ABOV SEMICONDUCTOR Co., Ltd. 8-BIT MICROCONTROLLERS

MC95FR332/432 MC95FR364/464

Data Sheet (Rev.2.0)

REVISION HISTORY

VERSION 0.0 (June 28, 2008)

Initial Version

VERSION 0.1 (November 27, 2008)

- 1. Change OCD Ports from P1[1:0] to P2[2:1].
- 2. Change address of RMR(Remocon Mode Register) from BA_H to E8_H.
- 3. Fix the sequence of generating reset signal due to BOD when the device enters STOP mode and wakes up by an interrupt.
- 4. Append input capture function of timer 2, input capture function and pwm output function of timer 3.

VERSION 0.1 (November 27, 2008)

1. Correct the method of controlling REMOUT port.

VERSION 0.3 (April 27, 2009)

1. Fix BODOUT0/1/2/3/4 level.

BODOUT0 : $1.70V (Typ.) \pm 50mV$

BODOUT1/2/3/4: 1.85, 1.95, 2.05, 2.15 (Typ.) ± 100mV

VERSION 0.4 (May 25, 2009)

- 1. Correct operating mode description.
- 2. Fix BODOUT1/2/3/4 level

BODOUT1/2/3/4: 1.75, 1.85, 1.95, 2.05 (Typ.) ± 100mV

VERSION 0.5 (July 29, 2009)

- 1. 1.2 Features: Endurance 10,000 times
- 2. 6. PORT STRUCTURE: Figure 6.1 & 6.2
- 3. BODOUT0 level: 1.65 ± 100mV
- 4. 7.6 DC CHARACTERISTICS
- 5. 10.6 Effective time of Interrupt Request: Figure 10.4
- 6. 10.7 Multiple Interrupts: Figure 10.5
- 7. 12.2 PERIPHERAL OPERATION IN SLEEP/STOP/BOD MODE: Table 12-1
- 8. Figure 12.2 Entry into BOD mode and Release sequence
- 9. 13.4 Noise Canceller for External Reset Pin : fix T_{RNC} (2us → 8us)
- 10. Figure 13.5 & 13.10: Fix config read time and reset release time
- 11. 15.5.3 : Fix function "void eeprom_init(unsigned int addr)"
- 12. 16.1 FUSE Control Register

VERSION 0.6 (September 15, 2009)

1. 1.2 Features: remove WT

- 2. 12.0 POWER MANAGEMENT: Correct timing diagram in Figure 12.2~12.4.
- 3. Table 15-5 Memory protection using lock bit
- 4. Fix BODOUT0 in Table 7-4: 1.60V~1.75V

VERSION 0.7 (November 5, 2009)

- 1. Fix POL0 to POL1 in Figure 11-14 & 11-15.
- 2. Fix POL0 to POL3 in Figure 11-18 through Figure 11-21.
- 3. Substitute figures in 4.PACKAGE DIMENSION.
- 4. Add features in 15.1.2. Features of FLASH/EEPROM.
- 5. Add "Caution" in FECR register description.
- 6. Add "7.9 REMOUT PORT CHARACTERISTICS".
- 7. Fix description of TXC flag in "11.7.8.2 Transmit flag and interrupt" and description of USTAT register in "11.7.12 Register Description".
- 8. Fix description of BODEN bit in BODR in "13.9 Register Description".

VERSION 0.8 (February 2, 2010)

1. Fix multi interrupt (Fig.10.5)

VERSION 0.9 (February 26, 2010)

- 1. Fix SFR map for RDRH, RDRL, CFRH and CFRL registers
- 2. Fix register name (RDC→CRC)
- 3. Add 28 TSSOP PKG

VERSION 1.0 (March 8, 2010)

- 1. Add pull-up resistor value @VDD=3.0V and VDD=2.4V in Table 7-6 DC Characteristics
- 2. Add 15.5.Data EEPROM program/erase
- 3. Fix mode entry sequence of Data EEPROM program/erase

VERSION 1.1 (June 4, 2010)

1. Add stop current consumption spec at room temperature in Table 7-6 DC Characteristics

VERSION 1.2 (February 8, 2011)

- 1. Changed ABOV CI
- 2. Slightly modified description of PWM3 registers
- 3. Changed names of timer2/3 registers (ex. T3LDR→T3DRL)

VERSION 2.0 (January 4, 2012)

- 1. Correct open drain control register description(removed port 0 open drain control register)
- 2. Add Appendix B
- 3. Fix operating voltage range: $5.5V \rightarrow 3.6V$

4. Modify some C function code for safe operation in "15.5.2 Example of EEPROM control in C language" Changed functions are "eeprom_init() and eeprom_mode_exit()".

Version 2.0
Published by Design Team
©2012 ABOV Semiconductor Co., Ltd. All rights reserved.

Additional information of this manual may be served by ABOV Semiconductor offices in Korea or Distributors.

ABOV Semiconductor reserves the right to make changes to any information here in at any time without notice

The information, diagrams and other data in this manual are correct and reliable; however, ABOV Semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

Table of Contents

1. OVERVIEW	
1.1 Description	7
1.2 Features	7
1.3 Ordering Information	8
1.4 Development Tools	8
2. BLOCK DIAGRAM	11
3. PIN CONFIGURATIONS	12
4. PACKAGE DIMENSION	15
5. PIN DESCRIPTION	18
6. PORT STRUCTURES	20
6.1 General Purpose I/O Port	20
6.2 External Interrupt I/O Port	21
7. ELECTRICAL CHARACTERISTICS	22
7.1 ABSOLUTE MAXIMUM RATINGS	22
7.2 RECOMMENDED OPERATING CONDITION	22
7.3 VOLTAGE DROPOUT CONVERTER(VDC) CHARACTERISTICS	
7.4 BROWN OUT DETECTOR(BOD) CHARACTERISTICS	23
7.5 POWER-ON RESET CHARACTERISTICS	
7.6 DC CHARACTERISTICS	24
7.7 AC CHARACTERISTICS	25
7.8 USART CHARACTERISTICS	26
7.9 REMOUT PORT CHARACTERISTICS	29
7.10 TYPICAL CHARACTERISTICS	30
8. MEMORY	31
8.1 Program Memory	31
8.2 IRAM	32
8.3 XRAM	35
8.4 Data EEPROM	36
8.5 SFR map	37
9. I/O PORTS	40
9.1 Introduction.	
9.2 Register Description	40
10. INTERRUPT CONTROLLER	49
10.1 Overview	49
10.2 External Interrupt	50
10.3 Block Diagram	51
10.4 Interrupt Vectors	52
10.5 Interrupt Sequence	52
10.6 Effective time of Interrupt Request	53
10.7 Multiple Interrupts	54
10.8 Interrupt Service Procedure	55
10.9 Generation of Branch Address to Interrupt Service Routine(ISR)	55
10.10 Saving and Restoring General Purpose Registers	56
10.11 Interrupt Timing	57
10.12 Interrupt Registers	57

11. PERIPHERAL UNITS	63
11.1 Clock Generator	63
11.2 Basic Interval Timer (BIT)	65
11.3 Watch Dog Timer (WDT)	68
11.4 TIMER/PWM	71
11.5 Carrier Generator	97
11.6 Key Scan	104
11.7 USART	107
12. POWER MANAGEMENT	125
12.1 Overview	125
12.2 PERIPHERAL OPERATION IN SLEEP/STOP/BOD MODE	125
12.3 SLEEP mode	125
12.4 STOP mode	126
12.5 BOD mode	128
12.6 Register Map	130
12.7 Register Description	130
13. RESET	131
13.1 Overview	131
13.2 Reset source	131
13.3 Block Diagram	131
13.4 Noise Canceller for External Reset Pin	132
13.5 Power-On-RESET	132
13.6 External RESETB Input	135
13.7 Brown Out Detector	136
13.8 Register Map	137
13.9 Register Description	137
14. ON-CHIP DEBUG SYSTEM	139
14.1 Overview	139
14.2 Two-pin external interface	140
15. FLASH/EEPROM CONTROLLER	144
15.1 Overview	144
15.2 Register Map	144
15.3 Register Description	144
15.4 Memory map	148
15.5 Data EEPROM Program/Erase	150
15.6 Security	155
15.7 FLASH/EEPROM operating mode	157
16. ETC	158
16.1 FUSE Control Register	158
17 APPENDIX	159

MC95FR332/432/364/464

CMOS 8-bit Flash Microcontroller: UR

1. OVERVIEW

1.1 Description

The MC95FR332/432/364/464 is advanced 8-bit microcontroller based on CMOS process with 32K/64K Bytes of Flash. This is powerful one which provides a highly flexible and cost effective solution to many embedded control applications.

The MC95FR332/432/364/464 provides the following features: 32K/64K Bytes of FLASH ROM^{NOTE1,} NOTE2, 1024 Bytes of XRAM, 256 Bytes of IRAM, 8/16-bit Timer/Counter, WDT, 10-bit PWM, UASRT, Carrier Generator, 8-bit Basic Interval Timer, Watch Timer and Clock circuit. Also it provides one dedicated output pin which has large current drivability specialized for remote control application. Additionally, the MC95FR332/432/364/464 supports power saving modes to reduce power consumption.

NOTE1 In this document, the ROM means non-volitile memory which is read-writable.

NOTE2 The MC95FR332/432/364/464 has a 32KB/64KB of non-volatile memory as ROM region, and user software in ROM can program or erase its contents assigned as data region. In general this kind of memory control is called "In Application Programming", IAP. In this document we'll distinguish FLASH between EEPROM. User software is stored in FLASH and data like table can be stored in EEPROM. Note that there's only one memory module in MC95FR332/432/364/464.

Device Name	FLASH size	IRAM	XRAM	I/O PORT	Package
MC95FR332/432	32KB	256B	1024B	23 / 27 / 39	28 TSSOP, 28/32 SOP, 44 MQFP
MC95FR364/464	64KB	256B	1024B	23 / 27 / 39	28 TSSOP, 28/32 SOP, 44 MQFP

1.2 Features

• CPU

8-bit CISC Core (8051 Compatible, 2 clocks per cycle)

· 32K/64K Bytes On-chip FLASH

Endurance: 10,000 times Retention: 10 years

• XRAM 1024 Bytes

• IRAM 256 Bytes General Purpose I/O

23/27/39 Ports (P0[7:0],P1[7:0],P2[2:0],P3[7:0],P4[7:0],P5[3:0])

- One Basic Interval Timer
- Timer / Counter
 8-bit×2ch(16-bit×1ch) + 16-bit×2ch
- 16-bit PWM(Using Timer3)
- 10-bit PWM(Using Timer1)
- One Watch Dog Timer
- One USART (or One SPI)

· One Carrier Generator

Key scan module
 P0[7:0], P1[7:0]

Interrupt Sources

External: 4

Pin Change Interrupt(P0): 1 USART or SPI (Rx/Tx): 2

Key scan: 1

Carrier Generator: 1

WDT : 1 BIT : 1

Timer0,1,2,3 : 4 EEPROM : 1

· Power On Reset

- Programmable Brown-Out Detector
- Minimum Instruction Execution Time
 200ns (@10MHz, 1 Cycle NOP Instruction)
- Power down mode
 SLEEP, STOP mode
- Operating Frequency

1 ~ 10MHz

Operating Voltage
 1.75V ~ 3.6V (@ 1 ~ 10MHz)

Operating Temperature

-40 ~ +85℃

PKG Type

28 TSSOP, 28/32 SOP, 44 MQFP

Available Pb free package

1.3 Ordering Information

Device name	ROM size	IRAM size	XRAM size	Package
MC95FR332R	32KB FLASH	256B		28 TSSOP
MC95FR332M			1024B	28 SOP
MC95FR332D			10246	32 SOP
MC95FR432Q				44 MQFP
MC95FR364R	64KB FLASH			28 TSSOP
MC95FR364M		256B	1024B	28 SOP
MC95FR364D		2000	10246	32 SOP
MC95FR464Q				44 MQFP

Table 1-1 Ordering Information

1.4 Development Tools

1.4.1 Compiler

ABOV semiconductor does not provide any compiler for MC95FR332/432/364/464. As the CPU core of MC95FR332/432/364/464 is Mentor 8051, you can use all kinds of third party's standard 8051 compiler.

