Series is 64 KB in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95200H/210H Series are shown below.

■ I/O MAP (MB95200H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н		(Disabled)		
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н		(Disabled)		
0007н	SYCC	System clock control register	R/W	XXXXXX11 _B
0008н	STBC	Standby control register	R/W	00000XXX _B
0009н	RSRR	Reset source register	R	XXXXXXXXB
000Ан	TBTC	Timebase timer control register	R/W	0000000в
000Вн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн	SYCC2	System clock control register 2	R/W	XX100011 _B
000Eн				
to	—	(Disabled)		—
0015H			D 0.0/	
0016н	PDR6	Port 6 data register	R/W	0000000в
0017 н	DDR6	Port 6 direction register	R/W	0000000в
0018⊦ to		(Disabled)		
0027н				
0028н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002Ан	PDRG	Port G data register	R/W	0000000в
002Вн	DDRG	Port G direction register	R/W	0000000в
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн				
to		(Disabled)	—	—
0034н				
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit composite timer 01 control status register 1 ch. 0	R/W	0000000в
0037н	T00CR1	8/16-bit composite timer 00 control status register 1 ch. 0	R/W	0000000в
0038н	T11CR1	8/16-bit composite timer 11 control status register 1 ch. 1	R/W	0000000в
0039н	T10CR1	8/16-bit composite timer 10 control status register 1 ch. 1	R/W	0000000в
003A⊦ to		(Disabled)		
ю 0048н				
0049н	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	0000000в

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
004Aн	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000в
004Bн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	0000000в
004Сн to 004Fн		(Disabled)	_	
0050н	SCR	LIN-UART serial control register	R/W	0000000в
0051 н	SMR	LIN-UART serial mode register	R/W	0000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	0000000в
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XXB
0056н to 006Вн	_	(Disabled)	_	
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в
006D н	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в
006Е н	ADDH	8/10-bit A/D converter data register (Upper)	R/W	0000000в
006F н	ADDL	8/10-bit A/D converter data register (Lower)	R/W	0000000в
0070н to 0071н		(Disabled)	_	
0072н	FSR	Flash memory status register	R/W	000X0000B
0073н to 0075н		(Disabled)	_	
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078 н	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)	_	
0079 н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111
007Bн	ILR2	Interrupt level setting register 2	R/W	11111111
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111
007Eн	ILR5	Interrupt level setting register 5	R/W	11111111
007Fн		(Disabled)	—	
0F80н	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (Lower) ch. 0	R/W	0000000в

Address	Register abbreviation	Register name	R/W	Initial value
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	0000000в
0F83⊦	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	0000000в
0F84⊦	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	0000000в
0F85⊦	WRDR1	Wild register data setting register ch. 1	R/W	0000000в
0F86⊦	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	0000000в
0F88⊦	WRDR2	Wild register data setting register ch. 2	R/W	0000000в
0F89н to 0F91н		(Disabled)	_	
0F92н	T01CR0	8/16-bit composite timer 01 control status register 0 ch. 0	R/W	0000000в
0F93н	T00CR0	8/16-bit composite timer 00 control status register 0 ch. 0	R/W	0000000в
0F94н	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	0000000в
0F95н	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	0000000в
0F96н	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	0000000в
0F97н	T11CR0	8/16-bit composite timer 11 control status register 0 ch. 1	R/W	0000000в
0F98⊦	T10CR0	8/16-bit composite timer 10 control status register 0 ch. 1	R/W	0000000в
0F99н	T11DR	8/16-bit composite timer 11 data register ch. 1	R/W	0000000в
0F9Aн	T10DR	8/16-bit composite timer 10 data register ch. 1	R/W	0000000в
0F9B⊦	TMCR1	8/16-bit composite timer 10/11 timer mode control register ch. 1	R/W	0000000в
0F9Cн to 0FBBн		(Disabled)	_	
0FBCH	BGR1	LIN-UART baud rate generator register 1	R/W	0000000в
0FBDH	BGR0	LIN-UART baud rate generator register 0	R/W	0000000в
0FBEн to 0FC2н	_	(Disabled)	_	
0FC3⊦	AIDRL	A/D input disable register (Lower)	R/W	0000000в
0FC4н to 0FE3н		(Disabled)		
0FE4н	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXX
0FE5H	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXXB

(Continued))			
Address	Register abbreviation	Register name	R/W	Initial value
0FE6н to 0FE7н	_	(Disabled)		_
0FE8⊦	SYSC	System configuration register	R/W	11000011в
0FE9⊦	CMCR	Clock monitoring control register	R/W	ХХ00000в
0FEAH	CMDR	Clock monitoring data register	R/W	0000000в
0FEBH	WDTH	Watchdog ID register (Upper)	R/W	XXXXXXXXB
0FECH	WDTL	Watchdog ID register (Lower)	R/W	XXXXXXXXB
0FEDH		(Disabled)		—
0FEEH	ILSR	Input level select register	R/W	0000000в
0FEFн to 0FFFн		(Disabled)		_

• R/W access symbols

- R/W : Readable / Writable
- R : Read only
- W : Write only

• Initial value symbols

- 0 : The initial value of this bit is "0".
- 1 : The initial value of this bit is "1".
- X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

FUJITSU

■ I/O MAP (MB95210H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н		(Disabled)		
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	_	(Disabled)		
0007н	SYCC	System clock control register	R/W	XXXXXX11 _B
0008н	STBC	Standby control register	R/W	00000XXX _B
0009н	RSRR	Reset source register	R	XXXXXXXXB
000Ан	TBTC	Timebase timer control register	R/W	0000000в
000Вн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн	SYCC2	System clock control register 2	R/W	XX100011 _B
000Eн				
to	—	(Disabled)	—	—
0015H				
0016н		(Disabled)		—
0017н		(Disabled)		—
0018⊦ to		(Disabled)		
0027н		(Disabled)		
0028 н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002Ан		(Disabled)		
002Bн		(Disabled)		
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн				
to	—	(Disabled)		
0034н				
0035н		(Disabled)		
0036н	T01CR1	8/16-bit composite timer 01 control status register 1 ch. 0	R/W	0000000в
0037н	T00CR1	8/16-bit composite timer 00 control status register 1 ch. 0	R/W	0000000в
0038н		(Disabled)		
0039 н		(Disabled)		—
003Aн				
to 0048⊦	—	(Disabled)	_	—
0049н 0049н		(Disabled)		

Address	Register abbreviation	Register name	R/W	Initial value	
004Ан	EIC20	External interrupt circuit control register ch. 4	R/W	0000000в	
004Вн	EIC30	External interrupt circuit control register ch. 6	R/W	0000000в	
004Сн to 004Fн	_	(Disabled)	_		
0050н		(Disabled)			
0051 н		(Disabled)			
0052н		(Disabled)		_	
0053н		(Disabled)		_	
0054н		(Disabled)		_	
0055н		(Disabled)		_	
0056н to 006Вн		_			
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в	
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в	
006Eн	ADDH	8/10-bit A/D converter data register (Upper)	R/W	0000000в	
006Fн	ADDL	8/10-bit A/D converter data register (Lower)	R/W	0000000в	
0070н to 0071н		(Disabled)	_		
0072н	FSR	Flash memory status register	R/W	000Х0000в	
0073н to 0075н	_	(Disabled)	_		
0076н	WREN	Wild register address compare enable register	R/W	0000000в	
0077н	WROR	Wild register data test setting register	R/W	0000000в	
0078 н		Mirror of register bank pointer (RP) and direct bank pointer (DP)	_	_	
0079 н	ILR0	Interrupt level setting register 0	R/W	111111118	
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в	
007В н		(Disabled)		—	
007Сн		(Disabled)	-	—	
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111B	
007Е н	ILR5	Interrupt level setting register 5	R/W	11111111в	
007Fн		(Disabled)	-	—	
0F80н	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	0000000в	
0F81н	WRARL0	Wild register address setting register (Lower) ch. 0	R/W	0000000в	
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	0000000в	

