ABOV SEMICONDUCTOR Co., Ltd. LIGHT-TO-DIGITAL CONVERTER

MC8201

Data Sheet (REV.1.5)

REVISION HISTORY

REVISION 1.0 (October 7, 2011)

- Initial Version

REVISION 1.1 (October 11, 2011)

- Modify PS description

REVISION 1.2 (November 15, 2011)

- Fix registers description

REVISION 1.3 (December 15, 2011)

- Fix ps algorithm description
- Fix ps register description and bit width
- Fix electrical specifications

REVISION 1.4 (January 4, 2012)

- Fix DC spec (VIL, VIH)

REVISION 1.5 (March 18, 2012)

- Fix registers description
- Revise PS algorithm (PS resolution is changed to 10/8-bit)

REVISION 1.5 Published by Design Team ©2012 ABOV Semiconductor Co., Ltd. All rights reserved.

Additional information of this manual may be served by ABOV Semiconductor offices in Korea or Distributors.

ABOV Semiconductor reserves the right to make changes to any information here in at any time without notice.

The information, diagrams and other data in this manual are correct and reliable; however, ABOV Semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

Table of Contents

1.	OVERVIEW	6
	1.1 DESCRIPTION	6
	1.2 FEATURES	6
	1.3 ORDERING INFORMATION	7
	1.4 APPLICATIONS	7
	1.5 BLOCK DIAGRAM	7
	1.6 PIN CONFIGURATIONS	8
	1.7 PKG DIAGRAM	9
	1.8 PIN DESCRIPTION	10
	1.9 SLAVE ADDRESS	10
	1.10 ELELCTRICAL CHARACTERISTICS	10
	1.10.1 ABSOLUTE MAXIMUM RATINGS	10
	1.10.2 RECOMMENDED OPERATING CONDITION	11
	1.10.3 ELECTRICAL SPECIFICATIONS	11
	1.10.4 I ² C CHARACTERISTICS	11
	1.10.5 OPTICAL CHARACTERISTICS	12
2.	OPERATION	15
	2.1 I ² C	15
	2.1.1 OVERVIEW	15
	2.1.2 I ² C BIT TRANSFER	15
	2.1.3 START / REPEATED START / STOP	15
	2.1.4 DATA TRANSFER	16
	2.1.5 ACKNOWLEDGE	16
	2.1.6 OPERATION	17
	2.2 REGISTERS	18
	2.2.1 OVERVIEW	18
	2.2.2 REGISTER MAP	19
	2.2.3 REGISTER DESCRIPTION	19
	2.3 PS/ALS OPERATION	28
	2.3.1 FSM	28
	2.3.2 ALS OPERATION	29
	2.3.3 PS OPERATION	29
	2.3.4 PS-ALS ALTERNATING OPERATION	30
	2.3.5 INTERRUPT	30
	2.3.6 POWER CONSUMPTION	34
	2.4 APPLICATION INFORMATION : SOFTWARE	35
	2.4.1 OVERVIEW	35
3.	APPENDIX	36

List of Figures

Figure 1-1 Block Diagram of MC8201
Figure 1-2 PKG Diagram
Figure 1-3 PKG DIMENSION9
Figure 1-4 Definition of timing for fast mode devices on the I2C bus12
Figure 2-1 Bit Transfer on the I ² C-Bus15
Figure 2-2 START and STOP Condition
Figure 2-3 STOP or Repeated START Condition
Figure 2-4 Acknowledge on the I ² C-Bus17
Figure 2-5 I2C Write Protocol
Figure 2-6 I2C Read Protocol
Figure 2-7 PS-ALS Operating State Machine
Figure 2-8 ALS Operation
Figure 2-9 PS Type 0 Operation
Figure 2-10 PS Type 1 Operation오류! 책갈피가 정의되어 있지 않습니다.
Figure 2-11 ALS-PS Alternating Operation
Figure 2-12 ALS or PS Interrupt output (level or pulse interrupt)
Figure 2-13 PS Interrupt Output (PPER=1 or 2 & INTEDGE=0)
Figure 2-14 PS Detection (PPER=1 or 2)
Figure 2-15 Operating Modes
Figure 3-1 Hardware pin connection diagram
Figure 3-2 I2C write example
Figure 3-3 I2C read example

MC8201

Digital Proximity and Ambient Light Sensor

1. OVERVIEW

1.1 DESCRIPTION

The MC8201 integrates ALS(Ambient Light Sensor), PS(Proximity Sensor) and IR LED(Light Emitting Diode) driver in a single die, and merged with IR LED in a extremely small 8 pin package. It is an advanced digital ambient light sensor and proximity sensor, which can transform illuminance (light intensity) to a digital signal output and detect proximity of object.

For ambient light sensing, it combines an opened photodiode and a light shielded photodiode which is used to reduce dark noise. The opened photodiode is capable of providing a photovoltaic response and coated with Infra Red cut off filter on a CMOS integrated circuit. The photovoltaic response is converted into digital counter value by the ALS ADC of 16 bit resolution. It closely approximates the human eye spectral response of visible wavelength.

In addition, the MC8201 has another opened photodiode with IR pass filter in order to detect proximity of an object. When PS is enabled, the IR LED is turned on by the built-in IR LED driver. When the IR from the LED reaches an object and gets reflected back, the opened photodiode for proximity sensing converts the reflected IR light with center frequency of 850nm into current. The amount of current is converted into digital counter value by the PS ADC of 12-bit resolution. The counter value is inversely proportional to the square of the distance between the sensor and the object. The proximity detection feature operates well from bright sunlight to dark rooms. The wide dynamic range also allows for operation in short distance detection behind dark glass such as a cell phone. The operation voltage ranges from 2.4 to 3.6 volt.

The ALS features are ideal for reducing power consumption and adjusting brightness of display equipments like LCD, PDP, LED, virtual keyboard and portable projector, etc. The proximity detection feature is targeted esspecially for cell phones with touch screen. In cell phones, the proximity sensor can detect when a user positions the phone close to their ear and can disable the touch screen to prevent mal-functions due to touch events.

1.2 FEATURES

- CMOS technology
- Independently programmable exposure time for PS and ALS

Ambient Light Sensing

- Convert incident light intensity to digital data
- 16-bit ALS ADC resolution
- Automatic light flickering cancellation supporting
- Block off IR(Infrared) by IR cut off coating

- Excellent transmittance of glass package
- Spectral response close to human eye
- Linear ALS response for easy design
- Low dark noise

Proximity Detection

- Integrated IR LED and synchronous LED driver
- Accept only 940nm for precise detection with strong IR background noise cancellation like fluorescent, incandescent light and sunlight
- Excellent ambient light(Background IR noise) cancellation capability
- 10/8-bit PS ADC resolution

Additional Features

- I²C protocol interface
- Low stop current 1uA typical
- Operating rang 2.4 ~ 3.6V
- Small size package (L1.431mm x 1.511mm x H)
- 8-LGA package

1.3 ORDERING INFORMATION

DEVICE NAME	INTERFACE	TEMP. RANGE	PACKAGE TYPE	PACKAGE
MC8201	I ² C	-40 to +85	LGA	8-LGA

Table 1-1 Ordering Information

1.4 APPLICATIONS

- Cell phone
- Digital TV, Tablet PC, Notebook PC
- Navigation systems
- Display-equipped portable devices,etc..