1.4.2 OCD emulator and debugger

OCD(On Chip Debugger) program is a debugging software for ABOV semiconductor's 8051 MCU series. OCD uses only two lines to download a user code, to read and modify the internal memory or SFR(Special Function Register)s. And also OCD controls MCU's internal debugging logic, which means OCD controls emulation, step run, monitoring, etc.

OCD debugger program works on Microsoft-Windows NT, 2000, XP, Vista(32-bit) operating system.

If you want to see details more, please refer to OCD debugger manual. You can download debugger S/W and manual from out web-site.

The connecting pins between PC and MCU is as follows:

- DSCL (P2[1] of MC95FR332/432/364/464)
- DSDA (P2[2] of MC95FR332/432/364/464)

Figure 1.1 OCD Software and Connector

1.4.3 Programmer

To program or download user code into the ROM of MC95FR332/432/364/464, ABOV semiconductor provides several tools. As a single programmer which can program only one chip at a time, there are PGMPlus for parallel programming and ISP/OCD for serial programming and debugging. On the other hand, you can program multi-chips at a time by using a gang programmer. Gang programmer can program up to 8 devices simultaneously.

1.4.3.1 Single programmer

1. PGMplus USB: This is a parallel programmer which is smaller and faster than our previous parallel programmer PGM Plus III.

Figure 1.2 PGMplus USB

2. Ez-ISP: This is one of stand alone type ISP tool. Notable thing is that it provides power to the target MCU.

Figure 1.3 Ez-ISP

3. OCD emulator: You can program or debug the MCU via OCD. Because the OCD suports ISP(In System Programming), it does not require additional H/W except for developer's target system.

1.4.3.2 Gang programmer

The gang programmer can program maximum 8 MCUs at a time. So it is mainly used in mass production line. As gang programmer is standalone type, it does not require host PC.

Figure 1.4 Gang programmer

2. BLOCK DIAGRAM

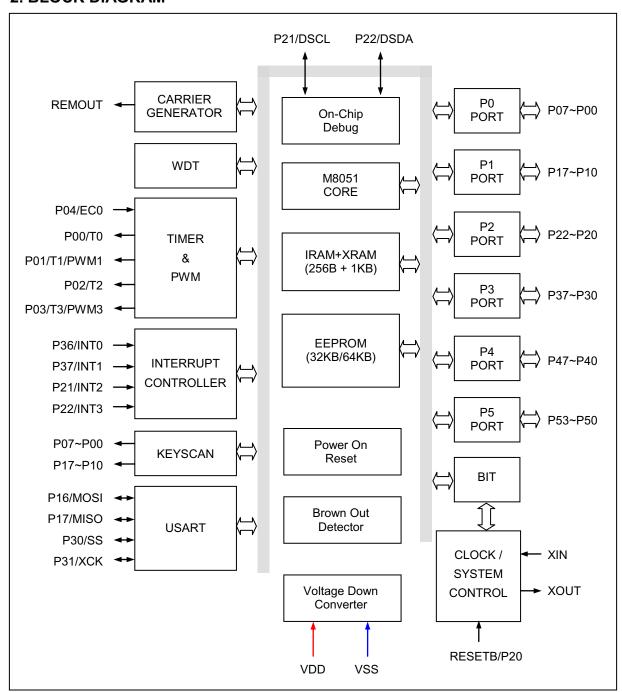


Figure 2.1 Block Diagram of MC95FR332/432/364/464

PIN	Туре	Option	Remarks
P20	I/O	RESETB	FUSE Control

3. PIN CONFIGURATIONS

28 TSSOP (MC95FR364R)

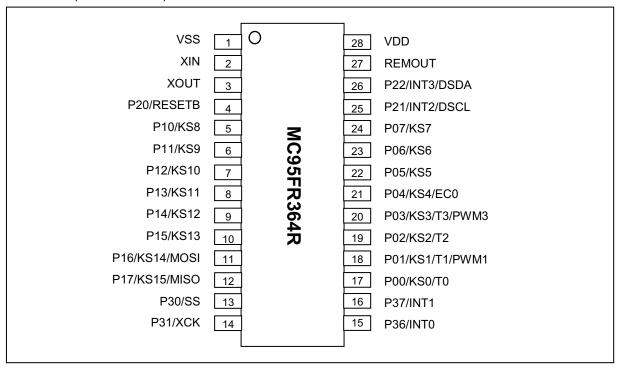


Figure 3.1 28 TSSOP Pinout (MC95FR364R)

28 SOP (MC95FR364M)

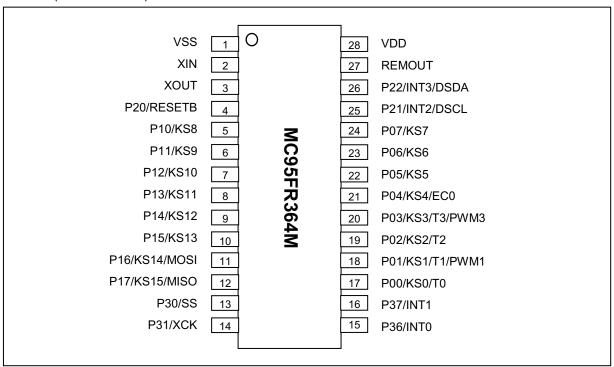


Figure 3.2 28 SOP Pinout (MC95FR364M)

32 SOP (MC95FR364D)

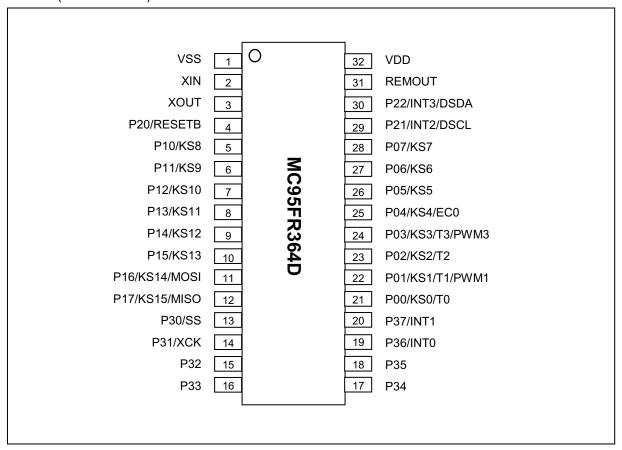


Figure 3.3 32 SOP Pinout (MC95FR364D)

44 MQFP (MC95FR464Q)

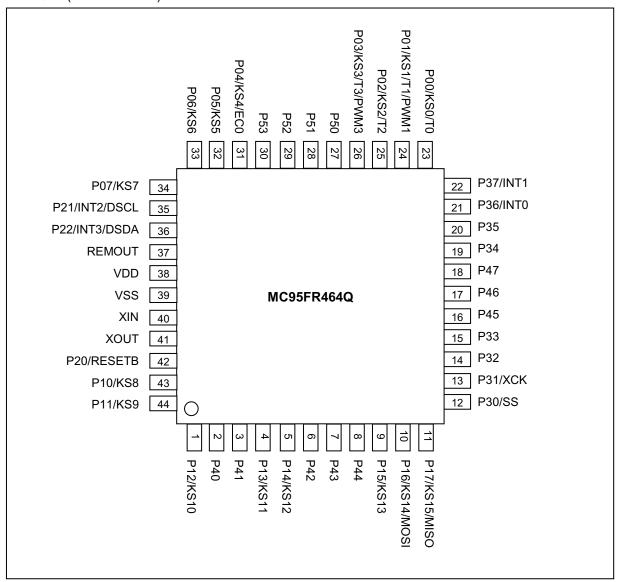


Figure 3.4 44 MQFP Pinout (MC95FR464Q)

4. PACKAGE DIMENSION

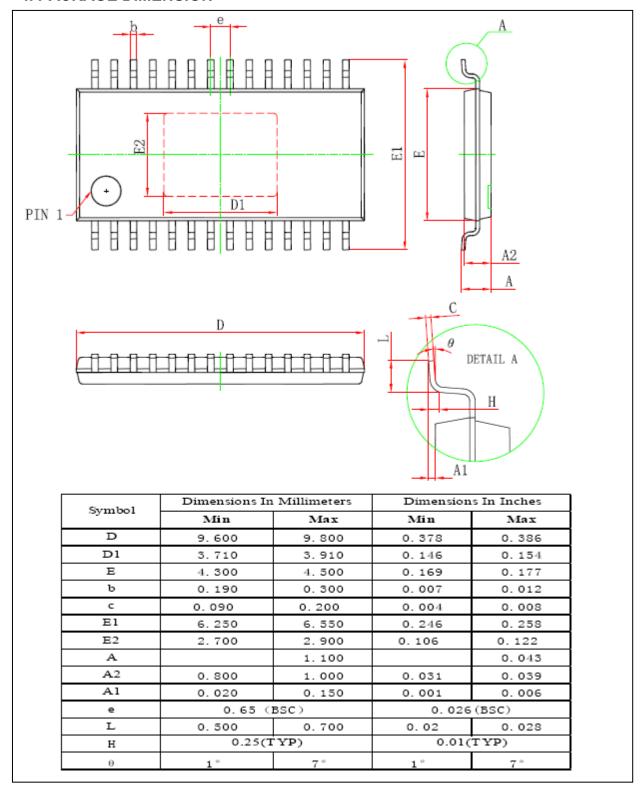


Figure 4.1 PKG DIMENSION (28 TSSOP)

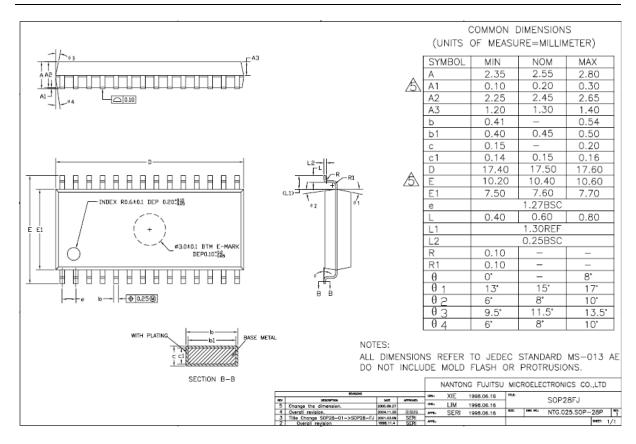


Figure 4.2 PKG DIMENSION (28 SOP)

