1N5829, 1N5830 1N5831 MBR5831,H, H1

Designers Data Sheet

HOT CARRIER POWER RECTIFIERS

... employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Extremely Low v_F
- Low Power Loss/High Efficiency
- Low Stored Charge, Majority
 High Surge Capacity

 - Carrier Conduction
- TX Version Available

Designer's Data for "Worst Case" Conditions

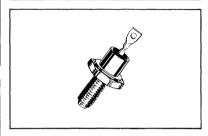
The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

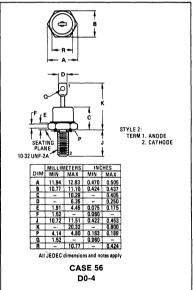
*MAXIMUM RATINGS

Rating	Symbol	1N 5829	1N 5830	1N 5831 MBR 5831H,H1	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	48	Volts
Average Rectified Forward Current VR(equiv) ≤ 0.2 VR (dc), T _C = 85°C	lo	25			Amp
Ambient Temperature Rated VR (dc), PF(AV) = 0 R ₀ JA = 3.5°C/W	TA	90	85	80	°C
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase 60 Hz)	IFSM	800 (for 1 cycle)			Amp
Operating and Storage Junction Temperature Range (Reverse voltage applied	Г _Ј , Т _{stg}	-65 to +125			°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	-	 150		°C

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta}$ JC	1.75	°C/W


*FLECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)


Characteristic	Symbol	1N 5829	1 N 5830	1N 5831 MBR 5831H, H1	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(if = 10 Amp)		0.360	0.370	0.380	
(i _F = 25 Amp)		0.440	0.460	0.480	
(i _F = 78.5 Amp)		0.720	0.770	0.820	
Maximum Instantaneous Reverse	iR				mA
Current @ Rated dc Voltage (1)		20	20	20	
(T _C = 100°C)		150	150	150	

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0% *Indicates JEDEC Registered Data for 1N5829-1N5831

SCHOTTKY BARRIER RECTIFIERS

25 AMPERE 20, 30, 40 VOLTS

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion resistant and terminal leads are readily solderable.

POLARITY: Cathode to Case MOUNTING POSITIONS: Any STUD TORQUE: 15 in, lb. Max

1N5829, 1N5830, 1N5831, MBR5831H, H1

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 V_{RWM}. Proper derating may be accomplished by use of equation (1):

$$T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$$
 (1) where

TA(max) = Maximum allowable ambient temperature

T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs whichever is lowest)

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

R_{0.JC} = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

 $T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$

Inspection of equations (2) and (3) reveals that T_R is the ambient temperature at which thermal runaway occurs or where $T_J=125^{\circ}C$, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and

3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

$$V_{R(equiv)} = V_{in(PK)} \times F$$
 (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find $T_{A(max)}$ for 1N5831 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that I_{DC} = 16 A (IF(AV) = 8 A), I(PK)/I(AV) = 20, Input Voltage = 10 V(rms), $R_{\theta}J_{A} = 5^{\circ}C/W$.

Step 1: Find V_{R(equiv)}. Read F = 0.65 from Table I ...

VR(equiv) = (1.41)(10)(0.65) = 9.18 V

Step 2: Find T_R from Figure 3. Read T_R = 113°C @ V_R = 9.18 & $R_{\theta JA} = 5$ °C/W

Step 4: Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 113-(5)$ (12.8) = 49°C

** Value given are for the 1N5828. Power is slightly lower for the other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F

(3)

Circuit	Half	Wave	Full Wave, Bridge		Full Wave, Center Tapped * †	
Load	Resistive	Capacitive *	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

*Note that $V_{R(PK)} \approx 2 V_{in(PK)}$

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - 1N5829

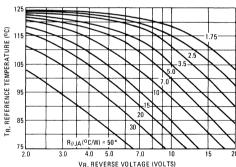
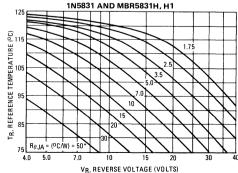



FIGURE 3 – MAXIMUM REFERENCE TEMPERATURE

*No external heat sink.

*†Use line to center tap voltage for V_{in}.

FIGURE 2 — MAXIMUM REFERENCE TEMPERATURE — 1N5830

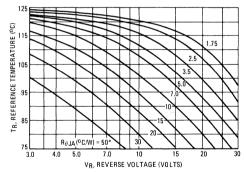


FIGURE 4 - FORWARD POWER DISSIPATION

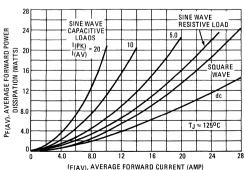
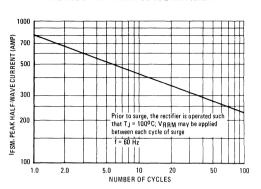
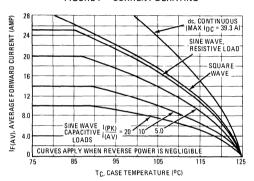
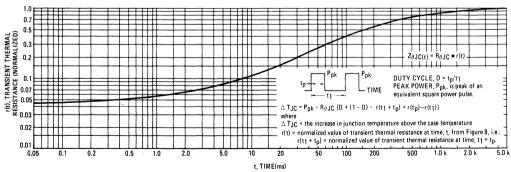
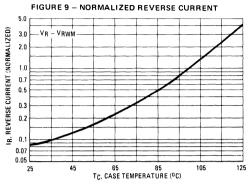
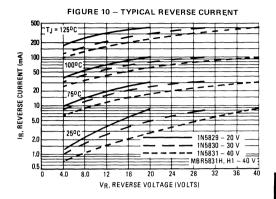


FIGURE 5 - TYPICAL FORWARD VOLTAGE

FIGURE 6 - MAXIMUM SURGE CAPABILITY


FIGURE 7 - CURRENT DERATING

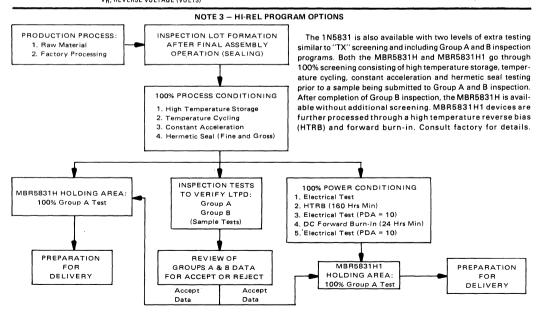


FIGURE 11 - CAPACITANCE ennr 4000 宣3000 , CAPACITANCE (12000 1000 1N5829 1000 800 600 MBR5831H H1 0.04 0.06 0.1 10 20 0.4 0.6 1.0 2.0 4.0 6.0 40 VR, REVERSE VOLTAGE (VOLTS)

NOTE 2 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

