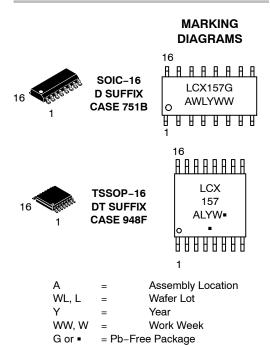
Low-Voltage CMOS Quad 2-Input Multiplexer

With 5 V-Tolerant Inputs (Non-Inverting)

MC74LCX157A

The MC74LCX157A is a high performance, quad 2-input multiplexer operating from a 1.65 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX157A inputs to be safely driven from 5 V devices.

Four bits of data from two sources can be selected using the Select and Enable inputs. The four outputs present the selected data in the true (non-inverted) form. The MC74LCX157A can also be used as a function generator. Current drive capability is 24 mA at the outputs.


Features

- Designed for 1.65 to 3.6 V V_{CC} Operation
- 5 V Tolerant Inputs Interface Capability With 5 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 100 mA
- ESD Performance:
 - ♦ Human Body Model >2000 V
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

(Note: Microdot may be in either location)

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.



Figure 1. 16-Lead Pinout (Top View)

PIN NAMES

Pins	Function
I0n	Source 0 Data Inputs
l1n	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Zn	Outputs

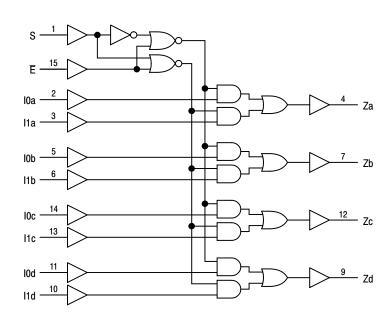


Figure 2. Logic Diagram

TRUTH TABLE

Inputs			Outputs	
Ē	S	l0n	l1n	Zn
H L L	X H H L	X X X L H	X L H X	L L H L

H = High Voltage Level; L = Low Voltage Level; X = High or Low Voltage Level; For I_{CC} Reasons DO NOT FLOAT Inputs

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX157ADR2G (Contact ON Semiconductor)	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74LCX157ADTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Table 1. MAXIMUM RATINGS

Symbol	Param	eter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	٧
V _I	DC Input Voltage (Note 1)		-0.5 to +6.5	٧
V _O	DC Output Voltage (Note 1)	Active-Mode (High or Low State) Tri-State Mode Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _O	DC Output Source/Sink Current		±50	mA
I _{CC}	DC Supply Current Per Supply Pin		±100	mA
I _{GND}	DC Supply Current Per Ground Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	> 2000 N/A	V
I _{LATCHUP}	Latchup Performance (Note 3)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Тур	Max	Unit
V _{CC}	Supply Voltage	Operating	1.65	3.3	3.6	V
		Data Retention Only	1.5	3.3	3.6	
VI	Digital Input Voltage		0	-	5.5	V
V _O	Output Voltage	Active Mode (High or Low State)	0	-	V _{CC}	V
		Tri-State Mode	0	-	5.5	
		Power Down Mode (V _{CC} = 0 V)	0	-	5.5	
T _A	Operating Free-Air Temperature		-40	-	+125	°C
t _r , t _f	Input Transition Rise or Fall Rate V_I = from 0.8 V to 2.0 V, V_{CC} = 3.0 V	'	0	-	10	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

I_O absolute maximum rating must be observed.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
3. Tested to EIA/JESD78 Class II.

Table 3. DC ELECTRICAL CHARACTERISTICS

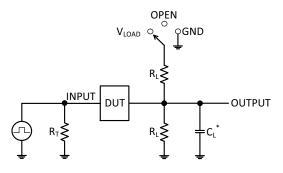
				T _A = -40°	C to +85°C	T _A = -40°C	C to +125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Min	Max	Unit
V _{IH}	High-Level Input		1.65 to 1.95	0.65 x V _{CC}	-	0.65 x V _{CC}	-	V
	Voltage		2.3 to 2.7	1.7	-	1.7	-	
			2.7 to 3.6	2.0	_	2.0	_	
V _{IL}	Low-Level Input		1.65 to 1.95	-	0.35 x V _{CC}	-	0.35 x V _{CC}	V
	Voltage		2.3 to 2.7	-	0.7	-	0.7	1
			2.7 to 3.6	-	0.8	-	0.8	1
V _{OH}	High-Level	$V_I = V_{IH}$ or V_{IL}						V
	Output Voltage	I _{OH} = -100 μA	1.65 to 3.6	V _{CC} – 0.2	_	V _{CC} – 0.2	_	
		I _{OH} = -4 mA	1.65	1.2	_	1.2	_	
		I _{OH} = -8 mA	2.3	1.8	_	1.8	_	
		I _{OH} = -12 mA	2.7	2.2	_	2.2	_	
		I _{OH} = -16 mA	3.0	2.4	_	2.4	_	
		I _{OH} = -24 mA	3.0	2.2	_	2.2	_	
V _{OL}	Low-Level	$V_I = V_{IH}$ or V_{IL}						V
	Output Voltage	I _{OL} = 100 μA	1.65 to 3.6	-	0.2	_	0.2	
		I _{OL} = 4 mA	1.65	-	0.45	_	0.45	
		I _{OL} = 8 mA	2.3	-	0.6	_	0.6	
		I _{OL} = 12 mA	2.7	-	0.4	_	0.4	
		I _{OL} = 16 mA	3.0	-	0.4	_	0.4	
		I _{OL} = 24 mA	3.0	-	0.55	_	0.6	
l _l	Input Leakage Current	V _I = 0 to 5.5 V	3.6	-	±5.0	-	±5.0	μΑ
l _{OFF}	Power Off Leakage Current	V _I = 5.5 V or V _O = 5.5 V	0	-	10	-	20	μΑ
I _{CC}	Quiescent Supply Current	V _I = 5.5 V or GND	3.6	-	10	-	10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6 V$	2.3 to 3.6	-	500	-	500	μА

