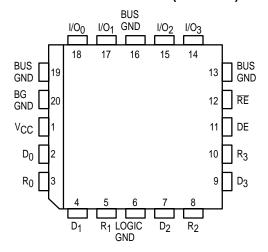


QUAD FUTUREBUS BACKPLANE TRANSCEIVER (3 STATE + OPEN COLLECTOR)

The MC74F3893A is a quad backplane transceiver and is intended to be used in very high speed bus systems.

The MC74F3893A interfaces to "Backplane Transceiver Logic" (BTL). BTL features a reduced (1 V) voltage swing for lower power consumption and a series diode on the drivers to reduce capacitive loading (< 5 pF).

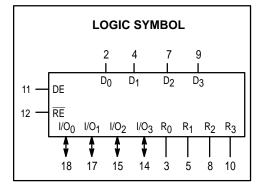

Incident wave switching is employed, therefore BTL propagation delays are short. Although the voltage swing is much less for BTL, so is its receiver threshold region, therefore noise margins are excellent.

BTL offers low power consumption, low ground bounce, reduced EMI and crosstalk, low capacitive loading, superior noise margin and short propagation delays. This results in a high bandwidth, reliable backplane.

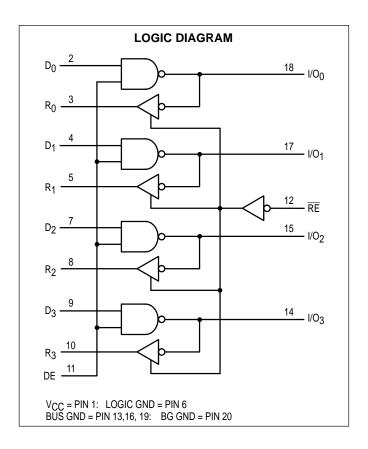
The MC74F3893A has four \overline{TTL} outputs (R_{R}) on the receiver side with a common Receive Enable input (\overline{RE}) . It has four data inputs (D_{R}) which are also TTL. These data inputs are NANDed with the Data Enable input (DE). The four I/O pins (Bus side) are futurebus compatible, sink a minimum of 100 mA, and are designed to drive heavily loaded backplanes with load impedances as low as 10 ohms. All outputs are designed to be glitch-free during power up and power down.

- Quad Backplane Transceiver
- Drives Heavily Loaded Backplanes with Equivalent Load Impedances Down to 10 ohms
- Futurebus Drivers Sink 100 mA
- Reduced Voltage Swing (1 Volt) Produces Less Noise and Reduces Power Consumption
- High Speed Operation Enhances Performance of Backplane Buses and Facilitates Incident Wave Switching
- Compatible with IEEE 896 and IEEE 1194.1 Futurebus Standards
- Built-In Precision Band-Gap (BG) Reference Provides Accurate Receiver Threshold and Improved Noise Immunity
- Glitch-Free Power Up/Power Down Operation On All Outputs
- Pin and Function Compatible with NSC DS3893A and Signetics 74F3893
- Separate Bus Ground Returns for Each Driver to Minimize Ground Noise
- MOS and TTL Compatible High Impedance Inputs

PINOUT: 20-LEAD PLCC (TOP VIEW)



MC74F3893A


QUAD FUTUREBUS BACKPLANE TRANSCEIVER (3 STATE + OPEN COLLECTOR)

FAST™ SCHOTTKY TTL

MC74F3893A

FUNCTION TABLE

Inputs			Input/Output	Outputs	
DE	RE	D _n	I/O _n	Rn	Operating Mode
H H	L	L	H	L H	Transmit to Bus
H L	H	LH	D _n H	Z Z	Receiver 3-State, Transmit to Bus
L	L	X X	H L	L H	Receive, I/O _n = Inputs

H = HIGH voltage level:

RECOMMENDED OPERATING CONDITIONS

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	
VCC	Supply Voltage	4.5	5.0	5.5	V	
VIH	High-Level Input Voltage	D _n , DE, RE	2.0	_	_	V
VIL	Low-Level Input Voltage	D _N , DE, RE	_	_	0.8	V
ΙΙΚ	Input Clamp Current		_	_	-18	mA
V_{TH}	Bus Input Threshold	I/O _n Only	1.475	1.550	1.625	V
loh	Output Current — High	R _n Only		_	-3.0	mA
lOL	Output Current — Low		_	_	100	mA
T _A	Operating Ambient Temperature Range		0	_	70	°C

L = LOW voltage level:

X = Don't care:

Z = HIGH impedance "Off" state.

