ABOV SEMICONDUCTOR 8-BIT SINGLE-CHIP MICROCONTROLLERS

MC71PB204

USER'S MANUAL (Ver. 1.0)

TABLE OF CONTENTS

1. PRODUCT OVERVIEW	1
2. MEMORY ORGANIZATION	12
3. INTERRUPT	26
4. INSTRUCTION SET	30
5. CLOCK CIRCUIT	72
6. RESET AND POWER-DOWN MODE	78
7. I/O PORTS	84
8. WATCHDOG TIMER	94
9. 16-BIT TIMER 0 (8-BIT TIMER A/B)	
10. 6/8-BIT PWM	106
11. 12-BIT ANALOG TO DIGITAL CONVERTER	110
12. ELECTRICAL DATA	
13. MECHANICAL DATA	126
14. MC71PB204 OTP	130
15. DEVELOPMENT TOOLS	132

1. PRODUCT OVERVIEW

1.1 KEY FEATURES

• CPU	 GMC14 core (8-bit RISC CPU)
Main Clock	 Crystal/Ceramic: 0.4MHz – 12MHz Internal RC: 1MHz, 2MHz, 4MHz, 8MHz External RC: 1MHz – 8MHz
ROM Capacity	 4,096 x 14-bits (7,168-Byte)
RAM Capacity	 208 x 8-bits
Instruction Set	 35 single word instructions 14-bit wide instruction word
• Instruction Execution Times	 167nS at 12MHz fx (main)
• I/O Port	 I/O: 17 bits (20-pin package) I/O: 13 bits (16-pin package)
Programmable Timer	 One 16-bit timer/counter (shared with two 8-bit timer/counters)
Watchdog Timer Function	
PWM mode	 6/8-bit selection
A/D Converter	 12-bit x 11-channel analog input
ROM Option	 LVR (2.6V, 3.0V, 4.0V) Oscillator selectable (Internal or External)
• Interrupt	 External : external interrupt x 4 Internal : WDT interrupt, Timer 0/A interrupt, Timer B interrupt, PWM interrupt.
Power Supply Voltage	 2.4V to 5.5V at 4MHz 2.7V to 5.5V at 8MHz 4.0V to 5.5V at 12MHz
Operating Temperature	 − 20 °C to + 85 °C
Power-Saving	 Idle : only CPU clock stop Stop: System clock and CPU clock stop
Package	 20-pin DIP, 20-pin SOP 16-pin DIP, 16-pin SOP

1.2 Ordering Information

Device	ROM Size	RAM size	Package
MC71PB204D	4K words OTP	208 bytes	20 SOP
MC71PB204B	4K words OTP	208 bytes	20 DIP
MC71PB204M	4K words OTP	208 bytes	16 SOP
MC71PB204V	4K words OTP	208 bytes	16 DIP

1.3 BLOCK DIAGRAM

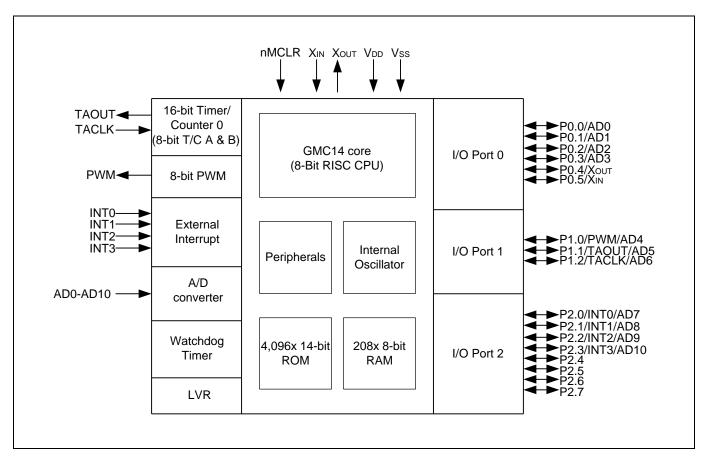


Figure 1-1. Block Diagram

1.4 PIN ASSIGNMENTS

1.4.1 20-PIN PACKAGE

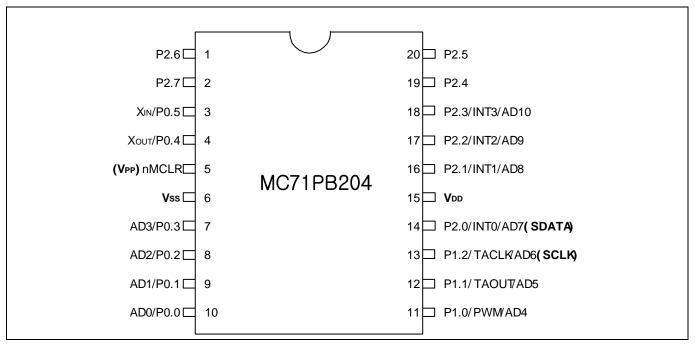


Figure 1-2. MC71PB204 Pin Assignments (20-Pin)

1.4.2 16-PIN PACKAGE

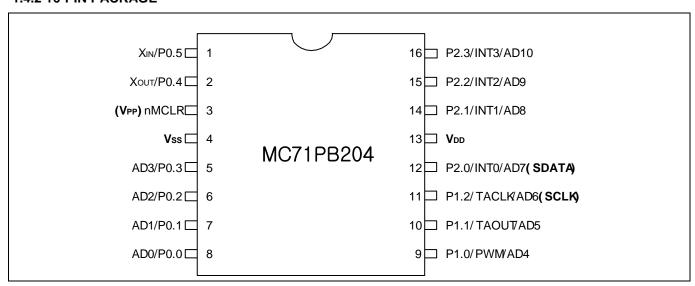


Figure 1-3. MC71PB204 Pin Assignments (16-Pin)

1.5 PIN DESCRIPTIONS

1.5.1 20-DIP(SOP) PACKAGE TYPE

Pin Names	I/O	Pin Description	After RESET	Alternative Functions
P0.0	I/O	1-bit programmable I/O pin. Schmitt trigger input, Push-pull	Input	AD0
P0.1		output, or Open-drain output port. Used as an input port, a Pull-up resistor can be programmed as 1-bit.		AD1
P0.2		ruii-up resistor can be programmed as 1-bit.		AD2
P0.3				AD3
P0.4	I/O	1-bit programmable I/O pin. Schmitt trigger input, Push-pull	Input	X _{OUT}
P0.5		output, or Open-drain output port. Used as an input port, a Pull-up resistor or Pull-down resistor can be programmed as 1-bit.		X _{IN}
P1.0	I/O	1-bit programmable I/O pin. Schmitt trigger input, Push-pull	Input	PWM/AD4
P1.1		output, or Open-drain output port. Used as an input port, a Pull-up resistor can be programmed as 1-bit.		TAOUT/AD5
P1.2		Pull-up resistor can be programmed as 1-bit.		TACLK/AD6
P2.0	I/O	1-bit programmable I/O pin. Schmitt trigger Input, Push-pull	Input	INT0/AD7
P2.1		output port. Used as an input port, a Pull-up resistor can be programmed as 1-bit.		INT1/AD8
P2.2		programmed as 1-bit.		INT2/AD9
P2.3				INT3/AD10
P2.4 - P2.7	I/O	1-bit programmable I/O pin. Schmitt trigger Input, Push-pull output, or Open-drain output port. Used as an input port, a Pull-up resistor can be programmed as 1-bit.	Input	-
PWM	I/O	6/8 bit high speed PWM output	Input	P1.0
TACLK	I/O	Timer 0/A external clock input	Input	P1.2
TAOUT	I/O	Timer 0/A data output	Input	P1.1
INT0	I/O	External interrupt input pins	Input	P2.0
INT1				P2.1
INT2				P2.2
INT3				P2.3
AD0	I/O	A/D Converter input	Input	P0.0
AD1				P0.1
AD2				P0.2
AD3				P0.3
AD4				P1.0
AD5				P1.1
AD6				P1.2
AD7				P2.0
AD8				P2.1

1.5.1 20-DIP(SOP) PACKAGE TYPE (CONTINUED)

Pin Names	I/O	Pin Description	After RESET	Alternative Functions
AD9	I/O	A/D Converter input	Input	P2.2
AD10				P2.3
nMCLR	I	System reset pin	Input	-
X _{IN} , X _{OUT}	-	Main oscillator pins	Output	P0.4, P0.5
V _{DD} , V _{SS}	-	Power input pins	-	-

1.5.2 16-DIP(SOP) PACKAGE TYPE

Pin Names	I/O	Pin Description	After RESET	Alternative Functions
P0.0	I/O	1-bit programmable I/O pin. Schmitt trigger input, Push-pull	Input	AD0
P0.1		output, or Open-drain output port. Used as an input port, a Pull-up resistor can be programmed as 1-bit.		AD1
P0.2		ruil-up resistor can be programmed as 1-bit.		AD2
P0.3				AD3
P0.4	I/O	1-bit programmable I/O pin. Schmitt trigger input, Push-pull	Input	X _{OUT}
P0.5		output, or Open-drain output port. Used as an input port, a Pull-up resistor or Pull-down resistor can be programmed as 1-bit.		X _{IN}
P1.0	I/O	1-bit programmable I/O pin. Schmitt trigger input, Push-pull	Input	PWM/AD4
P1.1		output, or Open-drain output port. Used as an input port, a Pull-up resistor can be programmed as 1-bit.		TAOUT/AD5
P1.2		Pull-up resistor can be programmed as 1-bit.		TACLK/AD6
P2.0	I/O	1-bit programmable I/O pin. Schmitt trigger Input, Push-pull	Input	INT0/AD7
P2.1		output port. Used as an input port, a Pull-up resistor can be programmed as 1-bit.		INT1/AD8
P2.2		programmed as 1-bit.		INT2/AD9
P2.3				INT3/AD10
PWM	I/O	6/8 bit high speed PWM output	Input	P1.0
TACLK	I/O	Timer 0/A external clock input	Input	P1.2
TAOUT	I/O	Timer 0/A data output	Input	P1.1
INT0	I/O	External interrupt input pins	Input	P2.0
INT1				P2.1
INT2				P2.2
INT3				P2.3
AD0	I/O	A/D Converter input	Input	P0.0
AD1				P0.1
AD2				P0.2
AD3				P0.3
AD4				P1.0
AD5				P1.1
AD6				P1.2
AD7				P2.0
AD8				P2.1
AD9				P2.2
AD10				P2.3
nMCLR	I	System reset pin	Input	-
X _{IN} , X _{OUT}	-	Main oscillator pins	Output	P0.4, P0.5
V_{DD}, V_{SS}	-	Power input pins		-

1.6 PIN CIRCUITS

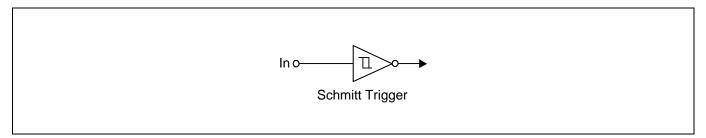


Figure 1-4. Pin Circuit Type 1 (nMCLR)

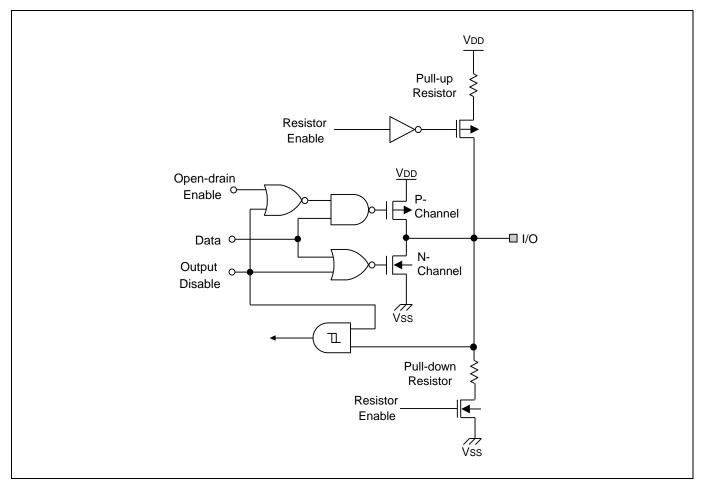


Figure 1-5. Pin Circuit Type 4-2 (P0.4/X_{OUT}, P0.5/X_{IN})

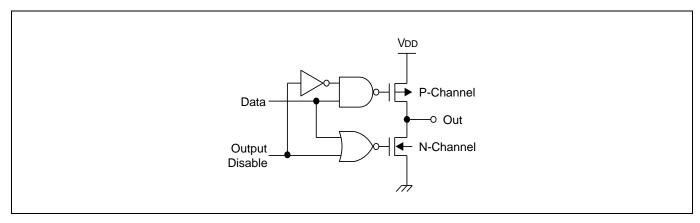


Figure 1-6. Pin Circuit Type 2

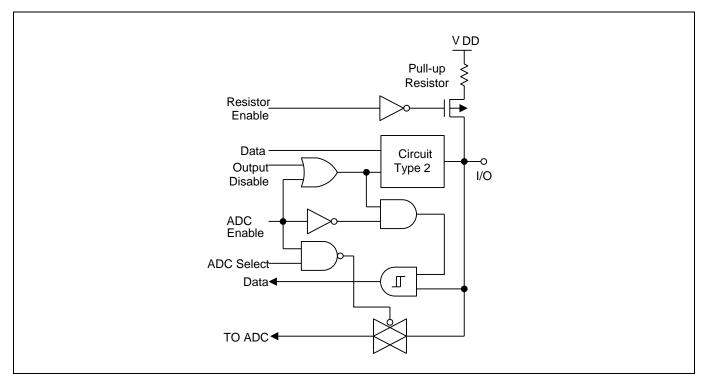


Figure 1-7. Pin Circuit Type 6-1 (P2.0-P2.3)

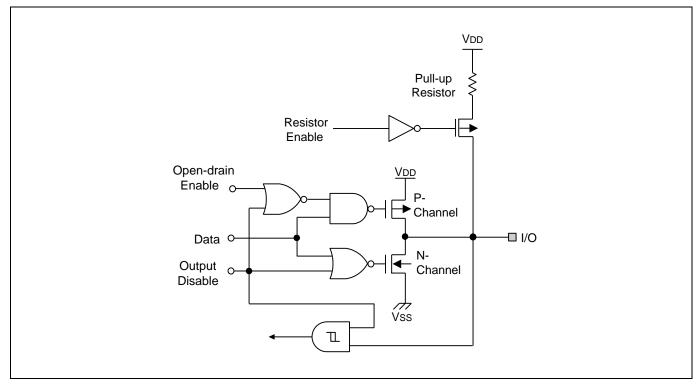


Figure 1-8. Pin Circuit Type 4-1 (P2.4-P2.7)

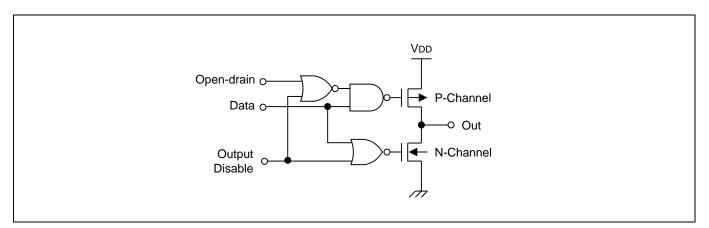


Figure 1-9. Pin Circuit Type 3

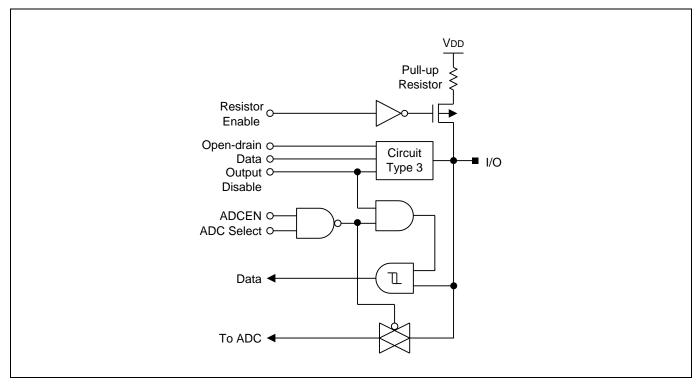


Figure 1-10. Pin Circuit Type 6-3 (P0.0-P0.3, P1.0-P1.2)

2. MEMORY ORGANIZATION

2.1 PROGRAM MEMORY ORGANIZATION

The GMC14 series have a 16-bit program counter capable of addressing a 64k x 14-bit program memory space. The reset vector is at 0000H, the interrupt vector at 0004H and the ROM Option at 001FH.

The program memory size of the MC71PB204 is 4k words (4k x 14-bit, from the address 0000H to 0FFFH).

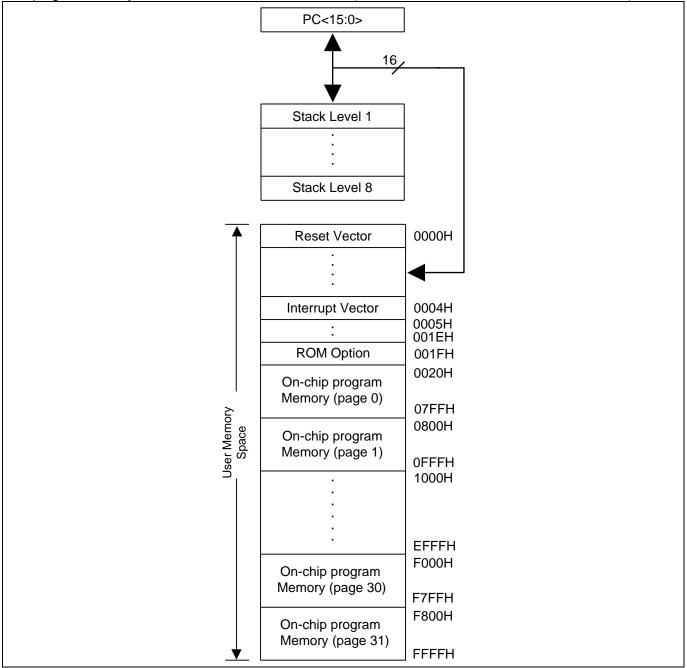


Figure 2-1. Program Memory Map and Stack

2.1.1. ROM OPTION

The ROM Option is start-condition of the chip. The ROM Option address is 001FH. The default value of the ROM Option is 3FFFH (LVR disable, selected crystal/ceramic oscillator).

For example, if you program as below:

CODE 0x1F ;ROM option area

DW 0x3FBE ;Disable LVR, Select Crystal/Ceramic OSC

ROM OPTION ROM Address: 001FH

	.13	.12	.11	.10	.9	.8	.7	.6	.5	.4	.3	.2	.1	.0	
MSB	1	1	1	1	1	LVR EN		LV	RS			oscs		1	LSB

! To avoid malfunction, You must set undefined bits.

Bit13-9	Not available for the MC71PB204					
LVREN	LVR Enable/Disable Selection Bit	0: Enable				
LVKEN	LVK Eliable/Disable Selection bit	1: Disable				
		1100: 2.6 V				
LVRS	LVR Level Selection Bits	0111: 3.0 V				
		0100: 4.0 V				
		000: External RC				
		001: Internal RC; 4MHz				
oscs	Oscillator Selection Bits	010: Internal RC; 2MHz				
0303	Oscillator Selection Bits	011: Internal RC; 1MHz				
		100: Internal RC; 8MHz				
		111: Crystal/Ceramic oscillator				
Bit0	Not available for the MC71PB204					

NOTES:

- 1. The value of unused bits <0> and <9:13> is don't care.
- 2. When LVR is enabled, LVR level must be set to appropriate value, not default value.

2.1.2 PC AND PCLATH REGISTERS

The Program Counter (PC) is 16-bit wide. The lower bits (PC<7:0>) come from PCL register, which is a readable and writable register. The upper bits (PC<15:8>) are not directly readable (or writable), but are indirectly writable through the PCLATH register. On any reset, (the upper bits of) the PC is (will be) cleared.