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0F83н	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	0000000в
0F84н	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	0000000в
0F85н	WRDR1	Wild register data setting register ch. 1	R/W	0000000в
0F86н	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	0000000в
0F88⊦	WRDR2	Wild register data setting register ch. 2	R/W	0000000в
0F89⊦ to 0F91⊦		(Disabled)	_	
0F92н	T01CR0	8/16-bit composite timer 01 control status register 0 ch. 0	R/W	0000000в
0F93н	T00CR0	8/16-bit composite timer 00 control status register 0 ch. 0	R/W	0000000в
0F94н	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	0000000в
0F95н	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	0000000в
0F96н	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	0000000в
0F97н		(Disabled)	—	
0F98⊦		(Disabled)	—	—
0F99н		(Disabled)	—	
0F9Aн		(Disabled)	—	
0F9Bн		(Disabled)	_	—
0F9Cн to 0FBBн	_	(Disabled)	_	
0FBCH		(Disabled)		
0FBDH		(Disabled)	—	
0FBEн to 0FC2н	_	(Disabled)	_	
0FC3н	AIDRL	A/D input disable register (Lower)	R/W	0000000в
0FC4н to 0FE3н		(Disabled)	_	
0FE4н	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXXB
0FE5H	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXXB
0FE6н to 0FE7н	_	(Disabled)	_	
0FE8⊦	SYSC	System configuration register	R/W	11000011в

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FE9⊦	CMCR	Clock monitoring control register	R/W	ХХ00000в
0FEAH	CMDR	Clock monitoring data register	R/W	0000000в
0FEBH	WDTH	Watchdog timer selection ID register (Upper)	R/W	XXXXXXX
0FECH	WDTL	Watchdog timer selection ID register (Lower)	R/W	XXXXXXXXB
0FEDH		(Disabled)		
0FEEH	ILSR	Input level select register	R/W	0000000в
0FEFн to 0FFFн		(Disabled)	_	

• R/W access symbols

- R/W : Readable / Writable
- R : Read only
- W : Write only

• Initial value symbols

- 0 : The initial value of this bit is "0".
- 1 : The initial value of this bit is "1".
- X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

■ INTERRUPT SOURCE TABLE (MB95200H Series)

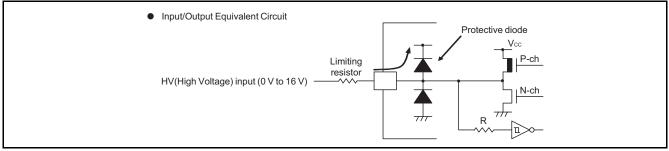
		Vector tab	le address		Priority order of
Interrupt source	Interrupt request number	Upper	Lower	Bit name of interrupt level setting register	interrupt sourc- es of the same level (occurring simultaneously)
External interrupt ch. 4	IRQ0	FFFA H	FFFB H	L00 [1 : 0]	High
External interrupt ch. 5	IRQ1	FFF8⊦	FFF9⊦	L01 [1 : 0]	
External interrupt ch. 2	IRQ2	FFF6⊦	FFF7н	L02 [1 : 0]	Ē
External interrupt ch. 6		ГГГОН	ГГГ/Н		
External interrupt ch. 3					
External interrupt ch. 7	IRQ3	FFF4 _H	FFF5⊦	L03 [1 : 0]	
	IRQ4	FFF2H	FFF3⊦	L04 [1 : 0]	
8/16-bit composite timer ch. 0 (Lower)	IRQ5	FFF0H	FFF1⊦	L05 [1 : 0]	
8/16-bit composite timer ch. 0 (Upper)	IRQ6	FFEEH	FFEFH	L06 [1 : 0]	
LIN-UART (reception)	IRQ7	FFEC H	FFEDH	L07 [1 : 0]	
LIN-UART (transmission)	IRQ8	FFEAH	FFEBH	L08 [1 : 0]	
	IRQ9	FFE8H	FFE9н	L09 [1 : 0]	
—	IRQ10	FFE6H	FFE7H	L10 [1 : 0]	
	IRQ11	FFE4H	FFE5H	L11 [1 : 0]	
	IRQ12	FFE2H	FFE3H	L12 [1 : 0]	
	IRQ13	FFE0H	FFE1H	L13 [1 : 0]	
8/16-bit composite timer ch. 1 (Upper)	IRQ14	FFDEH	FFDFH	L14 [1 : 0]	
	IRQ15	FFDC H	FFDDH	L15 [1 : 0]	
	IRQ16	FFDA H	FFDB H	L16 [1 : 0]	
	IRQ17	FFD8H	FFD9н	L17 [1 : 0]	
8/10-bit A/D converter	IRQ18	FFD6н	FFD7н	L18 [1 : 0]	
Timebase timer	IRQ19	FFD4н	FFD5н	L19 [1 : 0]	
Watch prescaler	IRQ20	FFD2H	FFD3н	L20 [1 : 0]	
	IRQ21	FFD0н	FFD1н	L21 [1 : 0]	
8/16-bit composite timer ch. 1 (Lower)	IRQ22	FFCEH	FFCFH	L22 [1 : 0]	▼
Flash memory	IRQ23	FFCC H	FFCD H	L23 [1 : 0]	Low

■ INTERRUPT SOURCE TABLE (MB95210H Series)

		Vector tab	le address		Priority of inter-
Interrupt source	Interrupt request number	Upper	Lower	Bit name of interrupt level setting register	rupts of the same level (at simultaneous occurrence)
External interrupt ch. 4	IRQ0	FFFA H	FFFB H	L00 [1 : 0]	High
—	IRQ1	FFF8⊦	FFF9⊦	L01 [1 : 0]	
— External interrupt ch. 6	IRQ2	FFF6⊦	FFF7⊦	L02 [1 : 0]	
<u> </u>	IRQ3	FFF4 _H	FFF5H	L03 [1 : 0]	
—	IRQ4	FFF2H	FFF3⊦	L04 [1 : 0]	
8/16-bit composite timer ch. 0 (Lower)	IRQ5	FFF0H	FFF1⊦	L05 [1 : 0]	
8/16-bit composite timer ch. 0 (Upper)	IRQ6	FFEEH	FFEFн	L06 [1 : 0]	
	IRQ7	FFECH	FFED H	L07 [1 : 0]	
	IRQ8	FFEAH	FFEB H	L08 [1 : 0]	
	IRQ9	FFE8H	FFE9H	L09 [1 : 0]	
	IRQ10	FFE6H	FFE7н	L10 [1 : 0]	
	IRQ11	FFE4H	FFE5H	L11 [1 : 0]	
	IRQ12	FFE2H	FFE3H	L12 [1 : 0]	
	IRQ13	FFE0H	FFE1H	L13 [1 : 0]	
	IRQ14	FFDEH	FFDFH	L14 [1 : 0]	
	IRQ15	FFDCH	FFDDH	L15 [1 : 0]	
	IRQ16	FFDAH	FFDB H	L16 [1 : 0]	
	IRQ17	FFD8H	FFD9н	L17 [1 : 0]	
8/10-bit A/D converter	IRQ18	FFD6H	FFD7н	L18 [1 : 0]	
Timebase timer	IRQ19	FFD4⊦	FFD5H	L19 [1 : 0]	
Watch prescaler	IRQ20	FFD2H	FFD3H	L20 [1 : 0]	
_	IRQ21	FFD0H	FFD1⊦	L21 [1 : 0]	
	IRQ22	FFCEH	FFCFH	L22 [1 : 0]	▼
Flash memory	IRQ23	FFCC H	FFCD H	L23 [1 : 0]	Low