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. AC ELECTRICAL CHARACTERISTICS

				T _A = -40°	C to +85°C	T _A = -40°C	to +125°C	
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	See Figures 3 and 4	1.65 to 1.95	-	11.4	-	11.4	ns
t _{PHL}	In to Zn 2.3 to 2.	2.3 to 2.7	-	8.7	-	8.7		
			2.7	-	6.3	-	6.3	
			3.0 to 3.6	-	5.8	-	5.8	
t _{PLH} ,			1.65 to 1.95	-	13.0	-	13.0	ns
t _{PHL}	S to Zn	S to Zn	2.3 to 2.7	-	9.0	-	9.0	
			2.7	-	8.0	-	8.0	
			3.0 to 3.6	-	7.0	-	7.0	
t _{PLH} ,	Propagation Delay,	See Figures 3 and 4	1.65 to 1.95	-	13.0	-	13.0	ns
^I PHL	t _{PHL} to Zn	to Zn	2.3 to 2.7	-	9.0	-	9.0	
			2.7	-	8.0	-	8.0	
			3.0 to 3.6	-	7.0	-	7.0	

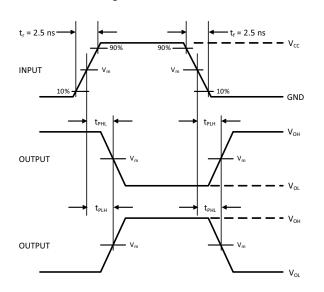
Table 5. DYNAMIC SWITCHING CHARACTERISTICS


				T _A = +25°C			
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	C _L = 50 pF, V _{IH} = 3.3 V, V _{IL} = 0 V	3.3	-	0.8	-	V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	_	-0.8	-	V

^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

Table 6. CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Parameter Test Condition		Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	


^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} x V_{CC} x f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} x V_{CC}² x f_{in} + I_{CC} x V_{CC}.

Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	V_{LOAD}
t _{PHZ} / t _{PZH}	GND

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz

Figure 3. Test Circuit

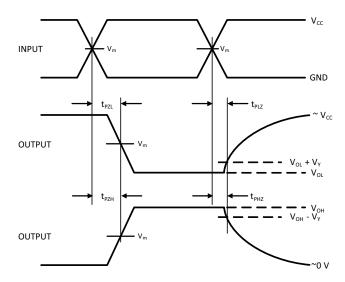
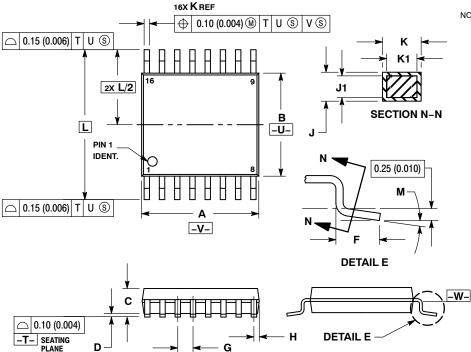



Figure 4. Switching Waveforms

V _{CC} , V	R_L,Ω	C _L , pF	V_{LOAD}	V _m , V	V _Y , V
1.65 to 1.95	500	30	2 x V _{CC}	V _{CC} /2	0.15
2.3 to 2.7	500	30	2 x V _{CC}	V _{CC} /2	0.15
2.7	500	50	6 V	1.5	0.3
3.0 to 3.6	500	50	6 V	1.5	0.3

PACKAGE DIMENSIONS

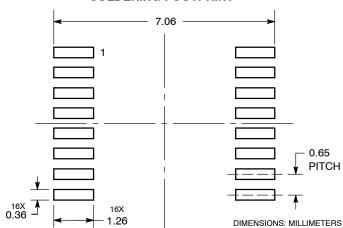
TSSOP-16 **DT SUFFIX** CASE 948F **ISSUE B**

NOTES:

- DTES:

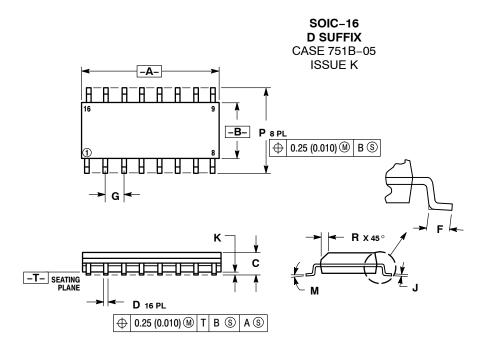
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.


 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08
- DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL
- CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

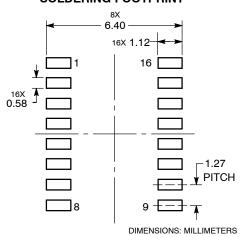

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007 0.010		
Г	6.40	BSC	0.252		
M	0°	8°	0°	8°	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.

- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
_	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative