

Out A4

A4 A4 A4 A4 A4

A4 A1

A1 A1

A1 A1 A1

Δ1

A3

A3 A3

АЗ

A3

A3

А3

Α3

A2

A2 A2

A2 A2 A2

A2

A2

oding is closed

MOTOROLA

6 MC145026 6-86 MC145027 **⊕MC145028** 7-74 MC145029

Advance Information

MC145026 ENCODER, MC145027/MC145028/MC145029 DECODERS

The MC145026 will encode nine bits of information and serially transmit this information upon receipt of a transmit enable, TE, lactive low) signal. Nine inputs may be encoded with trinary data (0, 1, open) allowing 39 (19,683) different codes.

Three decoders are presently available; all use the same transmitter the MC145026. The decoders receive the 9-bit word and interpret some of the bits as address codes and some as data. The MC145027 interprets the first five transmitted bits as address and the last four bits as data. The MC145029 interprets the first four transmitted bits as address and the last five bits as data. The MC145028 treats all nine bits as address. If no errors are received, the MC145027 outputs four data bits, and the MC145029 outputs five data bits, when the transmitter sends address codes that match that of the receiver. A valid transmission output will go high on the decoders when they recognize an address that matches that of the decoder. Other receivers can be produced with different address/data ratios.

- May be Addressed in either Binary or Trinary
- Trinary Addressing Maximizes Number of Codes
- Interfaces with RF, Ultrasonic, or Infrared Transmission Medias
- On-Chip R/C Oscillator; No Crystal Required
- High External Component Tolerance; Can Use ± 5% Components
- Standard B-Series Input and Output Characteristics
- 4.5 to 18 V Operation
- 2.9 V Low-Voltage Version Also Available by Special Order

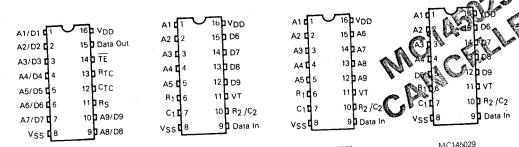
CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

REMOTE CONTROL ENCODER/DECODER PAIRS

L SUFFIX CERAMIC PACKAGE **CASE 620**

Suffix


P SUFFIX PLASTIC PACKAGE CASE 648

MC14XXXX -

Denotes

Ceramic Package Plastic Package

PIN ASSIGNMENTS

MC145026 Encoder

MC145027 Decoder

MC145028 Decoder

Decoder

This document contains information on a new product. Specifications and information herein are subject to change without notice

MAXIMUM RATINGS (Voltages Referenced to VSS)

Rating	Symbol	Value	Unit
DC Supply Voltage Input Voltage, All Inputs	V _{DD}	-0.5 to +18	V
DC Input Current, per Pin	V _{in}	-0.5 to VDD+0.5	V
Operating Temperature Range	· In	± 10	mA
Storage Temperature Range	T _A	- 40 to +85	°C
	T _{stg}	65 to + 150	°C