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings


Demonster	Or make al	Rating		11	Demostre
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6	V	
Input voltage*1	Vı	Vss - 0.3	Vss + 6	V	*2
Output voltage*1	Vo	Vss - 0.3	Vss + 6	V	*2
Maximum clamp current	CLAMP	- 2	+ 2	mA	Applicable to pins*3
Total maximum clamp current	ΣIIclamp	_	20	mA	Applicable to pins*3
"L" level maximum	OL1		15	mA	Other than P05, P06, P62 and P63 ⁻⁵
output current	OL2		15	mA	P05, P06, P62 and P63 ^{*5}
"L" level average current	Iolav1		4	mA	Other than P05, P06, P62 and P63 ^{*5} Average output current = operating current × operating ratio (1 pin)
L level average current	Iolav2		12		P05, P06, P62 and P63 ^{·5} Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current	ΣΙοίαν		50	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum	Іон1		– 15	m 4	Other than P05, P06, P62 and P63 ⁵
output current	ОН2		– 15	- mA	P05, P06, P62 and P63 ⁻⁵
"H" level average	Iohav1		- 4	mA	Other than P05, P06, P62 and P63 ^{*5} Average output current = operating current × operating ratio (1 pin)
current	Іонау2		- 8		P05, P06, P62 and P63 ^{*5} Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣІон	_	- 100	mA	
"H" level total average output current	ΣΙοήαν		- 50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd		320	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storage temperature	Tstg	- 55	+ 150	°C	

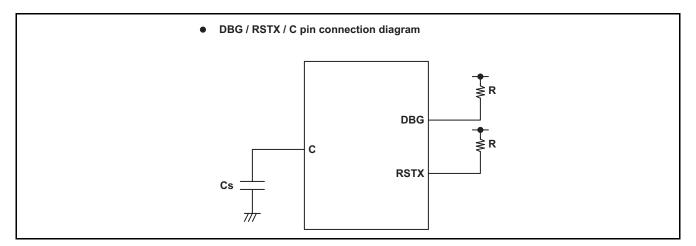
- *1: The parameter is based on $V_{SS} = 0.0 V$.
- *2: V_I and V₀ must not exceed V_{CC} + 0.3 V. V_I must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_I rating.

*3: Applicable to pins: P00 to P07, P62 to P64, PG1 to PG2, PF0, PF1*4

- Use under recommended operating conditions.
- Use with DC voltage (current).
- The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current of stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- Example of a recommended circuit :

- *4: P00 to P03, P07, P62 to P64, PG1 to PG2, PF0 and PF1 are available in MB95F204H/F203H/F202H/F204K/ F203K/F202K.
- *5: P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.
- WARNING: A semiconductor device may be damaged by applying stress (voltage, current, temperature, etc.) in excess of the absolute maximum rating. Therefore, ensure that not a single parameter exceeds its absolute maximum rating.

2. Recommended Operating Conditions


 $(V_{SS} = 0.0 V)$

Parameter	Symbol	Va	lue	Unit	t Remarks		
Falameter	Symbol	Min	Max	Unit			
		2.4 ^{*1*2}	5.5* ¹		In normal operation	Other than on-chip debug	
Power supply	Vcc	2.3	5.5	v	Hold condition in stop mode	mode	
voltage	VCC	2.7	5.5		In normal operation	On-chip debug mode	
		2.3	5.5		Hold condition in stop mode		
Smoothing capacitor	Cs	0.022	1	μF	*3		
Operating	TA	- 40	+ 85	°C	Without the on-chip debug function		
temperature	IA	+ 5	+ 35		With the on-chip debug function		

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.

*2: The value is 2.88 V when the low-voltage detection reset is used.

*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S. For the connection to a smoothing capacitor C_S, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the electrical characteristics of the device are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact sales representatives beforehand.

3. DC Characteristics

_				Value				
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	Vihi	P04	*1	0.7 Vcc		Vcc + 0.3	V	When CMOS input level (hysteresis input) is selected
"H" level input voltage	Vins	P00 to P07, P12, P62 to P64, PF0 to PF1, PG1 to PG2	*1	0.8 Vcc		Vcc + 0.3	V	Hysteresis input
	Vінм	PF2		0.7 Vcc		Vcc + 0.3	V	Hysteresis input
	VIL	P04	*1	Vss - 0.3		0.3 Vcc	V	When CMOS input level (hysteresis input) is selected
"L" level input voltage	Vils	P00 to P07, P12, P62 to P64, PF0 to PF1, PG1 to PG2	*1	Vss – 0.3		0.2 Vcc	V	Hysteresis input
	VILM	PF2		$V_{\text{SS}} - 0.3$		0.3 Vcc	V	Hysteresis input
Open-drain output application voltage	VD	PF2, P12		Vss - 0.3		0.2 Vcc	V	
"H" level output	V _{OH1}	Output pins other than P05, P06, P62, P63, PF2 and P12 ⁻²	Іон = — 4 mA	Vcc - 0.5	_		V	
voltage	Vон2	P05, P06, P62, P63 ^{*2}	Іон = - 8 mA	Vcc - 0.5			V	
"L" level output	V _{OL1}	Output pins other than P05, P06, P62 and P63 ^{*2}	IoL = 4 mA			0.4	V	
voltage	Vol2	P05, P06, P62, P63 ^{•2}	lo∟ = 12 mA			0.4	V	
Input leak current (Hi-Z output leak current)	lu	All input pins	0.0 V < V1 < Vcc	- 5		+ 5	μA	When pull-up resistance is disabled
Pull-up resistance	Rpull	P00 to P07, PG1, PG2 ⁻³	V1 = 0 V	25	50	100	kΩ	When pull-up resistance is enabled
Input capacitance	Cin	Other than Vcc and Vss	f = 1 MHz		5	15	pF	

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

PRELIMINARY

MB95200H/210H Series

*1: The input level of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

*2: P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

*3: P00 to P03, P07, PG1 and PG2 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

(Continued)

(Commuea)			(Vcc =	= 5.0 V ±	10%, Vs	s = 0.0 V	, Τ _Α =	– 40 °C to + 85 °C)
Parameter	Symbol	mbol Pin name	Condition		Value		Unit	Remarks
Falametei	Symbol	Finnanie	Condition	Min	Тур	Max	Unit	nemarks
			Vcc = 5.5 V Fcн = 32 MHz	_	13	17	mA	Flash memory product (except writing and erasing)
	Icc		F _{MP} = 16 MHz Main clock mode (divided by 2)		33.5	39.5	mA	Flash memory product (at writing and erasing)
					15	21	mA	At A/D conversion
Power supply current*4	Iccs	Vcc (External clock operation)	$V_{CC} = 5.5 V$ $F_{CH} = 32 MHz$ $F_{MP} = 16 MHz$ Main sleep mode (divided by 2)		5.5	9	mA	
	lcc∟		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subclock mode (divided by 2) $T_{A} = +25 \text{ °C}$		65	153	μA	
	Iccls		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subsleep mode (divided by 2) $T_A = +25 \text{ °C}$		10	84	μA	

PRELIMINARY

(Continued)

Devenuente	Cumhal	ol Pin name	O a mathility in		Value		11-12	Derreite
Parameter	Symbol		Condition	Min	Тур	Max	Unit	Remarks
	Ісст		$V_{CC} = 5.5 V$ $F_{CL} = 32 kHz$ Watch mode Main stop mode $T_A = +25 \ ^{\circ}C$		5	30	μΑ	
	Іссмск		$V_{CC} = 5.5 V$ $F_{CRH} = 12.5 MHz$ $F_{MP} = 12.5 MHz$ Main CR clock mode	_	10	13.2	mA	
	ICCSCR	Vcc (External clock operation)	$V_{CC} = 5.5 V$ $F_{CL} = 32 kHz$ $F_{MPL} = 16 kHz$ Sub-CR clock mode (divided by 2) $T_{A} = +25 °C$	_	110	410	μΑ	
Power supply	Ісстѕ		$V_{CC} = 5.5 V$ $F_{CH} = 32 MHz$ Timebase timer mode $T_A = + 25 \ ^{\circ}C$		1.1	3	mA	
current*4	Іссн		$V_{CC} = 5.5 V$ Substop mode $T_A = +25 \text{ °C}$		3.5	22.5	μA	Main stop mode for single clock selection
	Ilvd		Current consumption for low-voltage detection circuit only		37	54	μA	
	Ісян	Vcc	Current consumption for the internal main CR oscillator oscillating at 12.5 MHz		0.5	0.6	mA	
	ICRL		Current consumption for the internal sub-CR oscillator oscillating at 100 kHz		20	72	μA	

