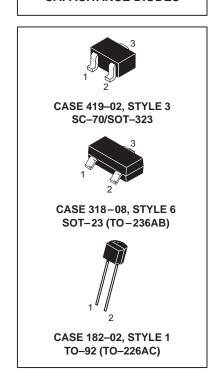

Silicon Epicap Diodes

Designed for general frequency control and tuning applications; providing solid–state reliability in replacement of mechanical tuning methods.

- High Q with Guaranteed Minimum Values at VHF Frequencies
- · Controlled and Uniform Tuning Ratio
- · Available in Surface Mount Package


MAXIMUM RATINGS

Rating	Symbol	MBV109T1	MMBV109LT1	MV209	Unit
Reverse Voltage	VR		Vdc		
Forward Current	ΙF		mAdc		
Forward Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	280 2.8	200 2.0	200 1.6	mW mW/°C
Junction Temperature	TJ		°C		
Storage Temperature Range	T _{stg}	-55 to +150			°C

MBV109T1 MMBV109LT1* MV209*

* Motorola Preferred Devices

26–32 pF VOLTAGE VARIABLE CAPACITANCE DIODES

DEVICE MARKING

MBV109T1 = J4A, MMBV109LT1 = M4A, MV209 = MV209

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μAdc)	V(BR)R	30	_	_	Vdc
Reverse Voltage Leakage Current (V _R = 25 Vdc)	IR	_	_	0.1	μAdc
Diode Capacitance Temperature Coefficient (V _R = 3.0 Vdc, f = 1.0 MHz)	TCC	_	300	_	ppm/°C

	C _t , Diode Capacitance V _R = 3.0 Vdc, f = 1.0 MHz pF			Q, Figure of Merit V _R = 3.0 Vdc f = 50 MHz	C _R , Capacitance Ratio C ₃ /C ₂₅ f = 1.0 MHz (Note 1)	
Device	Min	Nom	Max	Min	Min	Max
MBV109T1, MMBV109LT1, MV209	26	29	32	200	5.0	6.5

^{1.} C_R is the ratio of C_t measured at 3 Vdc divided by C_t measured at 25 Vdc.

MMBV109LT1 is also available in bulk packaging. Use MMBV109L as the device title to order this device in bulk.

Preferred devices are Motorola recommended choices for future use and best overall value.

(Replaces MMBV109LT1/D)

MBV109T1 MMBV109LT1 MV209

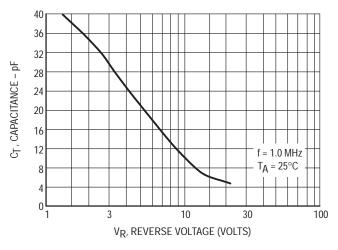


Figure 1. DIODE CAPACITANCE

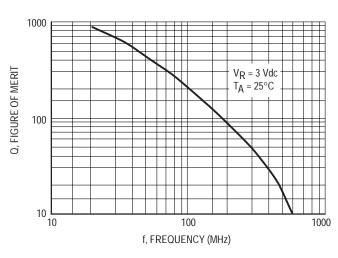


Figure 2. FIGURE OF MERIT

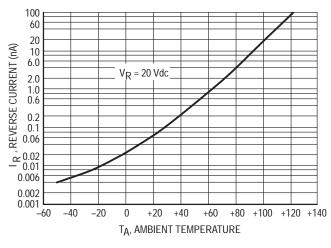


Figure 3. LEAKAGE CURRENT

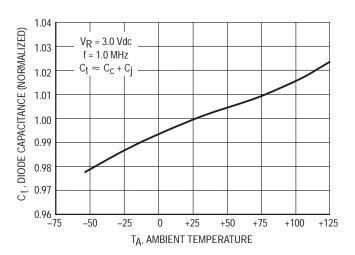


Figure 4. DIODE CAPACITANCE

NOTES ON TESTING AND SPECIFICATIONS

1. C_R is the ratio of C_t measured at 3.0 Vdc divided by C_t measured at 25 Vdc.