ELECTRICAL CHARACTERISTICS

Characteristic	Symt	VDE	·	40°C	Γ	25°C		+	85°C	T
Output Voltage "0" I		V V	Min	Max	Min	Тур	Max			Unit
V _{in} = V _{DD} or 0		5.0	_	0.05		0	0.05	 	0.05	
111 700 or 0	Voi		-	0.05	-	0	0.05	l -	0.05	1
	<u> </u>	15		0.05		0	.0.05	-	0.05	
V _{ID} = 0 or V _{DD} "1" L	l l	5.0	4.95	-	4.95	5.0	_	4.95	 	-
,,	VOF		9.95	-	9.95	10	-	9.95	-	l v
Input Voltage		15	14.95	~	14.95	15	-	14.95	-	
(V _O = 4.5 or 0.5 V)	evei	1	i	1	ł				1	
$(V_0 = 9.0 \text{ or } 1.0 \text{ V})$	۷ال	5.0 10	-	1.5	-	2.25	1.5] -	1.5	V
(V _O = 13.5 or 1.5 V)		15	-	3.0		4.50	3.0	-	3.0	ſv
"1" Li	.voi		↓ -	4.0		6.25	4.0	-	4.0	ļ
VO = 0.5 or 4.5 V	1	5.0	3.5	_	1 25					
$(V_0 = 1.0 \text{ or } 9.0 \text{ V})$	ViH	10	7.0		3.5 7.0	2.75	_	3.5		ĺvĺ
(V _O = 1.5 or 13.5 V)		15	11.0		11.0	5.50 8.25	-	7.0	-	' '
Output Drive Current Sou	rce	+-	11.0	-	17.0	0.25	 _	11.0	ļ <u> </u>	<u> </u>
(VOH = 2.5 V)		5.0	- 2.5	_	- 2.1	1 40				
(VOH = 4.6 V)	Іон	5.0	- 0.52		- 0.44	-4.2 -0.88	_	-1.7	-	i . i
(V _{OH} = 9.5 V)	0,,	10	- 1.3	l _ i	- 1.1	- 2.25	-	~ 0.36 ~ 0.9	f I	mA
(V _{OH} = 13.5 V)	ł	15	-3.6	_ :	- 3.0	-8.8	-	- 2.4	-	
(V _{OL} = 0.4 V)	ink	5.0	0.52	_	0.44	0.88	-	0.36	\vdash	
$(V_{OL} = 0.5 \text{ V})$	lor	10	1.3	_	1.1	2.25		0.36	-	
(V _{OL} = 1.5 V)		15	3.6	_ {	3.0	8.8		2.4	_ [mA
Input Current - TE (MC145026, Pullup Device)		5.0	_	_	3.0	4.0	9.0		-	
•	lin	10	-	-	16	20	32	_	-	μА
Input Current		15			35	45	70			۳^
Rs (MC145026)	ł	1 1								
•	lin	15	-	± 0.3		± 0.00001	±0.3	_	± 1.0	μA
Data In (MC145027, MC145028, MC145029) Input Current			- 1	i	ļ		[-]		-	" ``
A1/D1-A9/D9 (MC145026)										
A1-A5 (MC145027)	l _{in}	5.0	- 1	-	_	± 55	± 110	_	_	μА
A1-A9 (MC145028)) '''	10	- 1	-	-	± 300	± 500	_		μ^
A1-A4 (MC145029)		15	- 1	-	- [± 650	± 1000	-		
Input Capacitance (V _{in} = 0)					l			- 1	- 1	
Quiescent Current – MC145026	C _{in}				- 7	5.0	7.5			pF
Carette MC 145026	1.	5.0	- 1	- 1	- 1	0.0050	0.10		-+	
	םסי	10	- 1	-		0.0100	0.20	- 1		μΑ
Quiescent Current - MC145027, MC145028, MC145029		15				0.0150	0.30	-		·]
MC145027, IVIC 145028, MC145029	1.	5.0	-	-		30	50	- 1		$\neg \neg$
	loo	10	-	-	-	60	100	-	-	μΑ
Total Supply Current - MC145026 (f _C = 20 kHz)		15				90	150		-	
MOT 10020 (1 _C = 20 KHZ)	·	5.0	~	-	-	100	200		- 1	
	'T	10	-	~ [-	200	400	-	-	μΑ
Total Supply Current - MC145027, MC145028, MC1450			-	-	-	300	600	-	-	- 1
(t _C = 20 kHz)		5.0		-	-	200	400		-	
	14	10	_	-	-	400	800	- [-	μА
The state of the st		10				600	1200	1	-	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

MC145026, M

SWITCHING CHA
Output Rise and Fa
Data in Rise and F.
Encoder Clock Fred
Decoder Frequency (Referenced to Er
TE Pulse Width

System Propagation (TE to Valid Trans Tolerance on Timin $(\Delta R_{TC} + \Delta C_{TC} + (\Delta R_2 + \Delta C_2))$

MC145026

The encoder serial defined by the state of pins may be in either $3^9 = 19,683$ possible itiated by a low level or put is forced low the words. Between the three data bit times. continuously transmits Each transmitted da

(See Figure 7). A log short pulses, a logic or an open as a long pu's state is determined by force each input firs: results from the two wired to VDD. If only assumed to be hard wican be forced at an inc

coded as such.

The TE input has an switch may be used to the encoder is complete and the current drain is TE is brought low, the sequence begins. The and determinations ar This information is se output pin.

Transmission must b than by holding TE low because an internal resequence.

