
N-Channel 30-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize High Cell Density process. Low r_{DS(on)} assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.

PRODUCT SUMMARY				
$V_{DS}(V)$	$r_{DS(on)} m(\Omega)$	$I_{D}(A)$		
30	$58 @ V_{GS} = 10V$	3.5		
	$82 @ V_{GS} = 4.5V$	3.0		

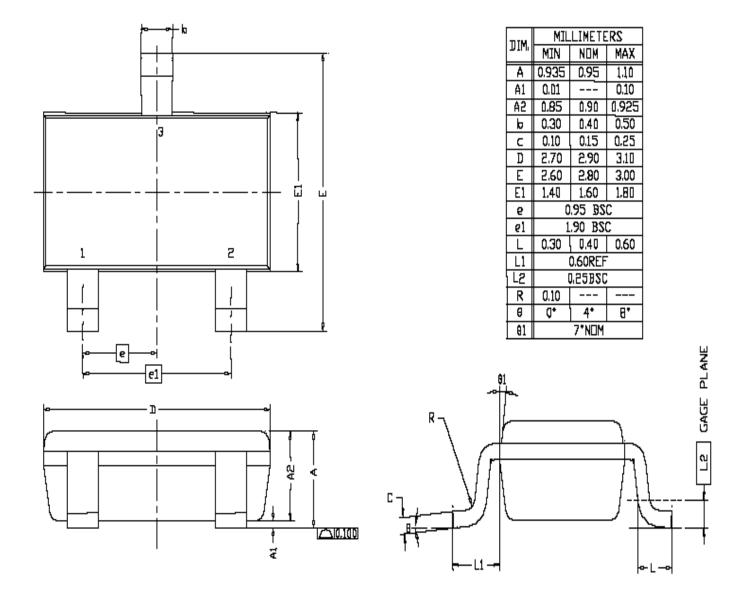
- $\begin{array}{ll} \bullet & \quad \text{Low $r_{DS(on)}$ Provides Higher Efficiency and} \\ \text{Extends Battery Life} \\ \end{array}$
- Miniature TSOP-6 Surface Mount Package Saves Board Space
- High power and current handling capability
- Low side high current DC-DC Converter applications

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter			Limit	Units	
Drain-Source Voltage		V_{DS}	30	V	
Gate-Source Voltage			±20	v	
	$T_A=25^{\circ}C$	Τ_	3.5		
Continuous Drain Current ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	1D	2.8	A	
Pulsed Drain Current ^b		I_{DM}	16		
Continuous Source Current (Diode Conduction) ^a		I_S	1.25	A	
D D: : ,: a	$T_A=25^{\circ}C$	$\rfloor_{ m D}$	1.3	W	
Power Dissipation ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	I D	0.8	VV	
Operating Junction and Storage Temperature Range		T_{J}, T_{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Maximum	Units	
Maximum Junction-to-Ambient ^a	t <= 10 sec	$R_{ heta JA}$	100	°C/W	
	Steady-State		166	°C/W	

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature


Downwoton	Cl1	Total Control	Limits			T 124
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Static						
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	1			V
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			±100	nA
Zero Gate Voltage Drain Current	I_{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA
Zero Gate Voltage Drain Carrent		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			25	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	6			Α
Davis Garage O. Rasidas A	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$			58	mΩ
Drain-Source On-Resistance ^A		$V_{GS} = 4.5 \text{ V}, I_D = 3 \text{ A}$			82	
Forward Tranconductance ^A	g_{fs}	$V_{DS} = 15 \text{ V}, I_D = 3.5 \text{ A}$		6.9		S
Diode Forward Voltage	V_{SD}	$I_S = 2.3 \text{ A}, V_{GS} = 0 \text{ V}$		0.8	1.2	V
Dynamic ^b						
Total Gate Charge	Q_{g}	V - 15 V V - 45 V		2.2		
Gate-Source Charge	Q_{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V},$ $I_{D} = 3.5 \text{ A}$		0.5		nC
Gate-Drain Charge	Q_{gd}			0.8		
Turn-On Delay Time	$t_{d(on)}$			16		
Rise Time	$t_{\rm r}$	$V_{DD} = 25 \text{ V}, R_L = 25 \Omega, I_D = 1 \text{ A},$		5		nS
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = 10 \text{ V}$		23		
Fall-Time	t_{f}			3		

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

FREESCALE reserves the right to make changes without further notic e to any products herein. freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale assume any liability arising ou t of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in freescale data sheet s and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. freescale does not convey any license under its patent rights nor the rights of others. freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale product could create a situation where personal injury or death may occur. Should Buyer purchase or use freescale products for any such uninte nded or unauthorized application, Buyer shall indemnify and hold freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale was negligent regarding the design or m anufacture of the part. freescale is an Equal Opportunity/Affirmative Action Employer.

Package Information