MC74F3893A

DC CHARACTERISTICS (Over Recommended Operating Free-Air Temperature Range Unless otherwise specified)

		Limits				Test Conditions			
Symbol	Parameter		Min	Typ (2)	Max	Unit	(Note 1)		
Vон	High-Level Output Voltage	R _n	2.5	_		V	V_{CC} = MIN: V_{IL} = 1.3 V; \overline{RE} = 0.8 V: I_{OH} = MAX		
VOHB	High-Level Output Bus Voltage	I/O _n	1.9	_	ı	V	V_{CC} = MAX: DN = DE = 0 V_{T} = 2.0 V: R_{T} = 10 Ω : \overline{RE} I_{OH} = MAX	0.8 V: = 2.0 V	
V _{OL}	Output LOW Voltage	R _n	ı	0.35	0.5	V	$V_{CC} = MIN: V_{IN} = 1.8 \text{ V}; \overline{RE} = 0.8 \text{ V}: I_{CC} = 0.8 \text{ V}$		
Vol.	Low Level Output Bus Voltage	I/O _n	0.75	1.0	1.2	V	$D_n = DE = V_{IH}: I_{OL} = 100$	mA	
VOLB	Low Level Output Bus voltage	ı/On	0.75	1.0	1.1	V	$D_n = DE = V_{IH}$: $I_{OL} = 80 \text{ r}$	mA	
\\	Driver Output Positive	1/0	_	_	2.9	\ \	V _{CC} = MAX or 0 V: DN = DE = 0.8 V:	$I/O_{n} = 1.0 \text{ mA}$	
VOCB	Clamp Voltage	I/O _n	_	_	3.2		RE = 2.0 V	I/O _n = 10 mA	
VIK	Input Clamp Diode Voltage	_	-0.73	-1.2	V	$V_{CC} = MIN, I_I = I_{IK}$			
lլ	Input Current at Maximum Input Voltage		_	_	100	μΑ	$V_{CC} = MAX: V_I = 7.0 \text{ V: DE} = \overline{RE} = D_n = V_0$		
lіН	High Level Input Current	D_n, \overline{RE}, DE	1	_	20	μΑ	$V_{CC} = MAX: DE = \overline{RE} = D_n = 2.5 V$		
I _{IHB}	High-Level I/O Bus Current (Power Off)	I/O _n	-	_	100	μА	$V_{CC} = 0 \text{ V: } DN = DE = 0.8 \text{ V:}$ $I/O_{n = 1.2 \text{ V: }} \overline{RE} = 0 \text{ V:}$		
		RE	_	_	-100		V _{CC} = MAX:	DE = 4.5 V	
IIL	Low-Level Input Current	D _n	-	_	-200	μΑ	VCC = IVIAX.	DE = 4.5 V	
		DE	_	_	-500		V _I = 0.5V:	D _n = 4.5 V	
I _{ILB}	Low-Level I/O Bus Current (Power On)	I/O _n	-250	_	100	μΑ	$V_{CC} = MAX: D_n = DE = 0.8 \text{ V}:$ $I/O_n = 0.75 \text{ V}: \overline{RE} = 0 \text{ V}:$		
lozh	Off-State Output Current, High- Level Voltage Applied		_	_	20	μΑ	V _O = 2.5V: RE = 2.0 V		
lozL	Off-State Output Current, Low-Level Voltage Applied	R _n	_	_	-20		V _{CC} = MAX: V _O = 0.5 V: RE = 2.0 V	V _{CC} = MAX:	
los	Output Short Circuit Current (Note 3)		-80	_	-200	mA	D _n = 1.2 V: V _O = 0 V: RE = 0.8 V		
Icc	Supply Current (Total)			55	80	mA	V _{CC} = MAX: (RE = V _{IH}	or V _{IL})	

NOTES:

^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

2. All typical values are at V_{CC} = 5.0 V, T_A = + 25°C.

^{3.} Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, IOS tests should be performed last.

MC74F3893A

AC ELECTRICAL CHARACTERISTICS for Receiver and Receiver Enable

			74F		74		
		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V, V_T = +2.0V$ $C_D = 30 \text{ pF}$ $R_T = 10 \Omega$			T_A = 0°C to +70°C V_{CC} =+5.0V ±10%, V_T =+2.0V C_D = 30 pF R_T = 10 Ω		
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
^t PLH ^t PHL	Propagation Delay D _n to I/O _n	_	_	_ _	1.0 1.0	7.0 7.0	ns
tPLH tPHL	Propagation Delay DE to I/O _n	_ _	_	_ _	1.0 1.0	7.0 7.0	ns
tTLH tTHL	D _n to I/O _n Transition Time 10% to 90%, 90% to 10%	_ _	_ _	_ _	1.0 1.0	5.0 5.0	ns
t _{Dskew}	Skew Between Receivers in Same Package	_	1.0	_	_	_	ns

AC ELECTRICAL CHARACTERISTICS for Receiver

		74F T _A = +25°C V _{CC} =+5.0V C _L = 50 pF R _L = 1.0K Ω			74		
					$T_A = 0$ °C to +70°C V_{CC} =+5.0V ±10% $C_L = 50$ pF $R_L = 1.0$ K Ω		
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
^t PLH ^t PHL	Propagation Delay I/O _n to R _n				2.0 2.0	8.0 8.0	ns
t _{Dskew}	Skew Between Receivers in Same Package	_	1.0	_	_	_	ns

AC ELECTRICAL CHARACTERISTICS for Receiver Enable

			74F TA = +25°0 VCC=+5.0 CL = 50 p RI = 500 9	F	74F T _A = 0°C to +70°C V _{CC} =+5.0V ±10% C _L = 50 pF R _I = 500 Ω		
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
^t PZH ^t PZL	Output Enable to High or Low Level RE to Rn	_ _	_ _		2.0 2.0	12.0 12.0	ns
^t PHZ ^t PLZ	Output Disable From High or Low Level RE to Rn	_ _	_	_	1.0 1.0	8.0 8.0	ns