*4: • The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (ILVD) to a specified value. In addition, when both the low-voltage detection option and the internal CR oscillator are selected, the power supply current will be the sum of adding up the current con-

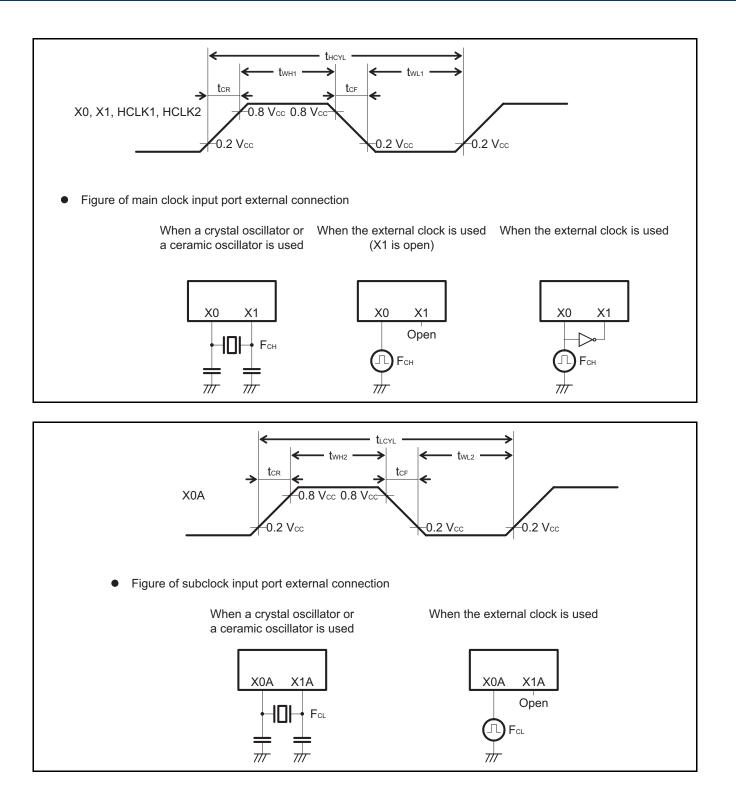
sumption of the low-voltage detection circuit, the current consumption of the internal CR oscillators (ICRH, ICRL) and a specified value. In on-chip debug mode, the internal CR oscillator (ICRH) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

- See "4. AC Characteristics: (1) Clock Timing" for FCH and FCL.
- See "4. AC Characteristics: (2) Source Clock/Machine Clock" for FMP and FMPL.

4. AC Characteristics

(1) Clock Timing

|--|


Devenueter	Cumhal		Condition		Value		11	Remarks	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit		
		X0, X1	_	1		16.25	MHz	When the main oscillation circuit is used	
	Fсн	X0, HCLK1, HCLK2	X1 open	1	_	12	MHz	When the main external	
		X0, X1, HCLK1, HCLK2		1		32.5	MHz	clock is used	
				12.25	12.5	12.75	MHz		
Clock frequency	Fсвн			9.8	10	10.2	MHz	When the main internal	
				7.84	8	8.16	MHz	clock is used	
				0.98	1	1.02	MHz		
	Fc∟	X0A, X1A		_	32.768	—	kHz	When the main oscillation circuit is used	
	— 32.768		kHz	When the sub-external clock is used					
	FCRL			50	100	200	kHz	When the sub-internal CR clock is used	
		X0, X1		61.5		1000	ns	When the main oscillation circuit is used	
Clock cycle time	thoyl	X0, HCLK1, HCLK2	X1 open	83.4	_	1000	ns	When the external clock is	
		X0, X1, HCLK1, HCLK2	_	30.8		1000	ns	used	
	t LCYL	X0A, X1A			30.5	_	μs	When the subclock is used	
Input clock pulse width	twH1	X0, HCLK1, HCLK2	X1 open	33.4			ns	When the external clock is	
	tw∟ı	X0, X1, HCLK1, HCLK2		12.4	_		ns	used, the duty ratio should range between 40% and 60%.	
	twн₂ tw∟₂	XOA			15.2		μs		

Parameter	Symbol	bol Pin name Condition			Unit	Remarks		
Farameter	Symbol		Condition	Min	Тур	Max	Omt	nemaiks
Input clock rise	tся	X0, HCLK1, HCLK2	X1 open		—	5	ns	When the external clock is
time and fall time	tc⊧	X0, X1 HCLK1, HCLK2	_		_	5	ns	used
Internal CR oscillation start	tсвник					80	μs	When the main internal CR clock is used
time	t crlwk					10	μs	When the sub-internal CR clock is used