1.5 BLOCK DIAGRAM

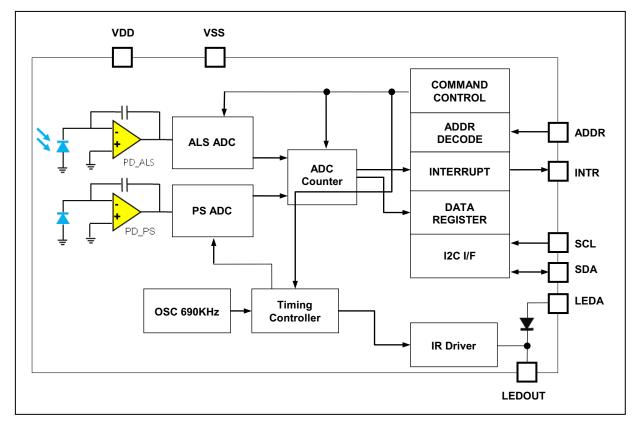
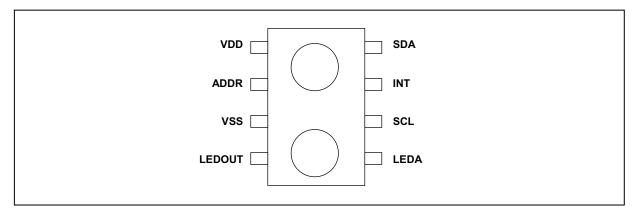



Figure 1-1 Block Diagram of MC8201

1.6 PIN CONFIGURATIONS

8 LGA (MC8201)

1.7 PKG DIAGRAM

Figure 1-3 PKG DIMENSION

수정!!!

수정!!!

1.8 PIN DESCRIPTION

PIN Number	PIN Name	Description	I/O
1	VDD	Power supply : 2.4 to 3.6V	Power
2	ADDR	Address Select	Input
3	VSS	Ground	Power
4	LEDOUT	LED driver for proximity emitter – up to 180mA	O(Open Drain)
5	LEDA	LED Anode, connect to VDD or V_{BATT} on PCB	I
6	SCL	I ² C Serial Clock Line	Input
7	INT	ALS, PS Interrupt	O(Open Drain)
8	SDA	I ² C Serial Data Line	O(Open Drain)

Table 1-2 Pin Description

1.9 SLAVE ADDRESS

ADDR	SLAVE ADDRESS
LOW / OPEN	1011_100
HIGH	0110_011

Table 1-3 Slave Address Selection

1.10 ELELCTRICAL CHARACTERISTICS

1.10.1 ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min.	Max.	Unit.	Remark
VDD	Supply voltage	0	4.0	V	
Tstg	Storage temperature range	-40	85	°C	
VO	Digital ouput voltage range	-0.5	4.0	V	
Ю	Digital output current	-1	20	mA	
VHBM	ESD tolerance, Human Body Model		2,000	V	

Table 1-4 Absolute Maximum Ratings

^{NOTE} Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliablility.

1.10.2 RECOMMENDED OPERATING CONDITION

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
VDD	Supply voltage	2.4	3.0	3.6	V	
ТА	Operating temperature	-40		85	°C	
VIL	SCL,SDA input low voltage			400	mV	
VIH	SCL,SDA input low voltage	1.4			V	

 Table 1-5 Recommended Operating Condition

1.10.3 ELECTRICAL SPECIFICATIONS

(VDD =3.0V, VLED=3.0V, VSS =0V, f _{SCL} =40	00KHz, TA=+25℃±10%)
--	---------------------

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
V _{DD}	Power Supply	2.4	-	3.6	V	
I _{STOP}	Power Down Current			1	uA	Power down
IDDALS	Active Current for ALS			120	uA	
IDDPS	Active Current for PS			100	uA	Exclude LED driving
λ _P	Peak Sensitivity wavelength of ALS		550		nm	
λ_{PPS}	Peak Sensitivity wavelength of PS		850		nm	
f _{OSC}	Internal Oscillator Frequency	552	690	828	KHz	
t _{INT}	ADC Integration/Conversion Time		100	500	ms	16-bit ADC data
V _{OL}	INT,SDA ouput low voltage	0		0.4	V	8mA sink current
A000L	ADC Count Value of ALS	-	0	4	counts	@0Lux, white color LED
A _{001L}	@ATIME=14 _H (100ms)		8		counts	@1Lux, white color LED
A _{250L}	AGC1=88 _H	1600	2000	2400	counts	@250Lux, white color LED
DF _{ALS}	Full Scale ALS ADC Count			65535	counts	
DF _{PS}	Full Scale PS ADC Count			1023	counts	
f _{LED0}		138.0	172.5	207.0	KHz	LDCTRL[0]=0 _B
f_{LED1}		276.0	345.0	414.0	KHz	LDCTRL[0]=1 _B
I _{LED1}	IR LED Modulation Frequency		60		mA	TSSEL=01 _B
I _{LED2}			120		mA	TSSEL=10 _B
I _{LED3}			180		mA	TSSEL=11 _B

Table 1-6 Electrical Specifications

1.10.4 I²C CHARACTERISTICS

The following table and figure show the timing codition of SDA and SCL bus lines for fast mode I^2C bus devices. ^{NOTE1}.

March 2012 REV1.5

(VDD =3.0V, VSS =0V, TA=+25°C±10%)

Parameter	Symbol ^{NOTE2}	Min	Max	Unit
SCL clock frequency	t _{SCL}	0	400	KHz
Hold time after (repeated) START condition. After this period, the first clock pulse is generated	t _{hd;sta}	0.6	-	us
LOW period of the SCL clock	t _{LOW}	1.3	-	us
HIGH period of the SCL clock	t _{ніGH}	0.6	-	us
Setup time for a repeated START condition	t _{SU;STA}	0.6	-	us
Data hold time	t _{hd;dat}	0	0.9	us
Data setup time	t _{su;dat}	100	-	ns
Clock/data fall time	t⊨	0	300	ns
Clock/data rise time	t _R	0	300	ns
Setup time for STOP condition	t _{su;sto}	0.6	-	us
Bus free time between a STOP and START condtion	t _{BUF}	1.3	-	us

Table 1-7 Timing	characteristics of I ² C
------------------	-------------------------------------

 $^{\text{NOTE1}}$ All timing is shown with respect to 30% VDD and 70% VDD.

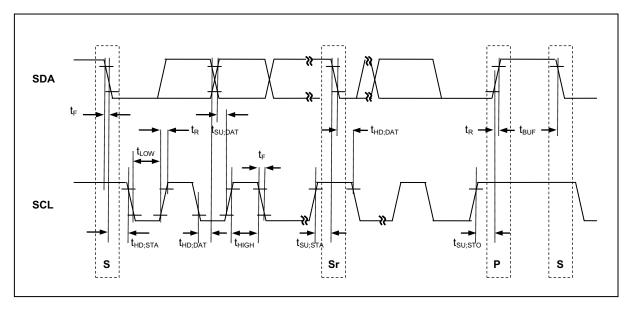


Figure 1-4 Definition of timing for fast mode devices on the I2C bus

1.10.5 OPTICAL CHARACTERISTICS

A. Response linearity by light source

MC8201 has high linearity performance by light illuminace in multi lighting booth system that can emit various lights by controlled its color temperature.

A .1. Fluorescent lamp 1

Color temperature (6500K)

Measurement Illuminace : 0~1,855lx

(graph 1. Spectrum of 6500K lamp)

Result under 6500K daylight

A .2. Fluorescent lamp 2

Color temperature (4200K) Measurement Illuminace : 0~422lx

Result under 4200K fluorescent lamp

A .3. Incandescent lamp

Color temperature (2856K) Illuminace : 0 ~ 1,960lx

(graph 2. Spectrum of 2856K lamp)

Result under 2856K fluorescent lamp

B. Spectral response

Spectrum of MC8201 is the below curve by using monochrometer and integrated sphere.

NOTE : Optical characteristics/data are included after full evaluation.