MC145027

This decoder receives outputs the data, if it sisting of two identical it is received. The first

-	Unit	
	٧	l
).5	٧	l
	mA	l
	20	ı

			٧
).5	,		٧
			mΑ
	T		°C
_	_		°C
85	s°C		Unit
85	°C Ma	x	Unit
85		_	Unit
85	0.0 0.0)5)5	Unit
85	M a)5)5	
85	0.0 0.0)5)5	
	0.0 0.0)5)5	

'	14107		
	0.05 0.05 0.05	٧	
		V	
	1.5 3.0 4.0	V	
, , 0	- - -	V	
.7 36 .9 4	- - -	mA	
6 3 4	-	mA	
	- - -	μА	
	± 1.0	μΑ	
	- - -	μΑ	
-	T =	pF	
	- -	μΑ	
-	- -	μΑ	

it is advised that e circuit. For pro

VITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)	Symbol	V _{DD}	Min	Тур	Max	Unit
Characteristic Output Rise and Fall Time	ttlh tthl	5.0 10 15	-	100 50 40	200 100 80	ns
Data In Rise and Fall Time (MC145027, MC145028, MC145029)	tTLH tTHL	5.0 10 15		1 + 1	15 15 15	μS
Encoder Clock Frequency	fcl	5.0 10 15	0	- -	2 5 10	MHz
Decoder Frequency {Referenced to Encoder Clock} (See Figure 10)	fcl	5.0 10 15	1 1 1	- '- -	240 410 450	kHz
TE Pulse Width	¹WL	5.0 10 15	65 30 20	-	- - -	ns
System Propagation Delay	-	-		182	L	Clock Cycles
(TE to Valid Transmission) Tolerance on Timing Components $(\Delta R_{TC} + \Delta C_{TC} + \Delta R_1 + \Delta C_1)$ $(\Delta R_2 + \Delta C_2)$	-	/ -	- -	- -	± 25 ± 25	%

OPERATING CHARACTERISTICS

MC145026

The encoder serially transmits nine bits of trinary data as defined by the state of the A1/D1-A9/D9 input pins. These pins may be in either of three states (0, 1, open) allowing 39 = 19,683 possible codes. The transmit sequence is initiated by a low level on the \overline{TE} input pin. Each time the \overline{TE} input is forced low the encoder outputs two identical data words. Between the two data words no signal is sent for three data bit times. If the TE input is kept low, the encoder continuously transmits the data word.

Each transmitted data bit is encoded into two data pulses (See Figure 7). A logic zero is encoded as two consecutive short pulses, a logic one as two consecutive long pulses, and an open as a long pulse followed by a short pulse. The input state is determined by using a weak output device to try to force each input first low, then high. If only a high state results from the two tests, the input is assumed to be hard wired to VDD. If only a low state is obtained, the input is assumed to be hard wired to VSS. If both a high and a low can be forced at an input, it is assumed to be open and is encoded as such.

The TE input has an internal pullup device so that a simple switch may be used to force the input low. While TE is high the encoder is completely disabled, the oscillator is inhibited, and the current drain is reduced to quiescent current. When TE is brought low, the oscillator is started, and the transmit sequence begins. The inputs are then sequentially selected, and determinations are made as to the input logic states. This information is serially transmitted via the Data Out

Transmission must be initiated by using the $\overline{\text{TE}}$ pin rather than by holding TE low and applying power to the device because an internal reset occurs after the first transmit sequence.

MC145027

This decoder receives the serial data from the encoder and outputs the data, if it is valid. The transmitted data, consisting of two identical data words, is examined bit by bit as it is received. The first five bits are assumed to be address bits and must be encoded to match the address input at the receiver. If the address bits match, the next four (data) bits are stored and compared to the last valid data stored. As the second encoded word is received, the address must again match, and if it does, the data bits are checked against the previously stored data bits. If the two words of data (four bits each) match, the data is transferred to the output data latches by VT and will remain until new data replaces it. At the same time, the Valid Transmission output pin is brought high and will remain high until an error is received or until no input signal is received for four data bit times

Although the address information is encoded in trinary, the data information must be either a one or a zero. A trinary (open) will be decoded as a logic one.

MC145028

This decoder operates in the same manner as the MC145027 except that nine address bits are used and no data output is available. The Valid Transmission output is used to indicate that a valid address has been received

Although address information is normally encoded in the designer should be aware that, for the MC145028, the ninth address bit (A9) must be either a one or a zero. This part, therefore, can accept only $2 \times 38 = 13,122$ different codes. A trinary (open) A9 will be interpreted as a logic 1. However, if the encoder sends a trinary (or logic 1) and the decoder sends a trinary (or logic 1) and the decoder sends a trinary (or logic 1). and the decoder address is a logic 1 (or trinary) respectively, the valid transmission output length will be shortened to the $R1 \times C1$ time constant.