Figure 2-2 shows the two situations for PC loading. The upper example in the figure 2-2 shows how the PC is loaded by writing to PCL (PCLATH<7:0> \rightarrow PCH). The lower example in the figure 2-2 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<7:3> \rightarrow PCH).

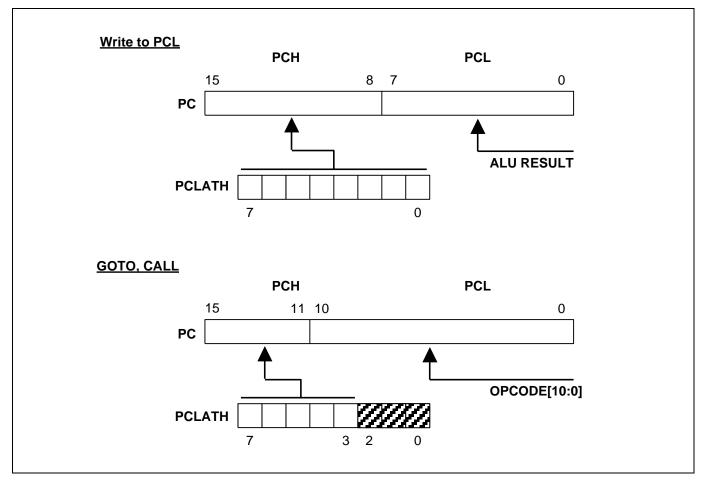


Figure 2-2. Loading of PC in different situations

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When reading a table using a computed GOTO method, pay attention if the table location crosses a PCL memory boundary (each 256 byte block).

2.1.3 PROGRAM MEMORY PAGING

The GMC14 series devices are capable of addressing a continuous 64k words block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2k words program memory page. When doing a CALL or GOTO instruction the upper 5 bits of the address are provided by PCLATH<7:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If RETURN, RETLW, or RETFIE instructions are executed, the entire 16-bit PC is popped from the stack. Therefore, manipulation of the PCLATH<7:3> bits is not required for the return instructions (which pops the address from the stack).

NOTE: Because the MC71PB204 use only PCLATH<3:0> bit, the PCLATH<7:4> bits should be always logic '0000b'.

2.2 STACK

The GMC14 series has an 8 level depth x 16-bit width hardware stack. The stack space is neither part of program nor data space and the stack pointer is not readable or writable. The PC is pushed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is popped in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a push or pop operation. The stack operates as a circular buffer. This means that after the stack has been pushed eight times, the ninth push overwrites the value that stored from the first push. The tenth push overwrites the second push (and so on).

NOTES:

- 1. There are no STATUS bits to indicate stack overflow or stack underflow conditions.
- 2. There are no instructions/mnemonics called push or pop. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

2.3 DATA MEMORY

The data memory for the MC71PB204 is partitioned onto three banks which contain the general purpose registers and the special function registers. Bank 0 is selected when the RP1:RP0 bits in status register are 00b, bank 1 when RP1:RP0 are 01b, bank2 when RP1:RP0 are 10b.

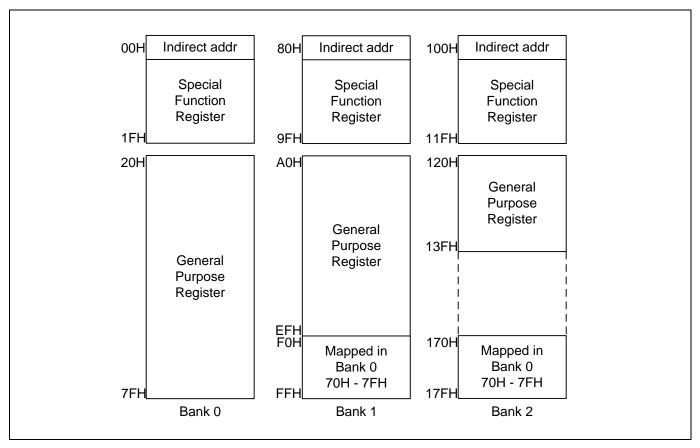


Figure 2-3. Register File Organization (MC71PB204)

The lower locations of each bank are reserved for the special function registers. The upper locations of each bank are general purpose registers implemented as static RAM. All three banks contain special function registers. Some of the special function registers are mirrored in other banks for code reduction and quicker access.

The register file can be accessed either directly, or indirectly through the File Select Register (FSR). Refer to 2.3.3 addressing mode.

2.3.1 GENERAL PURPOSE REGISTER

The size of the MC71PB204's general purpose register is 208 bytes (20H~7FH, A0H~EFH and 120H~13FH). The following general purpose registers are not physically implemented:

- 0F0H-0FFH of Bank 1
- 170H-17FH of Bank 2

These locations are used for common access across banks.

2.3.2 SPECIAL FUNCTION REGISTER

There are 33 bytes of special function register. Some of the special function registers are visible on any of three memory banks. As is shown in figure below;

00H CONFIC	CONFIG	CONFIG	
01H CPUCL		-	
02H PCL	PCL	PCL	
03H STATUS		STATUS	
04H FSR	FSR	FSR	
05H ADMR		-	
06H ADRRH		_	
07H ADRRL		_	
08H WTSCF		-	
09H WTCR		-	
0AH PCLATI		PCLATH	
0BH INTCOM		-	
0CH IPND	-	-	
0DH TSCRA	-	-	
0EH TCRA	-	-	
0FH TDRA	-	-	
10H TSCRE	-	-	
11H TCRB	-	-	
12H TDRB	-	-	
13H -	-	-	
14H	-	-	
15H DDR0H		-	
16H DDR0L	-	-	
17H PUR0	-	-	
18H DDR1	-	-	
19H DDR2F		-	
1AH DDR2L		-	
1BH EINT2		-	
1CH EPND1		-	
1DH P0		-	
1EH P1		-	
1FH P2		-	
20H RAM Mem	ory RAM Memory	RAM Memory	
7FH Space	Space	Space	
Bank 0	Bank 1	Bank 2	

Figure 2-4. Data memory map

The special function registers are the registers used by the cpu and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). The special function registers associated with the "core" functions are described below. The rest of special function registers are described in the corresponding peripheral section.

2.3.2.1 CONFIG Register

The CONFIG register contains configuration bits, which defines additional the MC71PB204 core features. To change it's contents, the FSR register should be cleared first, and then a particular instruction using indirect addressing mode should be executed.

CONFIG REGISTER (CONFIG)

00H, 80H, 100H

	7	6	5	4	3	2	1	0	
CONFIG	•	-	-	-	-	-	DEC	INC	(Initial value :00)
Read/Write	-	-	-	-	-	-	R/W	R/W	-

Bit7-2	Not available for the MC71PB204							
DEC	Indirect addressing mode with post	0: Post FSR decrement disabled						
DEC	decrement FSR contents	1: Post FSR decrement enabled						
INC	Indirect addressing mode with post	0: Post FSR increment disabled						
INC	increment FSR contents	1: Post FSR increment enabled						

NOTE: Both DEC and INC bits set disable auto increment/decrement function.

2.3.2.2 STATUS Register

The STATUS register contains the arithmetic status of the ALU and the bank selection bits for data memory. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then writing to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the nTO and nPD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different from intended.

STATUS REGISTER (STATUS)

03H, 83H, 103H

	7	6	5	4	3	2	1	0	_		
STATUS	IRP	RP1	RP0	nTO	nPD	Z	DC	С	(Initial value :	NOTE)
Read/Write	R/W	R/W	R/W	R	R	R/W	R/W	R/W	_		

IRP	Register Bank Selection Bit	0: Bank 0, 1 (00H – 0FFH)				
IKF	(used for indirect addressing)	1: Bank 2, 3 (100H – 1FFH)				
		00: Bank 0				
RP1	Register Bank Selection Bits	01: Bank 1				
RP0	(used for direct addressing)	10: Bank 2				
		01: Bank 3; (Not used for the MC71PB204)				
		0: A WDT time-out occurred				
nTO	Time-out Bit	After power-up, CLRWDT instruction, or SLEEP instruction.				
nPD	Power-down Bit	0: By execution of the SLEEP instruction				
וורט	Power-down bit	1: After power-up or by the CLRWDT instruction				
7	Zero Bit	0: The result of an arithmetic or logic operation is not zero				
Z		1: The result of an arithmetic or logic operation in zero				
D C	Divit Commute Domeste Dit	0: No carry-out from the 4 th low order bit of the result occurred				
DC	Digit Carry/nBorrow Bit	1: A carry-out from the 4 th low order bit of the result occurred				
С	Courselo Bourous Bit	No carry-out from the most significant bit of the result occurred				
C	Carry/nBorrow Bit	1: A carry-out from the most significant bit of the result occurred				

NOTE: Refer to the Table 6-4 in the Chapter 6. RESET AND POWER DOWN for the initial value of STATUS register.

2.3.2.3 Internal Interrupt Control Register (INTCON)

The INTCON register is able to select enable or disable global interrupt, watchdog timer interrupt, PWM interrupt, timer A interrupt, and timer B interrupt.

INTERNAL INTERRUPT CONTROL REGISTER (INTCON)

0BH

	7	6	5	4	3	2	1	0	
INTCON	GIE	WTIE	PWMIE	TAIE	TBIE	-	-	-	(Initial value : 0000 0)
Read/Write	R/W	R/W	R/W	R/W	R/W	-	-	-	_

GIE	Global Interrupt Enable Bit	0: Disable all interrupt
GIE	Global interrupt Enable Bit	1: Enable all un-masked interrupts
WTIE	Watchdog Timer Interrupt Enable Bit	0: Disable interrupt
VVIIE	Waterlady Timer Interrupt Enable Bit	1: Enable interrupt
PWMIE	PWM Interrupt Enable Bit	0: Disable interrupt
PAAIAIIE		1: Enable interrupt
TAIE	Timer 0/A Interrupt Enable Bit	0: Disable interrupt
IAIL		1: Enable interrupt
TBIE	Timor B Interrupt Enable Bit	0: Disable interrupt
IDIE	Timer B Interrupt Enable Bit	1: Enable interrupt
Bit2-0	Not available for the MC71PB204	

2.3.2.4 Internal Interrupt Pending Register (IPND)

The IPND register is a readable and writable register, which contains various pending bits for internal interrupt.

INTERNAL INTERRUPT PENDING REGISTER (IPND)

0CH

	7	6	5	4	3	2	1	0	
IPND	-	WT PND	PWM PND	TA PND	TB PND		-	ı	(Initial value : - 000 0)
Read/Write	-	R/W	R/W	R/W	R/W	-	-	-	

Bit7	Not available for the MC71PB204						
		0: interrupt request is not pending (when read);					
WTPND	Watchdog Timer Interrupt Pending Bit	pending bit clear when write 0					
		1: interrupt request is pending (when read) 0: interrupt request is not pending (when read); pending bit clear when write 0					
		0: interrupt request is not pending (when read);					
PWMPND	PWM Interrupt Pending Bit	pending bit clear when write 0					
		1: interrupt request is pending (when read)					
		0: interrupt request is not pending (when read);					
TAPND	Timer 0/A Interrupt Pending Bit	pending bit clear when write 0					
		1: interrupt request is pending (when read)					
		0: interrupt request is not pending (when read);					
TBPND	Timer B Interrupt Pending Bit	pending bit clear when write 0					
		1: interrupt request is pending (when read)					
Bit2-0	Not available for the MC71PB204						

2.3.2.5 Special Function Register's Map

Table 2-1. BANK0 Register's Map

	1	1	1	ı	_	1	1	Г	
Register	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name	Hex	2	2.00	2.00		2			
CONFIG	00H	_	_	_	-	_	-	DEC	INC
CPUCLK	01H	ID	LE	_	-	_	-	CC	CLK
PCL	02H		Р	rogram co	unter (PC)	Least Sig	nificant By	te	
STATUS	03H	IRP	RP1	RP0	nTO	nPD	Z	DC	С
FSR	04H			Indirect of	data mem	ory addres	s pointer		
ADMR	05H	SSBIT	EOC	ADO	CLK		AD	СН	
ADDRH	06H			A/D Conv	erter Data	Register,	High Byte		
ADDRL	07H			A/D Conv	erter Data	Register,	Low Byte		
WTSCR	08H		WT	FUN		WT3C	WT	CS	WTCC
WTCR	09H			8-Bit Wat	chdog Tim	er Counte	r Register		
PCLATH	0AH	_	_	_		Write buffe	er upper 5	bits of PC	
INTCON	0BH	GIE	WTIE	PWMIE	TAIE	TBIE	_	_	_
IPND	0CH	_	WT PND	PWM PND	TA PND	TB PND	_	_	_
TSCRA	0DH	-	-	TARL	TACE		TACS TOMO		
TCRA	0EH		•	Tim	er 0/A Co	unter Regi	ster		
TDRA	0FH			Ti	mer 0/A D	ata Regist	er		
TSCRB	10H	-	_	TBRL	TBCE		TBCS		_
TCRB	11H			Tir	ner B Cou	nter Regis	ter		
TDRB	12H			Т	imer B Da	ata Registe	er		
			13H -	I4H are no	t mapped				
DDR0H	15H	P	05	P05PD	-	P	04	P04PD	_
DDR0L	16H	P	03	P)2	P	01	P	00
PUR0	17H	-	PUR06	PUR05	PUR04	PUR03	PUR02	PUR01	PUR00
DDR1	18H	P	12		P11			P10	
DDR2H	19H	P:	27	P2	26	P2	25	P:	24
DDR2L	1AH	P:	23	P2	22	P2	21	P:	20
EINT2	1BH	IN	T3	IN	T2	IN	T1	IN	T0
EPND2	1CH	_	_	_	_	PND3	PND2	PND1	PND0
P0	1DH		•	•	Port 0 Dat	a Register			
P1	1EH				Port 1 Dat	a Register			
P2	1FH				Port 2 Dat	a Register			
A I I ((1)									

NOTE: A dash ('-') means that the bit is neither used nor mapped.

Table 2-2. BANK1 Register's Map

Register	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name	Hex	DIL 1	DIL 0	DIL 3	DIL 4	DIL 3	DIL Z	DIL I	DIL U
CONFIG	80H	_	_	_	_	_	-	DEC	INC
			81	H is not m	apped				
PCL	82H		Р	rogram co	unter (PC)	Least Sig	nificant By	te	
STATUS	83H	IRP	RP1	RP0	nTO	nPD	Z	DC	С
FSR	84H			Indirect	data memo	ory addres	s pointer		
PWMSCR	85H	PWN	/IICS	-	-	PWMD	PWMC	PWME	_
PWMCR	86H			Р	WM Coun	ter Registe	er		
PWMDR	87H				PWM Dat	a Register			
			88H - 8	39H are no	ot mapped				
PCLATH	8AH	_	With buffer upper 5 bits of PC						
			8BH –	9FH are n	ot mapped				

NOTE: A dash ('-') means that the bit is neither used nor mapped.

Table 2-3. BANK2 Register's Map

Register	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Name	Hex	DIL 1	DIL 0	DIL 3	DIL 4	DIL 3	DIL Z	DIL I	DIL U
CONFIG	100H	_	_	_	_	_	_	DEC	INC
			101	H is not m	napped				
PCL	102H		Р	rogram co	unter (PC)	Least Sig	nificant By	te	
STATUS	103H	IRP	RP1	RP0	nTO	nPD	Z	DC	С
FSR	104H			Indirect	data memo	ory addres	s pointer		
			105H - 1	109H are r	not mappe	d			
PCLATH	10AH		_	_		With buffe	er upper 5	bits of PC	
			10BH –	11FH are	not mappe	ed	•		

NOTE: A dash ('-') means that the bit is neither used nor mapped.

2.3.3 ADDRESSING MODES

The MC71PB204 supports two addressing modes: direct or indirect. In Direct Addressing, the 9-bit direct address is concatenated from RP [1:0] bits of STATUS (03H) register and a 7LSB of instruction word. Indirect addressing is possible by using the CONFIG (00H) register. Any instruction using CONFIG (00H) register actually accesses data pointed by the File Select Register (FSR (04H)). The 9-bit address is concatenated from IRP bit from STATUS (03H) register and 8 bits of FSR (04H) register. Both Direct and indirect addressing modes are shown in figure below.

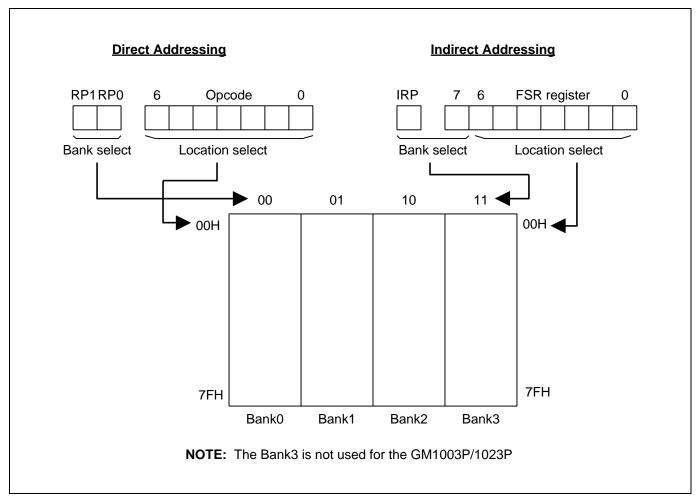


Figure 2-5. Direct/Indirect addressing

2.3.3.1. Indirect Addressing Mode

Indirect addressing mode is applied when the instruction point directly to the CONFIG (00H) register. Any instruction pointing directly the CONFIG (00H) register as a source/destination, actually accesses data pointed by the FSR (file select register, 04H).

In indirect addressing mode, user can select three of supported indirect addressing mode:

- Simple indirect: the indirect address comes from concatenated IRP and FSR.
- Indirect with post increment: the content of FSR register is post incremented, after execution of any instruction using indirect addressing mode.
- Indirect with post decrement: the content of FSR register is post decremented, after execution of any instruction using indirect addressing mode.

A simple program to clear RAM locations 20H-2FH using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

NEXT:	MOVLW MOVWF CLRF INCF BTFSS GOTO	0x20 FSR CONFIG FSR,F FSR,4 NEXT	;initialize pointer ;to RAM ;clear CONFIG register ;inc pointer ;all done? ;no clear next
CONTINUE:	GOTO	NEXI	;no clear next
	:		;yes continue

3. INTERRUPT

3.1 INTERRUPT STRUCTURE

The MC71PB204 has eight interrupt sources:

- Four external interrupts (Port 2.0~Port 2.3)
- Watchdog timer interrupt
- PWM interrupt
- Timer 0/A underflow interrupt
- Timer B underflow interrupt

The interrupt vector address is located at 0004H of ROM address area. Please be careful not to overwrite any of the stored vector addresses.

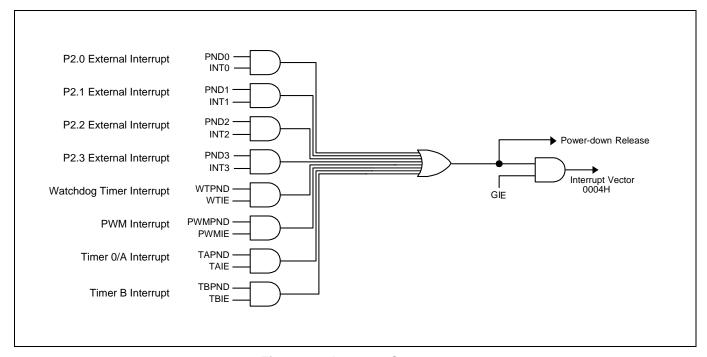


Figure 3-1. Interrupt Structure

The interrupt control registers, INTCON and EINT2 have enable bit of individual interrupt, and INTCON has global interrupt enable bit. The interrupt pending registers, IPND and EPND2 record individual interrupt requests in corresponding bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When GIE bit is set, and an interrupt's pending bit and interrupt enable bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in the INTCON or EINT2.

The watchdog timer interrupt, PWM interrupt, timer 0/A underflow interrupt, and timer B underflow interrupt control bits are contained in the INTCON register and their corresponding interrupt pending bits are in the IPND register.