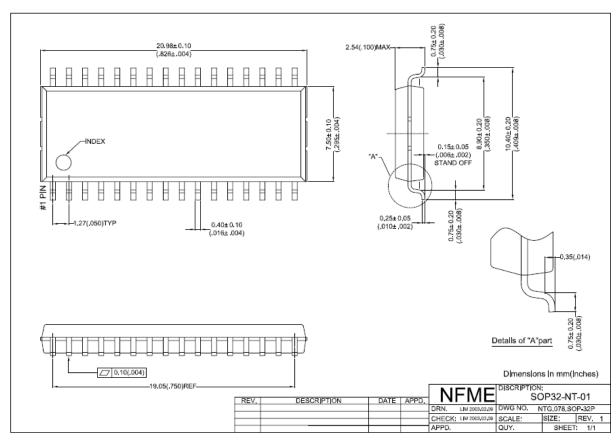


Figure 4.3 PKG DIMENSION (32 SOP)

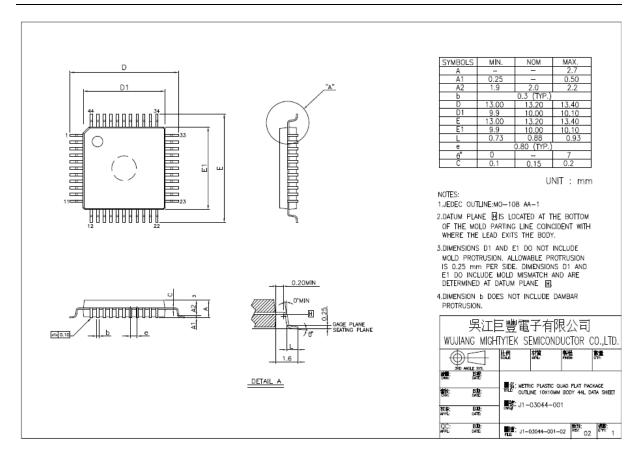


Figure 4.4 PKG DIMENSION (44 MQFP)

5. PIN DESCRIPTION

PIN Name	I/O	Function	@RESET	Shared with
P00	I/O	- 8-bit I/O port, P0.	Input	KS0/T0
P01		- Can be set in input or output mode bitwise.		KS1/T1/PWM1
P02		- Internal pull-up resistor can be activated by setting PxnPU bit in PxPU register when this		KS2/T2
P03		port is used as input port.		KS3/T3/PWM3
P04	=	- Can be configured as an open drain output mode by setting PxnOD bit in PxOD register.		KS4/EC0
P05				KS5
P06				KS6
P07				KS7
P10	I/O	8-bit I/O port, P1.	Input	KS8
P11		- Can be set in input or output mode bitwise.		KS9
P12	=	 Internal pull-up resistor can be activated by setting PxnPU bit in PxPU register when this 		KS10
P13		port is used as input port.		KS11
P14	=	- Can be configured as an open drain output mode by setting PxnOD bit in PxOD register.		KS12
P15	=			KS13
P16	=			KS14/MOSI
P17				KS15/MISO
P20	I/O	- 3-bit I/O port, P2.	Input	RESETB NOTE
P21		- Can be set in input or output mode bitwise.		INT2/DSCL
P22		 Internal pull-up resistor can be activated by setting PxnPU bit in PxPU register when this 		INT3/DSDA
-	-	port is used as input port. - Can be configured as an open drain output mode by setting PxnOD bit in PxOD register.		-

NOTE When P20 is used as a external reset pin(=RESETB) by the FUSE configuration, this pin is configured as an input port with internal pull-up resistor on.

PIN Name	I/O	Function	@RESET	Shared with
P30	I/O	- 8-bit I/O port, P3.	Input	SS
P31		- Can be set in input or output mode bitwise.		XCK
P32		- Internal pull-up resistor can be activated by setting PxnPU bit in PxPU register when this		-
P33		port is used as input port.		-
P34		- Can be configured as an open drain output mode by setting PxnOD bit in PxOD register.		-
P35				-
P36				INT0
P37				INT1
P40	I/O	- 8-bit I/O port, P4	Input	-
P41		- Can be set in input or output mode bitwise.		-
P42		- Internal pull-up resistor can be activated by setting PxnPU bit in PxPU register when this		-
P43		port is used as input port.		-
P44		- Can be configured as an open drain output mode by setting PxnOD bit in PxOD register.		-
P45				-
P46				-
P47				-
P50	I/O	- 4-bit I/O port, P5	Input	-
P51		- Can be set in input or output mode bitwise.		-
P52		- Internal pull-up resistor can be activated by setting PxnPU bit in PxPU register when this		-
P53		port is used as input port.		-
-	-	- Can be configured as an open drain output mode by setting PxnOD bit in PxOD register.		-
XIN	I	Oscillator input		-
XOUT	0	Oscillator output		-
REMOUT	0	Push-pull high current output		-

6. PORT STRUCTURES

6.1 General Purpose I/O Port

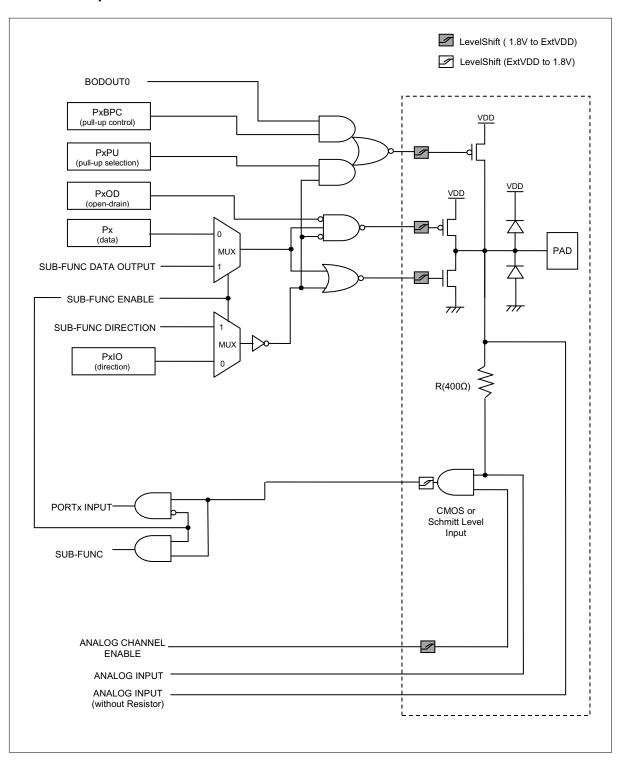


Figure 6.1 General I/O

6.2 External Interrupt I/O Port

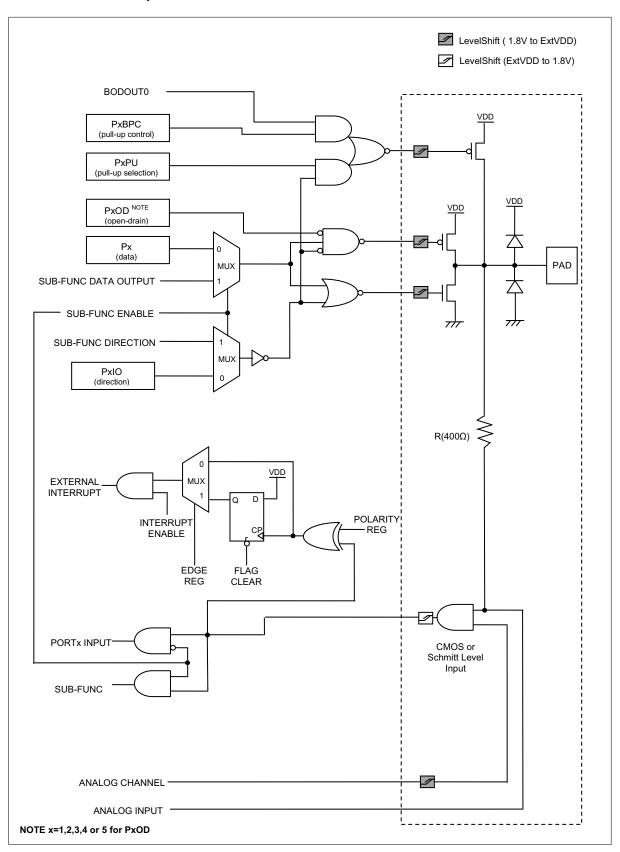


Figure 6.2 I/O with external interrupt function

7. ELECTRICAL CHARACTERISTICS

7.1 ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Committee and	VDD	-0.3~+4.2	V
Supply Voltage	VSS	-0.3~+0.3	V
	VI	-0.3~VDD+0.3	V
	VO	-0.3~VDD+0.3	V
	IOH	10	mA
Normal Voltage Pin	ΣΙΟΗ	80	mA
	IOL	20	mA
	ΣIOL	160	mA
Total Power Dissipation	PT	600	mW
Storage Temperature	TSTG	-45~+125	°C

Table 7-1 Absolute Maximum Ratings

7.2 RECOMMENDED OPERATING CONDITION

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Supply Voltage	VDD	f _{XIN} =1.0~10MHz	1.8	-	3.6	V
Operating Temperature	TOPR	VDD=1.65~3.6V	-40	-	85	°C
Operating Frequency	FOPR	f _{XIN}	1	-	10	MHz

Table 7-2 Recommended Operating Condition

NOTE Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliablility.

7.3 VOLTAGE DROPOUT CONVERTER(VDC) CHARACTERISTICS

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Operating Voltage		-	1.62	-	4.00	V
Operating Temperature		-	-40	-	+85	$^{\circ}$
Regulation Voltage		-	1.62	1.8	1.98	V
Drop-out Voltage		-	-	-	0.02	V
0 (D :)		RUN	-	10	-	mA
Current Drivability		STOP	-	10	-	uA
	IDD	RUN	-	-	1	mA
Operating Current	SIDD	STOP	-	-	1	uA
Mode Transition Time	TRAN	STOP to RUN	-	-	200	uS

Table 7-3 Voltage Dropout Converter Characteristics

RUN When the MC95FR332/432/364/464 is in normal operating mode, the VDC should provide enough current to the entire chip. So, in this mode of operating condition, the VDC is set to "RUN" mode to accommodate MCU's normal RUN mode.

STOP When the MC95FR332/432/364/464 enters STOP mode to save current consumption, all internal logics stop operation including x-tal oscillator . In this mode, the MC95FR332/432/364/464 makes the VDC to enter "STOP" mode , leading to least current consumption mode.