This decoder operates like the MC145027, but it assumes the first four received bits to be address bits and the remaining five received bits to be data.

DOUBLE TRANSMISSION DECODING

Although the encoder sends two words for error checking, a decoder does not necessarily wait for two transmitted words to be received before issuing a vaild transmission output.

PIN DESCRIPTIONS

MC145026 ENCODER

A1/D1-A9/D9, ADDRESS/DATA INPUTS (PINS 1, 2, 3, 4, 5, 6, 7, 9, 10) — These inputs are encoded and the data is serially output from the encoder.

RS, CTC, RTC, OSCILLATOR COMPONENTS (PINS 11, 12, 13) — These pins are part of the oscillator section of the encoder. If an external signal source is used instead of the internal oscillator, it should be connected to the RS input and the RTC and CTC pins should be left open.

TE, TRANSMIT-ENABLE INPUT (PIN 14) This active low input initiates transmission when forced low. An internal pullup device keeps this input normally high.

Data Out, DATA OUTPUT (PIN 15) — This is the output of the encoder that serially presents the encoded word.

 ${
m VDD}$, POSITIVE SUPPLY (PIN 16) — The most positive power supply.

VSS, NEGATIVE SUPPLY (PIN 8) - The most negative supply (usually ground).

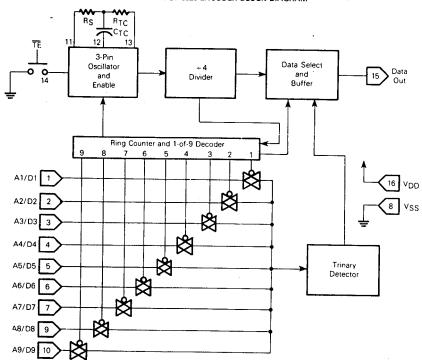
MC145027, MC145028, MC145029 DECODERS

A1-A5 (MC145027), A1-A9 (MC145028), A1-A4 (MC145029), ADDRESS INPUTS — These address inputs must match the corresponding encoder inputs in order for the decoder to output data.

D6-D9 (MC145027), D5-D9 (MC145029), DATA OUT-PUTS — These outputs present the information that is on the corresponding encoder inputs. Note: only binary data will be acknowledged; a trinary open will be decoded as a logic one. $R_1,\ C_1,\ PULSE\ DISCRIMINATOR\ (PINS\ 6,\ 7)\ -\ These\ pins\ accept a resistor and capacitor that are used to determine whether a narrow pulse or a wide pulse has been encoded. The time constant <math display="inline">R_1\times C_1$ should be set to 1.72 encoder (transmitter) clock periods. $R_1C_1=3.95\ R_{TCCTC}$.

 $R_2/C_2,\; DEAD\; TIME\; DISCRIMINATOR\; (PIN\;10)\; -\; This pin accepts a resistor and a capacitor to VSS that are used to detect both the end of an encoded word and the end of transmission. The time constant <math display="inline">R_2\times C_2$ should be 33.5 encoder (transmitter) clock periods (four data bit periods): $R_2C_2=77\;R_TCC_TC$. This time constant is used to determine that Data In has remained low for four data bit times fend of transmission). A separate comparator looks at a voltage-equivalent two data bit times (0.4 R_2C_2) to detect the dead time between transmitted words.

VT, VALID TRANSMISSION (PIN 11) — This output goes high when the following conditions are satisfied:


 the transmitted address matches the receiver address, and
 the transmitted data matches the last valid data received (MC145027 and MC145029, only).

VT will remain high until a mismatch is received, or no input signal is received for four data bit times.

VDD, POSITIVE SUPPLY (PIN 16) — The most positive power supply.

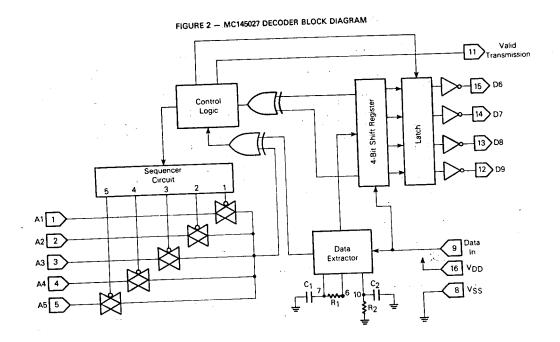
VSS, NEGATIVE SUPPLY (PIN 8) - The most negative supply (usually ground).