Four external interrupts are contained in the EINT2 register and their corresponding interrupt pending bits are in the EPND2 register.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with vector address 0004H. At the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt pending bits. The interrupt pending bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

3.2 SAVING KEY REGISTERS DURING AN INTERRUPT SERVICE

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers like W register or STATUS register during an interrupt. This will have to be implemented in software. Ex 3-1) shows how to store and restore the STATUS, W, and PCLATH registers. The register, W_TEMP, must be defined in each bank at the same offset from the bank base address.

The example:

- 1) Stores the W register.
- 2) Stores the STATUS register in bank 0.
- 3) Stores the PCLATH register.
- 4) Executes the Interrupt Service Routine code.
- 5) Restores the PCLATH register.
- 6) Restores the STATUS and W registers.

EX 3-1) SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register, could be bank one or zero
SWAPF	STATUS, W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP, RP1, RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(Interrupt	Service Routine)	
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP, W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP, F	;Swap W_TEMP
SWAPF	W_TEMP, W	;Swap W_TEMP into W

NOTES

4. INSTRUCTION SET

Each MC71PB204 instruction has 14-bit word length divided into an OPCODE, which specifies the instruction type and operands. The instruction set is grouped into the three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Figure below shows three general formats that the instruction can have.

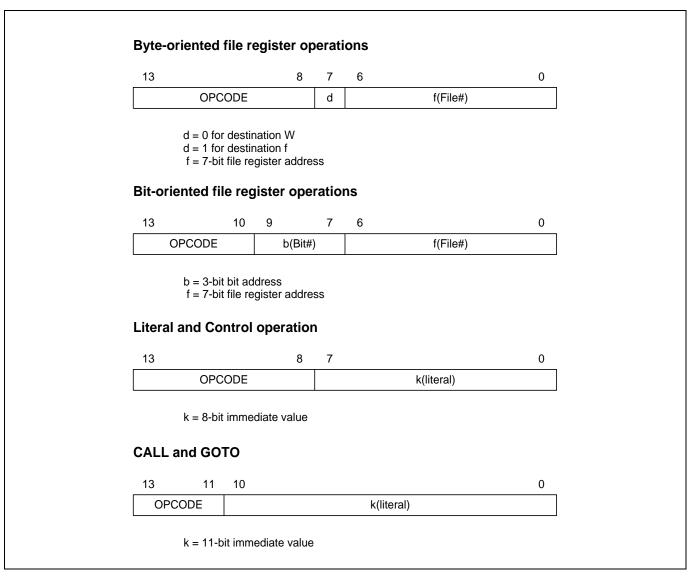


Figure 4-1. General Format of Instructions

All instructions are executed within 2 Clock cycles. Except the instructions using indirect addressing mode which are executed within 4 CLK periods (two instruction cycles).

Table 4-1. Opcode Filed Descriptions

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
Х	Don't care location (=0 or 1)
d	Destination selected; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDTCNT	Watchdog Timer Counter
nTO	Time-out bit
nPD	Power-down bit
destination	Destination either the W register or the specified register file location

4.1 INSTRUCTION SET SUMMARY

4.1.1 BYTE-ORIENTED INSTRUCTION

Table 4-2. Byte-Oriented Operations

Mnemon	ic.	Description		14-bit	opcode		Status	Cycles
operand	•	Description	MSB LSB				Status	Cycles
ADDWF	f, d	Add W and f	0 0	0111	dfff	ffff	C, DC, Z	2
ADDWI	d	Add W and (FSR)	0 0	0111	d000	0000	C, DC, Z	4
ANDWF	f, d	AND W and f	00	0101	dfff	ffff	Z	2
ANDWE	d	AND W and (FSR)	00	0101	d000	0000	Z	4
CLRF	f	Clear f	00	0001	1fff	ffff	Z	2
CLNI		Clear (FSR)	00	0001	1000	0000	Z	4
CLRW	f, d	Add W and f	00	0001	0 x x x	xxxx	Z	2
COME	f, d	Complement f	00	1001	dfff	ffff	Z	2
COMF	d	Complement (FSR)	00	1001	d000	0000	Z	4
DECF	f, d	Decrement f	00	0011	dfff	ffff	Z	2
DECF	d	Decrement (FSR)	00	0011	d000	0000	Z	4
DECFSZ	f, d	Decrement f, Skip if 0	00	1011	dfff	ffff	-	2
DECFSZ	d	Decrement (FSR), Skip if 0	00	1011	d000	0000	-	4
INCF	f, d	Increment f	00	1010	dfff	ffff	Z	2
INCF	d	Increment (FSR)	00	1010	d000	0000	Z	4
INCFSZ	f, d	Increment f, Skip if 0	00	1111	dfff	ffff	-	2
INCESZ	d	Increment (FSR), Skip if 0	00	1111	d000	0000	-	4
IORWF	f, d	Inclusive OR W with f	00	0100	dfff	ffff	Z	2
IOKWI	d	Inclusive OR W with (FSR)	00	0100	d000	0000	Z	4
MOVF	f, d	Move f	00	1000	dfff	ffff	Z	2
IVIOVI	d	Move (FSR)	00	1000	d000	0000	Z	4
MOVWF	f, d	Move W to f	00	0000	1 f f f	ffff	-	2
IVIOVVI		Move W to (FSR)	00	0000	1000	0000	-	4
NOP		No Operation	00	0000	0 x x 0	0000	-	2
RLF	f, d	Rotate Left f through Carry	00	1101	dfff	ffff	С	2
IXLI	d	Rotate Left (FSR) through Carry	00	1101	d000	0000	С	4
RRF	f, d	Rotate Right f through Carry	00	1100	dfff	ffff	С	2
IXIXI	d	Rotate Right (FSR) through Carry	00	1100	d000	0000	С	4
SUBWF	f, d	Subtract W from f	00	0010	dfff	ffff	C, DC, Z	2
30Bvvi	d	Subtract W from (FSR)	00	0010	d000	0000	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	00	1110	dfff	ffff	-	2
JWAFI	d	Swap nibbles in (FSR)	00	1110	d000	0000	-	2
XORWF	f, d	Exclusive OR W with f	00	0110	dfff	ffff	Z	2
AUNVE	d	Exclusive OR W with (FSR)	00	0110	d000	0000	Z	4

4.1.2 BIT-ORIENTED INSTRUCTION

Table 4-3. Bit-Oriented Operations

Mnemonic, operands		Description	14-bit opcode				Status	Cycles
			MSB			LSB	Status	Cycles
BCF	f, b	Bit Clear f	0 1	00bb	bfff	ffff	-	2
	b	Bit Clear (FSR)	0 1	00bb	b000	0000	-	4
BSF	f, b	Bit Set f	01	01bb	bfff	ffff	-	2
	b	Bit Set (FSR)	0 1	01bb	b000	0000	-	4
BTFSC	f, b	Bit Test f, Skip if Clear	01	10bb	bfff	ffff	-	2
	b	Bit Test (FSR), Skip if Clear	0 1	10bb	b000	0000	-	4
BTFSS	f, b	Bit Test f, Skip if Set	01	11bb	bfff	ffff	-	2
	b	Bit Test (FSR), Skip if Set	01	11bb	b000	0000	-	2

4.1.3 LITERAL AND CONTROL OPERATIONS

Table 4-4. Literal and Control Operations

Mnemonic, operands		Description		14-bi	Status	Cycles		
			MSB	MSB LSB				
ADDLW	imm	Add literal and f	1 1	111x	kkkk	kkkk	C, DC, Z	2
ANDLW	imm	Add literal and f	1 1	1001	kkkk	kkkk	Z	2
CALL	imm	Call subroutine	1 0	0 k k k	kkkk	kkkk	-	4
CLRWDT	-	Clear Watchdog Timer	0 0	0000	0110	0100	nTO, nPD	2
GOTO	imm	Go to address	1 0	1 k k k	kkkk	kkkk	-	4
IORLW	imm	Inclusive OR literal with W	1 1	1000	kkkk	kkkk	Z	2
MOVLW	imm	Move literal to W	1 1	0 0 x x	kkkk	kkkk	-	2
RETFIE	-	Return from Interrupt	0 0	0000	0000	1001	-	4
RETLW	imm	Return with literal in W	1 1	0 1 x x	kkkk	kkkk	-	4
RETURN	-	Return from subroutine	0 0	0000	0000	1000	-	4
SLEEP	-	Go into standby mode	0 0	0000	0110	0 0 1 1	nTO, nPD	2
SUBLW	imm	Subtract W from literal	1 1	1 1 0 x	kkkk	kkkk	C, DC, Z	2
XORLW	imm	Exclusive OR literal with W	1 1	1010	kkkk	kkkk	Z	2

4.2 INSTRUCTION DESCRIPTION

4.2.1 ADDLW - ADD LITERAL AND W

Operands: $0 \le imm(k) \le 255$

Operation: $W \leftarrow W + imm(k)$

Status Affected: C, DC, Z

Description: The contents of W register are added to the eight bit immediate data 'imm' and the result is placed in the W register.

Encoding: 1 1 1 1 1 1 x k k k k k k k k

Cycles: DIR: 2

Example: ADDLW 0x15

Before Instruction

W = 0x10

After Instruction

W = 0x25

4.2.2 ADDWF - ADD W AND F

Operands: $0 \le f \le 127$

 $d \in [0, 1]$

Operation: destination <= W + f

destination <= W + FSR

Status Affected: C, DC, Z

Description: ADDWF instruction add contents of the W register with register specified by 'f' operand. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.

Encoding:

0 0	0 1 1 1	dfff	ffff
0 0	0 1 1 1	d 0 0 0	0 0 0 0

Cycles: DIR: 2

INDIR: 4

Example: ADDWF FSR, 0

Before Instruction

W = 0x17 FSR = 0xC2

After Instruction

W = 0xD9 FSR = 0XC2

4.2.3 ANDLW - AND LITERAL WITH W

Operands: $0 \le imm(k) \le 255$

Operation: $W \leftarrow W \text{ and imm } (k)$

Status Affected: Z

Description: The contents of W register are AND'ed with the eight bit immediate data 'imm'. The result is

placed in the W

Encoding: 1 1 1 0 0 1 k k k k k k k k

Cycles: DIR: 2

Example: ANDLW 0x5F

Before Instruction

W = 0xA3

After Instruction

W = 0x03

4.2.4 ANDWF - AND W WITH F

Operands: $0 \le f \le 127$

 $d \in [0, 1]$

Operation: destination <= W and f

destination <= W and FSR

Status Affected: Z

Description: ANDWF instruction AND the W register with register specified by 'f' operand. The result is stored in W or back in 'f' register respectively to the 'd' value.

Encoding:

0 0	0101	dfff	1 1 1 1
0 0	0101	d 0 0 0	0 0 0 0

Cycles: DIR: 2

INDIR: 4

Example: ANDWF FSR, 1

Before Instruction

W = 0x17 FSR = 0XC2

After Instruction

W = 0X17 FSR = 0x02

4.2.5 BCF - BIT CLEAR F

Operands: $0 \le f \le 127$

 $0 \le b \le 7$

Operation: f.b ≤ 0

FSR.b <= 0

Status Affected: -

Description: Bit 'b' in register 'f' is cleared.

01 00bb bfff ffff

Cycles: DIR : 2

INDIR: 4

Example: BCF Flag_Buf, 1

Before Instruction

 $Flag_Buf = 0x17$

After Instruction

 $Flag_Buf = 0x16$

4.2.6 BSF – BIT SET F

Operands: $0 \le f \le 127$

 $0 \le b \le 7$

Operation: f.b <= 1

FSR.b <= 1

Status Affected: -

Description: Bit 'b' in register 'f' is cleared.

01 01bb bfff
Encoding:

01 01bb b000 0000

 $f\ f\ f\ f$

Cycles: DIR: 2

INDIR: 4

Example: BSF Flag_Buf, 7

Before Instruction

 $Flag_Buf = 0x17$

After Instruction

 $Flag_Buf = 0x97$

4.2.7 BTFSC - BIT TEST, SKIP IF CLEAR

Operands: $0 \le f \le 127$

 $0 \le b \le 7$

Operation: skip if, f.b = 0

skip if, FSR.b = 0

Status Affected: -

Description: Check the 'b' bit in 'f' register and skip next instruction when 'b' is '0'. If bit 'b' is '0' then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.

Encoding:

0 1	10bb	bfff	ffff
0 1	1 0 b b	b 0 0 0	0 0 0 0

Cycles: DIR: 2

INDIR: 4

Example: aaa: BTFSC Flag_Buf, 1

bbb: GOTO ccc

ddd:

Before Instruction

PC = address aaa

After Instruction

If $Flag_Buf < 1 > = 0$,

PC = address ddd

If $Flag_Buf < 1 > = 1$,

PC = address bbb

4.2.8 BTFSS - BIT TEST, SKIP IF SET

Operands: $0 \le f \le 127$

 $0 \le b \le 7$

Operation: skip if f.b = 1

skip if FSR.b = 1

Status Affected: -

Description: If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1' then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.

Encoding:

0 1	1 1 b b	bfff	ffff

01 1166 6000 0000

Cycles: DIR: 2

INDIR: 4

Example: aaa: BTFSC Flag_Buf, 1

bbb: GOTO ccc

ddd:

Before Instruction

PC = address aaa

After Instruction

If $Flag_Buf<1>=0$,

PC = address bbb

If $Flag_Buf<1>=1$,

PC = address ddd

4.2.9 CALL - CALL SUBROUTINE

Operands: $0 \le imm(k) \le 2047$

Operation: TOS \leq PC + 1,

 $PC[10:0] \le imm(k),$

PC [12:11] <= PCLATH [4:3]

Status Affected: -

Description: Call Subroutine. First, return address PC+1 is pushed onto the stack. The eleven bit immediate address is loaded into PC [10:0]. The upper bits of the PC are loaded from PCLATH. CALL is two-cycle instruction.

Encoding: 10 0kkk kkkk kkkk

Cycles: 4

Example: aaa: CALL bbb

Before Instruction

PC = address aaa

After Instruction

PC = address bbb SP = address aaa+1

4.2.10 CLRF - CLEAR F

Operands: $0 \le f \le 127$

Operation: $f \le 0x00$

FSR <= 0x00

Status Affected: Z

Description: The contents of register 'f' is cleared and the Z bit in STATUS register is set

Encoding:

00 0001 1000 0000

Cycles: DIR: 2

INDIR: 4

Example: CLRF Flag_Buf

Before Instruction

 $Flag_Buf = 0xAA$

After Instruction

 $Flag_Buf = 0x00$

4.2.11 CLRW - CLEAR W

Operands: -

Operation: $W \le 0x00$

Status Affected: Z

Description: The contents of working register W is cleared and the Z bit in STATUS register is set

Encoding: 0 0 0 0 0 1 0 x x x x x x x

Cycles: 2

Example: CLRW

Before Instruction

W = 0xAA

After Instruction

W = 0x00

4.2.12 CLRWDT - CLEAR WATCHDOG TIMER

Operands: -

Operation: WDTCNT <= Clear

Status Affected: nTO, nPD

Description: CLRWDT instruction resets the WDTCNT. Status bits nTO and nPD are set.

Encoding: 0 0 0 0 0 0 0 1 1 0 0 1 00

Cycles: 2

Example: CLRWDT

Before Instruction

WDTCNT = ?

After Instruction

WDTCNT = 0x00 nTO = 1 nPD = 1

4.2.13 COMF - COMPLEMENT F

Operands: $0 \le f \le 127$

 $d \in [0, 1]$

Operation: destination <= f

destination <= FSR

Status Affected: Z

Description: The contents of register 'f' is complemented and transferred to the destination W or 'f' depending of the 'd'.

00 1001 dfff ffff

Encoding:

00 1001 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: COMF REG1, 0

Before Instruction

REG1 = 0x13

After Instruction

 $\begin{array}{ccc} \mathsf{REG1} & = & \mathsf{0x13} \\ \mathsf{W} & = & \mathsf{0xEC} \end{array}$

4.2.14 DECF - DECREMENT F

Operands: $0 \le f \le 127$

 $d \in [0,\,1]$

Operation: destination $\leq f - 1$

destination <= FSR - 1

Status Affected: Z

Description: Decrement register 'f'. The result of operation is stored in the destination W or 'f' depending of the

'd' value.

Encoding:

00 0011 dfff ffff

00 0011 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: DECF REG1, 1

Before Instruction

 $\begin{array}{rcl}
\mathsf{REG1} & = & 0\mathsf{x1} \\
\mathsf{Z} & = & 0
\end{array}$

After Instruction

 $\begin{array}{rcl}
\mathsf{REG1} & = & 0x0 \\
\mathsf{Z} & = & 1
\end{array}$

4.2.15 DECFSZ - DECREMENT F, SKIP IF 0

Operands: $0 \le f \le 127$

 $d \in [0,\,1]$

Operation: destination \leftarrow f - 1, Skip if result = 0

destination \leftarrow FSR -1, Skip if result = 0

Status Affected: -

Description: The contents of register 'f' are decremented and stored in the destination. If the result of operation is 0, the next instruction, which is already fetched, is discarded and NOP is executed instead making it two-cycle instruction.

00 1011 dfff ffff

Encoding: 0 0 1 0 1 1 d 0 0 0 0 0 0 0

Cycles: DIR: 2

INDIR: 4

Example: aaa: DECFSZ REG1, 1

GOTO aaa

bbb:

Before Instruction

PC = address aaa

After Instruction

REG1 = REG1 -1

If REG1 = 0.

PC = address bbb

If REG1 \neq 0,

PC = address aaa + 1

4.2.16 GOTO - UNCONDITIONAL BRANCH

Operands: $0 \le imm(k) \le 2047$

Operation: $PC [10:0] \le imm (k)$

PC [12:11] <= PCLATH [4:3]

Status Affected: -

Description: *GOTO* is an unconditional branch. The eleven bit immediate value is loaded into PC bits [10:0]. The upper bits of PC are loaded from PCLATH [4:3]. GOTO is a two-cycle instruction

Encoding: 10 1 k k k k k k k k k

Cycles: 4

Example: GOTO Loop

After Instruction

PC = address Loop

4.2.17 INCF-INCREMENT F

Operands: $0 \le f \le 127$

 $d \in [0, 1]$

Operation: destination $\leq f + 1$

destination <= FSR + 1

Status Affected: Z

Description: The contents of register 'f' are incremented. The result of operation is stored in the W register or 'f', depending of the 'd' value.

Encoding:

00 1010 dfff ffff 00 1010 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: INCF REG1, 1

Before Instruction

 $\begin{array}{ccc} REG1 & = & 0xFF \\ Z & = & 0 \end{array}$

After Instruction

 $\begin{array}{ccc} REG1 & = & 0x0 \\ Z & = & 1 \end{array}$

4.2.18 INCFSZ - INCREMENT F, SKIP IF 0

Operands: $0 \le f \le 127$

 $d \in [0,1]$

Operation: destination \leq f + 1, Skip if result = 0

destination <= FSR + 1, Skip if result = 0

Status Affected: -

Description: The contents of register 'f' are incremented and stored in the destination. If the result is 0, the next instruction which is already fetched, is discarded, and a NOP is executed instead making it a two-cycle instruction.

Encoding:

0 0	1111	dfff	ffff
0 0	1111	d 0 0 0	0 0 0 0

Cycles: DIR: 2

INDIR: 4

Example: aaa: INCFSZ REG1, 1

GOTO Loop

bbb:

Before Instruction

PC = address aaa

After Instruction

REG1 = REG1 + 1

If REG1 = 0,

PC = address bbb

If REG1 \neq 0,

PC = address aaa + 1

4.2.19 IORLW - INCLUSIVE OR LITERAL WITH W

Operands: $0 \le imm (k) \le 255$

Operation: $W \leftarrow W \cap W \cap W$

Status Affected: Z

Description: The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W

register.

Cycles: 2

Example: IORLW 0x35

Before Instruction

W = 0x9A

After Instruction

W = 0XBF Z = 0

4.2.20 IORWF - INCLUSIVE OR W WITH F

Operands: $0 \le f \le 127$

 $d \in [0, 1]$

Operation: destination <= W OR f

destination <= W OR FSR

Status Affected: Z

Description: Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.