2. OPERATION

2.1 I²C

2.1.1 OVERVIEW

The I²C is one of industrial standard serial communication protocols, and which uses 2 bus lines Serial Data Line (SDA) and Serial Clock Line (SCL) to exchange data. Because both SDA and SCL lines are open-drain output, each line needs pull-up resistor. The features are as shown below.

- Compatible with I²C interface
- Up to 400KHz data transfer speed
- Support two 7-bit slave address
- Slave operation only

2.1.2 I²C BIT TRANSFER

The data on the SDA line must be stable during HIGH period of the clock, SCL. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.

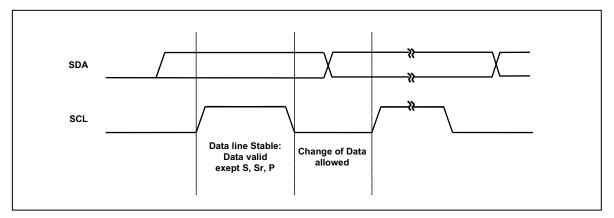


Figure 2-1 Bit Transfer on the I²C-Bus

2.1.3 START / REPEATED START / STOP

One master can issue a START (S) condition to notice other devices connected to the SCL, SDA lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

A high to low transition on the SDA line while SCL is high defines a START (S) condition.

A low to high transition on the SDA line while SCL is high defines a STOP (P) condition.

START and STOP conditions are always generated by a master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, ie, the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.

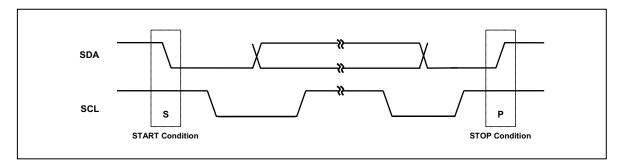


Figure 2-2 START and STOP Condition

2.1.4 DATA TRANSFER

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL.

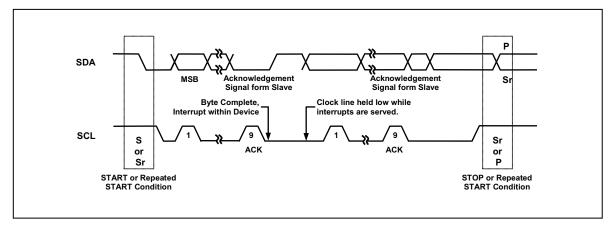


Figure 2-3 STOP or Repeated START Condition

2.1.5 ACKNOWLEDGE

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA line (Data Packet). The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

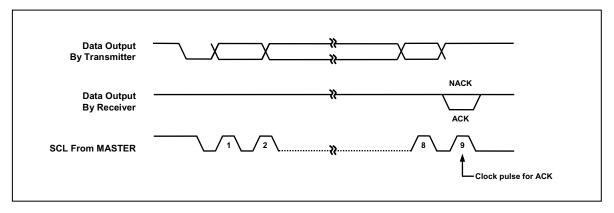


Figure 2-4 Acknowledge on the I²C-Bus

2.1.6 OPERATION

The I²C is byte-oriented serial protocol and data transfer between master and this slave device is initiated by a start condition(S) from master. After start condition, the master sends 7-bit slave address and 1-bit read-write control bit. We call these 8-bit data address packet. The next bytes followed by address packet are all data packet unless another start condition is detected before a stop condition.

The 2nd byte sent from master after address packet with write direction is interpreted as base register or memory address byte. And this base address is incremented only when master transmits more than 2 bytes after start condition because the 2nd byte is register address field.

The MC8201's I²C slave address is configured as "1011100_B" or "0100011_B" according to the input condition of ADDR pin.

2.1.6.1 WRITE PROTOCOL (MASTER TRANSMITTER)

The master transmits a start condition(S), slave address and Write bit. If the high 7-bits of address packet equal to the device's slave address, the MC8201 acknowledges by pulling down the SDA line at the 9th SCL clock period. After address packet and acknowledge bit, the master transmits a data which is used for base address accessing internal memory or register of the device. The master transmits a number of data to be written and the slave always acknowledges for every data received. To finish transfer the master sends a stop condition regardless of the acknowledgement.

The destination address for incoming data byte increments automatically by one data packet. For example, if master transmits 5 data bytes including a base address(=register address in the following figure) byte and the base address is configured as 00_H , the internal address is defined as 00_H for 1^{st} data byte, 01_H for 2^{nd} data byte, 02_H for 3^{rd} data byte and 03_H for 4^{th} data byte. This applies to Read Protocol also.

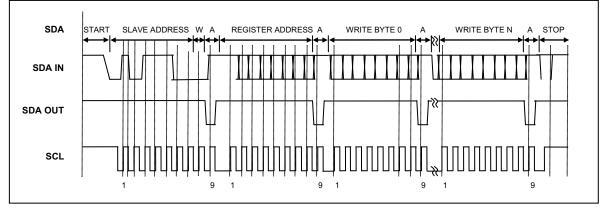


Figure 2-5 I2C Write Protocol

2.1.6.2 READ PROTOCOL (MASTER RECEIVER)

The master transmits a start condition(S), slave address and Write bit. If the high 7-bits of address packet equal to the device's slave address, the MC8201 acknowledges by pulling down the SDA line at the 9th SCL clock period. After address packet and acknowledge bit, the master transmits a data which is used for base address accessing internal memory or register of the device. To initiate read operations, the master sends repeated start condition and slave address with Read bit. After this address packet, the master reads data bytes until it does not acknowledges. Note that to send a stop condition after receiving last data byte, the master must generate a NACK(not acknowledging) on the last data byte received. Like Write Protocol, the read address increases by 1 after every read byte. Note that the transfer direction changes in this protocol.

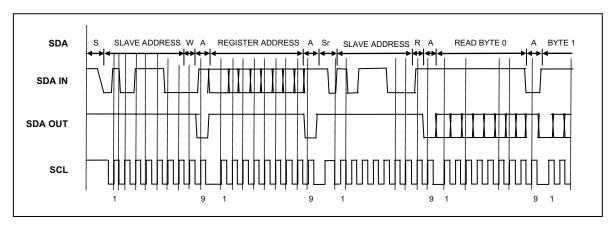


Figure 2-6 I2C Read Protocol

2.2 REGISTERS

2.2.1 OVERVIEW

The MC8201 is controlled and monitored by 23 registers. These registers provide a variety of control functions and can be read to determine results of the ADC conversions.

2.2.2 REGISTER MAP

Name	Address	Dir	Default	Description
ADDRSET	-	W	-	Address Set Register
CONTROL	00н	R/W	00 _H	Control Register
INTR	01 _н	R/W	00н	Interrupt Control Register
ATIME	02 _H	R/W	FF _H	ALS Integration Time Register
PTIME	03 _н	R/W	FF _H	PS Integration Time Register
WTIME	04 _H	R/W	FF _H	Wait Time Register
AILTL	05 _н	R/W	FF _H	ALS Interrupt Low Threshold Low Register
AILTH	06н	R/W	03 _Н	ALS Interrupt Low Threshold High Register
AIHTL	07 _Н	R/W	FF _H	ALS Interrupt High Threshold Low Register
AIHTH	08н	R/W	BF _H	ALS Interrupt High Threshold High Register
PILTL	09 _н	R/W	FF _H	PS Interrupt Low Threshold Low Register
PILTH	0A _H	R/W	03 _Н	PS Interrupt Low Threshold High Register
PIHTL	0B _H	R/W	FF _H	PS Interrupt High Threshold Low Register
PIHTH	0C _H	R/W	03 _H	PS Interrupt High Threshold High Register
PERSIST	0D _H	R/W	00 _H	ALS/PS Interrupt Persistence Register
ADATAL	0E _H	R	FF _H	ALS ADC Data Low Register
ADATAH	0F _H	R	FF _H	ALS ADC Data High Register
PDATA0L	10 _н	R	00н	PS ADC Data0 Low Register
PDATA0H	11 _H	R	00 _H	PS ADC Data0 High Register
PDATA1L	12 _H	R	FF _H	PS ADC Data1 Low Register
PDATA1H	13 _н	R	03 _H	PS ADC Data1 High Register
AGC0	14 _H	R/W	00 _H	ADC Gain control 0 Register
AGC1	15 _н	R/W	00н	ADC Gain control 1 Register
PLEDC	16 _н	R/W	00 _H	PS LED control Register

Table 2-1 Registers of MC8201

Caution : Do not access registers addressed between 17_H and $1F_H$. Writing to these registers may result in unexpected function.