FIGURE 1- MC145026 ENCODER BLOCK DIAGRAM

MC145026,

) - These d to deteris been ento 1.72 en-RTCCTC.

10) — This are used to the end of be 33.5 ent periods): d to deterta bit times looks at a end to detect


output goes

iddress, and ita received

d, or no in-

ost positive

st negative

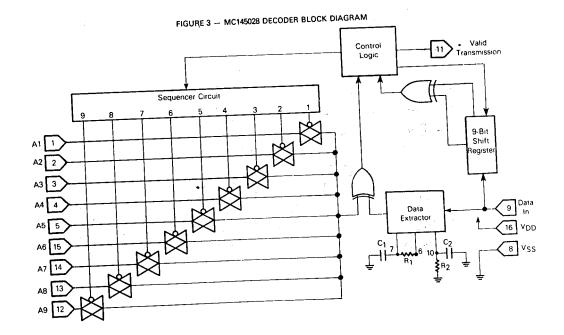


FIGURE 4 — MC145029 DECODER BLOCK DIAGRAM

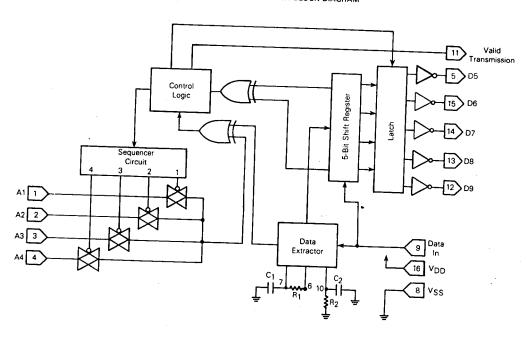
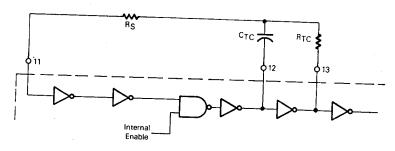



FIGURE 5 - ENCODER OSCILLATOR INFORMATION

This oscillator will operate at a frequency determined by the external RC network; i.e.,

$$f \cong \frac{1}{2.3 \text{ RTC CTC}'} (Hz)$$

for 1 kHz≤f≤400 kHz where: C_{TC}' = C_{TC} + C_{layout} + 12 pF

Rs≈2 RTC

RS≥20 k RTC≥10 k 400 pF<CTC<15 µF

The value for RS should be chosen to be ≥ 2 times RTC. This range will ensure that current through RS is insignificant compared to current through RTC. The upper limit for RS must ensure that RS \times 5 pF (input capacitance) is small compared to RTC \times CTC. For frequencies outside the indicated range, the formula will be less accurate. The minimum recommended oscillation frequency of this circuit is 1 kHz. Susceptibility to externally induced noise signals may occur for frequencies below 1 kHz and/or when resistors utilized are greater than 1 MΩ.

MC145026,

Encoder Oscillator | (Pin 12)

Data Out (Pin 15)

Valid Transmission

Data Outputs

Encoder

Data Out (Pin 15)

FIGURE 6 - ENCODER/DECODER TIMING DIAGRAM

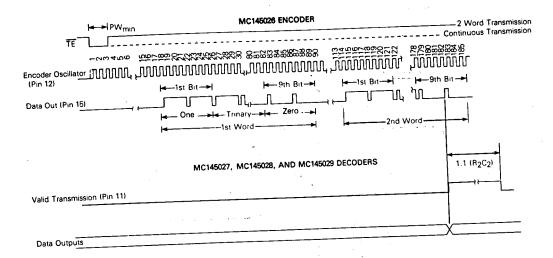
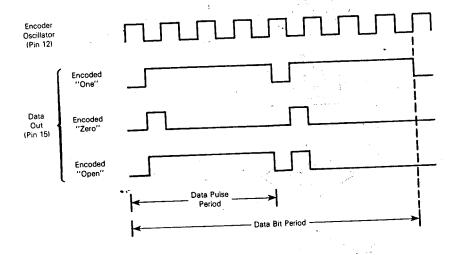