Encoding:

0 0	0100	dfff	ffff
0 0	0100	d 0 0 0	0 0 0 0

Cycles: DIR: 2

INDIR: 4

Example: IORWF REG1

Before Instruction

REG1 = 0x13 W = 0x9A

After Instruction

REG1 = 0X13 W = 0x93 Z = 1

4.2.21 MOVLW - MOVE LITERAL TO W

Operands: $0 \le imm(k) \le 255$

Operation: $W \le imm(k)$

Status Affected: -

Description: The eight bit immediate data 'imm' is loaded into W register

Encoding: 1 1 0 0 x x k k k k k k k k

Cycles: 2

Example: MOVLW 0XAA

After Instruction

W = 0xAA

4.2.22 MOVF – MOVE F

Operands: $0 \le f \le 127$

 $d \in [0,\,1]$

Operation: destination <= f

destination <= FSR

Status Affected: Z

Description: The contents of register f are moved to destination dependent of 'd' value.

dfff

ffff

0 0 1 0 0 0 Encoding:

00 1000 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: MOVF REG1, 0

After Instruction

W = value in REG1 register

Z = '

4.2.23 MOVWF – MOVE W TO F

Operands: $0 \le f \le 127$

Operation: $f \leftarrow W$

FSR <= W

Status Affected: -

Description: Move data from W register to register 'f'.

Encoding:

00 0000 dfff ffff

00 0000 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: MOVWF REG1

Before Instruction

REG1 = 0x00 W = 0x9A

After Instruction

REG1 = 0x9A W = 0x9A

4.2.24 NOP - NO OPERATION

Operands: -

Operation: -

Status Affected: -

Description: No operation.

Encoding: 0 0 0 0 0 0 0 0 x x 0 0 0 0 0

Cycles: 2

Example: NOP

4.2.25 RETFIE - RETURN FROM INTERRUPT

Operands: -

Operation: PC <= TOS

GIE <= 1

Status Affected: -

Description: Return from interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON(7)).

Encoding: 0 0 0 0 0 0 0 0 0 1 0 01

Cycles: 4

Example: RETFIE

After Instruction

PC = TOS GIE = 1

4.2.26 RETLW - RETURN WITH LITERAL IN W

Operands: $0 \le imm(k) \le 255$

Operation: PC <= TOS

 $W \le imm(k)$

Status Affected: -

Description: The W register is loaded with eight bit immediate data 'imm'. The program counter is loaded with the return address from the top of stack.

Encoding: 11 01xx kkkk kkkk

Cycles: 4

Example: CALL TABLE

TABLE ADDWF PC

RETLWR0 RETLWR1 RETLWR2

Before Instruction

W = 0x02

After Instruction

W = value of R3

4.2.27 RETURN - RETURN FROM SUBROUTINE

Operands: -

Operation: PC <= TOS

Status Affected: -

Description: Return from subroutine. The stack is POPed and the top of the stack is loaded into the PC.

Encoding: 0 0 0 0 0 0 0 0 0 1 0 0 0

Cycles: 4

Example: RETURN

After Instruction

PC = TOS

4.2.28 RLF - ROTATE LEFT F THROUGH CARRY

Operands: $0 \leq f \leq 127$

 $d \in [0, 1]$

Operation:

Status Affected: С

Description: The contents of register 'f' is rotated one bit to the left through the Carry Flag. Result is stored in to destination respectively to the 'd' value.

0 0 ffff 1101 dfff **Encoding:**

0 0 1101 d 0 0 0 0000

Cycles: DIR: 2

INDIR: 4

Example: RLF REG1, 0

Before Instruction

REG1 1110 0110

С 0

After Instruction

REG1 1110 0110 W

1100 1100 =

С 1

4.2.29 RRF - ROTATE RIGHT F THROUGH CARRY

Operands: $0 \le f \le 127$

 $\mathsf{d} \in [0,1]$

Operation:

Status Affected: C

Description: The contents of register 'f' are rotated one bit to the right through the Carry Flag. Result is stored in to destination respectively to the 'd' value.

0 0 1 1 0 0 d f f f f f f f f

00 1100 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: RRF REG1, 0

Before Instruction

REG1 = 1110 0110

C = 0

After Instruction

REG1 = 1110 0110 W = 0111 0011

C = 0

4.2.30 SLEEP

Operands: -

Operands: WDTCNT <= Clear

Status Affected: nTO, nPD

Description: Status bits nTO is set and nPD is cleared. WDTCNT is cleared.

It will be in "STOP" mode when CPUCLK.7-.6 value is '10', and the 'SLEEP' instruction is executed. It will be in "IDLE" mode when CPUCLK.7-.6 value is any values except for '10', and the 'SLEEP' instruction is executed.

Encoding: 0 0 1 1 0 0 0 1 1 0 0 0 1 1

Cycles: 2

Example: SLEEP

4.2.31 SUBLW - SUBTRACT W FROM LITERAL

Operands: $0 \le imm(k) \le 255$

Operands: $W \le imm(k) - W$

Status Affected: C, DC, Z

Description: The W register is subtracted (2' complement method) from the eight bit immediate data 'imm'. The result is stored in W register.

Encoding: 1 1 1 1 0 x k k k k k k k k

Cycles: 2

4.2.31 SUBLW - SUBTRACT W FROM LITERAL(CONTINUED)

Example: SUBLW0x02

Before Instruction

W = 1 C = ? Z = ?

After Instruction

W = 1

C = 1; result is positive

Z = 0

Before Instruction

W = 2 C = ? Z = ?

After Instruction

W = 0

C = 1; result is zero

Z = 1

Before Instruction

W = 3 C = ? Z = ?

After Instruction

W = 0xFF

C = 0; result is negative

Z = (

4.2.32 SUBWF - SUBTRACT W FROM F

Operands: $0 \le f \le 127$

 $d \in [0, 1]$

Operands: destination \leftarrow f – W

destination <= FSR - W

Status Affected: C, DC, Z

Description: Subtract (2's complement method) W register from register 'f'. Result is stored in destination respectively to the value of 'd'.

Encoding:

00 0010 dfff ffff 00 0010 d000 0000

Cycles: DIR: 2

INDIR: 4

4.2.32 SUBWF - SUBTRACT W FROM F(CONTINUED)

Example: REG1, 1 SUBWF

Before Instruction

REG1 W 2 С Ζ ?

After Instruction

REG1 1 2

С 1; result is positive = Z

Before Instruction

REG1 2 W 2 С ? Ζ ?

After Instruction

REG1 0 W

С 1; result is zero =

Ζ

Before Instruction

REG1 1 = W 2 С = ? Ζ ?

After Instruction

REG1 0xFF =

W

С = 0; result is negative

Ζ

4.2.33 SWAPF - SWAP NIBBLES IN F

Operands: $0 \le f \le 127$

 $d \in [0, 1]$

Operands: destination [7:4] \leftarrow f [3:0],

destination [3:0] <= f [7:4]

Status Affected: -

Description: The upper and lower nibbles of register 'f' are exchanged. Result is stored in destination respectively to the value of 'd'.

Encoding:

00 1110 dfff ffff

00 1110 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: SWAPFREG1

Before Instruction

REG1 = 0xA5

After Instruction

 $\begin{array}{ccc} REG1 & = & 0xA5 \\ W & = & 0x5A \end{array}$

4.2.34 XORLW - EXCLUSIVE OR LITERAL WITH W

Operands: $0 \le imm(k) \le 255$

Operands: $W \leftarrow imm(k) XOR W$

Status Affected: Z

Description: The Exclusive OR of the contents of W register and 8 bit immediate data is stored in W.

Encoding: 11 1010 kkkk kkkk

Cycles: 2

Example: XORLW 0xAF

Before Instruction

W = 0xB5

After Instruction

W = 0x1A

4.2.35 XORWF - EXCLUSIVE OR W WITH F

Operands: $0 \le f \le 127$

 $d \in [0,1]$

Operands: destination <= W XOR f

destination <= W XOR FSR

Status Affected: Z

Description: Exclusive OR the W register with register 'f'. Result is stored in destination respectively to the

value of 'd'.

00 0110 dfff ffff

Encoding:

00 0110 d000 0000

Cycles: DIR: 2

INDIR: 4

Example: XORWF REG1

Before Instruction

REG1 = 0xAFW = 0xB5

After Instruction

 $\begin{array}{rcl} REG1 & = & 0x1A \\ W & = & 0xB5 \end{array}$

NOTES

5. CLOCK CIRCUIT

The MC71PB204 microcontroller has an oscillator circuit: a main clock circuit. The CPU and peripheral hardware is operated on system clock frequency supplied through this circuit. The maximum CPU clock frequency of the MC71PB204 is determined by CPUCLK register settings.

5.1 SYSTME CLOCK CIRCUIT

The system clock circuit has the following components:

- External crystal, ceramic resonator, or an external clock source
- Internal RC or External RC oscillation source
- Oscillator stop and wake-up functions
- Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)
- CPU clock control register, CPUCLK

5.1.1 MAIN OSCILLATOR CIRCUITS

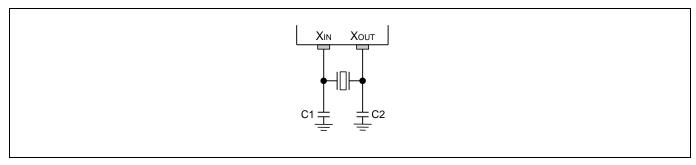


Figure 5-1. Crystal/Ceramic Oscillator (fx)

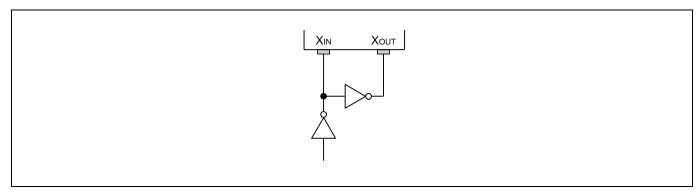


Figure 5-2. External Oscillator (fx)

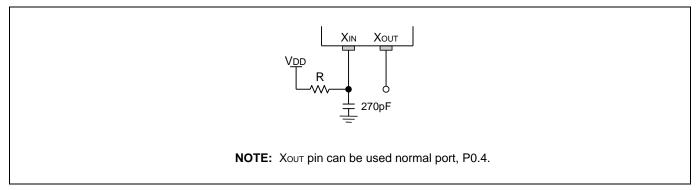


Figure 5-3. External RC Oscillator (fx)

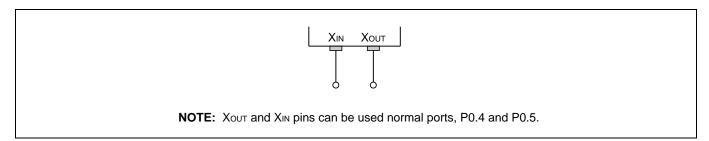


Figure 5-4. Internal RC Oscillator (fx)

NOTE: fx means main oscillator clock.

5.1.2 EXAMPLE OF INCORRECT OSCILLATOR CONNECTION

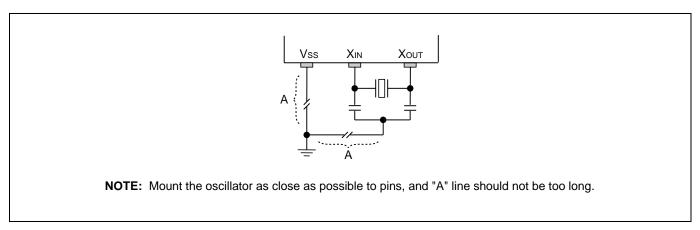


Figure 5-5. Incorrect oscillator connection (1)

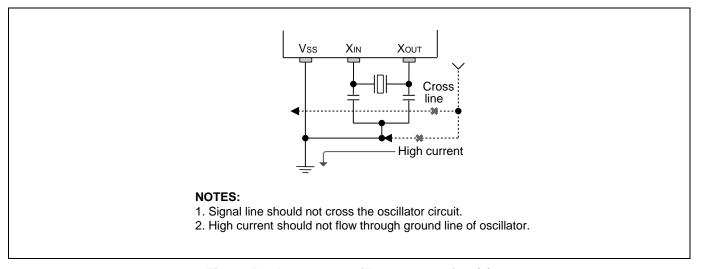


Figure 5-6. Incorrect oscillator connection (2)

5.1.3 CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

- In Stop mode, the main oscillator is halted. Stop mode is released by a reset operation or an external interrupt and the oscillator is started.
- In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure and timer/counter. Idle mode is released by a reset or by an external or internal interrupt.

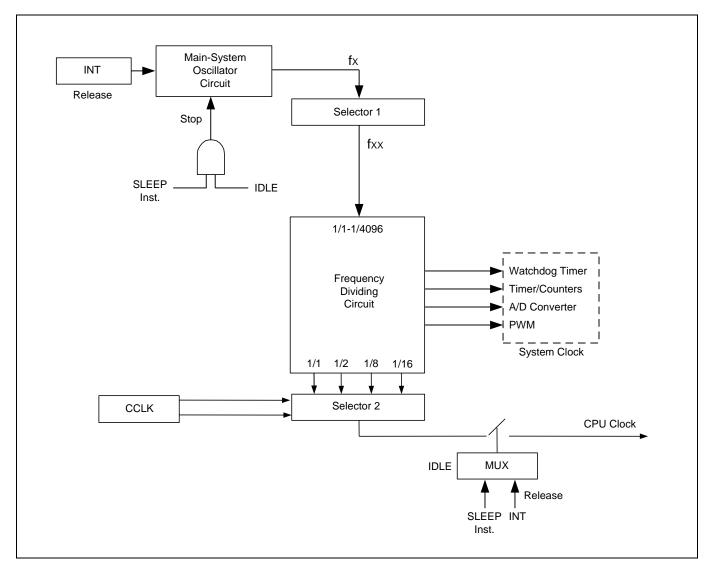


Figure 5-7. System Clock Circuit Diagram

5.1.4 CPU CLOCK CONTROL REGISTER

CPU CLOCK CONTROL REGISTER (CPUCLK)

01H

	7	6	5	4	3	2	1	0	
CPUCLK	IDI	LE	-	-	-	-	CCLK		(Initial value : 0011)
Read/Write	R/W	R/W	-	-	-	-	R/W	R/W	_

IDLE	IDLE Mode	10: Enable STOP						
IDLE	IDLE Wode	Others : Enable IDLE; (CPU clock is stop)						
Bit5-2	Not available for the MC71PB204	ot available for the MC71PB204						
		00: fxx						
CCLK	CPU Clock (System Clock)	01: fxx/2						
CCLK	Selection Bits ^(note)	10: fxx/8						
		11: fxx/16						

NOTES:

- 1. After reset the slowest clock (divided by 16) is selected as the system clock. To select faster clock speed, load the appropriate values to CPUCLK<0> and CPUCLK<1>.

 2. It will be in "STOP" mode when CPUCLK<7:6> value is '10b' and the "SLEEP" inst. is executed.
- 3. It will be in "IDLE" mode when CPUCLK<7:6> value is not '10b' and the "SLEEP" inst. is executed.

NOTES

6. RESET AND POWER-DOWN MODE

6.1 RESET

The MC71PB204 has four resets.

- Power on reset
- Low voltage reset (LVR)
- nMCLR reset
- Watchdog timer overflow reset

Under the descriptions are about initial value according to each reset mentioned above;

- The Table 6-1~6-3 shows the register initial values. The values are initial values by power on reset, LVR, nMCLR, and watchdog timer overflow reset.
- The W register's initial value by power on reset, LVR, nMCLR, and watchdog timer overflow reset is "00000000b".
- The RAM (general purpose registers)'s initial value is undefined by the power on reset and retentive on the LVR, nMCLR or watchdog timer overflow reset.

Table 6-1. BANK0 Register and Initial Values

Dominton Nama	Address (Hay)	Initial Value (bit)							
Register Name	Address (Hex)	7	6	5	4	3	2	1	0
CONFIG	00H	_	_	-	_	_	-	0	0
CPUCLK	01H	0	0	_	_	_	_	1	1
PCL	02H	0	0	0	0	0	0	0	0
STATUS	03H			Refer	to th	e Tab	le 6-4		
FSR	04H	Х	Х	Х	Х	х	Х	Х	Х
ADMR	05H	0	0	0	0	0	0	0	0
ADDRH	06H	Х	х	Х	Х	х	х	Х	Х
ADDRL	07H	Х	х	Х	Х	-	-	-	_
WTSCR	08H	0	0	0	0	0	1	1	0
WTCR	09H	0	0	0	0	0	0	0	0
PCLATH	0AH	_	_	_	0	0	0	0	0
INTCON	0BH	0	0	0	0	0	_	_	_
IPND	0CH	_	0	0	0	0	_	_	_
TSCRA	0DH	_	_	0	0	1	1	1	0
TCRA	0EH	1	1	1	1	1	1	1	1
TDRA	0FH	1	1	1	1	1	1	1	1
TSCRB	10H	_	_	0	0	1	1	1	_
TCRB	11H	1	1	1	1	1	1	1	1
TDRB	12H	1	1	1	1	1	1	1	1
,	13H-14H are not mapped								
DDR0H	15H	0	0	0	_	0	0	0	_
DDR0L	16H	0	0	0	0	0	0	0	0
PUR0	17H	_	0	0	0	0	0	0	0
DDR1	18H	0	0	0	0	0	0	0	0
DDR2H	19H	0	0	0	0	0	0	0	0
DDR2L	1AH	0	0	0	0	0	0	0	0
EINT2	1BH	0	0	0	0	0	0	0	0
EPND2	1CH	_	_	_	_	0	0	0	0
P0	1DH	0	0	0	0	0	0	0	0
P1	1EH	0	0	0	0	0	0	0	0
P2	1FH	0	0	0	0	0	0	0	0

NOTES:

- 1. An 'x' means that the bit value is undefined following reset.
- 2. A dash ('-') means that the bit is neither used nor mapped, but the bit is read as '0'.

Table 6-2. BANK1 Register and Initial Values

Posister Name	Address (Hex)	Initial Value (bit)								
Register Name	Address (Hex)		6	5	4	3	2	1	0	
CONFIG	80H	_	_	-	_	_	-	0	0	
	81H is not mapped									
PCL	PCL 82H							0	0	
STATUS	83H	Refer to the Table 6-4								
FSR	84H	x x x x x x x					Х	Х		
PWMSCR	85H	0	0	-	_	0	0	0	_	
PWMCR	86H	0	0	0	0	0	0	0	0	
PWMDR	87H	0	0	0	0	0	0	0	0	
8	88H-89H are not mapped									
PCLATH	8AH	1	_	_	0	0	0	0	0	
8	BH-9FH are not mapped									

NOTES:

- 1. An 'x' means that the bit value is undefined following reset.
- 2. A dash ('-') means that the bit is neither used nor mapped, but the bit is read as '0'.

Table 6-3. BANK2 Register and Initial Values

Pogistor Namo	Addross (Hov)	Initial Value (bit)									
Register Name	Address (Hex)	7	6	5	4	3	2	1	0		
CONFIG	100H	_	_	_	_	_	_	0	0		
	101H is not mapped										
PCL	102H	0	0	0	0	0	0	0	0		
STATUS	103H	Refer to the Table 6-4									
FSR	104H	x x x x x x x x x						Х			
10	105H-109H are not mapped										
PCLATH	PCLATH 10AH							0	0		
10	BH-11FH are not mapped	b									

NOTES:

- 1. An 'x' means that the bit value is undefined following reset.
- 2. A dash ('-') means that the bit is neither used nor mapped, but the bit is read as '0'.

