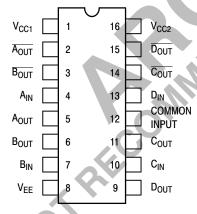

Quad OR/NOR Gate

The MC10101 is a quad 2-input OR/NOR gate with one input from each gate common to pin 12.


- P_D = 25 mW typ/gate (No Load)
- $t_{pd} = 2.0 \text{ ns typ}$
- t_r , $t_f = 2.0$ ns typ (20%–80%)

LOGIC DIAGRAM

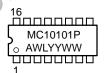
 V_{CC1} = PIN 1 V_{CC2} = PIN 16 V_{EE} = PIN 8

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com



CDIP-16 L SUFFIX CASE 620

PDIP-16 P SUFFIX CASE 648

PLCC-20 FN SUFFIX CASE 775

A = Assembly Location

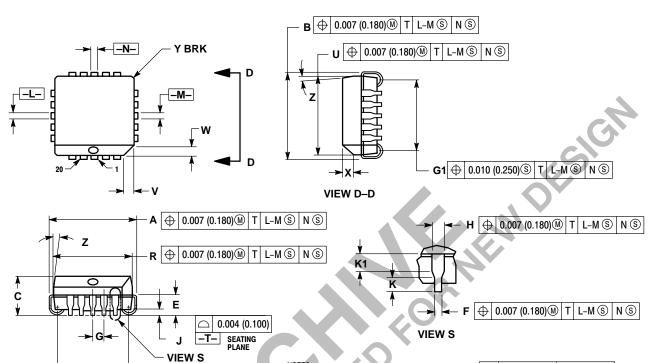
WL = Wafer Lot YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping		
MC10101L	CDIP-16	25 Units / Rail		
MC10101P	PDIP-16	25 Units / Rail		
MC10101FN	PLCC-20	46 Units / Rail		

ELECTRICAL CHARACTERISTICS

Symbol	Pin	Test Limits							
Symbol	Under	-30	0°C +25°C			+85°C			
	Test	Min	Max	Min	Тур	Max	Min	Max	Uni
Ι _Ε	8		29		20	26		29	mAd
I _{inH}	4 12		425 850			265 535		265 535	μAd
I _{inL}	4 12	0.5 0.5		0.5 0.5			0.3 0.3		μAd
V _{OH}	5 5	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdd
	2 2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	
V _{OL}	5	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdd
	2 2	-1.890 -1.890	-1.675 -1.675	-1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	
V _{OHA}	5	-1.080 -1.080		-0.980			-0.910 -0.910		Vdd
	2	-1.080		-0.980			-0.910		
V _{OLA}	5		-1.655			-1.630 1.630		-1.595	Vdd
	2 2		-1.655 -1.655 -1.655			-1.630 -1.630 -1.630		-1.595 -1.595 -1.595	
									ns
t ₄₊₂₋ t ₄₋₂₊	2 2	1.0 1.0	3.1 3.1	1.0 1.0	2.0	2.9 2.9	1.0 1.0	3.3 3.3	
t ₄₊₅₊ t ₄₋₅₋	5 5	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	
t ₂₊ t ₅₊	2 5	1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	
t ₂₋	2 5	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	
	VOLA VOHA VOLA t4+2- t4-2+ t4+5+ t4-5- t2+ t5+	VOH 5 5 2 2 2 VOL 5 5 2 2 2 VOHA 5 5 2 2 2 VOLA 5 5 2 2 2 VOLA 5 5 2 2 2 t4+2- 2 t4-2+ 2 t4+5+ 5 t4-5- 5 t2+ t5+ 5 t2- 5	VOH 5 -1.060 -1.060 2 -1.060 2 -1.060 2 -1.060 2 -1.060	Voh 5 -1.060 -0.890 2 -1.060 -0.890 2 -1.060 -0.890 2 -1.060 -0.890 2 -1.060 -0.890 Vol 5 -1.890 -1.675 5 -1.890 -1.675 2 -1.890 -1.675 2 -1.890 -1.675 2 -1.890 -1.675 Voha 5 -1.080 2 -1.080 2 -1.080 2 -1.080 Vola 5 -1.655 2 -1.655	Voh 5	VOH	Voh 5	VOH 5 -1.060 -0.890 -0.960 -0.810 -0.890 5 -1.060 -0.890 -0.960 -0.810 -0.890 2 -1.060 -0.890 -0.960 -0.810 -0.890 VOL 5 -1.890 -1.675 -1.850 -1.650 -1.825 5 -1.890 -1.675 -1.850 -1.650 -1.825 2 -1.890 -1.675 -1.850 -1.650 -1.825 2 -1.890 -1.675 -1.850 -1.650 -1.825 2 -1.890 -1.675 -1.850 -1.650 -1.825 VOHA 5 -1.080 -0.980 -0.980 -0.910 -0.910 2 -1.080 -0.980 -0.980 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630	VOH 5 -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 5 -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 2 -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 VOL 5 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 5 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 VOHA 5 -1.080 -0.980 -0.980 -0.910 -0.910 2 -1.080 -0.980 -1.630 -1.595 -1.595 2 -1.655 -1.655 -1.630 -1.595 2 -1.655 -1.655