2.2.3 REGISTER DESCRIPTION

ADDRSET (Address Set Register)											
7	6	5	4	3	2	1	0				
-	-	-	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0				
-	-	-	RW	RW	RW	RW	RW				
							Initial value	. 00			

Initial value : 00_H

Base address for subsequent register access. When the I2C master initiates a write protocol with start bit and slave address transfer, the second byte is used to configure register address.

CONTROL (Control Register)

ADDR[4:0]

00_H

March 2012 REV1.5

7	6	5	4	3	2	1	0	
ONESHOT	SOFTRST	PROXSEL	IRSEL	PSTYPE	PAEN	AAEN	POWER	
RW	RW	RW	RW	RW	RW	RW	RW	
							Initial value :	
	0	NESHOT	Stops ADC	integration on	completion of	one integratio	on cycle.	
			0 Cc	ntinuous opera	ation.			
			au reg		o and also the	PAEN/AAEN	DC will bits in CONTR n, re-assert PAI	
	S	OFTRST	Soft reset.	This bit is auto-	-cleared.			
			0 No	operation				
			1 Re	eset internal reg	gisters			
	Ρ	ROXSEL	The INT pir	n operates as p	proximity detection	tion output m	ode.	
			0 IN	T pin is used as	s PS or ALS in	terrupt pin		
			1 INT pin is used as proxmity detection output mode					
	I	RSEL	Selects the	PDATA0H/L re	ead data.			
			0 PE AE	OATA0 holds the OC count from F	e value obtain PS(LED on) Al	ed by subtrac DC count.	ting IR(LED off	
				OATA0 holds the OC count. Set th		•	m IR(LED off)	
	P	STYPE	PS mode s	elect				
			0 PS	TYPE 0 mode	•			
			1 PS	STYPE 1 mode	•			
	P	AEN	PS ADC Er integration.	nable. This bit e This bit is effe	enables the PS ctive only whe	S ADC channe n POWER bit	el to begin is set to '1'. ^{NO}	
				sable Photo Die				
			1 En	able Photo Dic	de and PS AD)C.		
	A	AEN	ALS ADC E integration.	Enable. This bit This bit is effe	enables the A ctive only whe	LS ADC char n POWER bit	nel to begin is set to '1'. ^{NO}	
			0 Dis	sable Photo Die	ode and ALS A	DC.		
			1 En	able Photo Dic	de and ALS A	DC.		
	P	OWER	Power On.	Enables intern	al RC oscillato	or(Typically 70	0KHz)	
			0 Tu	rns off the MC8	3201.			
			1 Tu	rns on the MC8	3201.			

^{NOTE} The real PAEN and AAEN bits are updated after internal oscillator is enabled. So reading CONTROL register will return "---- --00_B" when writing '1' to these bits while POWER bit is disabled or enabling PAEN, AAEN and POWER bits simultaneously.

By enabling PAEN or AAEN bits individually, MC8201 operates as PS only mode, ALS only mode or PS-ALS alternating mode.

INTR (Interrupt Control Register)											
7	6	5	4	3	2	1	0				
PSX4EN	ALC_IR	PROXDET	PINTF	AINTF	INTEDGE	PINTEN	AINTEN				
RW	RW	R	R	R	RW	RW	RW				
							Initial value	: 40 _H			

PSX4EN

Enable proximity sensing4 times in row.

	0	Proximity sensing is performed once in a ps time				
	1	Proximity sensing is performed 4 times in a ps time				
ALC_IR	Enable	ALC function				
	0	Disable ALC				
	1	Enable ALC (default)				
PROXDET	PIHT, tł	ty detection result. When PS ADC counter value is greater than his flag is set. When PS ADC counter value is less than PILT, this cleared. For proper detection result, set PPER greater than $01_{\rm H}$.				
	0	Non-detect (Object is far)				
	1	Detect (Object is near)				
PINTF		rrupt Flag. Indicates that the device is asserting an interrupt. 0 to this bit clears PINTF.				
	0	No Interrupt or interrupt cleared.				
	1	PS interrupt requested.				
AINTF	ALS Interrupt Flag. Indicates that the device is asserting an interrupt. Writing 0 to this bit clears AINTF.					
	0	No Interrupt or interrupt cleared.				
	1	ALS interrupt requested.				
INTEDGE		ot signal is triggered as pulse type at rising edge of internal pically 1.4us period. The host needs not to clear interrupt.				
	0	Level interrupt				
	1	Edge interrupt				
PINTEN	Enables	s PS Interrupt generation.				
	0	PS Interrupt output is disabled.				
	1	PS Interrupt occurs on INT pin.				
AINTEN	Enables	s ALS Interrupt generation.				
	0	ALS Interrupt output is disabled.				
	1	ALS Interrupt occurs on INT pin.				

ATIME (ALS Integration Time Register)

7	6	5	4	3	2	1	0	
ATIME7	ATIME6	ATIME5	ATIME4	ATIME3	ATIME2	ATIME2	ATIME1	
RW								
							Initial value :	FF_H

ATIME[7:0]	ALS Integration	on Time. Specifies the integration time in 5.0 ms intervals. on time = 5 ms x ATIME[7:0] n ALS integration time is about 1275.0 ms (11111111 _B).
	00000000	Prohibited. Writing "00 _H " has no effect.
	00000001	5.0 ms
	00000010	10.0 ms
	00001010	50.0 ms
	00010100	100.0 ms
	00101000	200.0 ms
	01010000	400.0 ms
	11111111	1275.0 ms

PTIME (PS Integration Time Register)

02_H

7	6	5	4	3	2	1	0
PTIME7	PTIME6	PTIME5	PTIME4	PTIME3	PTIME2	PTIME2	PTIME1
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : FF
	Ρ.	FIME[7:0]	PS Integration	on time = 185 ım PS integrat	us x PTIME[ion time is abo Writing "00 _H "	7:0] out 47.2 ms (1	,

WTIME (Wait Time Register)

7	6	5	4	3	2	1	0
WTIME7	WTIME6	WTIME5	WTIME4	WTIME3	WTIME2	WTIME2	WTIME1
RW							

Initial value : FFH

04_H

WTIME[7:0]	operations in Wait time = 5	becifies the wait time between continuous ALS or PS 5.38 ms intervals. .38 ms x WTIME[7:0] n wait time is about 1371.9 ms (11111111 _B).
	00000000	No wait
	0000001	5.38 ms
	00000010	10.76 ms
	00001010	53.8 ms
	00010100	107.6 ms
	00101000	215.2 ms
	01111000	645.6 ms
	11111111	1371.9 ms

The WTIME is used to reduce average power consumption, because the PS and ALS ADC stop integrating during wait time period.

When PSEN=1 and ALSEN=0, the internal operating state machine repeats PS and WAIT state continuously.

When ALSEN=1 and PSEN=0, the internal operating state machine repeats ALS and WAIT state continuously.