7.4 BROWN OUT DETECTOR(BOD) CHARACTERISTICS

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Operating Voltage		ı	1.5	-	4.00	V
Operating Temperature		-	-40	-	+85	°C
	BODOUT0	NOTE	1.60	1.65	1.75	V
	BODOUT1	NOTE	1.65	1.75	1.85	V
Detection Level	BODOUT2	NOTE	1.75	1.85	1.95	V
	BODOUT3	NOTE	1.85	1.95	2.05	V
	BODOUT4	NOTE	1.95	2.05	2.15	V
	IDD	-	-	-	50	uA
Operating Current	SIDD	-	-	-	1	uA

Table 7-4 Brown Out Detector Characteristics

NOTE BODOUT0 is a voltage level or flag indicating it can generate internal reset due to voltage drop. When the external power drops below the BODOUT0 voltage level, the BOD detects the power condition and makes the device enter STOP-like mode called BOD mode. When the external power is restored, a BOD reset is generated according to pre-defined sequence and the device is initialized. BODOUT1/2/3/4 also indicate voltage level or flag. When the external power drops below the level indicated in abov table, the associated flag is set to '1' and these values can be read through the BODSR register. These flags may be used to check the battery status.

NOTE The operating modes of VDC itself are as follows.

7.5 POWER-ON RESET CHARACTERISTICS

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Operating Voltage		-	-	-	3.6	V
Operating Temperature		-	-40	-	+85	°C
RESET Release Level		-	1.3	1.4	1.5	V
	IDD	-	_	-	10	uA
Operating Current	SIDD	-	-	-	1	uA

Table 7-5 Power-On Reset Characteristics

7.6 DC CHARACTERISTICS

(VDD =1.8~3.6V, VSS =0V, f_{XIN} =10.0MHz, TA=-40~+85 $^{\circ}$ C)

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
land the survival to an	VIL1	P0,P1,P20 (Schmitt Trigger Input)	-0.5	-	0.2VDD	V
Input Low Voltage	VIL2	P2[2:1],P3,P4,P5 (Normal Input)	-0.5	-	0.2VDD	V
Input High Voltage	VIH1	P0,P1,P20 (Schmitt Trigger Input)	0.8VDD	-	VDD+0.5	V
	VIH2	P2[2:1],P3,P4,P5 (Normal Input)	0.7VDD	-	VDD+0.5	V
Output Low Voltage	VOL1	P0,P1,P2,P3,P4,P5 (IOL=10mA, VDD=3.0V)	-	-	1	V
Output High Voltage	VOH1	P0,P1,P2,P3,P4,P5 (IOH=-4.0mA, VDD=3.0V)	3.5	-	-	\
Input High Leakage Current	IIH	P0,P1,P2,P3,P4,P5			1	uA
Input Low Leakage Current	IIL	P0,P1,P2,P3,P4,P5	-1			uA
	RPU1	P0,P1,P2,P3,P4,P5	60	85	110	kΩ
		(VDD=3.0V, TA=+25℃)	60	00		
	RPU2	P0,P1,P2,P3,P4,P5 (VDD=2.4V, TA=+25℃)	80	145	170	kΩ
Power Supply Current	IDD1	RUN Mode, f _{XIN} =10MHz@3.6V	_	-	15	mA
	IDD2	SLEEP Mode, f _{XIN} =10MHz@3.6V	-	-	12	mA
	IDD3	STOP Mode @3.6V	-	-	10	uA
	IDD4	STOP Mode @3.0V (TA=25℃)		2	5	uA

Table 7-6 DC Characteristics

7.7 AC CHARACTERISTICS

(VDD=3.0V±10%, VSS=0V, TA=-40~+85°C)

Parameter	Symbol	PIN	MIN	TYP	MAX	Unit
Operating Frequency	fMCP	XIN	1	-	10	MHz
System Clock Cycle Time	tSYS	_	100	-	1000	ns
Oscillation Stabilization Time (8MHz)	tMST1	XIN, XOUT	-	-	10	ms
External Clock "H" or "L" Pulse Width	tCPW	XIN	90	-	-	ns
External Clock Transition Time	tRCP,tFCP	XIN	-	-	10	ns
Interrupt Input Width	tIVV	INT0~INT3	2	-	-	tSYS
RESETB Input Pulse "L" Width	tRST	RESETB	-	8	-	us
External Counter Input "H" or "L" Pulse Width	tECW	EC0	2	-	-	tSYS
Event Counter Transition Time	tREC,tFEC	EC0	-	-	20	ns

Table 7-7 AC Characteristics

Figure 7.1 AC Timing

7.8 USART CHARACTERISTICS

The following table and figure show the timing codition of USART in SPI or Synchronous mode of operation. The usart is one of peripherals in MC95FR332/432/364/464. NOTE1 .

(VDD =3.0V±10%, VSS =0V, TA=-40~+85°C)

Parameter	Symbol ^{NOTE2}	MIN	MAX	Unit
System clock period	t _{sclk}	100	1000	ns
Clock (XCK) period	t _{xck}	4	1028	t _{SCLK}
Clock (XCK) high time	t _{XCKH}	2	514	t _{SCLK}
Clock (XCK) low time	t _{XCKL}	2	514	t _{SCLK}
Lead time				
Maste	er t _{LEAD}	0.5 t _{XCK}	0.5 t _{XCK}	ns
Slav	e t _{LEAD}	2 t _{SCLK}	-	
Lag time				
Maste	er t _{LAG}	0.5 t _{XCK}	0.5 t _{XCK}	ns
Slav	e t _{LAG}	2 t _{SCLK}	-	
Data setup time (inputs)				
Maste	er t _{SIM}	2	2	t _{SCLK}
Slav	e t _{sis}	2	2	
Data hold time (inputs)				
Maste	er t _{HIM}	10	-	ns
Slav	e t _{HIS}	10	-	
Data setup time (outputs)				
Maste	er t _{SOM}	2	2	t _{SCLK}
Slav	e t _{sos}	2	2	
Data hold time (outputs)				
Maste	er t _{HOM}	-10	-	ns
Slav	e t _{HOS}	-10	-	
Disable time	t _{DIS}	1	2	t _{SCLK}

Table 7-8 Timing characteristics of USART in SYNC. or SPI mode of operations

January, 2012 Rev.2.0

NOTE1 In synchronous mode, Lead and Lag time with respect to SS pin is ignored. And the case of UCPHA=0 is also applied to SPI mode only.

 $^{^{\}text{NOTE2}}$ All timing is shown with respect to 20% VDD and 80% VDD.

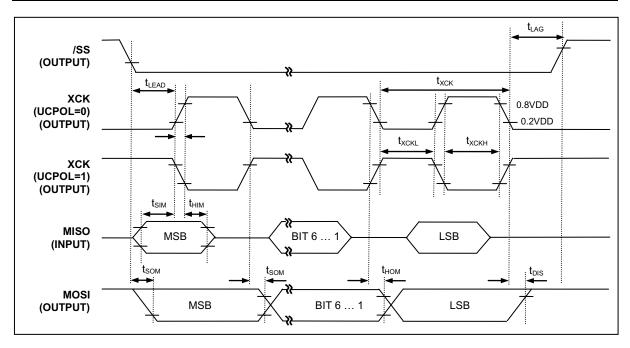


Figure 7.2 SPI master mode timing (UCPHA = 0, MSB first)

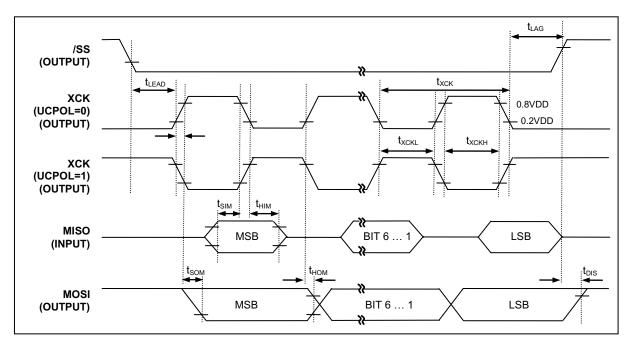


Figure 7.3 SPI / Synchronous master mode timing (UCPHA = 1, MSB first)

NOTE When in Synchronous mode, the START bit becomes MSB and the 1st or 2nd STOP bit becomes LSB.

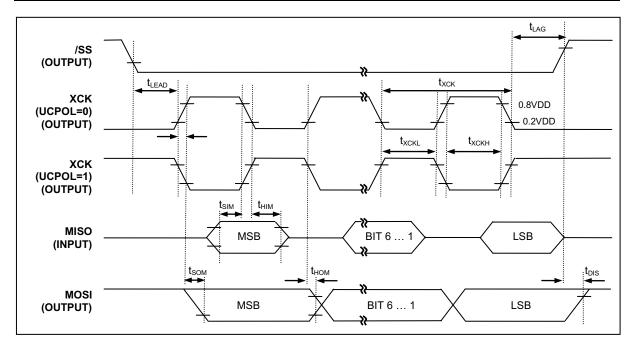


Figure 7.4 SPI slave mode timing (UCPHA = 0, MSB first)

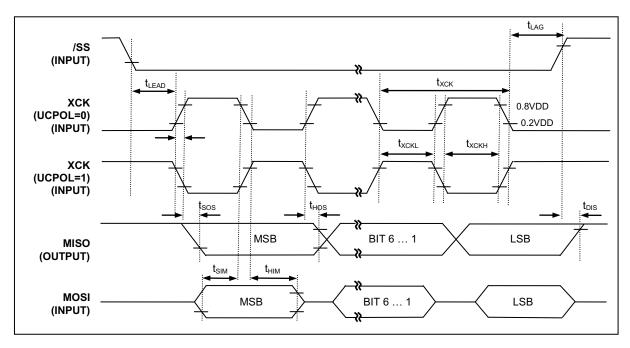


Figure 7.5 SPI / Synchronous slave mode timing (UCPHA = 1, MSB first)

NOTE When in Synchronous mode, the START bit becomes MSB and the 1st or 2nd STOP bit becomes LSB.

7.9 REMOUT PORT CHARACTERISTICS

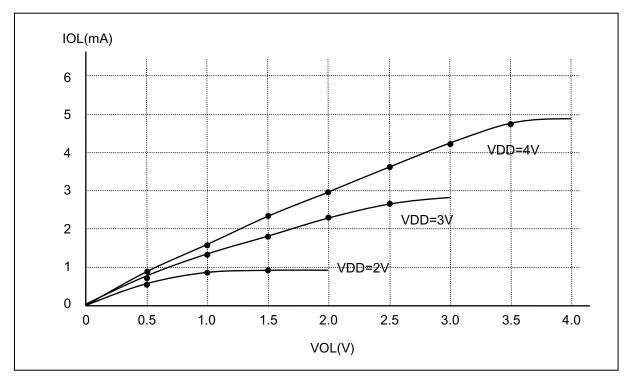


Figure 7.6 IOL vs VOL

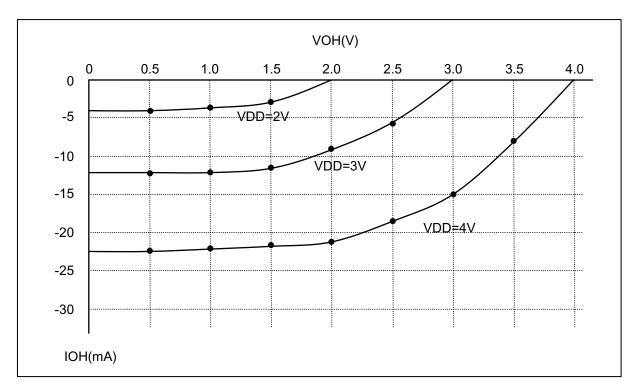


Figure 7.7 IOH vs VOH

7.10 TYPICAL CHARACTERISTICS

These graphs and tables provided in this section are for design guidance only and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

8. MEMORY

The MC95FR332/432/364/464 has separate address spaces for Program and Data Memory. The logical separation of Program and Data Memory allows the Data Memory to be accessed by 8-bit addresses, which can be more quickly stored and manipulated by an 8-bit CPU. Nevertheless, 16-bit Data Memory addresses can also be generated through the DPTR register.