PRELIMINARY

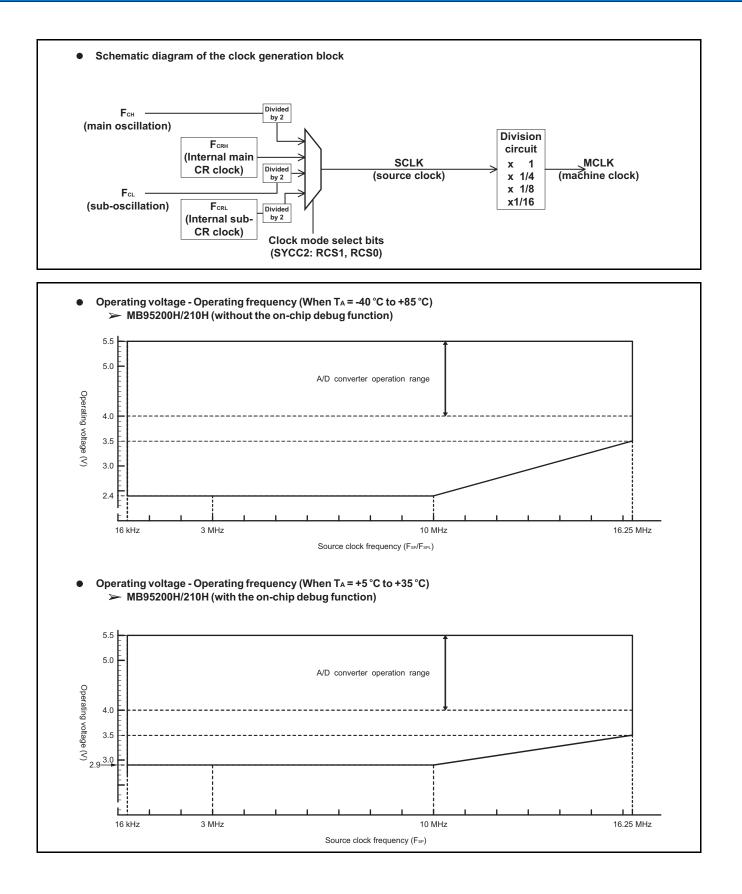
MB95200H/210H Series

(2) Source Clock/Machine Clock

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

Parameter	Symbol	Pin		Value		Unit	Remarks			
Farameter	Symbol	name	Min	Тур	Max	Unit	nemarks			
			61.5	_	2000	ns	When the main external clock is used Min : $F_{CH} = 32.5$ MHz, divided by 2 Max : $F_{CH} = 1$ MHz, divided by 2			
Source clock cycle time* ¹ (clock before	tsclк	_	80		1000	ns	When the main CR clock is used Min : F _{CRH} = 12.5 MHz Max : F _{CRH} = 1 MHz			
division)				61	—	μs	When the sub-oscillation clock is used $F_{CL} = 32.768 \text{ kHz}$, divided by 2			
				20		μs	When the sub-oscillation clock is used $F_{CRL} = 100 \text{ kHz}$, divided by 2			
	Esp		0.5		16.25	MHz	When the main oscillation clock is used			
Source clock	1 5P		1		12.5	MHz	When the main CR clock is used			
frequency					16.384		kHz	When the sub-oscillation clock is used		
	FSPL			50		kHz	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$, divided by 2			
			61.5	_	32000	ns	When the main oscillation clock is used Min : $F_{SP} = 16.25$ MHz, no division Max : $F_{SP} = 0.5$ MHz, divided by 16			
Machine clock cycle time* ² (minimum	tmclk		80	_	16000	ns	When the main CR clock is used Min : F _{SP} = 12.5 MHz Max : F _{SP} = 1 MHz, divided by 16			
instruction execution time)	UNCLK		61	_	976.5	μs	When the sub-oscillation clock is used Min : $F_{SPL} = 16.393$ kHz, no division Max : $F_{SPL} = 16.393$ kHz, divided by 16			
			20	_	320	μs	When the sub-CR clock is used Min : $F_{SPL} = 50$ kHz, no division Max : $F_{SPL} = 50$ kHz, divided by 16			
	Емр		0.031	—	16.25	MHz	When the main oscillation clock is used			
Machine clock	EWF		0.0625	—	12.5	MHz	When the main CR clock is used			
frequency		—	1.024	—	16.384	kHz	When the sub-oscillation clock is used			
	Fmpl		3.125		50	kHz	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$			

*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits (SYCC : DIV1 and DIV0). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC : DIV1 and DIV0). In addition, a source clock can be selected from the following.

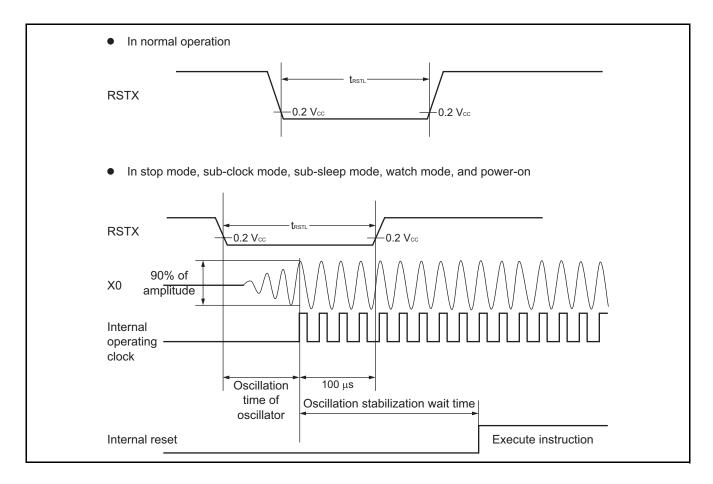

Main clock divided by 2

- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2

*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.

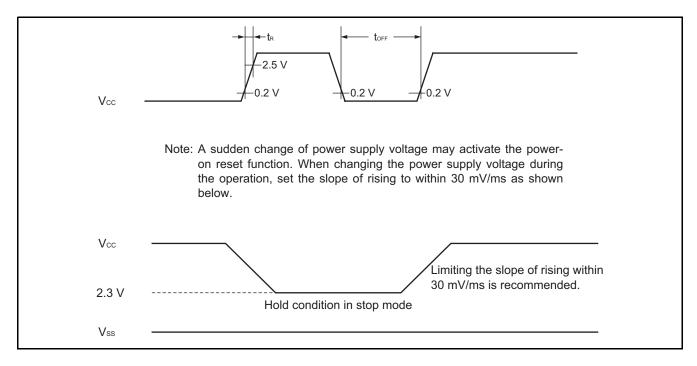
• Source clock (no division)

- Source clock divided by 4Source clock divided by 8
- Source clock divided by 16


FUITSU

(3) External Reset

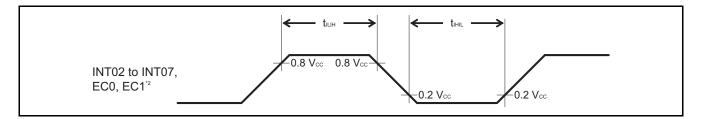
(0)		(Vcc =	= 5.0 V ± 1	0%, Vs	as = 0.0 V, $T_A = -40 \ ^\circ C$ to $+85 \ ^\circ C$)	
Parameter	Symbol	Value		Unit	Remarks	
Farameter	Symbol	Min	Мах	Unit		
		2 tmclk*1		ns	In normal operation	
RSTX "L" level pulse width	t RSTL	Oscillation time of the oscillator*2 + 100		μs	In stop mode, subclock mode, sub-sleep mode, and watch mode	
		100		μs	In timebase timer mode	


*1 : See " (2) Source Clock/Machine Clock" for tMCLK.

*2 : The oscillation time of an oscillator is the time that the amplitude reaches 90%. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of µs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several µs and several ms.

(4) Power-on Reset

				(\	/ss = 0.	0 V, $T_A = -40 ^{\circ}C$ to $+85 ^{\circ}C$)	
Parameter	Symbol	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol	Condition	Min	Max	Unit	nemaiks	
Power supply rising time	tR		—	50	ms		
Power supply cutoff time	toff	_	1		ms	Wait time until power-on	


(5) Peripheral Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

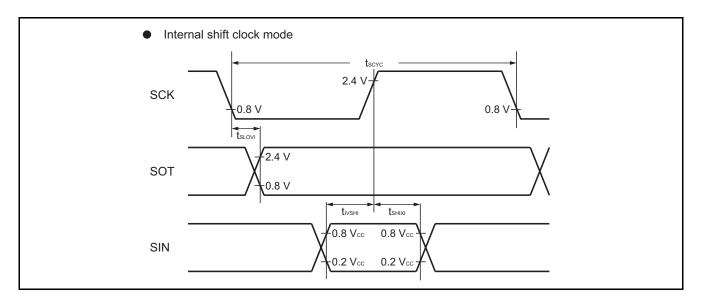
Parameter	Symbol Pin name		Va	Unit	
Faranieter	Symbol	Finnanie	Min	Max	Unit
Peripheral input "H" pulse width	tiliн	INT02 to INT07, EC0, EC1 ^{*2}	2 t MCLK ^{*1}		ns
Peripheral input "L" pulse width	tініL	INTOZ 10 INTO7, EGO, EGT	2 t MCLK ^{*1}		ns

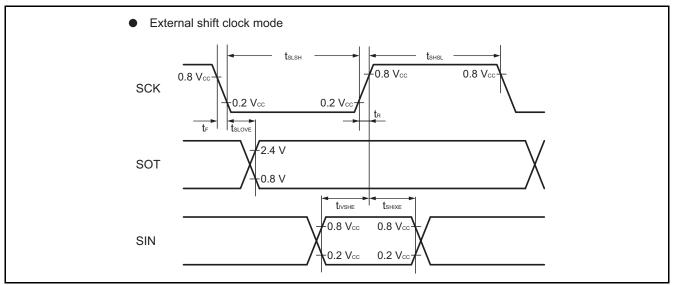
*1 : See " (2) Source Clock/Machine Clock" for tmclk.