FIGURE 7 - MC145026 ENCODER DATA WAVEFORMS

1 Valid

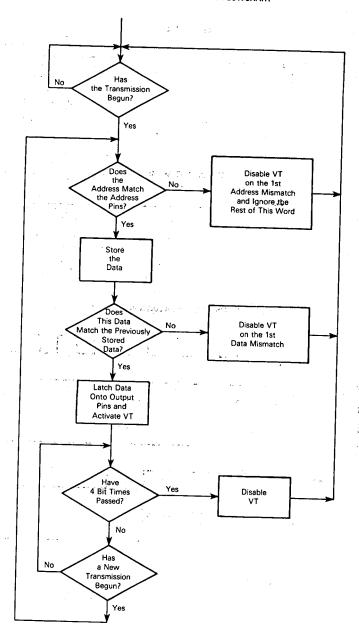
Transmiss

15 D6

-[14] D7

- 13 D8

12 09


ta n

/DD

'ss

: 2 times R_{TC}. This significant compared R_S must ensure that ad to R_{TC} × C_{TC}, the formula will be cillation frequency of nduced noise signals when resistors utiliz-

FIGURE 8 — MC145027/MC145029 FLOWCHART

MC145026, N

*For shift reg

7-34

.630°C 380

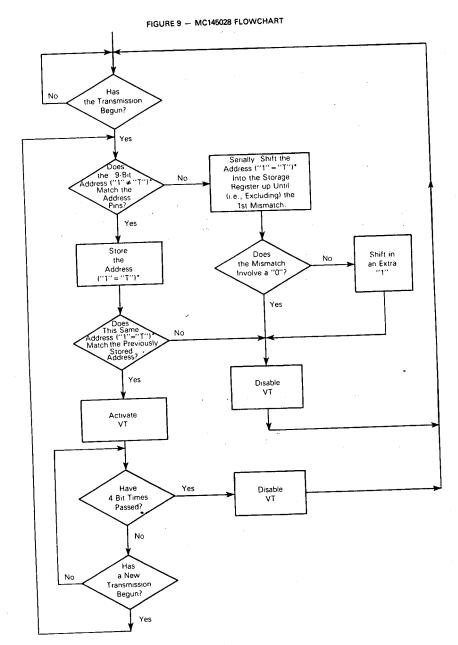
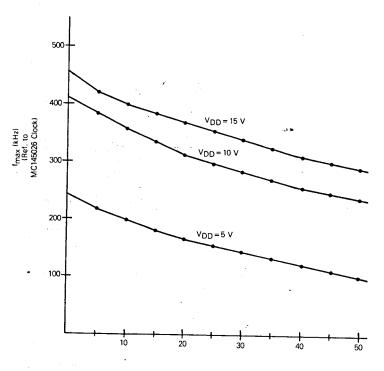



FIGURE 10 — f_{max} vs C_{layout} MC145027, MC145028, and MC145029

 C_{layout} (pF) on Pins 1-5 (MC145027); Pins 1-5 and 12-15 (MC145028); Pins 1-4 (MC145029)

7

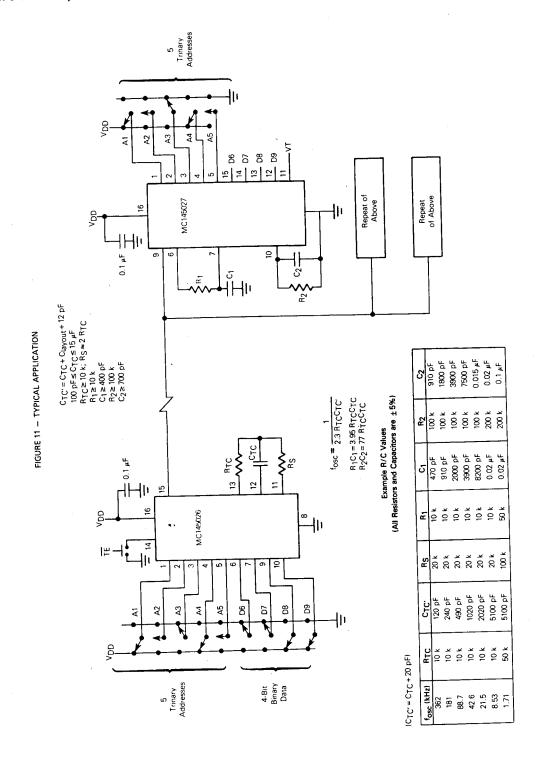

MC145026, N

FIGURE 11 — TYPICAL APPLICATION

12

7-36

The Co