Program Memory contains user software and is read-only while the device is in normal running mode. The MC95FR332/432/364/464 can assign maximum 32KB/64KB to Program Memory.

Data Memory is composed of Internal RAM (IRAM), External RAM (XRAM) and Data EEPROM. IRAM is read-writable and address space is 256B including Stack Pointer. XRAM has 1KB of memory depth and also read-writable. The Data EEPROM share the same physical memory with Program Memory and the address space can be varied by configuring registers. As both XRAM and Data EEPROM are accessed via movx instruction, ie, being allotted to XDATA region, the address space assigned to XRAM (0000_H~03FF_H,1KB) cannot be used as Data EEPROM. So, the maximum address space for Data EEPROM is 31KB for MC95FR332/432 and 63KB for MC95FR364/464.

NOTE The terms IRAM and XRAM are used just to classify kind of memory. XRAM doesn't have to reside outside the device. In MC95FR332/432/364/464, both IRAM and XRAM reside in device.

8.1 Program Memory

A 16-bit program counter is capable of addressing up to 64K bytes. The following figure shows a map of program memory in MC95FR332/432/364/464. After reset, the CPU begins program execution from address 0000_H. All interrupt vector is assigned to their fixed location in program memory. An interrupt causes the CPU to jump to it's vector location, where the CPU commences execution of the service routine. External interrupt 0, for example, is assigned to location 000B_H. If user wants to use external interrupt 0 as an interrupt source, its service routine must begin at location 000B_H. If the interrupt is not used, its service location is available as general purpose program memory. Because all interrupt vector can use 8 bytes from each vector address NOTE, the service routine can reside entirely within that 8 bytes if an interrupt service routine is short enough (as is often the case in control applications). Noramlly an interrupt service routine is longer than 8 bytes, so the service routine starts with a jump instruction.

NOTE Refer to Table 10-2 Interrupt Vector Address.

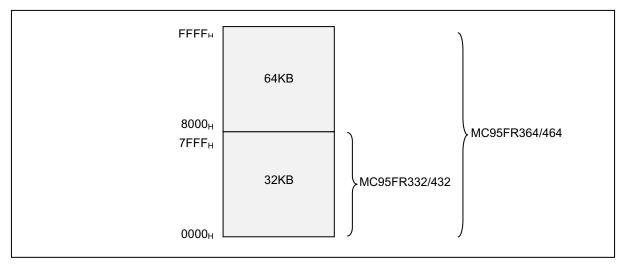


Figure 8.1 Program Memory

8.2 IRAM

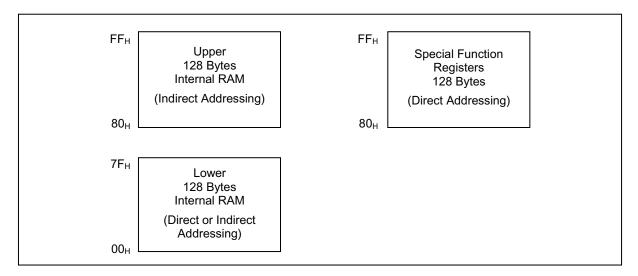


Figure 8.2 DATA MEMORY (IRAM)

Internal Data Memory is mapped in Figure 8-2. The memory space is shown divided into three blocks, which are generally referred to as the Lower 128, the Upper 128, and SFR space.

Internal Data Memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, the addressing modes for internal RAM can in fact accommodate 384 bytes, using a simple trick. Direct addresss higher than $7F_H$ access one memory space, and indirect addresses higher than $7F_H$ accessa different memory space. Thus Figure 8-2 showsthe Upper 128 and SFR space occupying the same block of addresses, 80_H through FF_H , although they are physically separate entities.

The Lower 128 bytes of RAM are present in all devices using MCS-51 devices as mapped in Figure 8-2. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

The next 16 bytes above the register banks form a block of bit-addressable memory space. The MCS-51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00_H through $7F_H$.

All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing. The Upper 128 can only be accessed by indirect addressing. These spaces are used for user RAM and stack pointer.

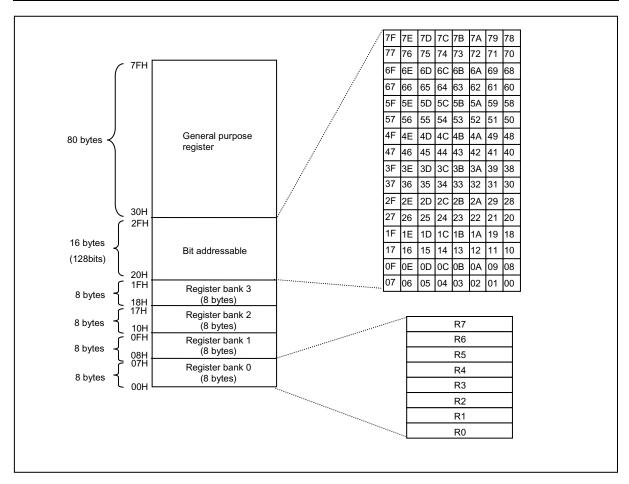


Figure 8.3 Lower 128 Byte of IRAM

8.2.1 Indirect Address Area

Note that in Figure 8.2 the SFRs and the indirect address RAM have the same addresses (80_H~FF_H). Nevertheless, they are two separate areas and accessed in two different ways.

For example the instruction

MOV 80H, #0AAH

writes 0AA_H to Port 0 which is one of the SFRs and the instruction

R0, #80H MOV

MOV @R0, #0BBH

writes 0BB_H in location 80_H of data RAM. Thus, after execution of both of the above instructions Port 0 will contain 0AA_H and location 80_H of the RAM will contain 0BB_H.

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space in MC95FR332/432/364/464.

8.2.2 Direct And Indirect Address Area

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into 3 segments as listed below and shown in Figure 8.3.

Register Bank 0~3 Locations 00_H through 1F_H (32 bytes). ASM-51 and the device after reset default to register bank 0. To use the other register banks the user must select them in the software (refer to January, 2012 Rev.2.0

the MCS-51 Micro Assembler User's Guide). Each register bank contains 8 one-byte registers, 0 through 7.

Reset initializes the Stack Pointer to location 07_H and it is incremented once to start from location 08_H which is the first register (R0) of the second register bank. Thus, in order to use more than one register bank, the SP should be initialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM).

Bit Addressable Area 16 bytes have been assigned for this segment, $20_{H}\sim2F_{H}$. Each one of the 128 bits of this segment can be directly addressed ($00_{H}\sim7F_{H}$).

The bits can be referred to in two ways both of which are acceptable by the ASM-51. One way is to refer to their addresses, ie. 00_H to $7F_H$. The other way is with reference to bytes 20_H to $2F_H$. Thus, bits $0_H \sim 7_H$ can also be referred to as bits $20.0 \sim 20.7$, and bits $8_H \sim F_H$ are the same as $21.0 \sim 21.7$ and so on.

Scratch Pad Area Bytes 30_H through 7F_H are available to the user as data RAM. However, if the stack pointer has been initialized to this area, enough number of bytes should be left aside to prevent SP data destruction.

8.2.3 Special Function Registers

All I/O and peripherals operation for the MC95FR332/432/364/464 accessed via Special Function Registers (SFRs). These registers occupy direct Internal Data Memory space locations in the range 80_{H} to FF_H. Their names and addresses are given in the Table 8.9. Note these SFRs are implemented using flip-flops within the core, not as RAM.

The MC95FR332/432/364/464 has special registers which are provided by M8051 core. These are Program Counter(PC), Accumulator(A), B register(B), the Stack Pointer(SP), the Program Status Word(PSW), general purpose register(R0~R7) and DPTR (Data pointer register).

NOTE There's some address space in the SFRs which are not implemented. Reading these address space may return arbitrary value, and writing to these reserved SFR address may result in un-expected operation. So cautions are needed when accessing reserved address.

Accumulator (ACC) This register provides one of the operands for most ALU operations. It is denoted as 'A' in the instruction table included later in this document. On reset this register returns 00_H.

B register (B) This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. On reset this register returns 00_H.

Stack Pointer (SP) The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into Internal Data Memory during LCALL and ACALL instructions and to retrieve the program counter from memory during RET and RETI instructions. Data may also be saved on or retrieved from the stack using PUSH and POP instructions. Instructions that manipulate the stack automatically pre-increment or post-decrement the Stack Pointer so that the Stack Pointer always points to the last byte written to the stack, i.e. the top of the stack. On reset the Stack Pointer is set to $07_{\rm H}$.

It falls to the programmer to ensure that the location of the stack in Internal Data Memory does not interfere with other data stored therein.

Program Counter (PC) The Program Counter consists of two 8-bit registers PCH and PCL. This counter indicates the address of the next instruction to be executed. On reset, the program counter is initialized to reset routine address (PCH:00_H, PCL:00_H).

Data Pointer Register (DPTR) The Data Pointer (DPTR) is a 16-bit register which is used to form 16-bit addresses for External Data Memory accesses (MOVX A, @DPTR and MOVX @DPTR, A), for program byte moves (MOVC A, @A+DPTR) and for indirect program jumps (JMP @A+DPTR).

Two true 16-bit operations are allowed on the Data Pointer – load immediate (MOV DPTR, #data) and increment (INC DPTR).

Program Status Word (PSW) The PSW contains several status bits that reflect the current state of the CPU. The PSW, shown in Figure 8.1, resides in SFR space. It contatins the Carry bit, the Auxiliary Carry (for BCD operations), the two register bank select bits, the Overflow flag, a Parity bit, and two user-definable status flags.

CY The Carry bit, other than serving the function of a Carry bit in arithmetic operations, also serves as the "Accumulator" for a number of Boolean operations.

AC The Auxiliary Carry bit, this bit is set when there is a carry from bit 3 of ALU or there is no borrow from bit 4 of ALU after operation.

RS0, **RS1** The bits RS0 and RS1 are used to select one of the four register banks shown in Figure 8.3. A number of instructions refer to these RAM locations as R0 through R7. The selection of which of the four banks is being referred to is made on the basis of the bits RS0 and RS1 at execution time.

OV Overflow flag. This bit is set to "1" when an overflow occurs as the result of an arithmetic operation involving signs. An overflow occurs when the result of an addition or subtraction exceeds $+127(7F_H)$ or $128(80_H)$. The CLRV instruction clears the overflow flag. There is no set instruction. When the BIT instruction is executed, bit 6 of memory is copied to this flag.

