Product Preview # **SWITCHMODE Power Rectifier** #### **Features and Benefits** - Low Forward Voltage - Low Power Loss / High Efficiency - High Surge Capacity - 175°C Operating Junction Temperature - 20 A Total (10 A Per Diode Leg) - This is a Pb-Free Device #### **Applications** - Power Supply Output Rectification - Power Management - Instrumentation #### **Mechanical Characteristics** - Case: Epoxy, Molded - Epoxy Meets UL 94, V-0 @ 0.125 in - Weight: 1.9 Grams (Approximately) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds - ESD Rating: Human Body Model = 3B Machine Model = C This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice. #### ON Semiconductor® http://onsemi.com # SCHOTTKY BARRIER RECTIFIER 20 AMPERES, 45 VOLTS #### MARKING DIAGRAM A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package AKA = Diode Polarity #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. 1 ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|--|-------------|------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 45 | V | | Average Rectified Forward Current Per Device Per Diode (T _C = 165°C) | I _{F(AV)} | 20
10 | А | | Peak Repetitive Forward Current per Diode Leg (Square Wave, 20 kHz, T _C = 163°C) | I _{FRM} | 20 | A | | Non-Repetitive Peak Surge Current
(Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) | I _{FSM} | 150 | Α | | Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)
See Figure 11 | I _{RRM} | 1.0 | Α | | Storage Temperature Range | T _{stg} | -65 to +175 | °C | | Operating Junction Temperature (Note 1) | TJ | -65 to +175 | °C | | Voltage Rate of Change (Rated V _R) | dv/dt | 10,000 | V/μs | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---------------------------------------|-----------------|-------|------| | Maximum Thermal Resistance | | | °C/W | | Junction-to-Case | $R_{ heta JC}$ | 4.3 | | | Junction-to-Ambient | $R_{\theta JA}$ | 105 | | #### **ELECTRICAL CHARACTERISTICS** | Characteristic | Symbol | Min | Тур | Max | Unit | |---|--------|-------------|----------------------|----------------------|------| | Instantaneous Forward Voltage (Note 2)
($i_F = 10 \text{ Amps}, T_J = 125^{\circ}\text{C}$)
($i_F = 20 \text{ Amps}, T_J = 125^{\circ}\text{C}$)
($i_F = 20 \text{ Amps}, T_J = 25^{\circ}\text{C}$) | VF | -
-
- | 0.50
0.67
0.71 | 0.57
0.72
0.84 | V | | Instantaneous Reverse Current (Note 2) (Rated dc Voltage, T _J = 125°C) (Rated dc Voltage, T _J = 25°C) | İR | -
- | 10.4
0.02 | 15
0.1 | mA | ^{2.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%. #### **DEVICE ORDERING INFORMATION** | Device Order Number | Package Type | Shipping [†] | |---------------------|-----------------------|-----------------------| | MBRJ2045CTG | TO-220FP
(Pb-Free) | 50 Units / Rail | Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage Figure 3. Typical Reverse Current **Figure 4. Maximum Reverse Current** IF(AV), AVERAGE FORWARD CURRENT (AMPS) dc 16 14 12 10 SQUARE WAVE 8.0 6.0 4.0 2.0 0 165 170 140 145 150 155 160 175 180 T_C, CASE TEMPERATURE (°C) Figure 5. Maximum Surge Capability Figure 6. Current Derating, Case, Per Leg Figure 7. Current Derating, Ambient, Per Leg Figure 8. Forward Power Dissipation Figure 9. Typical Transient Thermal Response, Junction-to-Case #### HIGH FREQUENCY OPERATION Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.) Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage. Figure 10. Typical Capacitance +150 V, 10 mAdc Figure 11. Test Circuit for dv/dt and Reverse Surge Current #### PACKAGE DIMENSIONS #### TO-220 FULLPACK, 3-LEAD CASE 221AH ISSUE C #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - 3. CONTOUR UNCONTROLLED IN THIS AREA. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY. DIMENSION 62 DOES NOT INCLUDE DAMBAR - PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00. | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 4.30 | 4.70 | | | A1 | 2.50 | 2.90 | | | A2 | 2.50 | 2.70 | | | b | 0.54 | 0.84 | | | b2 | 1.10 | 1.40 | | | С | 0.49 | 0.79 | | | D | 14.70 | 15.30 | | | Е | 9.70 | 10.30 | | | е | 2.54 BSC | | | | H1 | 6.70 | 7.10 | | | L | 12.70 | 14.73 | | | L1 | | 2.80 | | | P | 3.00 | 3.40 | | | Q | 2.80 | 3.20 | | FULLPAK is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implications to be below or other applications. surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative