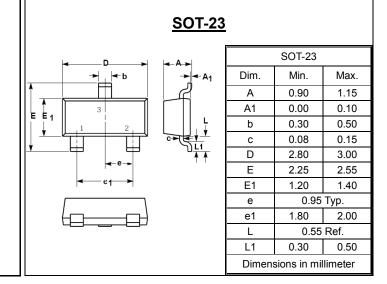
LITEON LITE-ON SEMICONDUCTORS


SURFACE MOUNT FAST SWITCHING DIODE

FEATURES

- Fast switching speed
- · Ideally suited for automatic insertion
- For general purpose switching applications

MECHANICAL DATA

- Case: SOT-23 Plastic
- Case material: "Green" molding compound, UL flammability classification 94V-0, (No Br. Sb. Cl)
- Moisture sensitivity: Level 1 per J-STD-020D
- Lead free in RoHS 2002/95/EC compliant

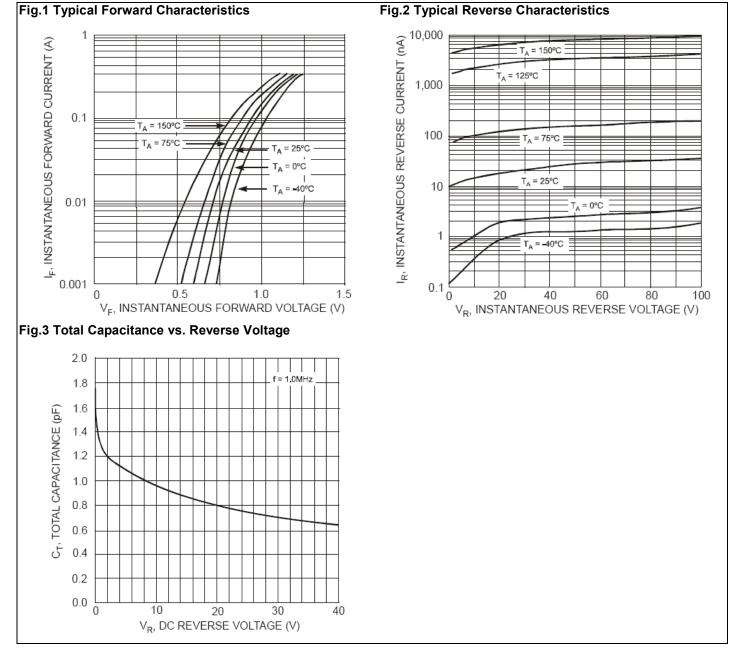
REVERSE VOLTAGE – 50 Volts

FORWARD CURRENT – 0.1 Ampere

Maximum Ratings & Thermal Characteristics @ $T_A = 25^{\circ}C$ unless otherwise specified

			•	
Characteristic		Symbol	MC2838	Units
Non-Repetitive Peak Reverse Voltage		V _{RM}	75	V
DC Blocking Voltage		V _R	50	V
Average Rectified Output Current		Ι _Ο	100	mA
Non-Repetitive Peak Forward Surge Current	@t=1.0us	I _{FSM}	4	А
Power Dissipation		P _D	150	mW
Operating Temperature Range		TJ	150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

Electrical Characteristics @ $T_A = 25^{\circ}C$ unless otherwise specified


Test Condition	Symbol	Min.	Тур.	Max.	Unit
I _F = 10mA I _F = 50mA I _F = 100mA	V _F	 	0.67 0.75 0.85	0.9 1.0 1.2	V
V _R = 50V	I _R			0.1	uA
V _R =0V,f=1MHz	CD		1.1	3	pF
Irr=1mA, $V_R=6V$, $I_R=I_F=10mA$, $R_L=100\Omega$	trr			4	ns
	$I_{F} = 50mA \\ I_{F} = 100mA \\ V_{R} = 50V \\ V_{R} = 0V, f=1MHz \\ Irr=1mA, V_{R}=6V, \\ I_{R}=I_{F}=10mA, \\ H_{R} = 100mA, \\ H_{R} = 100mA \\ H_{R} $	$\begin{tabular}{ c c c c c } \hline I_F &= 10mA & & & V_F \\ \hline I_F &= 50mA & & V_F \\ \hline I_F &= 100mA & & V_R \\ \hline V_R &= 50V & & I_R \\ \hline V_R &= 0V, f = 1MHz & C_D \\ \hline Irr &= 1mA, V_R = 6V, \\ \hline I_R &= I_F = 10mA, & trr \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

REV. 3, Oct-2010, KSYR60

MC2838

RATING AND CHARACTERISTIC CURVES MC2838

LITEON

Device Marking :

Device P/N	Marking code	Equivalent Circuit Diagram
MC2838	A61	3 0

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.