Bulletin PD-20788 07/04

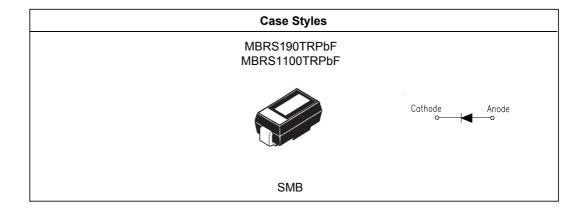
# International

### SCHOTTKY RECTIFIER

## MBRS190TRPbF MBRS1100TRPbF

#### 1 Amp

I<sub>F(AV)</sub> = 1.0Amp V<sub>R</sub> = 90-100V


#### Major Ratings and Characteristics

| Characteristics                                | Value       | Units |
|------------------------------------------------|-------------|-------|
| I <sub>F(AV)</sub> Rectangular waveform        | 1.0         | А     |
| V <sub>RRM</sub>                               | 90 - 100    | V     |
| I <sub>FSM</sub> @tp=5µssine                   | 870         | А     |
| V <sub>F</sub> @1.0 Apk, T <sub>J</sub> =125°C | 0.63        | V     |
| T <sub>J</sub> range                           | - 55 to 175 | °C    |

#### **Description/ Features**

The MBRS190TRPbF, MBRS1100TRPbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)



www.irf.com

1

#### MBRS190TRPbF, MBRS1100TRPbF

Bulletin PD-20788 07/04

## International **IOR** Rectifier

#### Voltage Ratings

| Part number                                            | MBRS190TRPbF | MBRS1100TRPbF |
|--------------------------------------------------------|--------------|---------------|
| V <sub>R</sub> Max. DC Reverse Voltage (V)             | 90           | 100           |
| V <sub>RWM</sub> Max. Working Peak Reverse Voltage (V) |              |               |

#### Absolute Maximum Ratings

|                    | Parameters                         | Value | Units | Conditions                                                                                                         |                                           |
|--------------------|------------------------------------|-------|-------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| I <sub>F(AV)</sub> | Max. Average Forward Current       | 1.0   | A     | 50% duty cycle @ T <sub>L</sub> = 147 °C, rectangular wave for                                                     |                                           |
| I <sub>FSM</sub>   | Max. Peak One Cycle Non-Repetitive | 870   | A     | 5µs Sine or 3µs Rect. pulse                                                                                        | Following any rated<br>load condition and |
|                    | Surge Current                      | 50    |       | 10ms Sine or 6ms Rect. pulse                                                                                       | with rated V <sub>RRM</sub> applied       |
| E <sub>AS</sub>    | Non-Repetitive Avalanche Energy    | 1.0   | mJ    | T <sub>J</sub> =25°C, I <sub>AS</sub> =0.5A, L=8mH                                                                 |                                           |
| IAR                | Repetitive Avalanche Current       | 0.5   | A     | Current decaying linearly to zero in 1 $\mu$ sec<br>Frequency limited by T <sub>J</sub> max. Va = 1.5 x Vr typical |                                           |

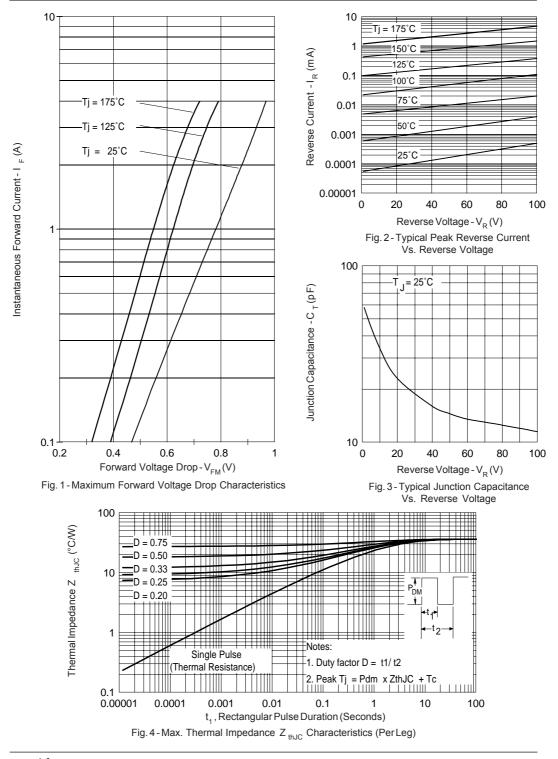
#### **Electrical Specifications**

|                 | Parameters                       | Value | Units |                                                           | Conditions              |
|-----------------|----------------------------------|-------|-------|-----------------------------------------------------------|-------------------------|
| V <sub>FM</sub> | Max. Forward Voltage Drop (1)    | 0.78  | V     | @ 1A                                                      | $T_J = 25 \degree C$    |
|                 | * See Fig. 1                     | 0.62  | V     | @ 1A                                                      | T <sub>J</sub> = 125 °C |
| I <sub>RM</sub> | Max. Reverse Leakage Current (1) | 0.5   | mA    | T <sub>J</sub> = 25 °C                                    | V = rotod V             |
|                 | * See Fig. 2                     | 1.0   | mA    | T <sub>J</sub> = 125 °C                                   | $V_R = rated V_R$       |
| CT              | Typical Junction Capacitance     | 42    | pF    | $V_R = 5V_{DC}$ , (test signal range 100kHz to 1MHz) 25°C |                         |
| L <sub>s</sub>  | Typical Series Inductance        | 2.0   | nH    | Measured lead to lead 5mm from package body               |                         |
| dv/dt           | Max. Volatge Rate of Charge      | 10000 | V/ µs |                                                           |                         |
|                 | (Rated V <sub>R</sub> )          |       |       |                                                           |                         |