When PSEN=1 and ALSEN=1, the internal operating mode is as follows : PS—ALS—WAIT—PS—ALS—WAIT—PS—ALS—WAIT...

^{NOTE} Although setting a larger wait time contributes to reduce average consumption current, it makes update period and response time longer.

AILTL (ALS Interrupt Low Threshold Low Register)

7	6	5	4	3	2	1	0	
AILTL7	AILTL6	AILTL5	AILTL4	AILTL3	AILTL2	AILTL1	AILTL0	
RW								
							Initial value : F	۶FH

AILTL[7:0] ALS ADC channel interrupt low threshold low register.

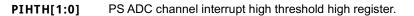
7	6	5	4	3	2	1	0
AILTH7	AILTH6	AILTH5	AILTH4	AILTH3	AILTH2	AILTH1	AILTH0
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value
	Α	ILTH[7:0]	ALS ADC c	hannel interru	pt low thresho	old high regist	er.
AHTL (AL	S Interrupt	High Threst	nold Low Reg	gister)			
7	6	5	4	3	2	1	0
AIHTTL7	AIHTL6	AIHTL5	AIHTL4	AIHTL3	AIHTL2	AIHTTL1	AIHTL0
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value
	A 1	10117.01	ALS ADC c	hannel interru	pt high thresh	old low reaist	er.
		IHTL[7:0]					
JHTH (AL			nold High Re				
NHTH (AL 7					2	1	
	S Interrupt	High Thresl	nold High Re	egister)		-	
7	S Interrupt	High Thresl	nold High Re	egister) 3	2	1	0
7 AIHTTH7	S Interrupt 6 AIHTTH6	High Thres 5 AHTTH5	nold High Re 4 AIHTH4	egister) 3 AlHTH3	2 AIHTH2	1 AHTTH1	0 AIHTHO
7 AIHTTH7	S Interrupt 6 AIHTH6 RW	High Thres 5 AHTTH5	nold High Re 4 AIHTH4 RW	e gister) 3 AlHTH3 RW	2 AIHTH2	1 AIHTH1 RW	0 AIHTH0 RWV Initial value
7 AIHTTH7 RW	S Interrupt 6 AIHTH6 RW A	High Thresi 5 AHTH5 RW IHTH[7:0]	AIHTTH4 AIHTTH4 RW ALS ADC c	e gister) 3 AIHTH3 RW hannel interru	2 AIHTH2 RW	1 AIHTH1 RW	0 AIHTH0 RW Initial value ster.
7 AIHTTH7 RW	S Interrupt 6 AIHTH6 RW A	High Thresi 5 AHTH5 RW IHTH[7:0]	nold High Re 4 AIHTH4 RW	e gister) 3 AIHTH3 RW hannel interru	2 AIHTH2 RW	1 AIHTH1 RW	0 AIHTH0 RWV Initial value
7 AIHTTH7 RW	S Interrupt 6 AIHTH6 RW A	High Thresi 5 AHTH5 RW IHTH[7:0]	AIHTTH4 AIHTTH4 RW ALS ADC c	e gister) 3 AIHTH3 RW hannel interru	2 AIHTH2 RW	1 AIHTH1 RW	0 AIHTH0 RW Initial value ster.
7 AHTH7 RW	S Interrupt 6 AIHTH6 RW A Interrupt Lo	High Thres 5 AIHTH5 RW IHTH[7:0] ow Threshol	AIHTTH4 AIHTTH4 RW ALS ADC c	egister) 3 AIHTH3 RW hannel interru	2 AIHTTH2 RW apt high thresh	1 AHTH1 RW old high regis	0 AIHTHO RW Initial value ster.
7 AHTTH7 RW PILTL (PS 7	S Interrupt 6 AIHTH6 RW A Interrupt Lo 6	High Thres 5 AIHTH5 RW IHTH[7:0] 5	AIHTH4 AIHTH4 RW ALS ADC c d Low Regis	egister) 3 AIHTH3 RW hannel interru ster) 3	2 AIHTTH2 RW upt high thresh	1 AIHTTH1 RW old high regis	0 AIHTTH0 RWV Initial value ster. 0 PILTL0 RWV
7 AIHTTH7 RW PILTL (PS 7 PILTL7	S Interrupt 6 AIHTH6 RW A Interrupt Lo 6 PILTL6	High Thres 5 AIHTH5 RW IHTH[7:0] ow Threshol 5 PILTL5	AIHTTH4 AIHTTH4 RW ALS ADC c d Low Regis 4 PILTL4	egister) 3 AIHTH3 RW hannel interru ster) 3 PILTL3	2 AIHTTH2 RW pt high thresh 2 PILTL2	1 AHTTH1 RW old high regis 1 PILTL1	0 AIHTTHO RWV Initial value ster. 0

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	PILTH1	PILTH0	
-	-	-	-	-	-	RW	RW	
							Initial value :	: 03 _H

PILTH (PS Interrupt Low Threshold High Register)

PILTH[1:0] PS ADC channel interrupt low threshold high register.

NBOV


0A_H

23

PIHTL (PS	Interrupt Hi	gh Thresho	ld Low Regi	ister)				0 B H
7	6	5	4	3	2	1	0	
PIHTL7	PIHTL6	PIHTL5	PIHTL4	PIHTL3	PIHTL2	PIHTL1	PIHTL0	
RW	RW	RW	RW	RW	RW	RW	RW	
							Initial value	FF_{H}
	P	[HTL[7:0]	PS ADC ch	annel interrup	t high thresho	ld low register		
PIHTH (PS	Interrupt H	igh Thresho	ld High Reg	jister)			(0 С н
7	6	5	4	3	2	1	0	-

-	-	-	-	-	-	PIHTTH1	PIHTH0
-	-	-	-	-	-	RW	RW
							Initial value :

The interrupt threshold registers store the values to be used as the high and low trigger points for the adc data registers. If the value of adc data register crosses below or equal to the low threshold specified, an interrupt can be asserted on the interrupt pin. Likewise, if the result from ADC conversion crosses above the high threshold specified, an interrupt can be asserted on the interrupt pin. Note these high and low threshold registers are 16-bit wide for ambient light sensing, 10/8-bit wide for proximity sensing.

When the device is in ALS mode, the concatenated AILTH and AILTL is used as interrupt low threshold(=AILT) and the concatenated AIHTH and AIHTL is used as interrupt high threshold(=AIHT).

Similarly, when the device is in PS mode, the concatenated PILTH and PILTL is used as interrupt low threshold(=PILT) and the concatenated PIHTH and PIHTL is used as interrupt high threshold(=PIHT). When PROXSEL bit is set, the proximity sensing result is output through the INT pin. The INT pin goes LOW when the PS ADC result is greater than or equal to PIHT and goes HIGH when the PS ADC result is less than PILT. So for proper operation with PROXSEL bit set to 1, the PILT should be non-zero value, otherwise the INT pin will be held LOW unless PINTF is cleared by host command.

Caution : Make sure that the PIHTH register and PILTH register are loaded with "00" when PS resolution is set to 8-bit for proper operation.