ELECTRICAL CHARACTERISTICS (continued)

				TEST VOLTAGE VALUES (Volts)					
		@ Test Te	mperature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
Pin			TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
Characteristic		Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain Current		Ι _Ε	8					8	1, 16
Input Current		l _{inH}	4 12	4 12				8 8	1, 16 1, 16
		l _{inL}	4 12		4 12			8 8	1, 16 1, 16
Output Voltage	Logic 1	V _{OH}	5 5 2 2	12 4				8 8 8 8	1, 16 1, 16 1, 16 1, 16
Output Voltage	Logic 0	V _{OL}	5 5 2 2	12 4			le l	8 8 8 8	1, 16 1, 16 1, 16 1, 16
Threshold Voltage	Logic 1	V _{OHA}	5 5 2 2			12 4	12 4	8 8 8 8	1, 16 1, 16 1, 16 1, 16
Threshold Voltage	Logic 0	V _{OLA}	5 5 2 2	X		12 4	12 4	8 8 8 8	1, 16 1, 16 1, 16 1, 16
Switching Times	(50Ω Load)					Pulse In	Pulse Out	−3.2 V	+2.0 V
Propagation Delay		t ₄₊₂ - t ₄₋₂₊ t ₄₊₅₊ t ₄₋₅₋	2 2 5 5			4 4 4 4	2 2 5 5	8 8 8	1, 16 1, 16 1, 16 1, 16
Rise Time	(20 to 80%)	t ₂₊ t ₅₊	2 5			4 4	2 5	8	1, 16 1, 16
Fall Time	(20 to 80%)	t ₂₋ t ₅₋	2 5			4 4	2 5	8 8	1, 16 1, 16

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX** PLASTIC PLCC PACKAGE CASE 775-02 **ISSUE C**

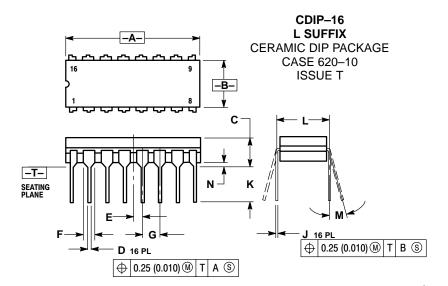
G1

OF VICE NOT PRICE

- NOTES:

 1. DATUMS -L.-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS PLASTIC
 BODY AT MOLD PARTING LINE.
- BUDY AT MOLD PARTING LINE.

 2. DIMENSION 61, TRUE POSITION TO BE
 MEASURED AT DATUM -T-, SEATING PLANE.


 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
 FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250)
 PER SIDE.

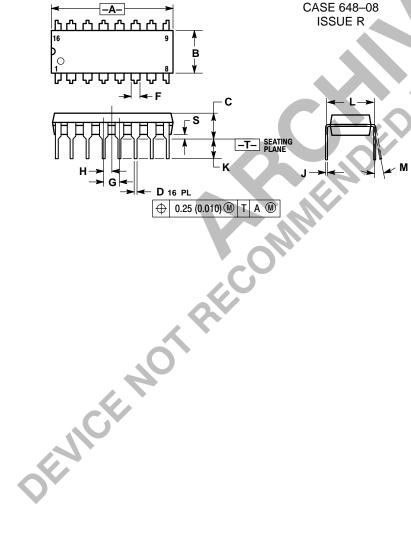
 DIMENSION AND TO T
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300).
 DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT
 INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- AND BOTTOM OF THE PLASTIC BODY.

 DIMENSION H DOES NOT INCLUDE DAMBAR
 PROTRUSION OR INTRUSION. THE DAMBAR
 PROTRUSION(S) SHALL NOT CAUSE THE H
 DIMENSION TO BE GREATER THAN 0.037 (0.940).
 THE DAMBAR INTRUSION(S) SHALL NOT CAUSE
 THE H DIMENSION TO BE SMALLER THAN 0.025

	INC	HES	MILLIMETERS			
DIM	MIN MAX		MIN	MAX		
Α	0.385	0.395	9.78	10.03		
В	0.385	0.395	9.78	10.03		
С	0.165	0.180	4.20	4.57		
Е	0.090	0.110	2.29	2.79		
F	0.013	0.019	0.33	0.48		
G	0.050	BSC	1.27	1.27 BSC		
Н	0.026	0.032	0.66	0.81		
J	0.020		0.51			
K	0.025		0.64			
R	0.350	0.356	8.89	9.04		
U	0.350	0.356	8.89	9.04		
٧	0.042	0.048	1.07	1.21		
W	0.042	0.048	1.07	1.21		
X	0.042	0.056	1.07	1.42		
Y		0.020	-	0.50		
Z	2°	10°	2°	10 °		
G1	0.310	0.330	7.88	8.38		
K1	0.040		1.02			

PACKAGE DIMENSIONS

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN

- FORMED PARALLEL

 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC
 BODY.

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
C		0.200		5.08	
D	0.015	0.020	0.39	0.50	
E	0.050	BSC	1.27 BSC		
F	0.055	0.055 0.065		1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62 BSC		
M	0 °	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.020 0.040		1.01	

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.