P The Parity bit reflects the number of 1s in the Accumulator: P=1 if the Accumulator contains an odd number of 1s, and P=0 if the Accumulator contains an even number of 1s. Thus the number of 1s in the Accumulator plus P is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

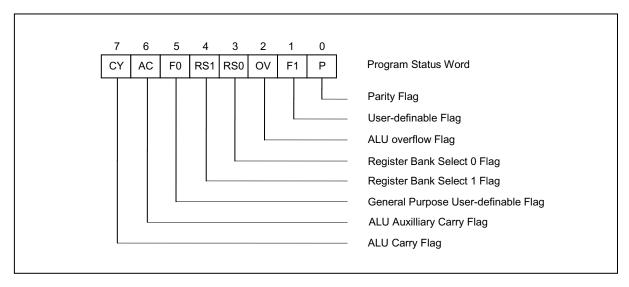


Figure 8.4 PSW Register

8.3 XRAM

There's another kind of RAM called XRAM (External RAM) in MC95FR332/432/364/464 and the size is 1KB, 0000_H through 03FF_H. This address space is assigned to XDATA region and used for data

storage. In MC95FR332/432/364/464, two kinds of Data Memory are assigned to XDATA region which are XRAM and Data EEPROM. So the address of two data memories do not duplicate. In other words, addresses higher than $03FF_{\rm H}$ accesses Data EEPROM if the address space is assigned as Data EEPROM.

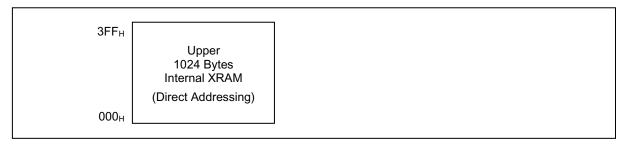


Figure 8.5 DATA MEMORY (XRAM)

8.4 Data EEPROM

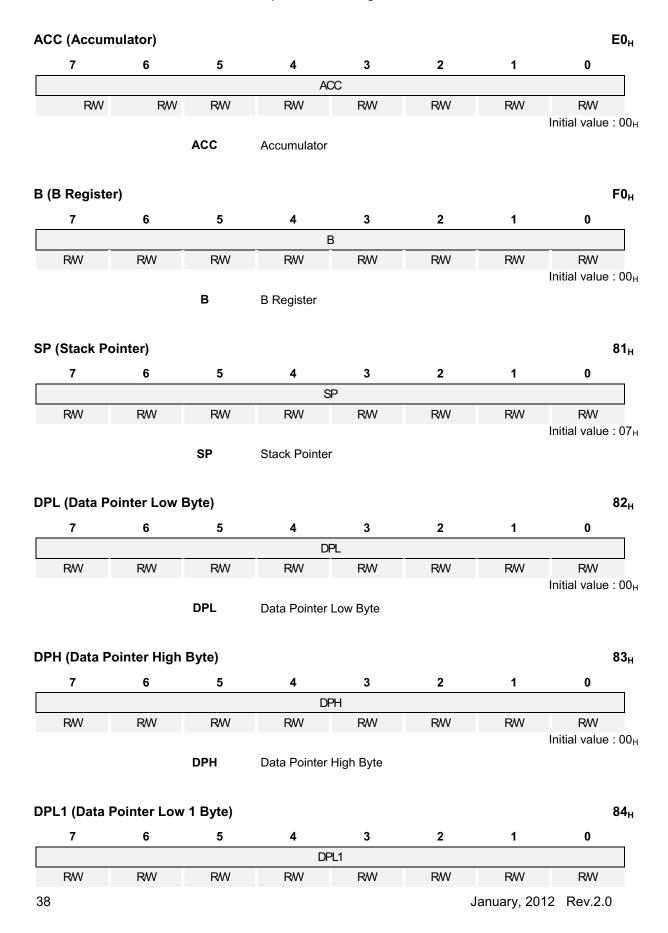
As described previously, MC95FR332/432/364/464 has 32KB/64KB of Program Memory called FLASH. User software can divide this FLASH memory into two memory space, Program Memory and Data EEPROM. If devided, lower address space from 0000_H is used for Program Memory and higher address space upto 7FFF_H/FFFF_H are used for Data EEPROM. Like External RAM, Data EEPROM is also assigned to XDATA region, therefore the bottom address of Data EEPROM must higher than 03FF_H. Logically the maximum size of Data EEPROM is 31KB/63KB, addresses from 0400_H through 7FFF_H/FFFF_H. After reset, the entire FLASH memory is assigned to Program Memory.

8.5 SFR map

8.5.1 SFR Map Summary

- Reserved
M8051 Compatible

	0H/8H ^{NOTE}	1H/9H	2H/AH	3H/BH	4H/CH	5H/DH	6H/EH	7H/FH
F8 _H	IP1 00_0000	-	FUSE_CAL 2	-	-	FUSE_CON F	TEST_B	TEST_A
F0 _H	B 0000_0000	-	FEARL	FEARM	FEARH	FEDR	-	-
E8 _H	RMR	-	FEMR	FECR	FESR	FETCR	DEARL	DEARM
E0 _H	ACC 0000_0000	-	UCTRL1	UCTRL2	UCTRL3	USTAT	UBAUD	UDATA
D8 _H	P2BPC 111	DISTR	P5 0000	P5IO 0000	P5PU 1111	P5OD 0000	P5BPC 1111	VWCDR
D0 _H	PSW 0000_0000	-	SMRR0	SMRR1	-	-	SRLC0	SRLC1
C8 _H	P1BPC 1111_1111	T3CR2	T3CR	T3L/CDR3L/ PWM3DRL	T3H/CDR3H /PWM3DRH	T3DRL/PW M3PRL	T3DRH/PW M3PRH	T2L/T2DRL/ CDR2L
СОн	P0BPC 1111_1111	P0PC 0000_0000	RDRH	RDRL	-	-	T2CR	T2H/T2DRH /CDR2H
B8 _H	IP 00_0000	P2OD 000	-	CFRH	CFRL	CRC	RODR	ROB
B0 _H	P2IO 000	P1OD 0000_0000	T0CR	T0/CDR0/T0 DR	T1CR	T1DR/ PWM1PR	T1/CDR1/ PWM1DR	PWM1HR
A8 _H	IE 0000_0000	IE1	IE2	IE3	EIFLAG	EIEDGE	EIPOLA	EIENAB
A0 _H	P1IO 0000_0000	-	EO 0000_0000	P4 0000_0000	P4IO 0000_0000	P4PU 1111_1111	P4OD 0000_0000	P4BPC 1111_1111
98 _H	P0IO 0000_0000	P2PU 000	P3BPC 1111_1111	P3IO 0000_0000	P3PU 0011_1100	P3OD 0000_0000	-	P3 0000_0000
90 _H	P2 000	P1PU 0000_0000	-	-	-	-	-	-
88 _H	P1 0000_0000	P0PU 0000_0000	SCCR	BCCR	BITR	WDTMR	WDTR	BODSR
80 _H	P0 0000_0000	SP 0000_0111	DPL 0000_0000	DPH 0000_0000	DPL1 0000_0000	DPH1 0000_0000	BODR 1000_0001	PCON 0000_0000


Table 8-1 SFR Map

Caution: Writing to reserved registers may result in un-expected function.

 $^{^{\}mbox{\scriptsize NOTE}}$ These registers are bit-addressable.

8.5.2 Compiler Compatible SFR

Refer to section 8.2.3 for detailed description of these registers.

Initial value : 00_H

DPL1 Data Pointer Low 1 Byte

DPH1 (Data Pointer High 1 Byte) 85_H 6 5 2 7 4 3 1 0 DPH1 RW RW RW RW RW RW RW RW Initial value: 00H DPH1 Data Pointer High 1 Byte **PSW (Program Status Word)** $D0_{H}$ 7 6 5 2 3 1 0 4 CY AC F0 RS1 RS0 OV F1 Ρ RW RW RW RW RW RW RW RW Initial value: 00_H CY Carry Flag. Receives carry out from bit 1 fo ALU operands. AC Auxiliary Carry Flag. Receives carry out from bit 1 of addition operands. F0 General Purpose Status Flag RS1 Register Bank Selection bit 1 RS₀ Register Bank Selection bit 0 ΟV Overflow Flag. Set by arithmetic operations. F1 User-definable Flag Parity of ACC. Set by hardware to 1 if it contains contains an odd P number of 1s, otherwise it is reset to 0.

EO (Extended Operation Register)

A2_H

7	6	5	4	3	2	1	0
-	-	-	TRAP_EN	-	DPSEL2	DPSEL.1	DPSEL.0
R	R	R	RW	R	RW	RW	RW
							Initial value: 00 _H

TRAP_EN Select the instruction between software TRAP and MOVC @(DPTR++), A.

Select software TRAP instruction.

Select MOVC @(DPTR++), A instruction.

DPSEL[2:0] Select DPT R.

00.000 = .			
DPSEL2	DPSEL1	DPSEL0	
0	0	0	DPTP0.
0	0	1	DPTP1.
0	1	0	Reserved
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

9. I/O PORTS

9.1 Introduction

The MC95FR332/432/364/464 has six I/O ports (P0, P1, P2, P3, P4, P5). Each port can be easily configured by software whether to use internal pull up resistor or not, whether to use open drain output or not, or whether the pin is input or output. Also P0 includes function that can generate interrupt when the state of P0 changes.

9.2 Register Description

9.2.1 Data Register (Px)

Data Register is a bidirectional I/O port. If ports are configured as output ports, data can be written to the corresponding bit in the Px. If ports are configured as input ports, the port value can be read from the corresponding bit in the Px.

9.2.2 Direction Register (PxIO)

The PxnIO bit in the PxIO register selects the direction of this pin. If PxnIO is written logic one, Pxn is configured as an output pin. If PxnIO is written logic zero, Pxn is configured as an input pin. All bits are cleared by a system reset.

9.2.3 Pull-up Resistor Selection Register (PxPU)

All ports P0, P1, P2, P3, P4, P5 have optional internal pull-ups. The PxnPU bit in the PxPU register allows the use of pull-up resistor. If PxnPU is written logic one, the pull-up resistor is activated. If PxnPU is written logic zero, the pull-up resistor is deactivated. When the port is configured as an input port, internal pull-up is deactivated regardless of the PxnPU bit. After reset, all pull-up resistors are switched off except those of P3[5:2], P4[7:0], P5[3:0]. According to PKG types, some of these ports are omiited, so to maintain input status, the internal pull-ups for these ports are activated.

9.2.4 Open-drain Selection Register (PxOD)

The PxnOD bit in the PxOD register controls the port type when configured as an output port. If PxnOD is written logic one, the port becomes open-drain type. If PxnOD is written logic zero, the port becomes push-pull type. After reset, open-drain function is disabled.

Caution: Port 0 has no open drain control register.

9.2.5 Pull-up Control Register (PxBPC)

When the external VDD drops below the BODOUT0 level, the ports can be selectively configured as input ports with pull-up resistors activated regardless of the PxnIO. In this case, the port direction is changed by hardware automatically. If PxnBPC is written logic one, this function is enabled. If PxnBPC is written logic zero, the port maintain its status even if the device enters stop mode after the external VDD is fallen below the BODOUT0 level. After reset, PxnBPC is set to 1 allowing automatic port direction change due to voltage drop.