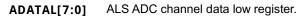
```	•		0 /					••
7	6	5	4	3	2	1	0	
PPER3	PPER2	PPER1	PPER0	APER3	APER2	APER1	APER0	
RW	RW	RW	RW	RW	RW	RW	RW	
							Initial value :	00 _H
	P	PER[3:0]	request to he	ost chip. KSEL bit is set	These bit field , PPER should			upt
			0000	Every PS of	cycle generate	s an interrupt.		
			0001	1 consecut	tive PS ADC va	alue out of rar	nge.	
			0010	2 consecut	tive PS ADC va	alue out of rar	nge.	
			1111	15 consecu	utive PS ADC	value out of ra	ange.	

24

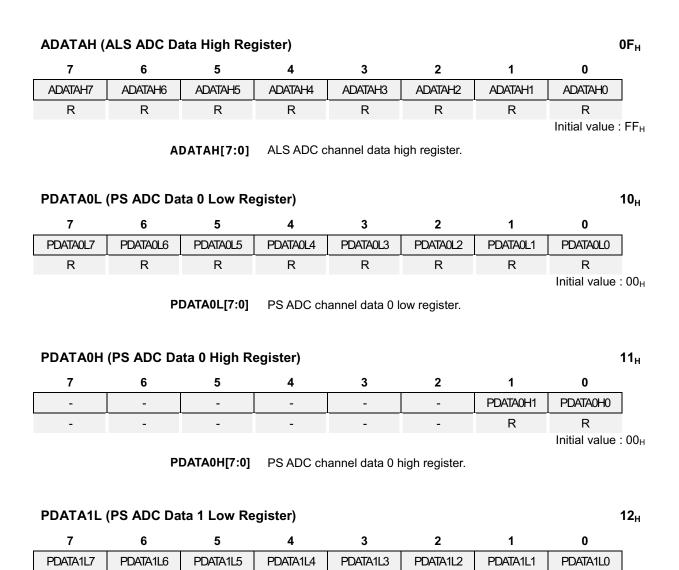
**PERSIST (Interrupt Persistence Register)** 

0D_H

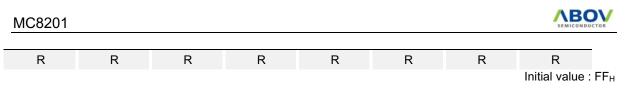



0E_н

APER[3:0]		persistence. These bit field control the rate of ALS est to host chip.
	0000	Every ALS cycle generates an interrupt.
	0001	1 consecutive ALS ADC value out of range.
	0010	2 consecutive ALS ADC value out of range.
	1111	15 consecutive ALS ADC value out of range.

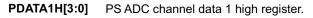

#### ADATAL (ALS ADC Data Low Register)

March 2012 REV1.5


7	6	5	4	3	2	1	0	
ADATAL7	ADATAL6	ADATAL5	ADATAL4	ADATAL3	ADATAL2	ADATAL1	ADATAL0	
R	R	R	R	R	R	R	R	
							Initial value :	$FF_H$



The ALS ADC included in MC8201 is of 16-bit resolution, and the integrated values appear on two registers ADATAL and ADATAH respectively. All ALS ADC data registers are read-only.



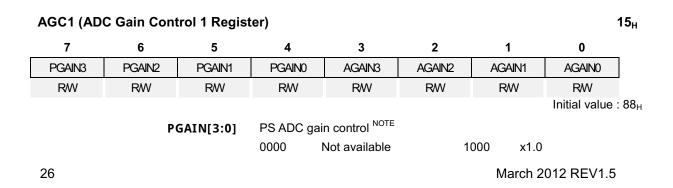

25



PDATA1L[7:0] PS ADC channel data 1 low register.

PDATA1H	(PS ADC Da	ata 1 High R	egister)					13 _н
7	6	5	4	3	2	1	0	
-	-	-	-	-	-	PDATA1H1	PDATA1H0	
-	-	-	-	-	-	R	R	
							Initial value	: 03 _н




The PS ADC included in MC8201 is of 10/8-bit resolution, and the integrated values appear on two registers PDATA0(PDATA0H:PDATA0L) and PDATA1(PDATA1H:PDATA1L) respectively. All PS ADC data registers are read-only.

The PDATA0H and PDATA0L registers are updated 1 time during 1 PS cycle and the loading data is selected by IRSEL bit in CONTROL register. If IRSEL bit is '0', the result of subtracting IR(LED off) ADC count from PS(LED on) ADC count is loaded into PDATA0. If IRSEL bit is '1', the IR(LED off) ADC count is directly transferred into PDATA0.

Caution : The PDATA1L/H registers are used for test purpose.

AGC0 (AD	C Gain Con	trol 0 Regist	ter)					14 _н
7	6	5	4	3	2	1	0	
PS_RES	-	-	-	-	-	VGAIN1	VGAIN0	7
RW	-	-	-	-	-	RW	RW	
							Initial value	: 03 _H
	Р	S_RES	Select PS re	esolution				
			0 10-k	oit resolution				
			1 8-bi	t resolution				
	V	GAIN[1:0]	ADC Voltage operations.	e Gain Contro	I. This VGAIN	affects on bot	h ALS and P	S
			00 x2.	0				
			01 x1.4	4				
			10 x1.	2				
			11 x1.	0				

Caution : Do not alter AGC0[7:2]. Writing non-zero value to these bits may result in mal-function.





	0001			x0.89
AGAIN[3:0]	ALS ADC	gain control NOTE		
	0000	Not available	1000	x1.0
			<b>1000</b> 1001	<b>x1.0</b> x0.89
	0000	Not available		-
	0000 0001	Not available x8.0		x0.89
	0000 0001 0010	Not available x8.0 x4.0		x0.89 x0.80
	0000 0001 0010 0011	Not available x8.0 x4.0 x2.67		x0.89 x0.80 x0.73
	0000 0001 0010 0011 0100	Not available x8.0 x4.0 x2.67 x2.0		x0.89 x0.80 x0.73 x0.67

NOTE Grayed gains are not recommended.

# PLEDC (PS LED Control Register)

16_н

7	7	6	5	4	3	2	1	0
LEDC	TRL1	LEDCTRL0	-	TSSEL1	TSSEL0	-	DUTY1	DUTY0
R	W	RW	-	RW	RW	-	RW	RW
								Initial value :
		LI	EDCTRL[1:0	LED Drive	Control (DC / D	Duty 50% / Mo	dulation Frequ	uency)
		]		00 LE	D Drive = FRE	Q		
				01 LE	D Drive = FRE	Q/2		
				10 LE	D Drive = DC (	according to F	REQ, max 8 I	PS time step)
					D Drive = 50%	duty (accordir	ng to FREQ, n	nax 8 PS time
				st	ep)			
		TS	SSEL[1:0]	LED Drive	Strength			
				00 no	t available			
				01 60	mA			
				10 12	0mA			
				11 18	0mA			
		D	UTY[1:0]	Duty of LE	D Modulation F	requency		
				00 25	% duty cycle			
				01 12	.5% duty cycle			
				10 6.	25% duty cycle			

11 3.125 % duty cycle



# 2.3 PS/ALS OPERATION

#### 2.3.1 FSM

The following shows detailed flow for the internal state machine. The device starts in shutdown mode after power-on. It start PS or ALS operation by setting POWER bit in CONTROL register, which enables internal oscillator.