Table 6-4. STATUS Register's Initial Values

STATUS Register's Initial Values	Descriptions					
0001 1000b	By power on reset					
0000 0000b	By watchdog timer overflow during Sleep mode					
0000 1000b	By watchdog timer overflow during Operating mode					

6.1.1 RECOMMENDED nMCLR PIN CIRCUIT

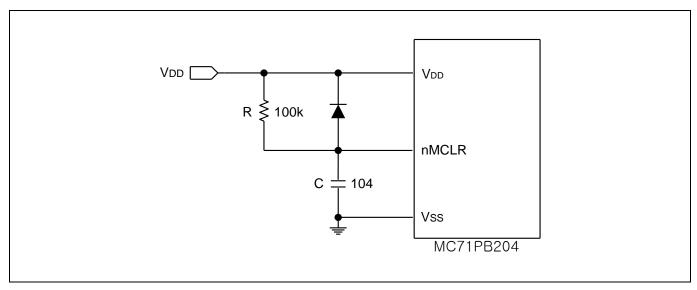


Figure 6-1. Recommended nMCLR Pin Circuit

6.2 POWER-DOWN MODE

6.2.1 STOP MODE

Stop mode is invoked by the instruction SLEEP when the IDLE (CPUCLK<7:6>) = "10b". In Stop mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the current consumption is reduced. All system functions stop when the clock "freezes", but data stored in the internal register file is retained. Stop mode can be released through one of two ways; by a reset or by external interrupts.

EX)	MOVLW ANDWF MOVLW IORWF	b'00111111' CPUCLK, F b'10000000' CPUCLK, F	;enable STOP (CPUCLK<7:6> = "10")
	SLEEP NOP NOP NOP		;STOP Mode

NOTE: Do not use stop mode if you are using an external clock source because X_{IN} input must be restricted internally to V_{SS} to reduce current leakage.

The Stop mode can be released through one of the following events:

- 1. External reset input on nMCLR pin.
- 2. External interrupt from INT0~INT3 pins.

6.2.2 IDLE MODE

Idle mode is invoked by the instruction SLEEP when the IDLE (CPUCLK<7:6>) = "00b", "01b" or "11b". In idle mode, CPU operations are halted while some peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all peripherals remain active. Port pins retain the mode (input or output) they had at the time idle mode was entered.

EX)	MOVLW IORWF	b'11000000' CPUCLK, F	;enable IDLE (CPUCLK<7:6> = "00", "01"or "11")
	SLEEP NOP NOP NOP		;IDLE Mode

The Idle mode can be released through one of the following events:

- 1. External reset input on nMCLR pin.
- 2. External interrupt from INT0~INT3 pins
- 3. Internal interrupt on Watchdog timer, Timer A, Timer B or PWM.

NOTES

7. I/O PORTS

The MC71PB204 microcontroller has three bit-programmable I/O ports, P0-P2. The CPU accesses ports by writing or reading port register directly.

7.1 PORT CONFIGURATION

7.1.1 PORT 0 CONFIGURATION

- 1-bit programmable I/O port.
- Schmitt trigger input, push-pull, or open-drain output mode can be selected by software.
- A pull-up resistor (P0.0-P0.5) or pull-down resistor (P0.4-P0.5) can be specified in 1-bit.
- P0.0-P0.3 can be used as AD0-AD3.
- P0.4, P0.5 can be used as X_{OUT} , X_{IN} .

7.1.2 PORT 1 CONFIGURATION

- 1-bit programmable I/O port.
- Schmitt trigger input, push-pull, or open-drain output mode can be selected by software.
- A pull-up resistor can be specified in 1-bit.
- P1.0-P1.2 can be used as AD4-AD6, PWM, TAOUT, and TACLK.

7.1.3 PORT 2 CONFIGURATION

- 1-bit programmable I/O port.
- P2.0-P2.3 are schmitt trigger input, push-pull output mode can be selected by software.
- P2.4-P2.7 are schmitt trigger input, push-pull, or open-drain output mode selected by software.

NOTE: P2.4-P2.7 are not on 16-pin package.

- A pull-up resistor can be specified in 1-bit.
- P2.0-P2.3 can be used as AD7-AD10 and INT0-INT3.

7.2 PORT REGISTERS

7.2.1 PORT 0 DATA REGISTER

- P0 at location 1DH, Bank0.
- A reset clears the P0 data register to "00H".

7.2.2 PORT 1 DATA REGISTER

- P1 at location 1EH, Bank0.
- A reset clears the P1 data register to "00H".

7.2.3 PORT 2 DATA REGISTER

- P2 at location 1FH, Bank0.
- A reset clears the P2 data register to "00H".

7.2.4 PORT 0 DATA DIRECTION REGISTER HIGH BYTE (DDR0H)

A reset clears the DDR0H register to '00H', makes P0.5-P0.4 pins input mode, and disables pull-down resistor.

You can use DDR0H register setting to select input (with or without pull-down and pull-up) or output mode (open-drain or push-pull).

If you want to use X_{IN} and X_{OUT} , the OSCS (ROM Option<3:1>) must select to Crystal/ceramic oscillator mode (111b). If you want to use P0.5 and P0.4, the OSCS (ROM Option<3:1>) must select to Internal RC mode (001b, 010b, 011b, 100b).

DDR0H — Port 0 Data Direction Register High Byte

15H

	7	6	5	4	3	2	1	0	
DDR0H	P)5	P05PD	-	P04 I		P04PD	•	(Initial value : 000-000-)
Read/Write	R/W	R/W	R/W	-	R/W	R/W	R/W	-	_

		00: Schmitt trigger input mode					
P05	P0.5/X _{IN}	01: Output mode, open-drain					
F03	F0.3/A _{IN}	10: Not available					
		11: Output mode, push-pull					
P05PD	P0.5 Pull-down Enable Bit	0: Disable Pull-down resistor					
FUSFD	F0.3 Full-down Enable Bit	1: Enable Pull-down resistor					
Bit4	Not available for the MC71PB204						
		00: Schmitt trigger input mode					
P04	P0.4/X _{OUT}	01: Output mode, open-drain					
FU 4	F0.4/A _{OUT}	10: Not available					
		11: Output mode, push-pull					
P04PD	P0.4 Pull-down Enable Bit	0: Disable Pull-down resistor					
FU4PD	F0.4 Full-down Enable Bit	1: Enable Pull-down resistor					
Bit0	Not available for the MC71PB204						

7.2.5 PORT 0 DATA DIRECTION REGISTER LOW BYTE (DDR0L)

A reset clears the DDR0L register to '00H', makes P0.3-P0.0 pins input mode.

You can use DDR0L register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the DDR0L register must also be enabled in the associated peripheral module.

DDR0L — Port 0 Data Direction Register Low Byte

16H

	7	6	5	4	3	2	1 0						
DDR0L	P03		P02 F		Р	01	P	00	(Initial value: 0000 0000)				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_				
						00. 0.4			d.				
							mitt trigg	•					
P03	P0.3/AD)3				01: Output mode, open-drain							
	. 0.0// (2					10: Alternative function (AD3)							
						11: Output mode, push-pull							
						00: Sch	mitt trigg	er input	mode				
P02	DO 2/AF	12				01: Output mode, open-drain							
P02	P0.2/AD)2				10: Alternative function (AD2)							
						11: Output mode, push-pull							
						00: Schmitt trigger input mode							
P01	P0.1/AD	14				01: Output mode, open-drain							
P01	PU. I/AL	71				10: Alternative function (AD1)							
						11: Out	put mode	, push-p	pull				
						00: Sch	mitt trigg	er input	mode				
B00	P0.0/AD0 01: Output mode, open-drain 10: Alternative function (AD0)												
P00													

11: Output mode, push-pull

7.2.6 PORT 0 PULL-UP RESISTOR ENABLE REGISTER (PUR0)

Using the PUR0 register, you can configure pull-up resistors to individual P0.5-P0.0 pins and P1.2 pin.

PUR0 — Port 0 Pull-up Resistor Enable Register

17H

	7	6	5	4	3	2	1	0	_
PUR0	PUR12	-	PUR05	PUR04	PUR03	PUR02	PUR01	PUR00	(Initial value: 0-00 0000)
Read/Write	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	

PUR12	P1.2 Pull-up Resistor Enable Bit	0: Disable pull-up resistor
PUNIZ	F1.2 Full-up Resistor Eliable Bit	1: Enable pull-up resistor
Bit6	Not available for the MC71PB204	
PUR05	P0.5 Pull-up Resistor Enable Bit	0: Disable pull-up resistor
PURUS		1: Enable pull-up resistor
PUR04	P0.4 Pull-up Resistor Enable Bit	0: Disable pull-up resistor
FUKU4		1: Enable pull-up resistor
PUR03	P0.3 Pull-up Resistor Enable Bit	0: Disable pull-up resistor
PURUS		1: Enable pull-up resistor
PUR02	P0.2 Pull-up Resistor Enable Bit	0: Disable pull-up resistor
PURUZ		1: Enable pull-up resistor
PUR01	D0 4 Bull up Besister Engble Bit	0: Disable pull-up resistor
FURUI	P0.1 Pull-up Resistor Enable Bit	1: Enable pull-up resistor
PUR00	PO O Bull-up Posistor Enable Bit	0: Disable pull-up resistor
PURUU	P0.0 Pull-up Resistor Enable Bit	1: Enable pull-up resistor

NOTE: A pull-up resistor of port 0 and P1.2 is automatically disabled only when the corresponding pin is selected as push-pull output or alternative function.

7.2.7 PORT 1 DATA DIRECTION REGISTER (DDR1)

A reset clears the DDR1 register to '00H', makes P1.2-P1.0 pins input mode.

You can use DDR1 register setting to select input (with or without pull-up) or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the DDR1 register must also be enabled in the associated peripheral module.

DDR1 — Port 1 Data Direction Register

18H

	7	6	5	4	3	2	1	0	_
DDR1	P	12		P11			P10		(Initial value: 0000 0000)
Read/Write	R/W	_							

		00: Schmitt trigger input mode (TACLK)				
P12	P1.2/AD6/TACLK	01: Output mode, open-drain				
FIZ		10: Alternative function (AD6)				
		11: Output mode, push-pull				
		000: Schmitt trigger input mode				
	P1.1/AD5/TAOUT	001: Schmitt trigger input mode; Pull-up				
P11		01x: Alternative function (AD5)				
PII		100: Output mode, push-pull				
		101: Output mode, open-drain				
		11x: Alternative function (TAOUT)				
		000: Schmitt trigger input mode				
		001: Schmitt trigger input mode; Pull-up				
P10	P4 O/AD4/DWM	01x: Alternative function (AD4)				
PIU	P1.0/AD4/PWM	100: Output mode, push-pull				
		101: Output mode, open-drain				
		11x: Alternative function (PWM)				

NOTE: If you use pull-up resistor of Port1.2, must be set to PUR12 (PUR0<7>).

7.2.8 PORT 2 DATA DIRECTION REGISTER HIGH BYTE (DDR2H)

A reset clears the DDR2H register to '00H', makes P2.7-P2.4 pins input pull-up mode.

You can use DDR2H register setting to select input (with or without pull-up) or output mode (open-drain or push-pull).

DDR2H — Port 2 Data Direction Register High Byte

19H

	7	6	5	4	3	2	1	0			
DDR2H	P27		P26		Р	25	P24		(Initial value: 0000 0000)		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_		
	1										
						00: Sch	mitt trigge	er input r	mode; Pull-up		
P27	P2.7					01: Sch	nmitt trigge	er input r	mode		
F21	F 2.1					10: Out	10: Output mode, open-drain				
						11: Out	put mode	ull			
						00: Schmitt trigger input mode; Pull-up					
P26	P2.6					01: Schmitt trigger input mode					
P20	P2.0					10: Output mode, open-drain					
						11: Output mode, push-pull					
						00: Sch	mitt trigg	er input r	mode; Pull-up		
Doe	D0 5					01: Schmitt trigger input mode					
P25	P2.5					10: Output mode, open-drain					
						11: Out	put mode	, push-p	ull		

00: Schmitt trigger input mode; Pull-up

01: Schmitt trigger input mode

10: Output mode, open-drain11: Output mode, push-pull

NOTE: P2.7-P2.4 are not on 16-pin package.

P2.4

P24

7.2.9 PORT 2 DATA DIRECTION REGISTER LOW BYTE (DDR2L)

A reset clears the DDR2L register to '00H', makes P2.3-P2.0 pins input pull-up mode.

You can use DDR2L register setting to select input (with or without pull-up) or push-pull output mode and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the DDR2L register must also be enabled in the associated peripheral module.

DDR2L — Port 2 Data Direction Register Low Byte

1AH

	7	6	5	4	3	2	1	0	_			
DDR2L	P23		P	22	Р	21	P	20	(Initial value: 0000 0000)			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-			
					00:	Shmitt to	rigger inp	ut mode	Pull-up			
Daa	D2 2/AF	340/INT3			01:	Shmitt to	rigger inp	ut mode				
P23	P2.3/AL	D10/INT3			10:	10: Alternative function (AD10)						
					11:	11: Output mode, push-pull						
					00:	Shmitt ti	rigger inp	ut mode:	Pull-up			
Boo	DO 0/45	00/INITO			01:	Shmitt ti	rigger inp	ut mode				
P22	P2.2/A)9/IN I 2			10: Alternative function (AD9)							
					11:	11: Output mode, push-pull						
					00:	00: Shmitt trigger input mode; Pull-up						
D04	DO 4/45	00/INIT4			01:	01: Shmitt trigger input mode						
P21	P2.1/A	28/IN I 1			10:	10: Alternative function (AD8)						
					11:	11: Output mode, push-pull						
					00:	Shmitt ti	rigger inp	ut mode	Pull-up			
Doo	DO 0/45	7/INITO			01:	01: Shmitt trigger input mode						
P20	P2.0/A) / NI 1 U			10:	10: Alternative function (AD7)						

11: Output mode, push-pull

7.2.10 PORT 2 EXTERNAL INTERRUPT REGISTER (EINT2)

A reset clears the EINT2 register to '00H', disables INT3-INT0 interrupt.

You can use EINT2 register setting to select Disable interrupt or Enable interrupt (on falling, rising, or both edge).

EINT2 — Port 2 External Interrupt Register

1BH

	7	6	5	4	3	2	1	0	_
EINT2	INT3		INT2		INT1		INT0		(Initial value: 0000 0000)
Read/Write	R/	W	R	W	R/	W	R/	W	_

	P2.3/INT3 External Interrupt Enable Bits	00: Disable Interrupt			
INT3		01: Enable Interrupt by falling edge			
INTS		10: Enable Interrupt by rising edge			
		11: Enable Interrupt by falling and rising edge			
INT2		00: Disable Interrupt			
	P2.2/INT2 External Interrupt Enable Bits	01: Enable Interrupt by falling edge			
		10: Enable Interrupt by rising edge			
		11: Enable Interrupt by falling and rising edge			
	DO 4/INIT4 Free world Intervent Freehle Dite	00: Disable Interrupt			
INT1		01: Enable Interrupt by falling edge			
INTI	P2.1/INT1 External Interrupt Enable Bits	10: Enable Interrupt by rising edge			
		11: Enable Interrupt by falling and rising edge			
		00: Disable Interrupt			
INT0	P2 0/INTO External Interrupt Enable Bite	01: Enable Interrupt by falling edge			
INTU	P2.0/INT0 External Interrupt Enable Bits	10: Enable Interrupt by rising edge			
		11: Enable Interrupt by falling and rising edge			

7.2.11 PORT 2 EXTERNAL INTERRUPT PENDING REGISTER (EPND2)

The EPND2 register lets you check for interrupt pending conditions and clear the pending condition when the interrupt service routine has been initiated. The application program detects Interrupt requests by polling the EPND2 register.

When the CPU acknowledges the interrupt request, application software must clear the pending condition by writing "0" to the corresponding EPND2 bit.

EPND2 — Port 2 External Interrupt Pending Register

1CH

	7	6	5	4	3	2	1	0	
EPND2	-	-	-	-	PND3	PND2	PND1	PND0	(Initial value : 0000)
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W	

Bit7-4	Not available for the MC71PB204						
PND3	P2.3/INT3 External Interrupt Pending Bit	0: Interrupt request is not pending (when read); pending bit clear when write 01: Interrupt request is pending (when read)					
PND2	P2.2/INT2 External Interrupt Pending Bit	0: Interrupt request is not pending (when read);pending bit clear when write 01: Interrupt request is pending (when read)					
PND1	P2.1/INT1 External Interrupt Pending Bit	0: Interrupt request is not pending (when read);pending bit clear when write 01: Interrupt request is pending (when read)					
PND0	P2.0/INT0 External Interrupt Pending Bit	O: Interrupt request is not pending (when read); pending bit clear when write 0 1: Interrupt request is pending (when read)					

NOTES

8. WATCHDOG TIMER

The MC71PB204 microcontroller has a watchdog timer

It is used in two different ways:

- As a clock source to watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.
- As a signal of the end of the required oscillation stabilization interval after a reset or stop mode release.

8.1 WATCHDOG TIMER REGISTER

8.1.1 WATCHDOG TIMER STATUS AND CONTROL REGISTER (WTSCR)

After reset, the WTSCR register is '06H'. This enables the watchdog function and selects a watchdog timer clock frequency of fxx/4096. To disable the watchdog function, you must write the signature code "1010b" to the WTFUN(WTSCR<7:4>).

WTSCR — Watchdog Timer Status and Control Register

08H

	7	6	5	4	3	2	1	0	
WTSCR	WTFUN			WT3C	WT	cs	WTCC	(Initial value : 0000 0110)	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

WTFUN	Watchdog Timer Function Disable Code	1010: Disable watchdog timer function					
WIIION	(for System Reset) Bits	Others: Enable watchdog timer function					
	Watchdog Timer 3-bit Counter Clear Bit	0: No effect					
WT3C		1: Clear watchdog timer 3-bit counter					
		(Automatically cleared to "0" after being cleared watchdog timer counter)					
	Watchdog Timer Clock Selection Bits	00: fxx/16					
WTCS		01: fxx/128					
WICS		10: fxx/1024					
		11: fxx/4096					
		0: No effect					
WTCC	Watchdog Timer Counter Clear Bit	1: Clear the watchdog timer counter value					
	Tracendog Timos Counter Oldar Bit	(Automatically cleared to "0" after being cleared watchdog timer counter)					

8.1.2 WATCHDOG TIMER BLOCK DIAGRAM

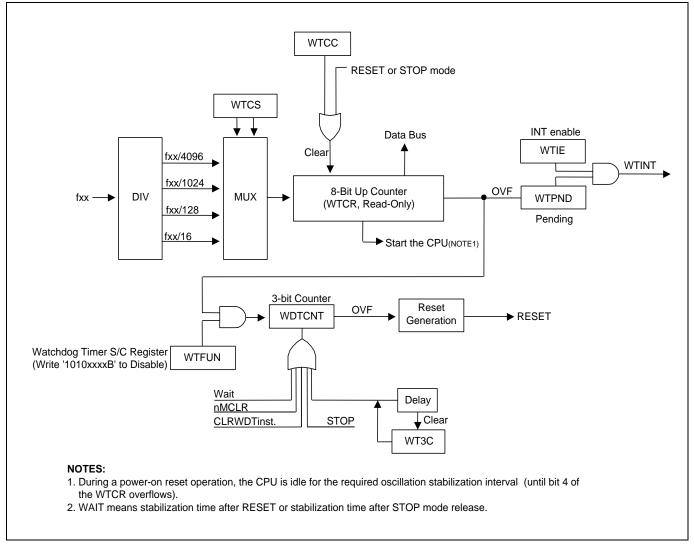


Figure 8-1. Watchdog Timer Block Diagram

NOTES

9. 16-BIT TIMER 0 (8-BIT TIMER A/B)

The 16-bit timer 0 is used in one 16-bit timer or two 8-bit timers mode. When T0MOD is set to "1", it is one 16-bit timer mode. When T0MOD is cleared to "0", the timer 0 is used as two 8-bit timers.

- One 16-bit timer mode (Timer 0)
- Two 8-bit timers mode (Timer A/B)

9.1 ONE 16-BIT TIMER MODE (TIMER 0)

Timer 0 has the following functional components:

- Clock frequency divider (fxx divided by 512, 256, 64, 8, or 1) with multiplexer
- External clock input pin, TACLK
- 16-bit down counter (TCRA, TCRB) and 16-bit reference data register (TDRA, TDRB)
- Timer 0 status and control register (TSCRA)
- Timer 0 interrupt generation

9.1.1 FUNCTION DESCRIPTION

TAOUT pin is toggled and a timer 0 interrupt is generated when the down counter (TCRA/TCRB) is underflow.