*2 : INT02, INT03, INT05, INT07 and EC1 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

(6) LIN-UART Timing (Available in MB95F204H/F203H/F202H/F204K/F203K/F202K only)

Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is disabled*2. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0) $(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{ss} = \text{V}_{ss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$


Dexemptor	Symbol	Din nomo	Condition	Va	Unit	
Parameter	Symbol	Pin name	Condition	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 tмськ* ³		ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT	Internal clock	- 95	+ 95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN	operation output pin : $C_{L} = 80 \text{ pF} + 1 \text{ TTL}$	tмськ*3 + 190		ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SCK, SIN		0	—	ns
Serial clock "L" pulse width	t _{SLSH}	SCK		$3 t$ MCLK $^{*3} - t$ R	—	ns
Serial clock "H" pulse width	tshsl	SCK		t мськ* ³ + 95	—	ns
$SCK \downarrow \to SOT$ delay time	t SLOVE	SCK, SOT	External clock		2 tмськ*3 + 95	ns
$Valid\ SIN \to SCK\ \uparrow$	tivshe	SCK, SIN	operation output pin :	190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixe	SCK, SIN	C∟ = 80 pF + 1 TTL	t мськ* ³ + 95	—	ns
SCK fall time	t⊧	SCK			10	ns
SCK rise time	tR	SCK			10	ns

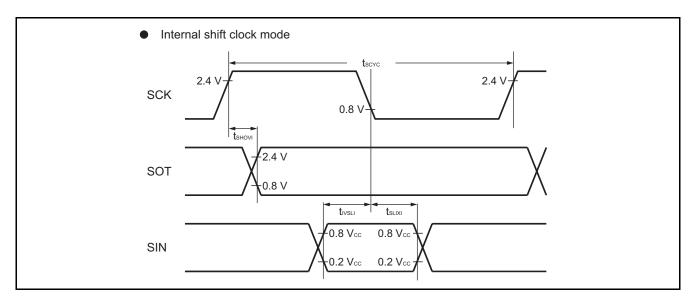

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

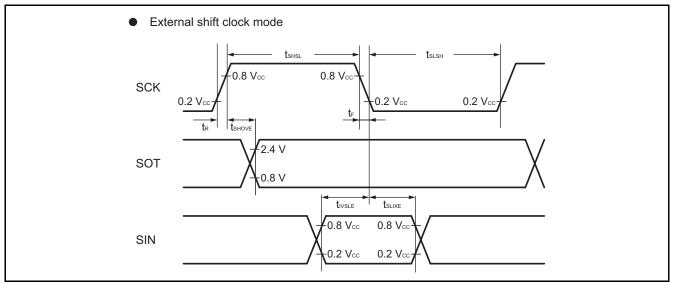
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

FUITSU

*3: See " (2) Source Clock/Machine Clock" for tMCLK.

Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is disabled*2. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0) $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ °C to } +85 \text{ °C})$

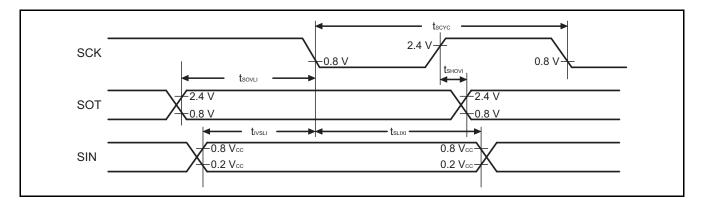

			$(vcc = 3.0 v \pm 10\%, v)$	00 010 1 , 1/1		
Parameter	Symbol	Pin name	Condition	Va	Unit	
Falameter	Symbol		Condition	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 tмськ* ³		ns
$SCK^{\uparrow} \rightarrow SOT$ delay time	tsнovi	SCK, SOT	Internal clock operation output pin :	- 95	+ 95	ns
Valid SIN \rightarrow SCK \downarrow	tivsli	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}$	t мськ* ³ + 190		ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixi	SCK, SIN		0		ns
Serial clock "H" pulse width	tshsl	SCK		3 t мськ* ³ – tв		ns
Serial clock "L" pulse width	ts∟sн	SCK		t мськ ^{*3} + 95		ns
SCK $\uparrow \rightarrow$ SOT delay time	t shove	SCK, SOT	External clock		2 t мськ*3 + 95	ns
Valid SIN \rightarrow SCK \downarrow	tivsle	SCK, SIN	operation output pin :	190		ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixe	SCK, SIN	C∟ = 80 pF + 1 TTL	t мськ ^{*3} + 95		ns
SCK fall time	t⊧	SCK			10	ns
SCK rise time	tR	SCK			10	ns


*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

FUÏTSU

*3: See " (2) Source Clock/Machine Clock" for tMCLK.

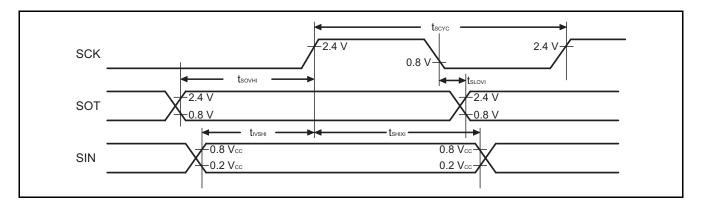

Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is enabled^{*2}. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

		•	$(Vcc = 5.0 V \pm 10\%, V)$	/ss = 0.0 V, TA =	= - 40 °C to +	85 °C)
Parameter	Symbol	Pin name	Condition	Va	ue	Unit
Parameter	Symbol	Pin name			Max	Unit
Serial clock cycle time	tscyc	SCK		5 tмськ* ³	_	ns
$SCK^{\uparrow} \rightarrow SOT$ delay time	tsнovi	SCK, SOT	Internal clock	- 95	+ 95	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivsli	SCK, SIN	operation output pin :	tмськ* ³ + 190		ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0	_	ns
$SOT \to SCK \downarrow delay \ time$	tsovli	SCK, SOT			4 t мськ* ³	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See " (2) Source Clock/Machine Clock" for tMCLK.

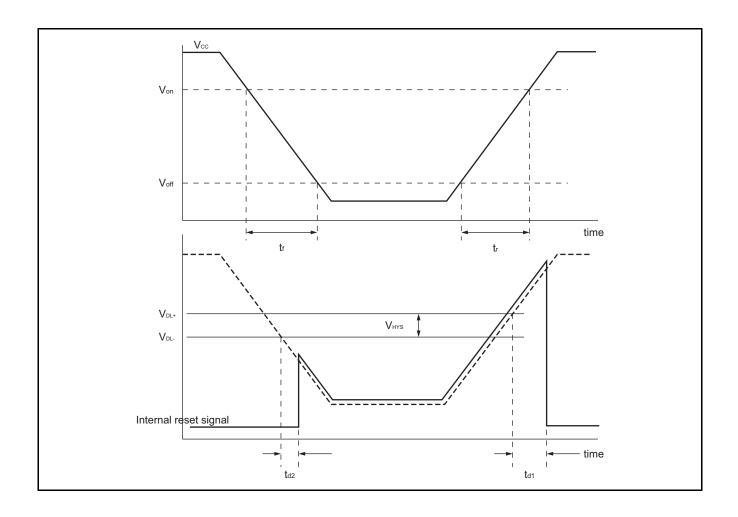

Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is enabled^{*2}. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

		•	$(Vcc = 5.0 V \pm 10\%, V)$	/ss = 0.0 V, Ta =	= - 40 °C to +	85 °C)
Parameter	Symbol	Pin name	Condition	Value		Unit
Parameter	Symbol	Pin name	Condition	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 tмськ* ³	_	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT	Internal clock	- 95	+ 95	ns
$Valid\;SIN\toSCK\uparrow$	tıvsнı	SCK, SIN	operating output pin :	tмськ* ³ + 190		ns
$SCK^{\uparrow} \rightarrow valid SIN hold time$	tshixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0		ns
$SOT \to SCK^\uparrow$ delay time	tsovнı	SCK, SOT			4 t мськ* ³	ns

*1:There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See " (2) Source Clock/Machine Clock" for tMCLK.