If PAEN bit is set and AAEN bit is cleared, the state machine will step through the proximity states of Ambient Light Cancellation(ALC), IR and Proxmity sensing(IR and PS). After that, it moves to Ambient light sensing(ALS) state if AAEN bit is set, or to Wait state(WAIT) if AAEN bit is cleared.

If AAEN bit is set and PAEN bit is cleared, the state machine skips IR and Proxmitiy sensing state and goes directly to Ambient light sensing state.

If both PAEN bit and AAEN bit are set, the device starts IR and Proxmity sensing, and continues to move to Ambient light sensing state.

If WTIME register is cleared to  $00_{H}$ , the Wait state is skipped.

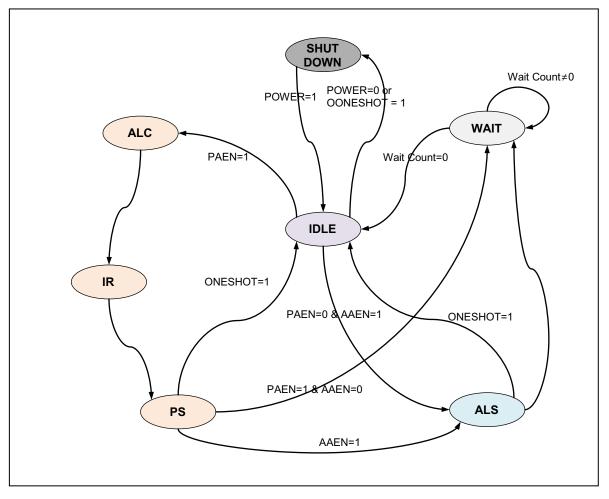



Figure 2-7 PS-ALS Operating State Machine



#### 2.3.2 ALS OPERATION

ALS operation is enabled by setting AAEN bit, and after pre-defined ALS period the ALS ADC counter value is transferred to ADATAH and ADATAL registers which can be read via I2C read transaction.




Figure 2-8 ALS Operation

#### 2.3.3 PS OPERATION

As shown in below figure, a typical PS cycle is composed of 3 steps, which are ALC(Ambient Light Cancellation), IR(IR Sensing) and PS(Proximity Sensing) respectively. When PAEN bit is enabled, the device starts proximity sensing and the ALC function is inserted automatically for ambient light cancellation, which offers superior performance in bright sunlight conditions. During IR sensing period, the PS ADC output is directly proportional to the IR intensity and the ADC result, padc2 is stored into PDATA1H/L registers. After that, the device starts PS sensing. The PS ADC output(padc3) is directly proportional to the total IR intensity from the background IR noise and from the IR LED driven by the device. After PS step, the result of subtracting padc2 from padc3 is stored into PDATA0H/L registers.

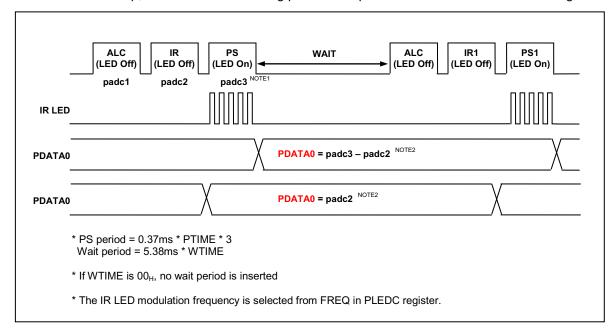
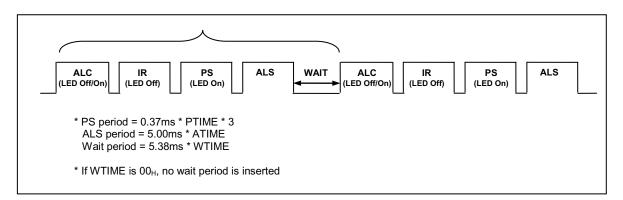



Figure 2-9 PS Type 0 Operation




^{NOTE1} In above figures, padc1 is 1st ADC(ALC) result with LED on or off according to PSTYPE, padc2 is 2nd ADC(IR) result with LED off and padc3 is 3rd ADC(PS) result with LED on.

^{NOTE2} When IRSEL bit in CONTROL register is '0', PDATA0H/L = padc3 – padc2. When IRSEL bit is '1', PDATA0H/L = padc3. PDATA1H/L holds temporary PS ADC results.

#### 2.3.4 PS-ALS ALTERNATING OPERATION

PS-ALS alternating mode is enabled by setting both AAEN and PAEN bits to 1. In this mode of operation, PS operation is done followed by ALS operation and optional WAIT cycle.



#### Figure 2-10 ALS-PS Alternating Operation

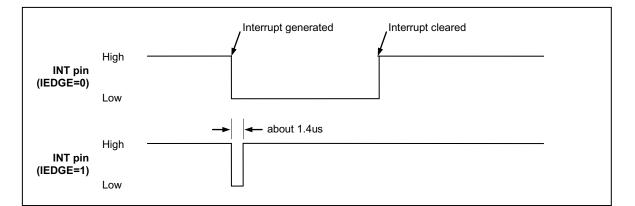
#### 2.3.5 INTERRUPT

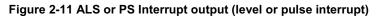
#### 2.3.5.1 INTERRUPT OUTPUT MODE

INT pin operates as interrupt output mode by setting AINTEN or PINTEN bit. In this mode of operation, the PROXSEL bit should be cleared.

#### **ALS Interrupt**

An ALS interrupt can be requested when ALS ADC result is greater than or equal to AITH or less than AILT after one ALS cycle. If APER(ALS Persistence) value is non-zero, it is needed the ALS ADC results are out of range APER consecutive times. The result of interrupt judgement for ALS is stored into AINTF bit in INTR register.


#### **PS Interrupt**


A PS interrupt can be requested when PS ADC result is greater than or equal to PITH or less than PILT after one PS cycle. If PPER(PS Persistence) value is non-zero, it is needed the PS ADC results are out of range PPER consecutive times. The result of interrupt judgement for PS is stored into PINTF bit in INTR register.

There are two kinds of output mode, level or pulse interrupt. Below is the description of the level interrupt type.

Transition from H to L in INT pin means that an interrupt condition is generated, and the INT pin remains L level until corresponding interrupt flag(AINTF or PINTF) is cleared. Any interrupt is cleared by writing 0 to it's flag bit in INTR register.







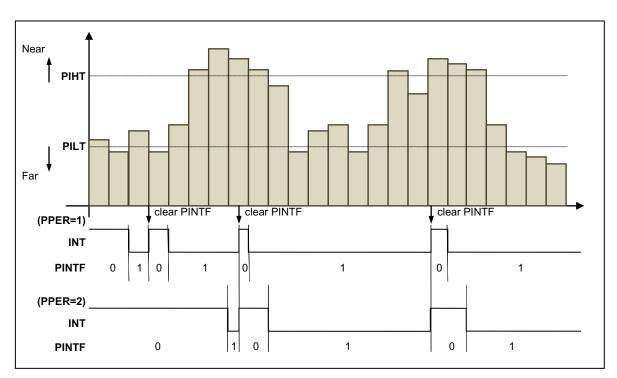



Figure 2-12 PS Interrupt Output (PPER=1 or 2 & INTEDGE=0)