For example, you write the value 11H and 17H to TDRA and TDRB, respectively, and 37H to TSCRA. The counter will decrement from 1117H to 0000H, and then occur underflow. At this point, the timer 0 interrupt request is pending, the value 1117H is reloaded to the down counter (TCRA/TCRB), and counting resumes.

The timer 0 interrupt pending bit must be cleared in the interrupt sub-routine by writing "0" to the TAPND (IPND<4>).

9.1.2 16-BIT TIMER 0 REGISTER

9.1.2.1 Timer A Status and Control Register (TSCRA)

After reset, the TSCRA register is '0EH'. This disables counting operation, selects an input clock frequency of fxx/512, and selects two 8-bit timers mode(Timer A/B). To select one 16-bit timer mode, T0MOD (TSCRA<0>) should be set to "1".

To enable the timer 0 interrupt, you must set "1" to TAIE (INTCON<4>).

When the timer 0 interrupt sub-routine is serviced, the pending condition must be cleared by software writing "0" to the timer 0 interrupt pending bit, TAPND (IPND<4>).

TSCRA — Timer A status and control register

0DH

	7	6	5	4	3	2	1	0	
TSCRA	-	-	TARL	TACE		TACS		T0MOD	(Initial value :00 1110)
Read/Write	-	-	R/W	R/W	R/W	R/W	R/W	R/W	•

Bit7-6	Not available for the MC71PB204					
TARL	Timer 0 Counter Reload Bit	0: No effect				
	Timer o Counter Reload Bit	1: Reload timer data to the Timer 0 Counter				
		0: Disable counting operation				
TACE	Timer 0 Count Enable Bit	Enable counting operation (Timer data of TD register is reloaded to TCRA register)				
		000: Not available				
		001: TACLK (external clock)				
		010: Not available				
TACS	Timer 0 Clock Selection Bits	011: fxx/1 (system clock)				
IAGS	Timer o Clock Selection bits	100: fxx/8				
		101: fxx/64				
		110: fxx/256				
		111: fxx/512				
TOMOD	Timer 0 Mode Selection Bit	0: Two 8-bit timers mode (Timer A/B)				
IONIOD	Times o mode delection bit	1: One 16-bit timer mode (Timer 0)				

9.1.2.2 16-Bit Timer 0 Block Diagram (T0MOD=1)

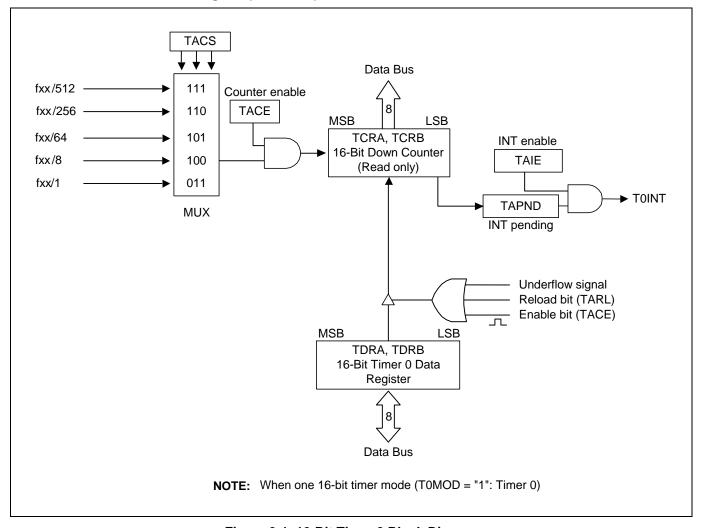


Figure 9-1. 16-Bit Timer 0 Block Diagram

9.2 TWO 8-BIT TIMERS MODE (TIMER A/B)

Timer A has the following functional components:

- Clock frequency divider (fxx divided by 512, 256, 64, 8, or 1, and TACLK: External clock) with multiplexer
- 8-bit down counter (TCRA) and 8-bit reference data register (TDRA)
- Timer A status and control register (TSCRA)
- Timer A interrupt generation

Timer B has the following functional components:

- Clock frequency divider (fxx divided by 512, 256, 64, 8, or 1) with multiplexer
- 8-bit down counter (TCRB) and 8-bit reference data register (TDRB)
- Timer B status and control register (TSCRB)
- Timer B interrupt generation

9.2.1 FUNCTION DESCRIPTION

9.2.1.1 8-bit Timer A

TAOUT is toggled and a timer A interrupt is generated when the down counter (TCRA) is underflow.

For example, you write the value 25H to TDRA, and 36H to TSCRA. The counter will decrement from 25H to 00H, and then occur underflow. At this point, the timer A interrupt request is pending, the value 25H is reloaded to the down counter (TCRA), and counting resumes.

The timer A interrupt pending bit must be cleared in the interrupt sub-routine by writing "0" to the TAPND (IPND<4>).

9.2.1.2 8-bit Timer B

A timer B interrupt is generated when the down counter (TCRB) is underflow.

For example, you write the value 81H to TDRB, and 36H to TSCRB. The counter will decrement from 81H to 00H, and then occur underflow. At this point, the timer B interrupt request is pending, the value 81H is reloaded to the down counter (TCRB), and counting resumes.

The timer B interrupt pending bit must be cleared in the interrupt sub-routine by writing "0" to the TBPND (IPND<3>).

9.2.2 8-BIT TIMER A REGISTER

9.2.2.1 Timer A Status and Control Register (TSCRA)

After reset, the TSCRA register is '0EH'. This disables counting operation, selects an input clock frequency of fxx/512, and selects two 8-bit timers mode(Timer A/B).

To enable the timer A interrupt, you must set "1" to TAIE (INTCON<4>).

When the timer A interrupt sub-routine is serviced, the pending condition must be cleared by software writing "0" to the timer A interrupt pending bit, TAPND (IPND<4>).

TSCRA — Timer A status and control register

0DH

	7	6	5	4	3	2	1	0	
TSCRA	•	-	TARL	TACE		TACS		T0MOD	(Initial value :00 1110)
Read/Write	-	-	R/W	R/W	R/W	R/W	R/W	R/W	

Bit7-6	Not available for the MC71PB204					
TARL	Timer A Counter Reload Bit	0: No effect				
	Timer A Counter Neload Bit	1: Reload timer data to the Timer A Counter				
TACE		0: Disable counting operation				
	Timer A Count Enable Bit	Enable counting operation (Timer data of TE register is reloaded to TCRA register)				
		000: Not available				
		001: TACLK (external clock)				
		010: Not available				
TACS	Timer A Clock Selection Bits	011: fxx/1 (system clock)				
IACS	Timer A Clock Selection bits	100: fxx/8				
		101: fxx/64				
		110: fxx/256				
		111: fxx/512				
TOMOD	Timer 0 Mode Selection Bit	0: Two 8-bit timers mode (Timer A/B)				
I UNIOD	Times o mode delection bit	1: One 16-bit timer mode (Timer 0)				

9.2.2.2 8-Bit Timer A Block Diagram (T0MOD=0)

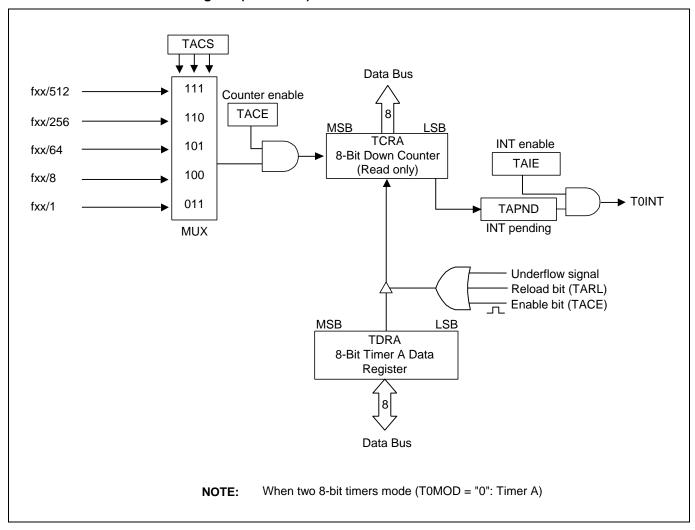


Figure 9-2. 8-Bit Timer A Block Diagram

9.2.3 8-BIT TIMER B REGISTER

9.2.3.1 Timer B Status and Control Register (TSCRB)

After reset, the TSCRB register is '0EH'. This disables counting operation and selects an input clock frequency of fxx/512. You must write "0" to T0MOD (TSCRA<0>).

To enable the timer B interrupt, you must write "1" to TBIE (INTCON<3>).

When the timer B interrupt sub-routine is serviced, the pending condition must be cleared by software writing "0" to the timer B interrupt pending bit, TBPND (IPND<3>).

TSCRB — Timer B status and control register

10H

	7	6	5	4	3	2	1	0	
TSCRB	-	-	TBRL	TBCE		TBCS		-	(Initial value :00 111-)
Read/Write	-	-	R/W	R/W	R/W	R/W	R/W	-	_

Bit7-6	Not available for the MC71PB204					
TBRL	Timer B Counter Reload Bit	0: No effect				
	Timer B Counter Reload Bit	1: Reload timer data to the Timer B Counter				
ТВСЕ		0: Disable counting operation				
	Timer B Count Enable Bit	Enable counting operation (Timer data of TDF register is reloaded to TCRB register)				
		000: Not available				
		001: Not available				
		010: Not available				
TDCC		011: fxx/1 (system clock)				
TBCS	Timer B Clock Selection Bits	100: fxx/8				
		101: fxx/64				
		110: fxx/256				
		111: fxx/512				
Bit0	Not available for the MC71PB204					

9.2.3.2 8-Bit Timer B Block Diagram (T0MOD=0)

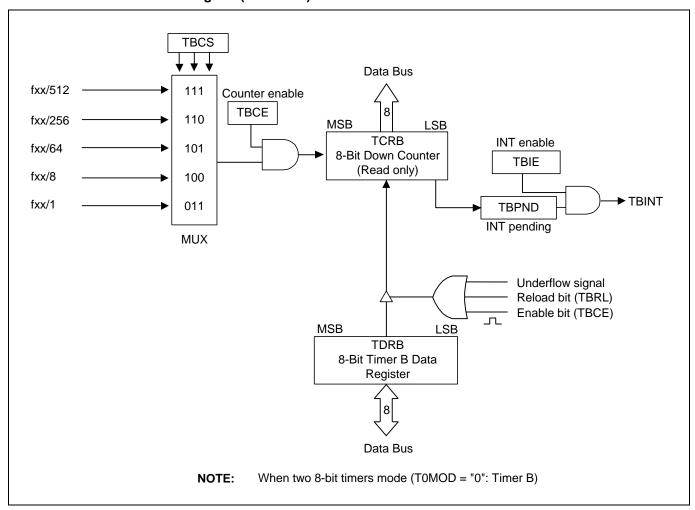


Figure 9-3. 8-Bit Timer B Block Diagram

10. 6/8-BIT PWM

The MC71PB204 microcontroller has a 6/8-bit PWM. The PWM status and control register, PWMSCR, is used to select the input clock frequency, to clear PWM counter, to reload PWM data, and to enable or disable the PWM counter. It is located in bank 1 at address 85h, and is readable/writable.

To enable the PWM interrupt (PWMIE), you must write "1" to PWMIE (INTCON<5>) and PWME (PWSCR<1>). To detect an interrupt pending condition when PWMIE is disabled, the application program polls pending bit, PWMPND (IPND<5>). If it is detected, it means a PWM interrupt is pending. When the PWM interrupt sub-routine is serviced, the pending condition must be cleared by software writing "0" to the PWM interrupt pending bit, PWMPND (IPND<5>).

10.1 PWM REGISTER

10.1.1 PWM STATUS AND CONTROL REGISTER (PWMSCR)

A reset clears PWMSCR to '00H'. This selects an input clock frequency of fxx/1 and disables counting operation. So, if you want to use the PWM, you must write "1" to PWME (PWMSCR<1>) and write "11xb" to P10(DDR1<2:0>).

When the PWM interrupt sub-routine is serviced, the pending condition must be cleared by software writing "0" to the PWM interrupt pending bit, PWMPND (IPND<5>).

PWMSCR — PWM Status And Control Register

85H

	7	6	5	4	3	2	1	0	
PWMSCR	PWN	/IICS	-	-	PWMD	PWMC	PWME	-	(Initial value : 00 000-)
Read/Write	R/W	R/W	-	-	R/W	R/W	R/W	-	-

		00: fxx/1				
PWMICS	DIMM Input Clask Salastian Bits	01: fxx/2				
PWWIICS	PWM Input Clock Selection Bits	10: fxx/8				
		11: fxx/64				
Bit5-4	Not available for the MC71PB204					
PWMD	PWM Data Reload interval Selection Bit	0: Reload from 8-bit up counter overflow				
PVVIVID	PWM Data Reload Interval Selection Bit	1: Reload from 6-bit up counter overflow				
		0: No effect				
PWMC	PWM Counter Clear Bit	Clear the PWM Counter (when write, automatically cleared to "0")				
PWME	PWM Counter Enable Bit	0: Stop Counter				
L AA IAI E	FWW Counter Enable Bit	1: Start (Resume Countering)				
Bit0	Not available for the MC71PB204					

10.2 PWM FUNCTION DESCRIPTION

The PWM output signal toggles to low level whenever the lower 6 bits of counter matches the PWM data register (PWMDR<7:2>). If the value in the PWMDR<7:2> register is not zero, an overflow of the lower 6 bits of counter causes the PWM output to toggle to high level. In this way, the reference value written to the PWMDR<7:2> determines the module's base duty cycle.

The value in the upper 2 bits of counter is compared with the extension setting in the two extension bits of PWMDATA register (PWMDR<1:0>). These upper 2 bits of counter value, together with extension logic and the PWMDR<1:0> are used to "stretch" the duty cycle of the PWM output. The "stretch" value is one extra clock period at specific intervals, or cycles.

If PWM clock is 4MHz, for example, the PWMDR<1:0> is '01b', the 3rd cycle will be one pulse longer than the other 3 cycles. If the base duty cycle is 50 %, the duty of the 3rd cycle will be "stretched" to approximately 51% duty. For example, if you write '10b' to the PWMDR<1:0>, all even-numbered cycles will be one pulse longer. If you write '11b' to the PWMDR<1:0>, all cycles will be stretched to one pulse except the 1st cycle. PWM output goes to an output buffer and then to the corresponding PWM output pin. In this way, you can obtain high output resolution at high frequencies.

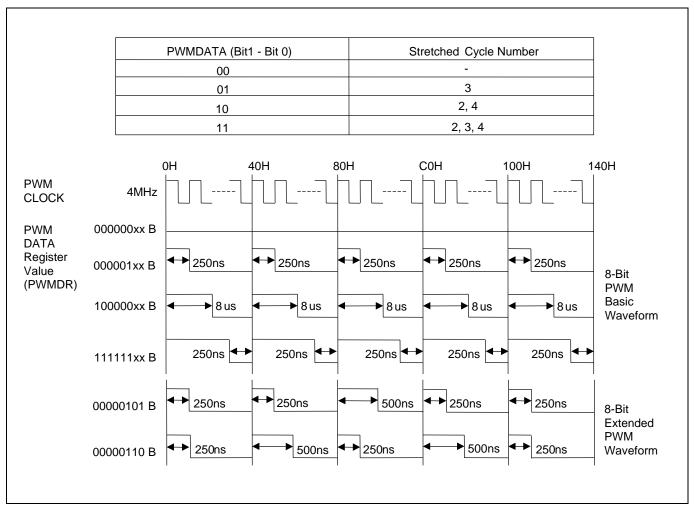


Figure 10-1. PWM Waveform

10.3 PWM FUNCTION BLOCK DIAGRAM

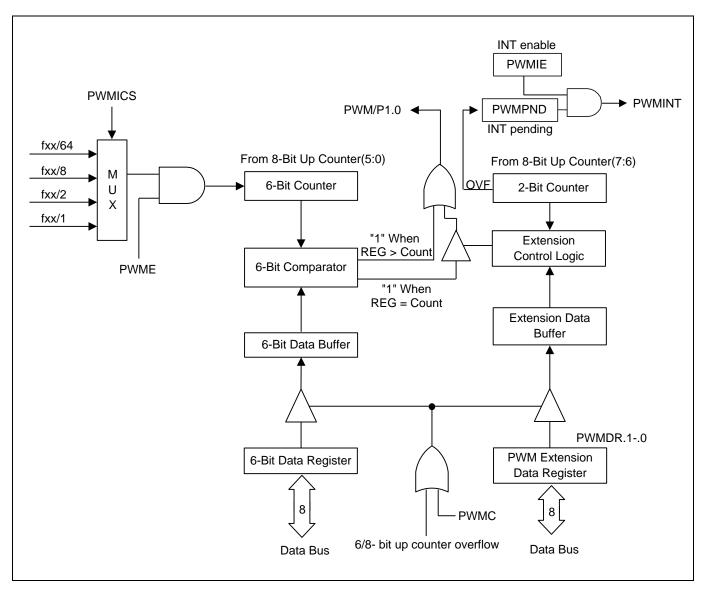


Figure 10-2. PWM Circuit Diagram

11. 12-BIT ANALOG TO DIGITAL CONVERTER

The 12-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the eleven input channels to equivalent 12-bit digital values. The analog input level must lie between the AV_{REF} and AV_{SS} values. The A/D converter has the analog comparator with successive approximation logic, D/A converter logic (resistor string type), A/D mode register (ADMR), eleven multiplexed analog data input pins (AD0-AD10), and 12-bit A/D conversion data output register (ADDRH/ADDRL).

11.1 FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, at first you must set P0.0-P0.3, P1.0-P1.2, or P2.0-P2.3 with alternative function to enable ADC analog input. And you write the channel selection data in the A/D mode register (ADMR) to select one of the eleven analog input pins (AD0–AD10) and set the conversion start/stop bit, SSBIT (ADMR<7>). The readable-writable ADMR register is located in address 05H. The pins not used for ADC can be used for normal I/O.

During a normal conversion, ADC logic initially sets the successive approximation register with 800H (the approximate half-way point of a 12-bit register). This register is then updated automatically during each conversion step. The successive approximation block performs 12-bit conversions for one input channel at a time. You can dynamically select different channels by manipulating the channel selection bits, ADCH (ADMR<3:0>). To start the A/D conversion, you should set the start/stop bit, SSBIT (ADMR<7>). When a conversion is completed, the end-of-conversion bit, EOC (ADMR<6>) is automatically set to 1 and the result is dumped into the ADDRH/ADDRL register where it can be read. Then the A/D converter enters an idle state. The EOC bit is cleared when SSBIT is set. Remember to read the contents of ADDRH/ADDRL before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result.

NOTE

Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation of the analog level at the AD0–AD10 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to noise, will invalidate the result.

If the chip enters to STOP or IDLE mode in conversion process, there will be a leakage current path in A/D block. You must use STOP or IDLE mode after ADC operation is finished.

11.2 A/D CONVERTER REGISTERS

11.2.1 A/D MODE REGISTER (ADMR)

After reset, the start/stop bit is turned off. You can select only one analog input channel at a time. Other analog input pins (AD0-AD10) can be selected dynamically by manipulating the ADCH(ADMR<3:0>). And the pins not used for analog input can be used for normal I/O function.