9.2.6 Pin Change Interrupt Enable Register (P0PC)

P0 port support Pin Change Interrupt (PCI) function. Pin Change Interrupt will trigger if any pin changes its status when P0nPC is set to 1. At reset, PCI function is disabled for all P0 pins.

9.2.7 Register Map

Name	Address	Dir	Default	Description
P0	80н	R/W	00н	P0 Data Register
P0IO	98 _H	R/W	00 _H	P0 Direction Register
P0PU	89 _H	R/W	00 _H	P0 Pull-up Resistor Selection Register
P0BPC	СОн	R/W	FF _H	P0 Pull-up Control Register
P0PC	C1 _H	R/W	00 _H	P0 Pin Change Interrupt Enable Register
P1	88 _H	R/W	00н	P1 Data Register
P1IO	A0 _H	R/W	00 _H	P1 Direction Register
P1PU	91 _H	R/W	00 _H	P1 Pull-up Resistor Selection Register
P10D	B1 _H	R/W	00н	P1 Open-drain Selection Register
P1BPC	C8 _H	R/W	FF _H	P1 Pull-up Control Register
P2	90 _H	R/W	00 _H	P2 Data Register
P2IO	ВОн	R/W	00н	P2 Direction Register
P2PU	99	R/W	00 _H	P2 Pull-up Resistor Selection Register
P2OD	В9н	R/W	00н	P2 Open-drain Selection Register
P2BPC	D8 _H	R/W	07 _H	P2 Pull-up Control Register
P3	9F _H	R/W	00 _H	P3 Data Register
P3IO	9B _H	R/W	00н	P3 Direction Register
P3PU	9C _H	R/W	3C _H	P3 Pull-up Resistor Selection Register
P3OD	9D _H	R/W	00н	P3 Open-drain Selection Register
P3BPC	9Ан	R/W	FF _H	P3 Pull-up Control Register
P4	A3 _H	R/W	00 _H	P4 Data Register
P4IO	A4 _H	R/W	00н	P4 Direction Register
P4PU	A5 _H	R/W	FF _H	P4 Pull-up Resistor Selection Register
P4OD	A6 _H	R/W	00 _H	P4 Open-drain Selection Register
P4BPC	A7 _H	R/W	FF _H	P4 Pull-up Control Register
P5	DA _H	R/W	00 _H	P5 Data Register
P5IO	DB _H	R/W	00н	P5 Direction Register
P5PU	DC _H	R/W	0F _H	P5 Pull-up Resistor Selection Register
P5OD	DD _H	R/W	00 _H	P5 Open-drain Selection Register
P5BPC	DE _H	R/W	0F _H	P5 Pull-up Control Register

Table 0-1 Register Map of Port

9.2.8 PORT 0

					80) _H		
7	6	5	4	3	2	1	0	
P07	P06	P05	P04	P03	P02	P01	P00	
RW	RW							

Initial value: 00_H

P0[7:0] I/O Data P0IO (P0 Direction Register) 98_H 6 5 2 4 3 1 0 P07IO P06IO P04IO P03IO P02IO P01IO P05IO P0010 RW RW RW RW RW RW RW RW Initial value: 00_H P0IO[7:0] P0 Direction 0 Input 1 Output P0PU (P0 Pull-up Resistor Selection Register) 89_H 7 6 5 4 3 2 1 0 P06PU P04PU P01PU P07PU P05PU P03PU P02PU P00PU RW RW RW RW RW RW RW RW Initial value: 00_H P0PU[7:0] P0 Pull-up Control 0 Disable pull-up 1 Enable pull-up P0BPC (P0 Pull-up Control Register) C₀H 7 6 5 2 1 0 4 3 P07BPC P06BPC P05BPC P04BPC P03BPC P02BPC P01BPC P00BPC RW RW RW RW RW RW RW RW Initial value: FF_H P0BPC[7:0] Controls port direction and use of internal pull-up resistor when external VDD drops below BODOUT0 level. Maintain its previous state (input or output) 1 Changed to input port and pull-up resistor is activated P0PC (P0 Pin Change Interrupt Enable Register) C1_H 7 6 5 4 3 2 1 0 P04PC P01PC P07PC P06PC P05PC P03PC P02PC P00PC RW RW RW RW RW RW RW RW Initial value: 00_H P0PC[7:0] Controls Pin Change Interrupt function 0 Disable PCI function 1 **Enable PCI function** 9.2.9 PORT 1 P1 (P1 Data Register) 88_H 0 5 3 2 1

P17	P16	P15	P14	P13	P12	P11	P10
RW							

Initial value: 00_H

P1[7:0] I/O Data

P1IO (P1 Direction Register)

 $A0_{H}$

7	6	5	4	3	2	1	0
P17IO	P16IO	P15IO	P14IO	P13IO	P12IO	P111O	P101O
RW							

Initial value: 00_H

P1IO[7:0] P1 Direction

0 Input

1 Output

P1PU (P1 Pull-up Resistor Selection Register)

91_H

7	6	5	4	3	2	1	0
P17PU	P16PU	P15PU	P14PU	P13PU	P12PU	P11PU	P10PU
RW							

Initial value: 00_H

P1PU[7:0] P1 Pull-up Control

0 Disable pull-up

1 Enable pull-up

P10D (P1 Open-drain Selection Register)

B₁_H

	7	6	5	4	3	2	1	0
	P17OD	P160D	P15OD	P14OD	P13OD	P120D	P110D	P100D
Ī	RW							

Initial value: 00_H

P10D[7:0] Controls P1 port type when configured as output port.

0 Push-pull type output drive

1 Open-drain type output drive

P1BPC (P1 Pull-up Control Register)

C8_H

7	6	5	4	3	2	1	0
P17BPC	P16BPC	P15BPC	P14BPC	P13BPC	P12BPC	P11BPC	P10BPC
RW							

Initial value: FF_H

P1BPC[7:0]

Controls port direction and use of internal pull-up resistor when external VDD drops below BODOUT0 level.

0 Maintain its previous state (input or output)

1 Changed to input port and pull-up resistor is activated

9.2.10 PORT 2

P2 (P2 Data Register)

90_H

7	6	5	4	3	2	1	0
-	-	-	-	-	P22	P21	P20
-	-	-	-	-	RW	RW	RW

Initial value: 00_H

P2[2:0] I/O Data

P2IO (P2 Direction Register)

B₀_H

7	6	5	4	3	2	1	0
-	-	-	-	-	P2210	P21IO	P201O
-	-	-	-	-	RW	RW	RW

Initial value: 00_H

P2IO[2:0] P2 Direction NOTE

0 Input

1 Output

P2PU (P2 Pull-up Resistor Selection Register)

99_H

7	6	5	4	3	2	1	0
-	-	-	-	-	P22PU	P21PU	P20PU
-	-	-	-	-	RW	RW	RW

Initial value: 00_H

P2PU[2:0] P2 Pull-up Control NOTE

0 Disable pull-up

1 Enable pull-up

P2OD (P2 Open-drain Selection Register)

B9_H

7	6	5	4	3	2	1	0
-	-	-	-	-	P220D	P210D	P200D
-	-	-	-	-	RW	RW	RW

Initial value: 00_H

P20D[2:0] Controls P2 port type when configured as output port.

0 Push-pull type output drive

1 Open-drain type output drive

P2BPC (P2 Pull-up Control Register)

D8_H

7	6	5	4	3	2	1	0
-	-	-	-	-	P22BPC	P21BPC	P20BPC
-	-	-	-	-	RW	RW	RW

Initial value: 07_H

NOTE P20 is used as an external reset source when RSTDIS bit in FUSE_CONF register is cleared. In this case, the direction of P20 is input only and the internal pull-up resistor is always activated regardless of the P20IO or P20PU bits.

P2BPC[2:0]

Controls port direction and use of internal pull-up resistor when external VDD drops below BODOUT0 level.

- 0 Maintain its previous state (input or output)
- 1 Changed to input port and pull-up resistor is activated

9.2.11 PORT 3

P3 (P3 Data Register)

9F_H

7	6	5	4	3	2	1	0
P37	P36	P35	P34	P33	P32	P31	P30
RW							

Initial value: 00_H

P3[7:0] I/O Data

P3IO (P3 Direction Register)

9B_H

7	6	5	4	3	2	1	0
P37IO	P36IO	P3510	P34IO	P33IO	P32IO	P31IO	P30IO
RW							

Initial value: 00_H

P3IO[7:0] P3 Direction

0 Input

1 Output

P3PU (P3 Pull-up Resistor Selection Register)

9C_H

7	6	5	4	3	2	1	0
P37PU	P36PU	P35PU	P34PU	P33PU	P32PU	P31PU	P30PU
RW							

Initial value: 3CH

P3PU[7:0] P3 Pull-up Control

0 Disable pull-up

1 Enable pull-up

P3OD (P3 Open-drain Selection Register)

9D_H

7	6	5	4	3	2	1	0
P370D	P360D	P35OD	P340D	P330D	P320D	P310D	P300D
RW							

Initial value: 00_H

P30D[7:0] Controls P0 port type when configured as output port.

0 Push-pull type output drive

1 Open-drain type output drive

P3BPC (P3 Pull-up Control Register)

 $9A_H$

7 6 5 4 3 2 1 0

P37BPC	P36BPC	P35BPC	P34BPC	P33BPC	P32BPC	P31BPC	P30BPC
RW							

Initial value: FFH

P3BPC[7:0]

Controls port direction and use of internal pull-up resistor when external VDD drops below BODOUT0 level.

- 0 Maintain its previous state (input or output)
- 1 Changed to input port and pull-up resistor is activated

9.2.12 PORT 4

P4 (P4 Data Register)

A3_H

7	6	5	4	3	2	1	0
P47	P46	P45	P44	P43	P42	P41	P40
RW							

Initial value: 00_H

P4[7:0] I/O Data

P4IO (P4 Direction Register)

 $A4_H$

7	6	5	4	3	2	1	0
P47IO	P46IO	P45IO	P44IO	P43IO	P4210	P4110	P40IO
RW							

Initial value: 00_H

P4IO[7:0] P4 Direction

0 Input

1 Output

P4PU (P4 Pull-up Resistor Selection Register)

A4_H

7	6	5	4	3	2	1	0
P47PU	P46PU	P45PU	P44PU	P43PU	P42PU	P41PU	P40PU
RW							

Initial value : FF_H

P4PU[7:0] P4 Pull-up Control

0 Disable pull-up

1 Enable pull-up

P4OD (P4 Open-drain Selection Register)

A₆H

7	6	5	4	3	2	1	0
P47OD	P46OD	P45OD	P44OD	P43OD	P42OD	P410D	P40OD
RW							

Initial value: 00_H

P4OD[7:0] Controls P0 port type when configured as output port.

0 Push-pull type output drive

1 Open-drain type output drive

P4BPC (P4 Pull-up Control Register)

 $A7_{H}$

7	6	5	4	3	2	1	0
P47BPC	P46BPC	P45BPC	P44BPC	P43BPC	P42BPC	P41BPC	P40BPC
RW							

Initial value: FFH

P4BPC[7:0]

Controls port direction and use of internal pull-up resistor when external VDD drops below BODOUT0 level.

