

2.5V, 3.3V ECL/LVPECL/LVDS Dual Differential 2:1 Multiplexer

MC100ES6056

NRND

NRND - Not Recommend for New Designs

DATASHEET

Product Discontinuance Notice – Last Time Buy Expires on (12/23/2013)

The MC100ES6056 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or other skew sensitive signals. Multiple V_{BB} pins are provided.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

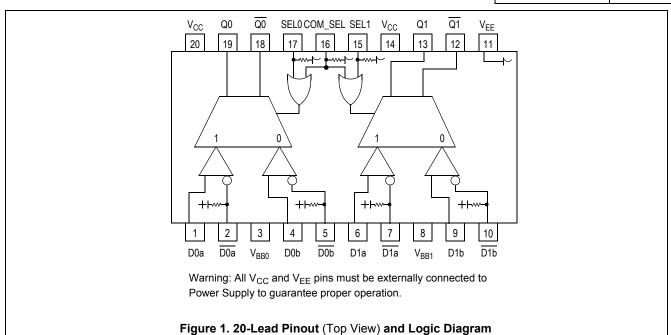
The device features both individual and common select inputs to address both data path and random logic applications.

The 100ES Series contains temperature compensation.

Features

- · 360 ps Typical Propagation Delays
- Maximum Frequency > 3 GHz Typical
- PECL Mode Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.8 V with $V_{EE} = 0 \text{ V}$
- ECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- · Open Input Default State
- · Separate and Common Select
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- V_{BB} Outputs
- · LVDS Input Compatible
- 20-Lead Pb-Free Package Available

DT SUFFIX 20-LEAD TSSOP PACKAGE CASE 948E-03



EJ SUFFIX 20-LEAD TSSOP PACKAGE Pb-FREE PACKAGE CASE 948E-03

EG SUFFIX 20-LEAD SOIC PACKAGE Pb-FREE PACKAGE CASE 751D-07

ORDERING INFORMATION						
Device	Package					
MC100ES6056DT	TSSOP-20					
MC100ES6056DTR2	TSSOP-20					
MC100ES6056EJ	TSSOP-20 (Pb-Free)					
MC100ES6056EJR2	TSSOP-20 (Pb-Free)					
MC100ES6056EG MC100ES6056EGR2	SOIC-20 (Pb-Free) SOIC-20 (Pb-Free)					

Table 1. Pin Description

Pin	Function
D0a* – D1a*	ECL Input Data a
D0a* – D1a*	ECL Input Data a Invert
D0b* – D1b*	ECL Input Data b
D0b* - D1b*	ECL Input Data b Invert
SEL0* – SEL1*	ECL Indiv. Select Input
COM_SEL*	ECL Common Select Input
V _{BB0} , V _{BB1}	Output Reference Voltage
Q0 – Q1	ECL True Outputs
<u>Q0</u> – <u>Q1</u>	ECL Inverted Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply

Input function will default LOW when left open.

Table 2. Function Table

SEL0	SEL1	COM_SEL	Q0, Q0	Q1, Q1
X	Х	Н	а	а
L	L	L	b	b
L	Н	L	b	а
Н	Н	L	а	а
Н	L	L	а	b

Table 3. General Specifications

	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor	75 kΩ	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 4 kV > 400 V > 2 kV
Thermal Resistance (Junction-to-Ambient)	nermal Resistance 0 LFPM, 20 TSSOP	

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 4. DC Characteristics ($V_{CC} = 0 \text{ V}, V_{EE} = -2.5 \text{ V} \pm 5\% \text{ or } 3.8 \text{ V to } -3.135 \text{ V}; V_{CC} = 2.5 \text{ V} \pm 5\% \text{ or } 3.135 \text{ V to } 3.8 \text{ V}, V_{EE} = 0 \text{ V})$

Symbol	Characteristics	-40°C			0°C to 85°C			Unit
Syllibol		Min	Тур	Max	Min	Тур	Max	Oilit
I _{EE}	Power Supply Current		30	60		30	60	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} –1150	V _{CC} -1020	V _{CC} -800	V _{CC} –1200	V _{CC} –970	V _{CC} -750	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	V _{CC} –1950	V _{CC} -1620	V _{CC} –1250	V _{CC} –2000	V _{CC} -1680	V _{CC} –1300	mV
V _{IH}	Input HIGH Voltage	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V_{BB}	Output Reference Voltage	V _{CC} -1380	V _{CC} -1290	V _{CC} -1220	V _{CC} -1380	V _{CC} -1290	V _{CC} -1200	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.15		1.3	0.15		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{CC} -2.3		V _{CC} -0.8	V _{CC} -2.3		V _{CC} -0.8	V
I _{IH}	Input HIGH Current			150			150	μΑ
I _{IL}	Input LOW Current	-200			-200			μА

^{1.} Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase. 2. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

Table 5. Absolute Maximum Ratings⁽¹⁾

Symbol	Characteristic	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} - 0.3	V
I _{OUT}	Output Current	Continuous Surge	50 100	mA mA
I _{BB}	V _{BB} Sink/Source Current		±0.5	°C
T _A	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		-65 to +150	°C

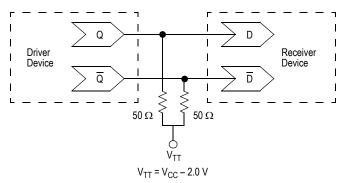
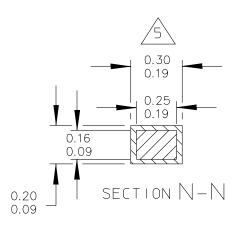
^{1.} Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

^{3.} V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the $V_{\mbox{\footnotesize{PP}}}$ (DC) specification.