ADMR — A/D Mode Register

05H

	7	6	5	4	3	2	1	0	
ADMR	SSBIT	EOC	ADO	CLK		AD	СН		(Initial value: 0000 0000)
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

SSBIT	Start or Stop Bit	0: Stop operation					
33011	Start of Stop Bit	1: Start operation (the EOC bit is cleared)					
EOC	End of Conversion Bit	0: Conversion not complete					
EUC	End of Conversion Bit	1: Conversion complete					
		00: fxx/1					
ADOLK	A/D Olask Calastian Bits	01: fxx/2					
ADCLK	A/D Clock Selection Bits	10: fxx/4					
		11: fxx/8					
		0000: AD0					
		0001: AD1					
		0010: AD2					
		0011: AD3					
		0100: AD4					
ADCH	A/D Input Pin Selection Bits	0101: AD5					
ADCH	A/D input Pin Selection bits	0110: AD6					
		0111: AD7					
		1000: AD8					
		1001: AD9					
		1010: AD10					
		Others: Not available					

11.2.2 A/D CONVERTER DATA REGISTER (ADDRH/ADDRL)

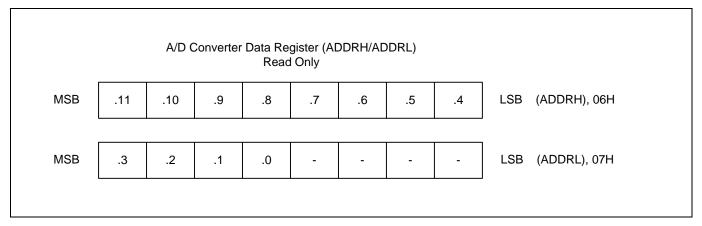


Figure 11-1. A/D Converter Data Register (ADDRH/ADDRL)

11.3 CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D conversion. Therefore, total of 58 clocks are required to complete a 12-bit conversion: When fxx/8 is selected for conversion clock with a 12 MHz fxx clock frequency, one clock cycle is $0.66~\mu s$. Each bit conversion requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit \times 12 bits + set-up time = 58 clocks, 58 clock \times 0.66 μ s = 38.7 μ s at 1.5 MHz (12 MHz/8)

NOTE: The A/D converter needs at least 25 µs for conversion time.

11.4 INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level must be remained within the range AV_{SS} to AV_{RFF} .

Different reference voltage levels are generated internally along the resistor tree during the analog conversion process for each conversion step. The reference voltage level for the first conversion bit is always 1/2 AV_{REF}.

11.5 A/D CONVERTER BLOCK DIAGRAM

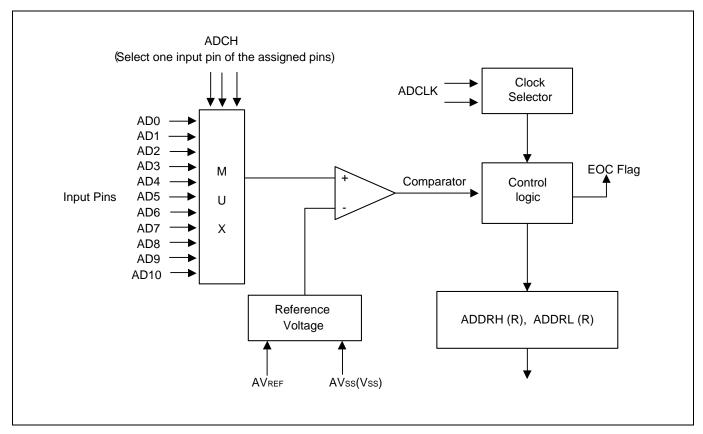


Figure 11-2. A/D Converter Block Diagram

11.6 RECOMMENDED A/D CONVERTER CIRCUIT

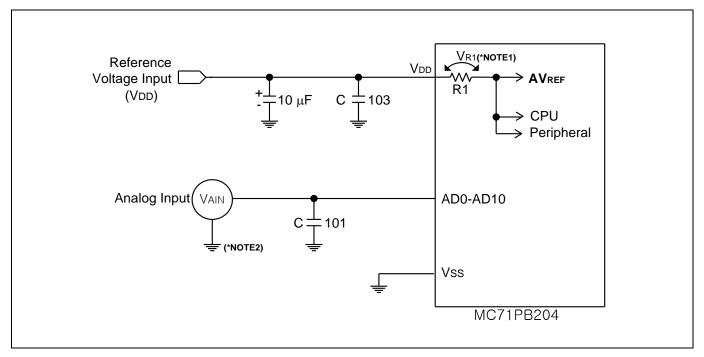


Figure 11-3. Recommended A/D Converter Circuit

NOTES:

- 1. The voltage supplied to AV_{REF} is dropped as much as " V_{R1} ".
- 2. Lay out the GND of V_{AIN} as close as possible to the power source.

NOTES

12. ELECTRICAL DATA

In this chapter, MC71PB204 electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute maximum ratings
- D.C. electrical characteristics
- A.C. electrical characteristics
- Data retention supply voltage in stop mode
- Input/output capacitance
- LVR (Low Voltage Reset) electrical characteristics
- A/D converter electrical characteristics
- Main clock oscillator characteristics
- Main oscillator stabilization time
- External RC oscillation characteristics
- Internal RC oscillation characteristics

12.1 ELECTRICAL CHARACTERISTICS

12.1.1 ABSOLUTE MAXIMUM RATINGS

 $(T_A = 25 \,^{\circ}C)$

Parameter	Symbol	Rating	Units	Conditions
Supply Voltage	V _{DD}	- 0.3 to + 6.5	V	_
Input Voltage	VIN	- 0.3 to V _{DD} + 0.3	V	Ports 0 – 2
Output Voltage	Vout	- 0.3 to V _{DD} + 0.3	V	_
Output Current High	louth	- 15	m Λ	One I/O pin active
		- 60	- mA	All I/O pins active
Output Current Low	I _{OUTL}	+ 30 (Peak value)	mA	One I/O pin active
		+ 100 (Peak value)	IIIA	Total pin current for ports
Operating Temperature	T _{OPR}	- 20 to +85	°C	-
Storage Temperature	T _{STG}	- 65 to + 150	°C	-

12.1.2 D.C. ELECTRICAL CHARACTERISTICS

 $(T_A = -20 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.4 \,^{\circ}V \text{ to } 5.5 \,^{\circ}V)$

Parameter	Symbol	Min	Тур.	Max	Units	Conditions
		2.4	_	5.5		fx = 0.4 - 4.0MHz
Operating Voltage	VDD	2.7	_	5.5	V	fx = 0.4 - 8.0MHz
voltago		4.0	_	5.5		fx = 0.4 - 12.0MHz
Input High	V _{IH1}	0.8V _{DD}	_	V_{DD}	V	nMCLR, Ports 0 – 2
Voltage	V _{IH2}	V _{DD-0.1}	_	V_{DD}	V	X _{IN} , X _{OUT}
Input Low	V _{IL1}	V _{SS}	_	0.2V _{DD}		nMCLR, Ports 0 – 2
Voltage	V _{IL2}	V _{SS}	_	0.1	V	X _{IN} , X _{OUT}
Output High Voltage	VoH	V _{DD} – 1.0	_	_	V	V_{DD} = 4.5 V to 5.5 V All output ports ; I_{OH} = -2 mA
Output Low	V _{OL1}	-	_	2.0	V	V_{DD} = 4.5 V to 5.5 V All output ports except V_{OL2} ; I_{OL} = 15 mA
Voltage	V _{OL2}	-	_	2.0	V	V _{DD} = 4.5 V to 5.5 V P0.0-P0.3, P1 ; I _{OL} = 25 mA

12.1.2 D.C. ELECTRICAL CHARACTERISTICS (CONCLUDED)

 $(T_A = -20 \,^{\circ}C \text{ to } + 85 \,^{\circ}C \text{ , } V_{DD} = 2.4 \,\text{V} \text{ to } 5.5 \,\text{V})$

Parameter	Symbol	Min	Тур	Max	Units		Conditions		
Input high	I _{LIH1}	-	_	3		V _I = V _{DD} All input pin	s except for I _{LIH2}		
Leakage Current	I _{LIH2}	-	_	20	- uA	$V_I = V_{DD}$ X_{IN}, X_{OUT}			
Output High Leakage Current	ILOH	-	_	3	uA	V _O = V _{DD} All output pi	ns		
Input Low	I _{LIL1}	_	_	-3		V _I = 0 V All input pin	s except for I _{LIH2}		
Leakage Current	I _{LIL2}	_	_	-20	- uA	$V_I = 0 V$ X_{IN}, X_{OUT}			
Output Low Leakage Current	I _{LOL}	_	_	-3	uA	V _O = 0 V All output pi	ns		
Pull-Up	Da	25	47	100	1.0	$V_{DD} = 5V$	$V_I = 0 \text{ V}; T_A = 25^{\circ}\text{C},$ Ports $0 - 2$		
Resistors	R _{PU}	50	95	200	kΩ	$V_{DD} = 3V$			
Pull-Down	Pop	25	47	100	ŀO	$V_{DD} = 5V$	$V_1 = 0 \ V; T_A = 25$	°C	
Resistors	R _{PD}	50	95	200	kΩ	$V_{DD} = 3V$	P0.4, P0.5		
Oscillator Feed	R _{OSC}	300	600	1500	kΩ	$V_{DD} = 5V$	T _A = 25 °C		
Back Resistor	NOSC	600	1200	3000	K52	$V_{DD} = 3V$	$X_{IN} = V_{DD}, X_{OUT} =$	DD , $X_{OUT} = 0V$	
			7.0	14.0		12.0 MHz	Operation mode: C1	C1 =	
	I _{OPE}		3.0	6.0	mA	4.0 MHz	$V_{DD} = 5 \text{ V } \pm 10\%$	C2 =	
			1.5	3.0		4.0 MHz	$V_{DD} = 3 V \pm 10\%$	22pF	
			1.0	2.6		12.0 MHz	Idle mode:	C1 =	
	I _{IDL}		0.8	1.6	mA	4.0 MHz	$V_{DD} = 5 V \pm 10\%$	C2 =	
			0.2	0.6		4.0 MHz	$V_{DD} = 3 V \pm 10\%$	22pF	
Supply Current ⁽¹⁾		-	0.5	5.0		V _{DD} = 5 V ± 10%	Stop mode:		
		I _{STOP}	0.5	3.0	- uA	V _{DD} = 3 V ± 10%	$T_A = 25 ^{\circ}C$		
	ISTOP		_	15.0		V _{DD} = 5 V ± 10%	Stop mode: $T_A = -20 ^{\circ}\text{C} \text{ to } 70^{\circ}$	°C	
			_	6.0		V _{DD} = 3 V ± 10%			

NOTES:

Supply current does not include current drawn through internal pull-up resistors, PWM, and ADC.
 I_{STOP} is current when main clock stops.

12.1.3 A.C ELECTRICAL CHARACTERISTICS

$$(T_{\mbox{\scriptsize A}} = -20^{\mbox{\scriptsize \square}} \mbox{\scriptsize C} + 85^{\mbox{\scriptsize \square}} \mbox{\scriptsize C}, \mbox{\scriptsize $V_{\mbox{\scriptsize DD}}$} = 2.4 \mbox{\scriptsize V}$$
 to 5.5 V)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Interrupt input, High, Low width	t _{INTH} , t _{INTL}	200	_	ı	ns	All interrupt V _{DD} = 5 V
nMCLR input Low width	t _{RSL}	10	_	_	μS	Input V _{DD} = 5 V

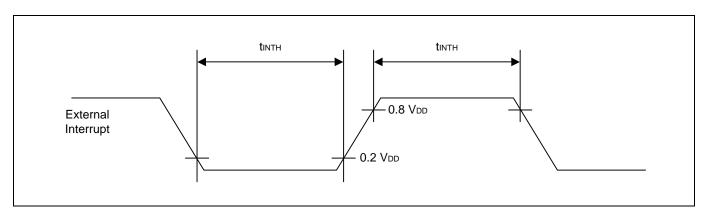


Figure 12-1. Input Timing for External Interrupts

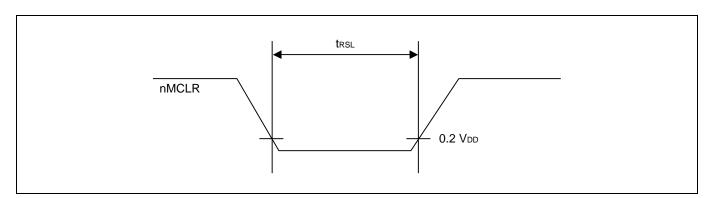


Figure 12-2. Input Timing for RESET

12.1.4 INPUT/OUTPUT CPACITANCE

$$(T_A = -20^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 0 \text{ V})$$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C _{IN}	_	_	10	pF	f = 1MHz;
Output capacitance	C _{OUT}					unmeasured pins are connected to Vss
I/O capacitance	C _{IO}					

12.1.5 DATA RETENTION SUPPLY VOLTAGE IN STOP MODE

 $(T_A = -20 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.4 \,\text{V to } 5.5 \,\text{V})$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Data retention supply voltage	V _{DDDR}	2.4	_	5.5	V	_
Data retention supply current	I _{DDDR}	-	_	1	uA	V _{DDDR} = 2.4 V (T _A = 25 °C) Stop mode

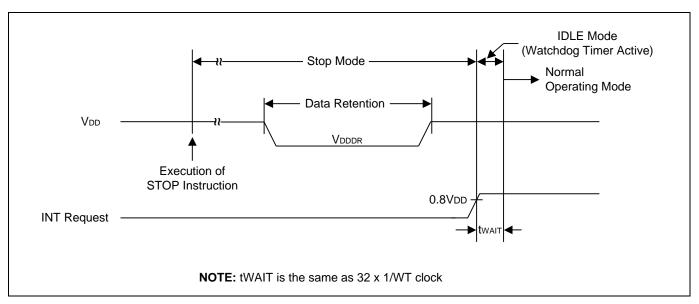


Figure 12-3. Stop Mode Release Timing When Initiated by an Interrupt

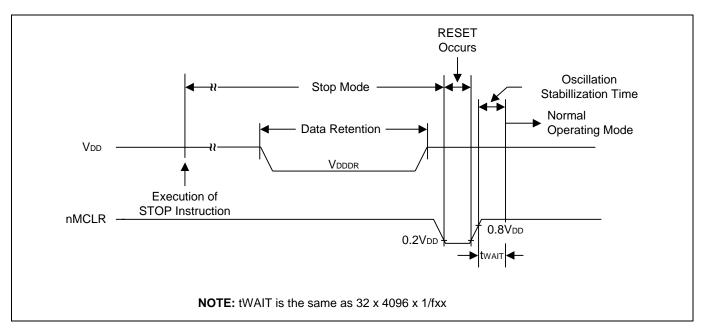


Figure 12-4. Stop Mode Release Timing When Initiated by a RESET

12.1.6 LVR (LOW VOLTAGE RESET) ELECTRICAL CHARACTERISTICS

 $(T_A = -20 \,^{\circ}C \text{ to } + 85 \,^{\circ}C \text{ , } V_{DD} = 2.4 \,^{\circ}V \text{ to } 5.5 \,^{\circ}V)$

Parameter	Symbol	Min	Тур	Max	Unit	Condition
LVR voltage	VLVR	2.4	2.6	2.8		
		2.7	3.0	3.3	V	_
		3.6	4.0	4.4		
V _{DD} voltage rising time	t _R	10	_	(note2)	μS	-
V _{DD} voltage off time	t _{OFF}	0.5	_	_	S	-
Hysteresys voltage of LVR	△V	-	10	100	mV	_
Current consumption	ILVR	-	45	80	uA	V _{DD} = 3V

NOTES:

1. The current of LVR circuit is consumed when LVR is enabled by "ROM Option".

2. $2^{16}/fx$ (= 6.55 ms at fx = 10 MHz)

12.1.7 A/D CONVERTER ELECTRICAL CHARACTERISTICS

$$(T_A = -20~^{\circ}C$$
 to +85 $^{\circ}C$, $V_{DD} = 2.7~V$ to 5.5 V)

Parameter	Symbol	Min	Тур	Max	Units	Conditions
A/D converting Resolution	-	_	12	_	bits	-
Integral Linearity Error	ILE	_	_	± 3		
Differential Linearity Error	DLE	_	_	± 2	LSB	AVREF = $5.12V$ (NOTE), $V_{SS} = 0V$,
Offset Error of Top	EOT	_	±1	± 3		$T_A = +25 ^{\circ}C$
Offset Error of Bottom	EOB	_	±1	± 3		
A/D conversion time	t _{CON}	25	_	_	μs	-
Analog input voltage	V_{IAN}	V _{SS}	_	V _{DD}	V	-
Analog input impedance	R _{AN}	2	1000	_	MΩ	V _{DD} = 5 V
Analog input current	I _{ADIN}	_	_	10	uA	V _{DD} = 5 V
Analog block current	1	_	1	3	mA	V _{DD} = 5V
	I _{ADC}	_	0.5	1.5	mA	VDD = 3V

NOTE: Refer to the figure 11-3 in the page 113.

12.1.8 MAIN CLOCK OSCILLATOR CHARACTERISTICS

(T_A = -20 $^{\circ}$ C to +85 $^{\circ}$ C , V_{DD} = 2.4 V to 5.5 V)

Oscillator	Parameter	Min	Тур	Max	Units	Condition
	Main oscillation frequency	0.4	_	4	MHz	2.4 V – 5.5 V
Crystal		0.4	_	8		2.7 V – 5.5 V
		0.4	-	12		4.0 V – 5.5 V
		0.4	-	4	MHz	2.4 V – 5.5 V
Ceramic Oscillator	Main oscillation frequency	0.4	_	8		2.7 V – 5.5 V
Coomator		0.4	-	12		4.0 V – 5.5 V
		0.4	_	4		2.4 V – 5.5 V
External Clock	X _{IN} input frequency	0.4	_	8	MHz	2.7 V – 5.5 V
		0.4	-	12		4.0 V – 5.5 V

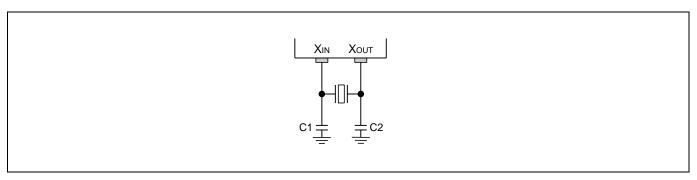


Figure 12-5. Crystal/Ceramic Oscillator

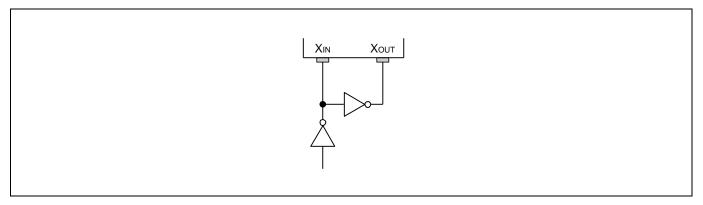


Figure 12-6. External Clock

12.1.9 MAIN OSCILLATION STABILIZATION TIME

 $(T_A = -20 \,^{\circ}\text{C} \, \text{to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 2.4 \,^{\circ}\text{V} \, \text{to} \, 5.5 \,^{\circ}\text{V})$

Oscillator	Min	Тур	Max	Unit	Condition
Crystal	_	-	60	ms	fx > 1 MHz
Ceramic	_	-	10	ms	Oscillation stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range.
External clock	41.7	_	1250	ns	X _{IN} input High and Low width (t _{XH} , t _{XL})

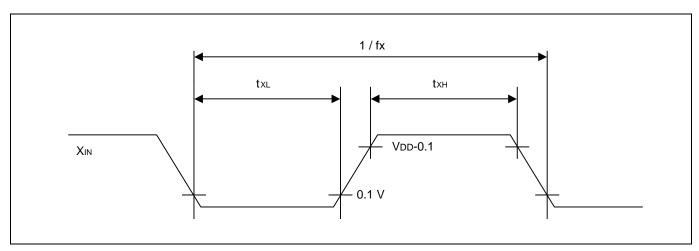


Figure 12-7. Clock Timing Measurement at X_{IN}

12.1.10 EXTERNAL RC OSCILLATION CHARACTERISTICS

 $(T_A = -10 \, ^{\circ}\text{C to} + 70 \, ^{\circ}\text{C}, \ V_{DD} = 2.4 \, \text{V to} \, 5.5 \, \text{V})$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
RC oscillator frequency	fERC	1	_	8	MHz	$T_A = 25^{\circ}C$
Range (1)						
Accuracy of RC Oscillation (2)	ACCERC	-6	ı	+ 6	%	$V_{DD} = 3.3V, T_A = 25^{\circ}C$
(-)		- 12	_	+ 12		$V_{DD} = 3.3V,$
						$V_{DD} = 3.3V,$ $T_A = -10^{\circ}C \text{ to } + 70^{\circ}C$
RC oscillator setup time (3)	tsuerc	_	_	10	msec	$T_A = 25^{\circ}C$

NOTES:

- The external resistor is connected between V_{DD} and X_{IN} pin and the 270pF capacitor is connected between X_{IN} and V_{SS} pin. (X_{OUT} pin can be used normal port, P0.4)
 The frequency is adjusted by external resistor.
- 2. The min/max frequencies are within the range of RC OSC frequency (1MHz to 8MHz)
- 3. Data based on characterization results, not tested in production

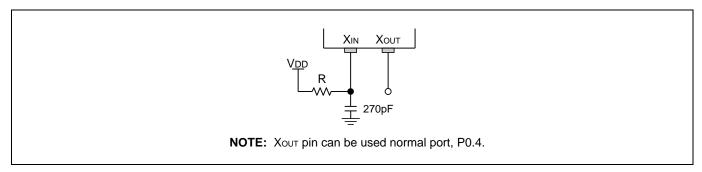


Figure 12-8. External RC Oscillator

12.1.11 INTERNAL RC OSCILLATION CHARACTERISTICS

$$(T_A = -10 \, ^{\circ}\text{C to} + 70 \, ^{\circ}\text{C}, \ V_{DD} = 2.4 \, \text{V to} \, 5.5 \, \text{V})$$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
RC oscillator frequency (1)	fIRC	6.4	8	9.6	MHz	$V_{DD} = 3.3V, T_A = 25^{\circ}C$	
		6	8	10		$V_{DD} = 3.3V,$ $T_{A} = -10^{\circ}C \text{ to } 70^{\circ}C$	
Clock duty ratio	Tod	40	50	60	%	-	
RC oscillator setup time (2)	tsuirc	_	-	10	msec	$T_A = 25^{\circ}C$	

NOTES:

- 1. Data based on characterization results, not tested in production
- 2. X_{IN} and X_{OUT} pins can be used normal ports, P0.4 and P0.5.

