
Vishay High Power Products

High Performance Schottky Generation 5.0, 2 x 20 A

2 x 20 A

100 V

0.67 V

PRODUCT SUMMARY

I_{F(AV)}

 V_{R}

Maximum V_F at 20 A at 125 °C

FEATURES

- 175 °C high performance Schottky diode
- Very low forward voltage drop
- Extremely low reverse leakage
- Optimized V_F vs. I_R trade off for high efficiency
- · Increased ruggedness for reverse avalanche capability
- RBSOA available
- Negligible switching losses
- Submicron trench technology
- Fully lead (Pb)-free and RoHS compliant devices
- Designed and qualified for industrial level

APPLICATIONS

- High efficiency SMPS
- Automotive
- High frequency switching
- Output rectification
- Reverse battery protection
- Freewheeling
- · Dc-to-dc systems
- · Increased power density systems

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	VALUES	UNITS						
V _{RRM}		100	M						
V _F	20 Apk, T _J = 125 °C (typical, per leg)	0.63	v						
TJ	Range	- 55 to 175	°C						

VOLTAGE RATINGS									
PARAMETER	SYMBOL	TEST CONDITIONS	MBR40H100WT-F	UNITS					
Maximum DC reverse voltage	V _R	T _J = 25 °C	100	V					

ABSOLUTE MAXIMUM RATINGS										
PARAMETER		SYMBOL	TEST COND	TEST CONDITIONS						
Maximum averageper legforward currentper device			50 % duty cycle at $T_{\rm C}$ = 144 °C,	20						
		I _{F(AV)}	50% utily cycle at $1_{\rm C} = 144$ C,	40	А					
Maximum peak one cycle		I	5 μs sine or 3 μs rect. pulse	t. pulse Following any rated load condition and with rated						
non-repetitive surge current		I _{FSM}	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	200					
Non-repetitive avalanche energy		E _{AS}	$T_{J} = 25 \ ^{\circ}C, \ I_{AS} = 1.5 \ A, \ L = 60 \ m$	= 25 °C, I _{AS} = 1.5 A, L = 60 mH		mJ				
Repetitive avalanche current		I _{AR}	, , , ,	mited by frequency of operation and time pulse duration so at $T_J < T_J$ max. I_{AS} at T_J max. as a function of time pulse		A				

ROHS COMPLIANT

Vishay High Power Products

High Performance Schottky Generation 5.0, 2 x 20 A

ELECTRICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CONDITION	TYP.	MAX.	UNITS					
		20 A	T.I = 25 °C	0.72	0.8					
Forward voltage drop per leg	V _{FM} ⁽¹⁾	40 A	1J=25 C	0.85	0.9	ν μA mA pF				
	V FM (*)	20 A	T.I = 125 °C	0.63	0.67					
		40 A	1j=125 C	0.74	0.77					
Poweree lookage ourrent per log	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	1.2	50	μA				
Reverse leakage current per leg	IRM (1)	T _J = 125 °C	V _R = naleu V _R	2.5	6	mA				
Junction capacitance per leg	CT	$V_R = 5 V_{DC}$ (test signal range 100	850	-	pF					
Series inductance	L _S	Measured lead to lead 5 mm fro	8	-	nH					
Maximum voltage rate of change	dV/dt	Rated V _R	-	10 000	V/µs					

Note

 $^{(1)}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS									
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum junction and storage temperature rang	e	T _J , T _{Stg}		- 55 to 175	°C				
Maximum thermal resistance, junction to case per leg Maximum thermal resistance, junction to case per device		D		2					
		R _{thJC}	DC operation	1	°C/W				
Typical thermal resistance case to heatsink	9,	R _{thCS}		0.24					
Approvimate weight				6	g				
Approximate weight				0.21	oz.				
Mounting torque	minimum			6 (5)	kgf ⋅ cm				
	maximum			12 (10)	(lbf ⋅ in)				
Marking device			Case style TO-247AC	MBR40	H100WT				