Table 6. AC Characteristics (V_{CC} = 0 V; V_{EE} = -2.5 V ± 5% or -3.8 V to -3.135 V; V_{CC} = 2.5 V ± 5% or 3.135 V to 3.8 V; V_{EE} = 0 V)⁽¹⁾

		_				
Symbol	Characteristics		Min	Тур	Max	Unit
f _{max}	Maximum Frequency			> 3		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	D to Q, \overline{Q} SEL to Q, \overline{Q} COM_SEL to Q, \overline{Q}	300	400 430 490	500 600 650	ps ps ps
t _{SKEW}	Skew	Output-to-Output ⁽²⁾ Part-to-Part		10	50 200	ps ps
t _{JITTER}	Cycle-to-Cycle Jitter	RMS (1σ)			1	ps
V_{PP}	Minimum Input Swing		200	800	1200	mV
V_{CMR}	Differential Cross Point Voltage		V _{CC} -2.1		V _{CC} -1.1	V
t_r / t_f	Output Rise/Fall Time (20%–80%)		70	120	230	ps

- 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}-2.0 V.
- 2. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

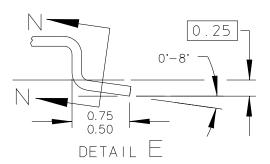


Figure 2. Typical Termination for Output Driver and Device Evaluation

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:	20 I D TSSTP PITCH 0.45MM]: 98ASH70169A	RE∨: B
20 LD TSSOP, PITC			CASE NUMBER: 948E-03 09 M	
		STANDARD: JE	DEC	

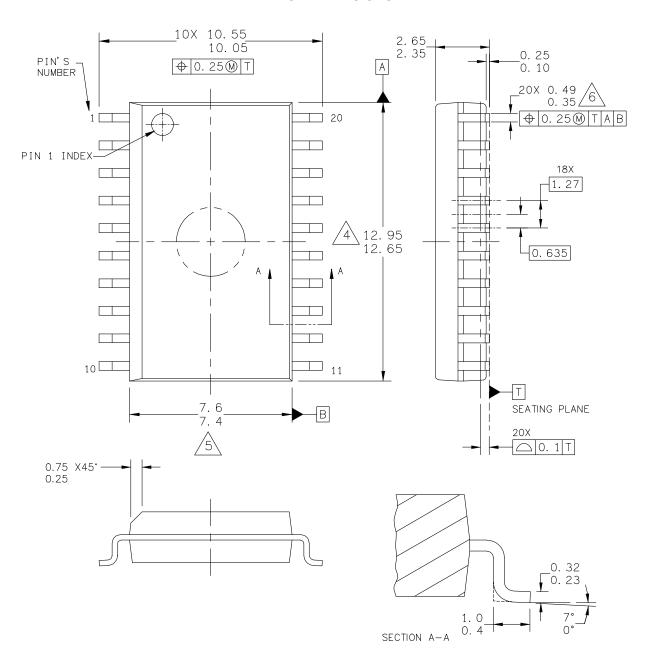
CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

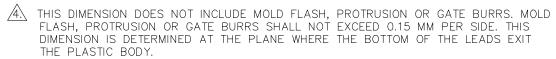
DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.


6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

7	DIMENSIONS	ARE	ТО	BE	DETERMINED	ΑТ	DATUM	PLANE	-W-
---	------------	-----	----	----	------------	----	-------	-------	-----

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHA		MECHANICA	L OUTLINE	PRINT VERSION NO	TO SCALE	
TITLE:				DOCUMENT NO	: 98ASH70169A	RE√: B
	20 LD TSSOP,	PITCH	0.65MM	CASE NUMBER	: 948E-03	09 MAR 2005
				STANDARD: JE	DEC	

CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	OT TO SCALE
TITLE:	DOCUMENT NO): 98ASB42343B	REV: J	
20LD SOIC W/B, 1.	CASE NUMBER	R: 751D-07	23 MAR 2005	
CASE-001E1	CASE-OUTLINE			

CASE 751D-07 ISSUE J 20-LEAD SOIC PACKAGE

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.

THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.

THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. MECHANICA		L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH,		CASE NUMBER: 751D-07 23 MAR 200		
CASE OUTEIN	STANDARD: JE	EDEC MS-013AC		

CASE 751D-07 ISSUE J 20-LEAD SOIC PACKAGE

Revision History Sheet

Rev	Table	Page	Description of Change	Date
6		1	NRND – Not Recommend for New Designs	12/19/12
6		1	Product Discontinuance Notice – Last Time Buy Expires on (12/23/2013)	2/26/13

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/