12.1.12 OPERATING VOLTAGE RANGE

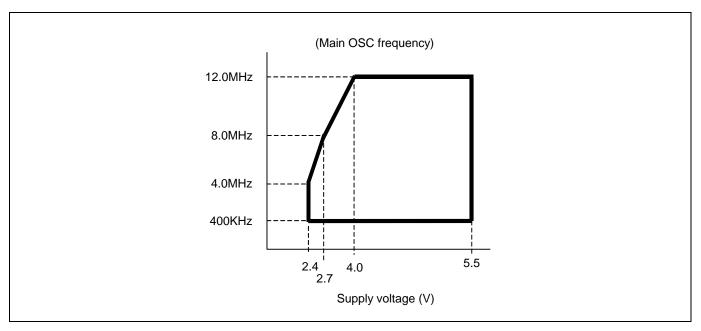


Figure 12-9. Operating Voltage Range

NOTES

13. MECHANICAL DATA

The MC71PB204 microcontroller is currently available in 20-DIP/20-SOP and 16-DIP/16-SOP package.

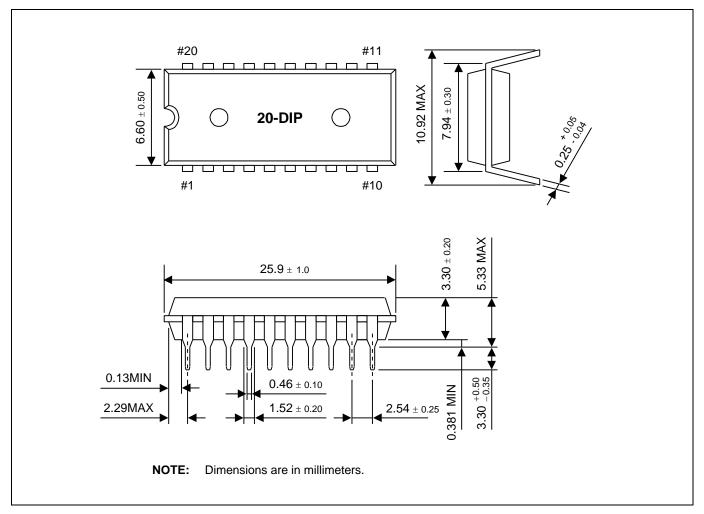


Figure 13-1. 20-DIP Package Dimensions

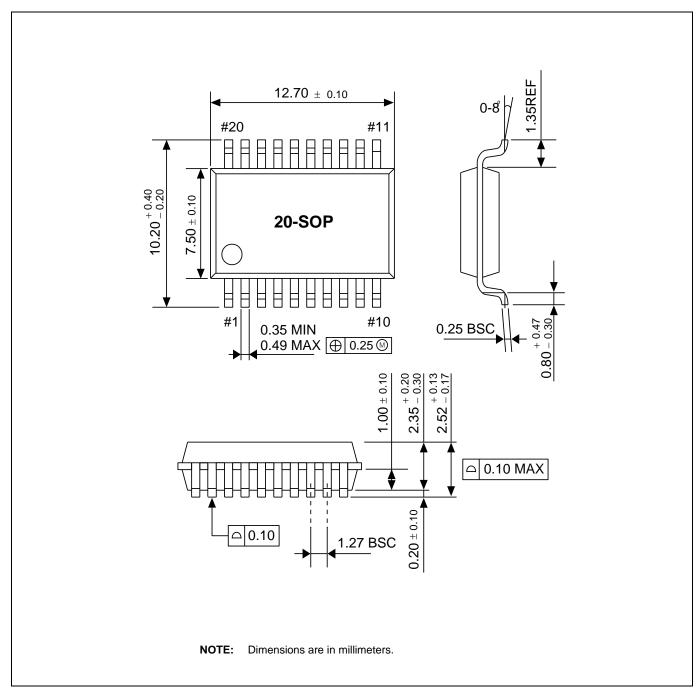


Figure 13-2. 20-SOP Package Dimensions

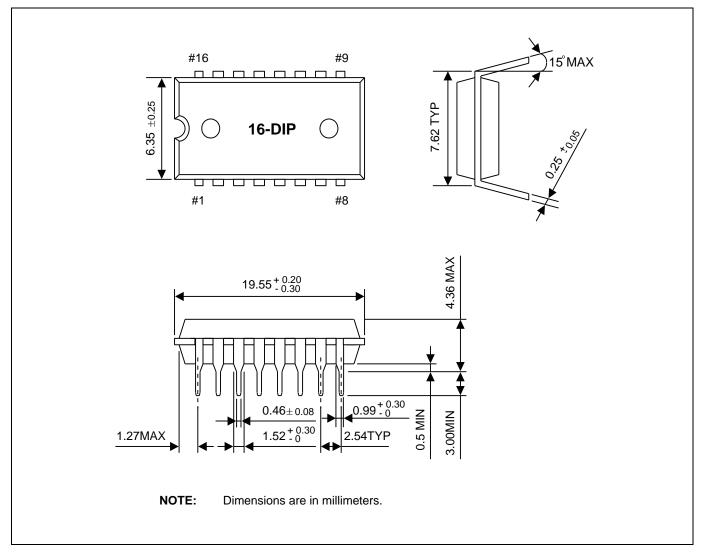


Figure 13-3. 16-DIP-300A Package Dimensions

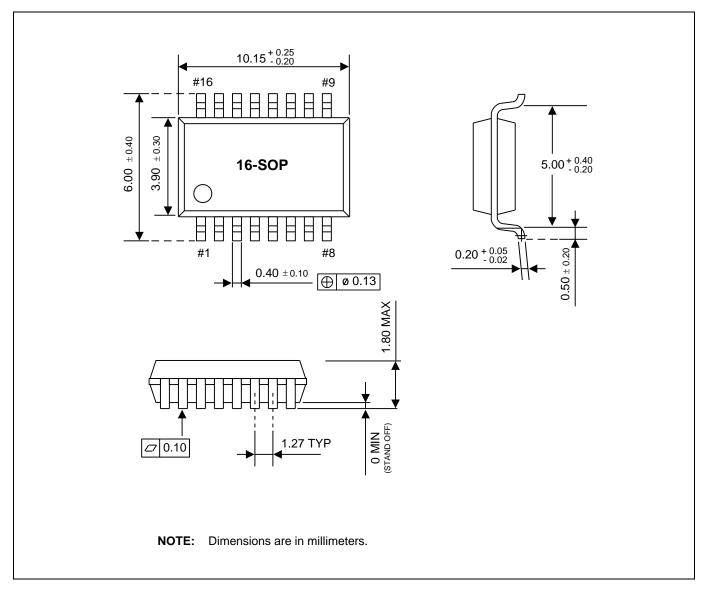


Figure 13-4. 16-SOP-375 Package Dimensions

14. MC71PB204 OTP

The MC71PB204 single-chip microcontroller is OTP (One Time Programmable). The OTP (EPROM) is accessed by serial data format.

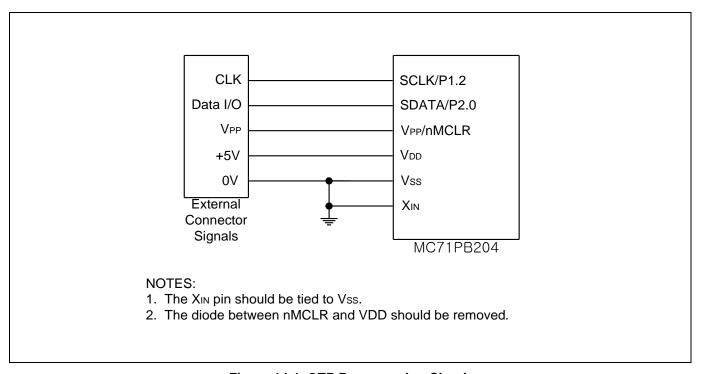


Figure 14-1. OTP Programming Circuit

MC71PB204 **13. MECHANICAL DATA**

Table 14-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip		During Programming				
Pin Name	Pin Name	Pin No.	1/0	Function		
P1.2	SCLK	13(11)	I	Serial clock pin. Input only pin.		
P2.0	SDATA	14(12)	I/O	Serial data pin. Output port when reading and input port when writing. Can be assigned as a Input/push-pull output port.		
nMCLR	V _{PP}	5(3)	I	Power supply pin for EPROM cell writing (indicates that OTP enters into the writing mode). When 12.0 V is applied, OTP is in writing mode and when 5 V is applied, OTP is in reading mode (option).		
V _{DD} /V _{SS}	V _{DD} /V _{SS}	15(13)/6(4)	_	Logic power supply pin. V _{DD} should be tied to +5 V during programming.		

NOTES:

- The X_{IN} pin should be tied to V_{SS}.
 The diode between nMCLR and VDD should be removed.
- 3. Parentheses indicate pin number for 16-pin package.

15. DEVELOPMENT TOOLS

The GMTOOLSTM development suite provides a simple and comprehensive environment to develop and debug firmware for GSSP microcontrollers. It runs on Windows operating system, consisting of an assembler (GMASM), a linker (GMLINK), a hardware-assisted debugger (HAD), an evaluation board and a Windows-based debugging software.

15.1 WINDOWS DEBUG SOFTWARE

The Window-based debugger has two different modes: software simulator mode and hardware emulator mode. Those two modes can be used to validate pre-silicon software in simulation mode and to do real-time debugging of developed software inside silicon in the emulation mode. Once loaded, the program may be observed in Source Window, run at full-speed, single stepped by machine or C level instructions, or stopped at any of the breakpoints. The key features of debug software are Processor execution control, Read-Write all processor contents, unlimited number of software breakpoints and hardware execution breakpoints in program and data memory.

15.2 HARDWARE ASSISTED DEBUGGER (HAD)

Hardware Assisted Debugger (HAD) is a hardware adapter managing the communication between the debug engine within the microcontroller and the PC.

15.3 GMASM ASSEMBLER

GMASM is a parts of gmutils software. It includes gmasm, gmlink, and gmlib. Each tool is intended to be an open source replacement for a corresponding Microchip™ tools. GMASM is full featured powerful macro processor and generates fully relocated and mapped listings and support complex expressions involving assembler variables, numbers, labels and strings. GMASM supports all GMC14 products from GSSP.

15.4 GMLINK

The GMLINK linker allows users to easily relocate their ROM image in memory. It supports both COD or COFF object formats.

15.5 EVALUATION BOARDS

Evaluation boards are available for all GMC14 series microcontrollers. All required evaluation system cables and adapters are included in the device-specific evaluation board.

15.6 HOST REQUIREMENTS

A Pentium class computer with minimum 32 MB of memory, 10 MB of free space on Hard Disk, CD-ROM drive, RS232 serial port, and Windows® 98/Me or Windows® NT/2000/XP operating system are required.

15.7 MC71PB204 DEBUGGER SYSTEM

Figure 15-1. MC71PB204 Debugger System

15.8 MC71PB204 EVALUATION BOARD

The MC71PB204 evaluation board is used for the MC71PB204 microcontroller. It is supported by the HAD development system.

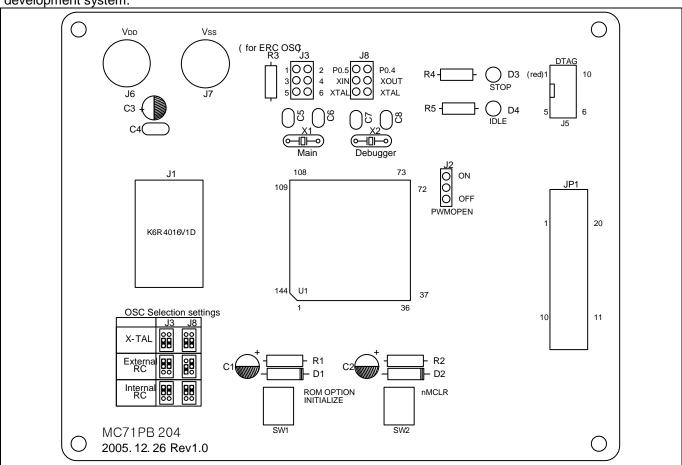


Figure 15-2. MC71PB204 Evaluation Board Configuration

Table 15-1. 10pin-DTAG(J5) Pin Description

Pin Number	Pin Name	Description	Pin Number	Pin Name	Description
1	DCK	Clock signal	6	GND	Signal ground
2	DDI	Data input	7	VDD	Power supply
3	N.C.	Not connected	8	VDD	Power supply
4	N.C.	Not connected	9	N.C.	Not connected
5	DDO	Data output	10	GND	Signal ground

Table 15-2. Main Oscillattion Selection Settings for MC71PB204 Evaluation Board

Main OSC Selection Settings	Operating Mode	Description
J3 J8 1 O O 2 P0.5 O O P0.4 3 A XIN 6 XTAL XOUT XTAL	Crystal/Ceramic Oscillator	The ROM option<3:1> value of Crystal/Ceramic OSC is 111b. The P0.4 and P0.5 are used for X_{OUT} and X_{IN} . The 'X1' is an x-tal for the main Crystal/Ceramic.
J3 J8 P0.4 3 A XIN A XOUT XTAL	External RC Oscillation	The ROM option<3:1> value of External RC OSC is 000b. The external resistor (R3) is connected between VDD and X _{IN} (P0.5). The P0.4 (X _{OUT}) is used for normal port. How to use the External RC OSC mode: ① Set "X-tal OSC mode" by J3 and J8 ② Download "External RC mode program code" ③ If a dialog box is shown during the download step, Push "Enter" key ④ Change to "External RC mode" by J3 and J8 ⑤ Download again ⑥ Repeat step "⑤" when download "External RC mode program code"
J3 J8 P0.4 3 P0.5 P0.4 XOUT 5 O 6 XTAL O XTAL	Internal RC Oscillation	NOTE: The external resistor, 'R3' is needed The ROM option<3:1> value of Internal RC OSC is 001b, 010b, 011b, or 100b. The P0.4 (X _{OUT}) and P0.5 (X _{IN}) are used for normal port. How to use the Internal RC OSC mode: ① Set "X-tal OSC mode" by J3 and J8 ② Download "Internal RC mode program code" ③ Change to "Internal RC mode" by J3 and J8

Table 15-3. The EVA Debugger Clock('X2') for MC71PB204 Evaluation Board

EVA Debugger Clock	Description
"X2"	The 'X2' is an x-tal for the EVA debugger clock. The maximum clock frequency is 16MHz.
	NOTES: 1. The main clock frequency should be set under the EVA debugger clock frequency. 2. The EVA debugger clock is applied when you make a new project of the debugger for the MC71PB204.

Table 15-4. The 'SW1' for MC71PB204 ROM Option Initialize

ROM Option Initialize	Description
"SW1"	The 'SW1' is used when you want to initialize the ROM option. If it is pushed, the ROM option area (001FH of ROM address) has the deflate value, 3FFFH (disabled LVR, selected X-tal OSC).
	How to change the "External RC mode" to "X-TAL mode":
	① Set "X-tal OSC mode" by J3 and J8
	② Push "SW1"
	③ Download "X-tal OSC mode program code"

Table 15-5. PWM_OPEN Setting

PWM_OPEN Setting	Description
ON O OFF PWMOPEN	In the PWM mode, the PWM Pulse maintains when the debugger is in stop operation or single step operation.
J2 O ON OFF PWMOPEN	In the PWM mode, the PWM Pulse stops when the debugger is in stop operation or single step operation.

GREEN LED ('D4')

The Green LED is ON when the evaluation chip is in idle mode or stop mode.

RED LED ('D3')

The Red LED is ON when the evaluation chip is in stop mode.

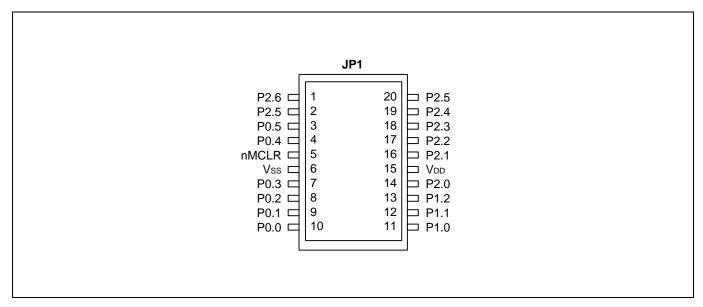


Figure 15-3. Connector 'JP1' for MC71PB204 Evaluation Board

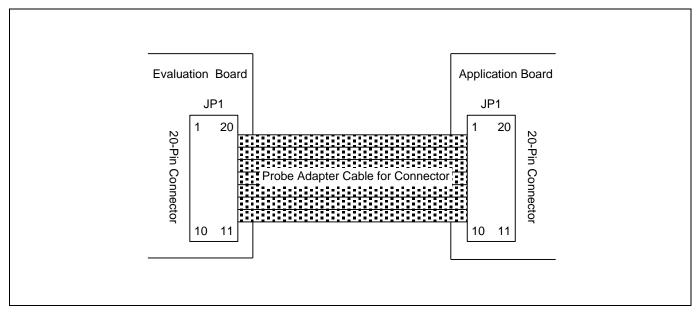


Figure 15-4. MC71PB204 Probe Adapter for 20-DIP, 20-SOP Package

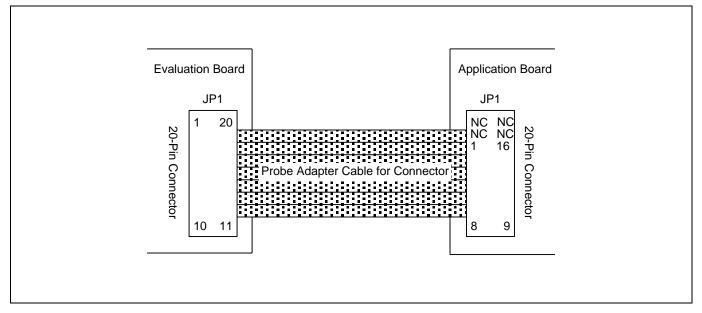


Figure 15-5. MC71PB204 Probe Adapter for 16-DIP, 16-SOP Package

NOTES