# 2.3.5.2 PROXIMITY DETECTION MODE

INT pin operates as proximity detection result output mode by setting PROXSEL bit. The sensing result whether an object is detected or not appears on INT pin.



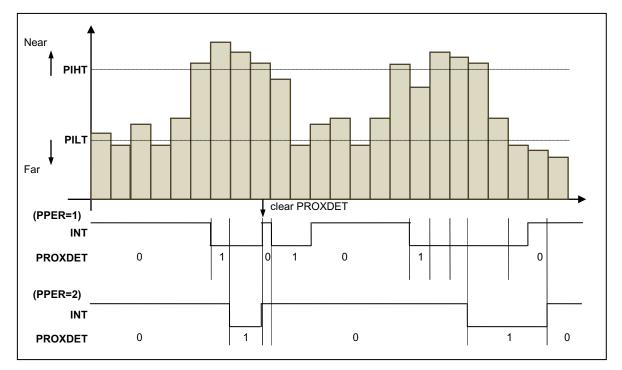



Figure 2-13 PS Detection (PPER=1 or 2)

Unlike interrupt output mode, the PS ADC result(padc3-padc2) appears on INT pin directly. That is, the INT pin is LOW(Detection condition is met) when PS ADC result is greater than or equal to PIHT, the INT pin goes HIGH(Non-detection is occurred) when PS ADC result is less than PILT. If PPER value is non-zero, the detection and non-detection conditions are judged when PS ADC results are out of range PPER consecutive times. Note that the INT pin goes high or is released only when PS ADC result is less than PILT. So it is required that the PILT should be a non-zero value.

# 2.3.6 LED DRIVE CONTROL



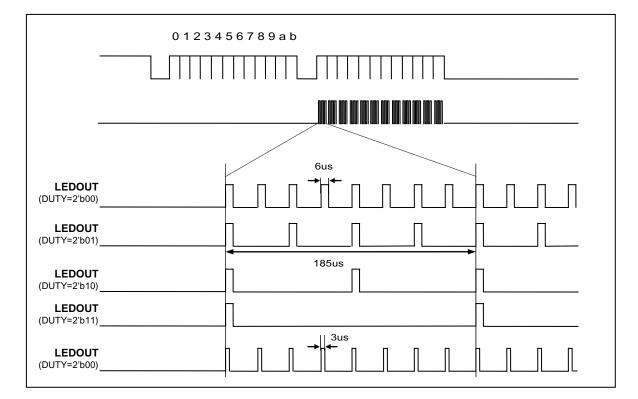
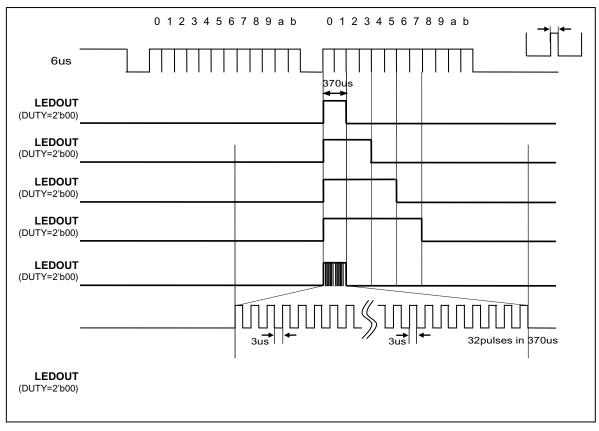




Figure 2-14 PS Detection (PPER=1 or 2)

Unlike interrupt output mode, the PS ADC result(padc3-pa

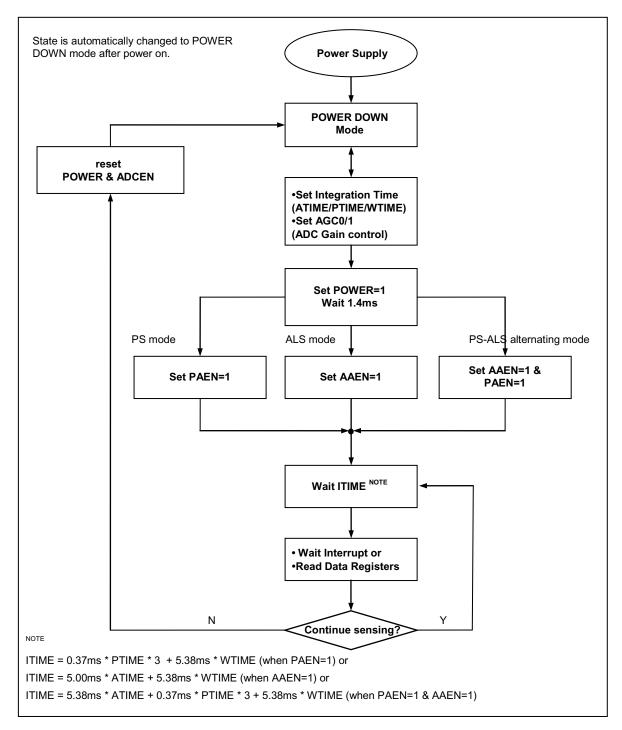




#### Figure 2-15 PS Detection (PPER=1 or 2)

Unlike interrupt output mode, the PS ADC result(padc3-pa

#### 2.3.7 POWER CONSUMPTION


Power consumption can be controlled through the use of the wait state timing because the wait state consumes only 60uA of power.



# 2.4 APPLICATION INFORMATION : SOFTWARE

#### 2.4.1 OVERVIEW

After applying VDD, the device will initially be in the power down mode. To start PS or ALS sensing operation, set the POWER bit in CONTROL register to enable internal RC oscillator. The PTIME, ATIME or WTIME registers should be configured for the preferred integration and wait time, and then the PAEN or AAEN bits in CONTROL register should be set to 1 to enable each ADC channel.



#### Figure 2-16 Operating Modes



# 3. APPENDIX

# A. Brief Application Note

A capacitor should be located close to VDD pin of MC8201 to reduce power noise. The pull up resistors of two line serial bus are recommended to be around 10K ohm, especially a pull up registor for INT connected to host controller must be 100Kohm.

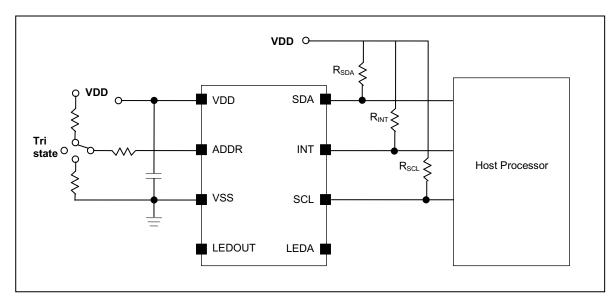



Figure 3-1 Hardware pin connection diagram

#### **B.** Notice

The below explains matters to be attended to when customer develops a program for MC8201.

- 1) Operation voltage 2.4 to 3.6V
- 2) Set SLAVE address (Determined by ADDR pin condition during power-up)

Input Low : 0x5C(1011100) => In Master IIC situation when writing and its value is 0xB 8 and when reading , its value is 0xB9 Input High : 0x23(0100011) => In Master IIC situation when writing, value is 0x46 and when reading, value is 0x47 Floating : 0x5C(1011100) => In Master IIC situation when writing, value is 0xB8 and when reaing, value is 0xB9

- IIC speed is the standard, about 100kHz.
   When writing IIC Multi bytes (Single byte read and write rarely is used)
- Multi bytes Writing : START(M)+SlaveAddress_W(0xB8,M)+ACK(S)+REG_ADDR(0xxx,M)+ACK(S)+WRITE_ BYTE0+ACK(S)...+STOP(M)
   For example) When ADDR pin is low, you want to write 0x33 in CONTROL (address 00_H) Register. You should follow the below sequence.

START+0xB8+ACK+0x00+ACK+0x33+ACK+STOP



Slave A	Address	0 4	Word Address	Α	Write Data 1	Α	Write Data 2	AP
	B8 _H		REG_ADDR					
	Aaster to S	lave						
	Slave to Ma	aster						

#### Figure 3-2 I2C write example

		When	re	adi	ng IIC Multi	by	tes	5							
s	Slave	Address	0	Α	Word Address	Α	s	Slave Address	1	Α	Read Data 1	Α	Read Data 2	NA	Р
1		B0 _H			REG_ADDR			В9 _Н		   					
[		Master to Slave to M	Mast	er	TART, <b>P</b> STOP										

#### Figure 3-3 I2C read example

- Multi bytes reading: START(M)+SlaveAddress_W(0xB8,M)+ACK(S)+REG_ADDR(0xxx,M)+ACK(S)+START
- +

SlaveAddress_R(0xB9,M)+ACK(S)+READ_BYTE0(S)+ACK(M)...+NACK+STOP(M)

For example) When ADDR pin is low, you want to read values of ADATAL

and ADATAH (address  $0E_H \sim 0F_H$ ) register. You should follow the below sequence.

START+0xB8+ACK+0x0E+ACK+START+0xB9+ACK+??+ACK+...??+NACK+STOP

 After sending IIC Read/Write Command, delay time needs about 2msec for protocol transferring and MC8201 writing time)