(1) Pulse Width < 300 $\mu$ s, Duty Cycle < 2%

#### **Thermal-Mechanical Specifications**

|                   | Parameters                                       | Value       | Units   | Conditions                |
|-------------------|--------------------------------------------------|-------------|---------|---------------------------|
| Τ <sub>J</sub>    | Max. Junction Temperature Range (*)              | - 55 to 175 | °C      |                           |
| T <sub>stg</sub>  | Max. Storage Temperature Range                   | - 55 to 175 | °C      |                           |
| $R_{thJL}$        | Max. Thermal Resistance<br>Junction to Lead (**) | 36          | °C/W    | DC operation (See Fig. 4) |
| R <sub>thJA</sub> | Max. Thermal Resistance<br>Junction to Ambient   | 80          | °C/W    | DC operation              |
| wt                | Approximate Weight                               | 0.10(0.003) | g (oz.) |                           |
|                   | Case Style                                       | SMB         |         | Similar to DO-214AA       |
|                   | Device Marking                                   | IR19-IR10   |         |                           |


 $\binom{*}{dTj} \frac{dPtot}{dTj} < \frac{1}{Rth(j-a)} \qquad thermal \ runaway \ condition \ for \ a \ diode \ on \ its \ own \ heatsink$ 

(\*\*) Mounted 1 inch square PCB

# International

#### MBRS190TRPbF, MBRS1100TRPbF

Bulletin PD-20788 07/04



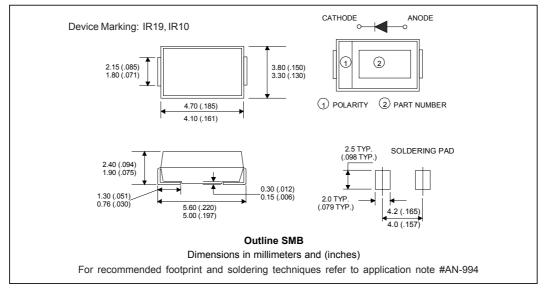
www.irf.com

Bulletin PD-20788 07/04

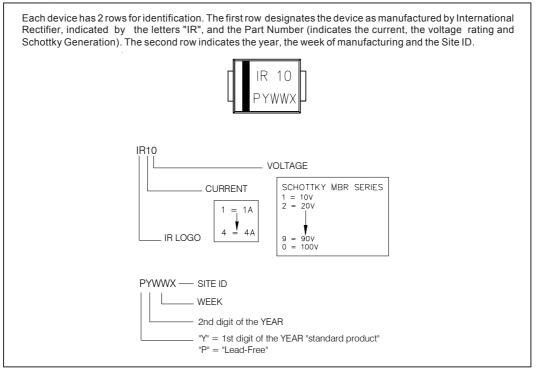
Allowable Lead Temperature (°C)

1.5

180 1 D = 0.20D = 0.20 D = 0.25170 D = 0.25 Average Power Loss (Watts) DC 0.8 -D = 0.33 D = 0.33 D = 0.50 160 D = 0.50 D = 0.75 D = 0.750.6 150 140 RMS Limit nc 0.4 Square wave (D = 0.50) 130 Rated Vr applied 0.2 120 see note (2) 110 0 0 0.4 0.8 1.2 1.6 0 0.3 0.6 0.9 1.2 Average Forward Current - I F(AV) (A) Average Forward Current - I  $_{F(AV)}(A)$ Fig. 4 - Maximum Average Forward Current Fig. 5 - Maximum Average Forward Dissipation Vs. Allowable Lead Temperature Vs. Average Forward Current 1000 Non-Repetitive Surge Current - I <sub>FSM</sub> €100 <del>∏]</del>||| At Any Rated Load Condition And With rated Vrrm Applied Following Surge 10 10 100 1000 10000 Square Wave Pulse Duration -  $T_p$  (Microsec)


Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used:  $T_C = T_J - (Pd + Pd_{REV}) x R_{thJC}$ ;  $Pd = Forward Power Loss = I_{F(AV)} x V_{FM} @ (I_{F(AV)} / D) (see Fig. 6);$  $Pd_{REV}$  = Inverse Power Loss =  $V_{R1} \times I_R (1-D)$ ;  $I_R @ V_{R1}$  = 80% rated  $V_R$ 


# International

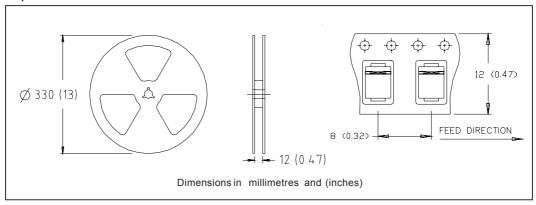
Bulletin PD-20788 07/04

#### **Outline Table**

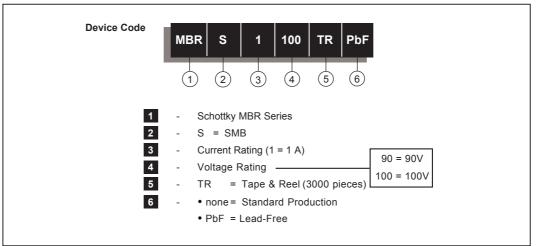


#### Marking & Identification




www.irf.com

#### MBRS190TRPbF, MBRS1100TRPbF


International

Tape & Reel Information

Bulletin PD-20788 07/04



#### Ordering Information Table



Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 07/04

www.irf.com