(7) Low-voltage Detection

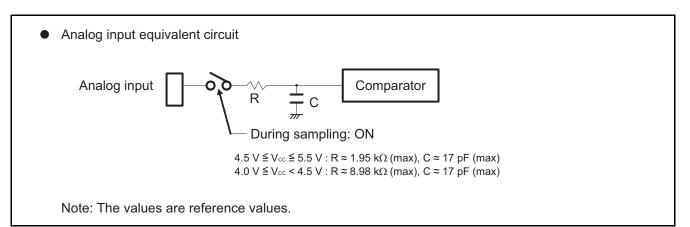
(Vss = 0.0 V, T_A = $-40 \ ^{\circ}C$ to $+85 \ ^{\circ}C$)

Parameter	Symbol		Value		Unit	Remarks	
Parameter	Symbol	Min	Тур	Max	Unit	nemarks	
Release voltage	V _{DL+}	2.52	2.7	2.88	V	At power supply rise	
Detection voltage	Vdl-	2.42	2.6	2.78	V	At power supply fall	
Hysteresis width	VHYS	70	100		mV		
Power supply start voltage	Voff			2.3	V		
Power supply end voltage	Von	4.9			V		
Power supply voltage		1			μs	Slope of power supply that the reset release signal generates	
change time (at power supply rise)	tr		3000		μs	Slope of power supply that the reset release signal generates within the rating (V_{DL+})	
Power supply voltage		300			μs	Slope of power supply that the reset detection signal generates	
change time (at power supply fall)	tr	_	300	_	μs	Slope of power supply that the reset detection signal generates within the rating (V _{DL} -)	
Reset release delay time	t _{d1}			300	μs		
Reset detection delay time	t _{d2}			20	μs		

PRELIMINARY

5. A/D Converter

(1) A/D Converter Electrical Characteristics


$(V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C}^{\circ}$	0+	- 85	°C)

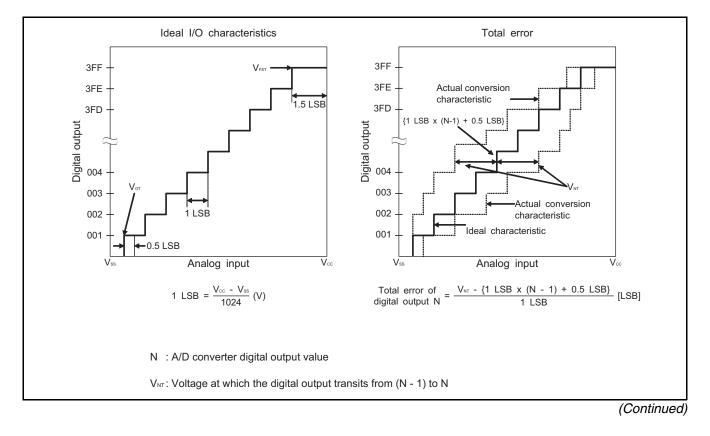
				100.000, 100 -	,	
Parameter	Symbol	Value				Demerike
Farameter	Symbol	Min Typ Max			Unit	Remarks
Resolution				10	bit	
Total error		– 3		+ 3	LSB	
Linearity error		- 2.5		+ 2.5	LSB	
Differential linear error		- 1.9		+ 1.9	LSB	
Zero transition voltage	Vот	Vss – 1.5 LSB	Vss + 0.5 LSB	V _{SS} + 2.5 LSB	V	
Full-scale transition voltage	VFST	Vcc – 4.5 LSB	Vcc – 2 LSB	Vcc + 0.5 LSB	V	
	_	0.9		16500	μs	$4.5~V \le V_{CC} \le 5.5~V$
Compare time		1.8		16500	μs	$4.0 \text{ V} \leq \text{Vcc} < 4.5 \text{ V}$
Sampling time	ing time			œ	μs	$4.5 \text{ V} \le \text{Vcc} \le 5.5 \text{ V},$ with external impedance < 5.4 k Ω
Sampling time		1.2	_	~	μs	$4.0 \text{ V} \le \text{Vcc} \le 4.5 \text{ V},$ with external impedance < 2.4 k Ω
Analog input current	Iain	- 0.3		+ 0.3	μA	
Analog input voltage	VAIN	Vss		Vcc	V	

(2) Notes on Using the A/D Converter

• External impedance of analog input and its sampling time

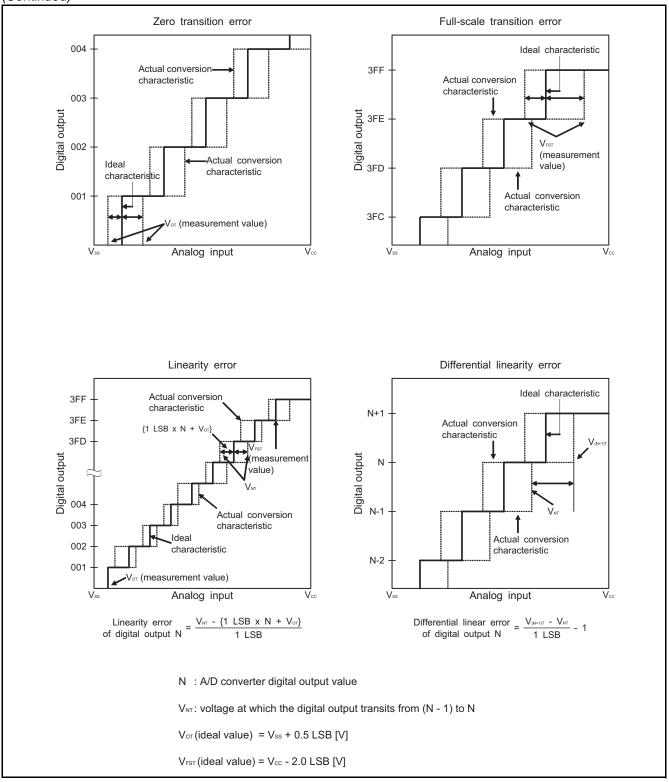
 The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.

• A/D conversion error


As $|V_{CC} - V_{SS}|$ decreases, the A/D conversion error increases proportionately.

(3) Definitions of A/D Converter Terms

• Resolution It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.


- Linearity error (unit : LSB)
 It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000" ← → "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111" ← → "11 1111 1110") of the same device.
- Differential linear error (unit : LSB) It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.
- Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

PRELIMINARY

MB95200H/210H Series

Parameter	Value			Unit	Bemarks	
Faidilielei	Min	Тур	Max	Omt	neillaiks	
Chip erase time		1 *1	15*²	S	00 ^H programming time prior to erasure is excluded.	
Byte programming time		32	3600	μs	System-level overhead is excluded.	
Erase/program voltage	9.5	10	10.5	V	The erase/program voltage must be applied to the RSTX pin in erase/program.	
Erase/program cycle	—	100000	—	cycle		
Power supply voltage at erase/ program	4.5		5.5	V		
Flash memory data retention time	20*3			year	Average $T_A = +85 \ ^{\circ}C$	

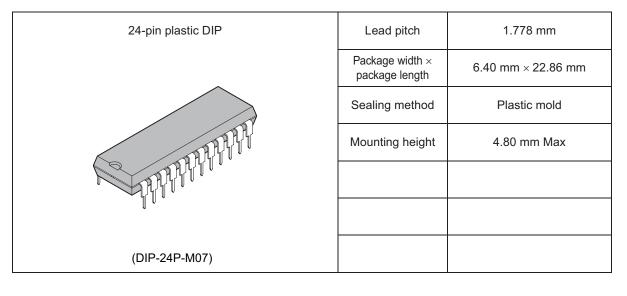
6. Flash Memory Program/Erase Characteristics

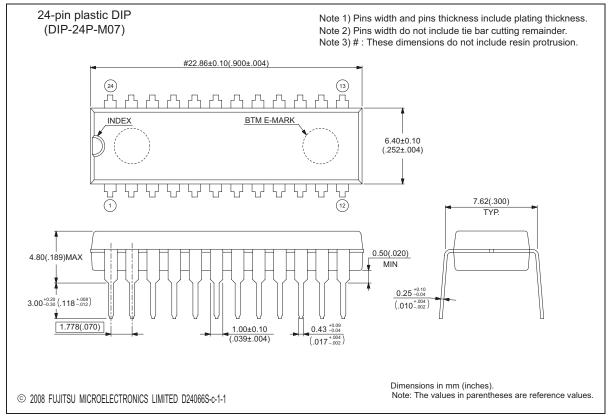
*1: $T_{\text{A}}=~+~25~^{\circ}\text{C},~V_{\text{CC}}=5.0$ V, 100000 cycles

*2: $T_A = +85 \ ^{\circ}C$, $V_{CC} = 4.5 \ V$, 100000 cycles

*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test by using the Arrhenius equation with the average temperature being +85 $^{\circ}$ C).