High Performance Schottky Generation 5.0, 2 x 20 A

Vishay High Power Products

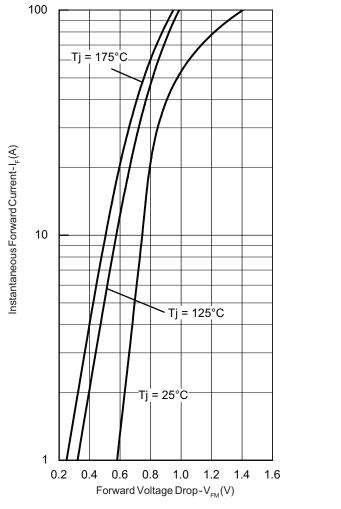


Fig. 1 - Maximum Forward Voltage Drop Characteristics

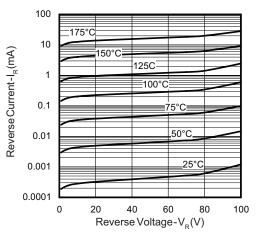


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

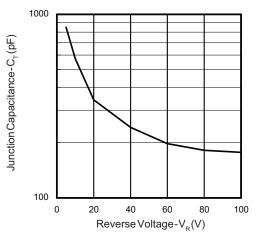
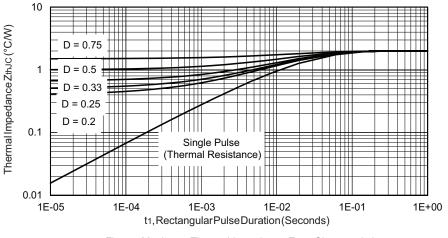
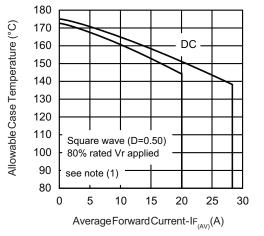
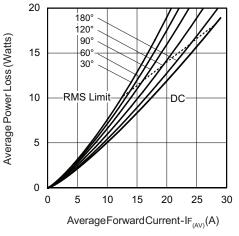


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Vishay High Power Products

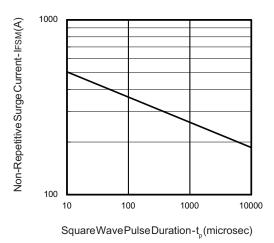
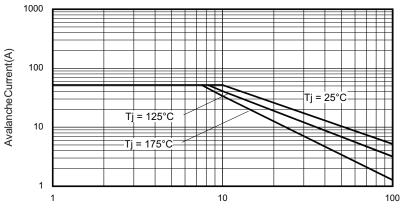


Fig. 7 - Maximum Non-Repetitive Surge Current

Note


 $^{(1)}$ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC};$ Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} =$ Inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at $V_{R1} = 80$ % rated V_R

High Performance Vishay Hig Schottky Generation 5.0, 2 x 20 A

Vishay High Power Products

RectangularPulseDuration(µsec)

Fig. 8 - Reverse Bias Safe Operating Area (Avalanche Current vs. Rectangular Pulse Duration)

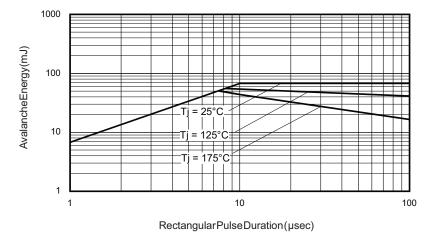
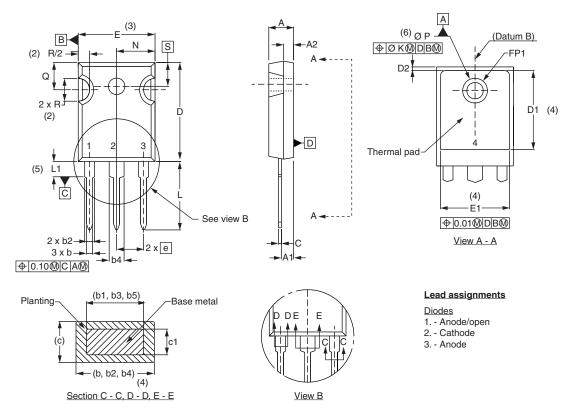


Fig. 9 - Reverse Bias Safe Operating Area (Avalanche Energy vs. Rectangular Pulse Duration)

Vishay High Power Products High Performance Schottky Generation 5.0, 2 x 20 A

ORDERING INFORMATION TABLE

							-	
$(\cdot$)	2	3	4	5		6	
1 2 3 4 5	- - - -	Cur H = Voli	ottky Mi rent rati High te tage coo = Circu	ng (40 = mperatu de (100 '	= 40 A) ıre V)	Center	tap (du	al) TO-247


LINKS TO RELATED DOCUMENTS					
Dimensions http://www.vishay.com/doc?95223					
Part marking information	http://www.vishay.com/doc?95007				

Outline Dimensions

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES SYMBOL		MILLIN	IETERS	INC	HES	NOTES	
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	5 31	STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
A	4.65	5.31	0.183	0.209			D2	0.51	1.30	0.020	0.051	
A1	2.21	2.59	0.087	0.102			Е	15.29	15.87	0.602	0.625	3
A2	1.50	2.49	0.059	0.098			E1	13.72	-	0.540	-	
b	0.99	1.40	0.039	0.055			e	5.46	BSC	0.215	5 BSC	
b1	0.99	1.35	0.039	0.053			FK	2.	54	0.0	010	
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.37	0.065	0.094			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			Ν	7.62	BSC	0	.3	
b5	2.59	3.38	0.102	0.133			ΦP	3.56	3.66	0.14	0.144	
С	0.38	0.86	0.015	0.034			Φ P1	-	6.98	-	0.275	
c1	0.38	0.76	0.015	0.030			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	1.78	0.216	
D1	13.08	-	0.515	-	4		S	5.51	BSC	0.217	' BSC	

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

(2) Contour of slot optional

(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

- ⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1
- ⁽⁵⁾ Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

⁽⁷⁾ Outline conforms to JEDEC outline TO-247 with exception of dimension c

Revision: 16-Jun-11

1

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.