58

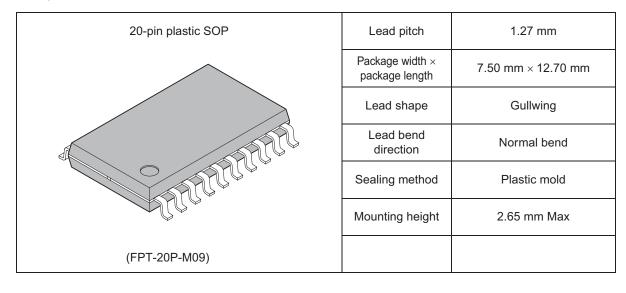

■ MASK OPTIONS

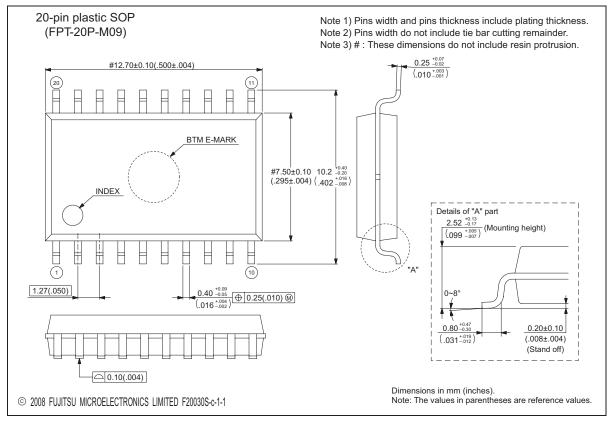

Part Number No.		MB95F204H MB95F203H MB95F202H MB95F214H MB95F213H MB95F212H	MB95F204K MB95F203K MB95F202K MB95F214K MB95F213K MB95F212K	
	Selection Method	Setting disabled	Setting disabled	
1	 Low-voltage detection reset With low-voltage detection reset Without low-voltage detection reset 	Without low-voltage detection reset	With low-voltage detection reset	
2	ResetWith dedicated reset inputWithout dedicated reset input	With dedicated reset input	Without dedicated reset input	

■ ORDERING INFORMATION

Part Number	Package
MB95F204HP-G-SH-SNE2 MB95F204KP-G-SH-SNE2 MB95F203HP-G-SH-SNE2 MB95F203KP-G-SH-SNE2 MB95F202HP-G-SH-SNE2 MB95F202KP-G-SH-SNE2	24-pin plastic SDIP (DIP-24P-M07)
MB95F204HPF-G-SNE2 MB95F204KPF-G-SNE2 MB95F203HPF-G-SNE2 MB95F203KPF-G-SNE2 MB95F202HPF-G-SNE2 MB95F202KPF-G-SNE2	20-pin plastic SOP (FPT-20P-M09)
MB95F214HPH-G-SNE2 MB95F214KPH-G-SNE2 MB95F213HPH-G-SNE2 MB95F213KPH-G-SNE2 MB95F212HPH-G-SNE2 MB95F212KPH-G-SNE2	8-pin plastic DIP (DIP-8P-M03)
MB95F214HPF-G-SNE2 MB95F214KPF-G-SNE2 MB95F213HPF-G-SNE2 MB95F213KPF-G-SNE2 MB95F212HPF-G-SNE2 MB95F212KPF-G-SNE2	8-pin plastic SOP (FPT-8P-M08)

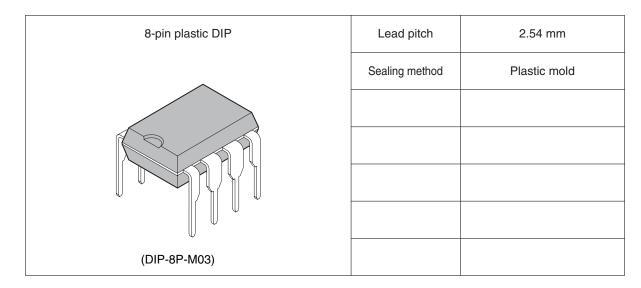
■ PACKAGE DIMENSIONS

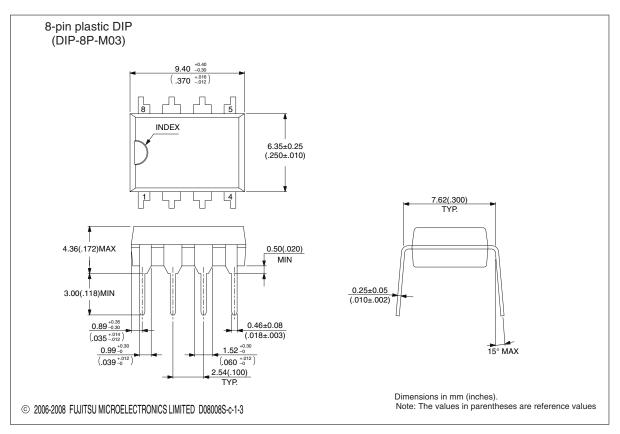



Please check the latest package dimensions at the following URL. http://edevice.fujitsu.com/package/en-search/

PRELIMINARY

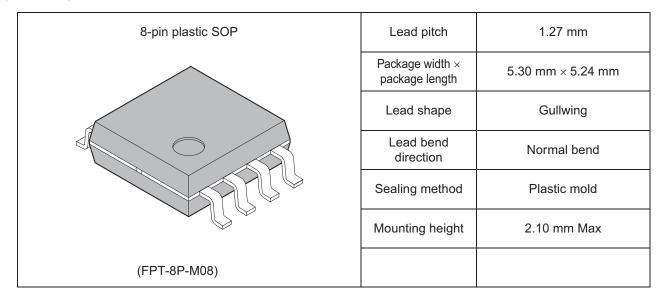
MB95200H/210H Series

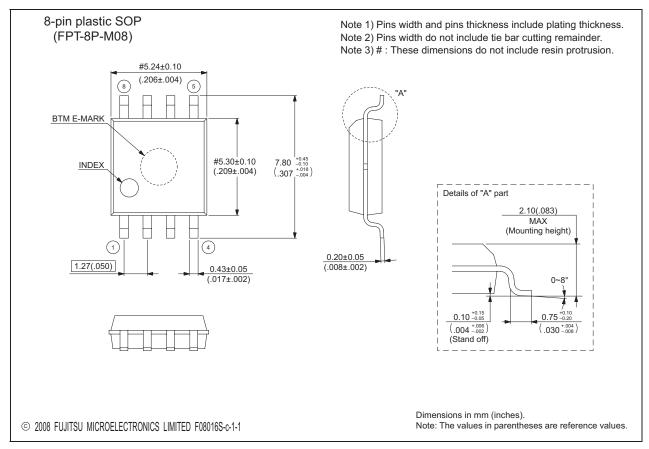

(Continued)



Please check the latest package dimensions at the following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)


FUITSU


Please check the latest package dimensions at the following URL. http://edevice.fujitsu.com/package/en-search/

PRELIMINARY

MB95200H/210H Series

(Continued)

Please check the latest package dimensions at the following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. 151 Lorong Chuan, #05-08 New Tech Park, Singapore 556741 Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road Tsimshatsui, Kowloon Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in

nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.