- 0 Maintain its previous state (input or output)
- 1 Changed to input port and pull-up resistor is activated

9.2.13 PORT 5

P5 (P5 Data Register)

 \mathbf{DA}_{H}

7	6	5	4	3	2	1	0
-	-	-	-	P53	P52	P51	P50
-	-	-	-	RW	RW	RW	RW

Initial value: 00_H

P5[3:0] I/O Data

P5IO (P5 Direction Register)

 DB_H

7	6	5	4	3	2	1	0
-	-	-	-	P53IO	P52IO	P51IO	P501O
-	-	-	-	RW	RW	RW	RW

Initial value: 00_H

P5IO[3:0] P5 Direction

0 Input

1 Output

P5PU (P5 Pull-up Resistor Selection Register)

DCH

7	6	5	4	3	2	1	0
-	-	-	-	P53PU	P52PU	P51PU	P50PU
_	-	-	-	RW	RW	RW	RW

Initial value: 0F_H

P5PU[3:0] P5 Pull-up Control

0 Disable pull-up

1 Enable pull-up

P50D (P5 Open-drain Selection Register)

 DD_{H}

7	6	5	4	3	2	1	0
-	-	-	-	P53OD	P52OD	P510D	P500D
-	-	-	-	RW	RW	RW	RW

Initial value: 00_H

P5OD[3:0]

Controls P0 port type when configured as output port.

- 0 Push-pull type output drive
- 1 Open-drain type output drive

P5BPC (P5 Pull-up Control Register)

 DE_H

7	6	5	4	3	2	1	0
-	-	-	-	P53BPC	P52BPC	P51BPC	P50BPC
-	-	-	-	RW	RW	RW	RW

Initial value: 0F_H

P5BPC[3:0]

Controls port direction and use of internal pull-up resistor when external VDD drops below BODOUT0 level.

- 0 Maintain its previous state (input or output)
- 1 Changed to input port and pull-up resistor is activated

10. INTERRUPT CONTROLLER

10.1 Overview

The interrupt controller has the following features to handle interrupt request from internal peripherals or external pins.

- support up to 16 interrupt sources NOTE
- 6 group of 4 priority level
- multiple interrupts handling
- global enable by EA bit and selective control by IEx bit
- Interrup latency: 3~9 machine cycles in single interrupt system

NOTE Interrupt controller can accept upto 24 interrupt sources, but there are only 16 interrupt sources in MC95FR332/432/364/464.

Interrupt controller has 4 Interrupt Enable Registers (IE, IE1, IE2, IE3) and 2 Interrupt Priority Registers (IP, IP1). There are 16 interrupt sources in MC95FR332/432/364/464 and overall control is done by EA bit in IE register. When EA is set to 0, all interrupt requests are ignored. When EA is set to 1, each interrupt request is accepted or not by INTnE bit in IEx registers. 16 interrupt sources are assigned to 6 groups and each group can have different priority according to IP and IP1 registers.

By default all interrupt sources are level-triggered, but external interrupts can be set to operate in edge-trigger mode. If more than 2 interrupts of different group priority are requested almost at the same time, the request of higher priority is serviced first. And among the requests of same priority, an internal polling sequence determines which request is serviced, ie, the interrupt having lower priority number in Table 10-2 is serviced first. Even in interrupt service routine, another interrupt of higher priority can interrupt the execution of service routine for the lower priority by software configuration.

Interrupt Group	Highest			Lowest
0 (Bit0)	Interrupt0	Interrupt6	Interrupt12	Interrupt18
1 (Bit1)	Interrupt1	Interrupt7	Interrupt13	Interrupt19
2 (Bit2)	Interrupt2	Interrupt8	Interrupt14	Interrupt20
3 (Bit3)	Interrupt3	Interrupt9	Interrupt15	Interrupt21
4 (Bit4)	Interrupt4	Interrupt10	Interrupt16	Interrupt22
5 (Bit5)	Interrupt5	Interrupt11	Interrupt17	Interrupt23

Table 10-1 Interrupt Group and Default Priority

10.2 External Interrupt

The External Interrupts are triggered by the INT0, INT1, INT2, INT3 pins. The External Interrupts can be triggered by a falling or rising edge or a low or high level. The trigger mode and trigger level is controlled by External Interrupt Edge Register (EIEDGE) and External Interrupt Polarity Register (EIPOLA). When the external interrupt is enabled and is configured as level triggered, the interrupt will trigger as long as the pin is held low or high. External interrupts are detected asynchronously. This implies that these interrupts can be used for wake-up sources from stop mode. The interrupt requests from INT0, INT1, INT2, INT3 pins can be monitored through the External Interrupt Flag Register (EIFLAG).

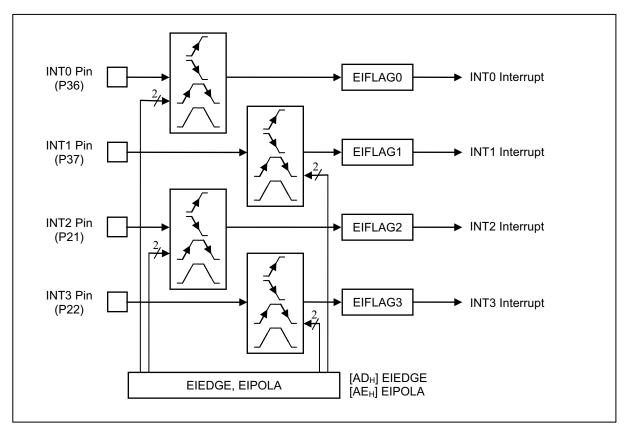


Figure 10.1 External Interrupt trigger condition

10.3 Block Diagram

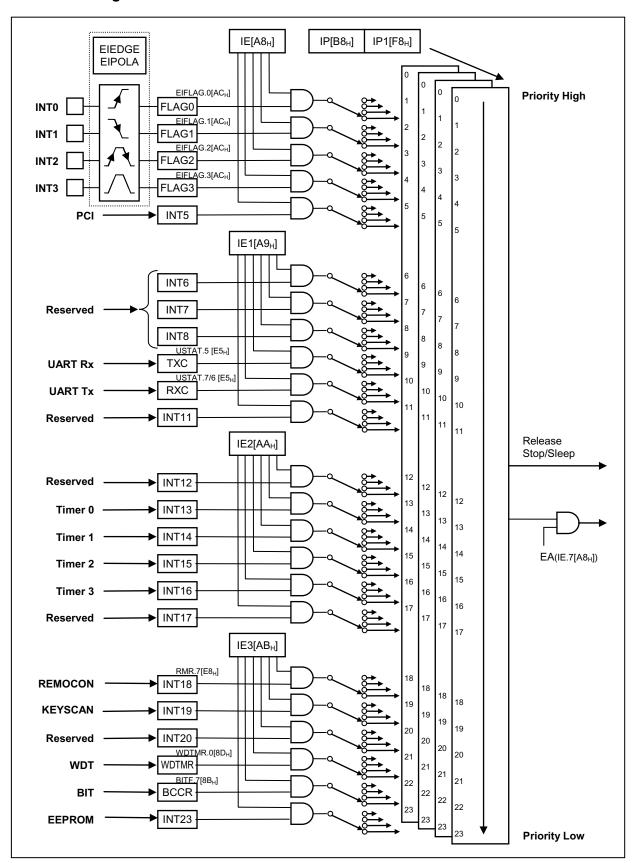


Figure 10.2 Block Diagram of Interrupt Controller

10.4 Interrupt Vectors

There are 16 interrupt sources which are from internal peripherals or from external pin inputs. When a interrupt is requested while EA bit in IE register and its individual enable bit INTnE in IEx register is set, the CPU executes a long call instruction (LCALL) to the vector address listed in Table 10-2. As can be seen in the table, all interrupt vector has 8 bytes address space except for reset vector. If priority level is not set by user software, the interrupt sources have default priority as in the following table, and the lower number has the higher priority.

Interrupt Source	Symbol	Interrupt Enable Bit	Priority	Mask	Vector Address
Hardware Reset	RESETB	Always	0	Non-Maskable	0000 _H
-	INT0	IE0.0	1	Maskable	0003 _H
External Interrupt 0	INT1	IE0.1	2	Maskable	000B _H
External Interrupt 1	INT2	IE0.2	3	Maskable	0013 _H
External Interrupt 2	INT3	IE0.3	4	Maskable	001B _H
External Interrupt 3	INT4	IE0.4	5	Maskable	0023 _H
Pin Change Interrupt (P0)	INT5	IE0.5	6	Maskable	002B _H
-	INT6	IE1.0	7	Maskable	0033 _H
-	INT7	IE1.1	8	Maskable	003B _H
-	INT8	IE1.2	9	Maskable	0043 _H
USART Rx	INT9	IE1.3	10	Maskable	004B _H
USART Tx	INT10	IE1.4	11	Maskable	0053 _н
-	INT11	IE1.5	12	Maskable	005B _H
-	INT12	IE2.0	13	Maskable	0063 _H
T0	INT13	IE2.1	14	Maskable	006B _H
T1	INT14	IE2.2	15	Maskable	0073 _H
T2	INT15	IE2.3	16	Maskable	007B _H
Т3	INT16	IE2.4	17	Maskable	0083 _H
-	INT17	IE2.5	18	Maskable	008B _H
REMOCON	INT18	IE3.0	19	Maskable	0093 _H
KEYSCAN	INT19	IE3.1	20	Maskable	009B _H
-	INT20	IE3.2	21	Maskable	00A3 _H
WDT	INT21	IE3.3	22	Maskable	00AB _H
BIT	INT22	IE3.4	23	Maskable	00B3 _H
EEPROM	INT23	IE3.5	24	Maskable	00BB _H

Table 10-2 Reset and Interrupt Vectors Placement

To activate a interrupt request, both EA bit in IE register and INTnE bit in IEx register are enabled. When a interrupt is generated, the interrupt flag can be read through each status register except for KEYSCAN and Pin Change Interrupt which have no status register. And almost interrupt flags are automatically cleared when their interrupt is executed. These kinds of interrupts are BIT, WDT, TIMER0/1/2/3, USART Rx, REMOCON, External Interrupt 0/1/2/3 and Pin Change Interrupt. KEYSCAN, EEPROM and Pin Change Interrupts have no flag bit, so these interrupts cannot be used in polling mode.

10.5 Interrupt Sequence

When a interrupt occurs, the flag is stored to the status register which belongs to the interrupt source. An interrupt request is preserved until the request is accepted by CPU or cleared to '0' by a reset or an instruction. NOTE. The CPU accepts a interrupt request at the last cycle of current instruction. So instead of executing the instruction being fetched, the CPU executes internally a LCALL instruction

and saves the PC to the stack region. At the same time the interrupt controller hands over the address of LJMP instruction to the service routine, which is used by the CPU. It takes 3 to 9 cycles to finish current instruction and jump to the interrupt service routine. After executing the service routine, the program address is retrieved from the stack by executing RETI instruction to restart from the position where the interrupt is accepted. The following figure shows the sequence.

NOTE Interrupt flags due to USART Tx, KEYSCAN and EEPROM are not auto-cleared when the CPU accepts the request. KEYSCAN module has no status register, so interrupt flag is not to be polled.

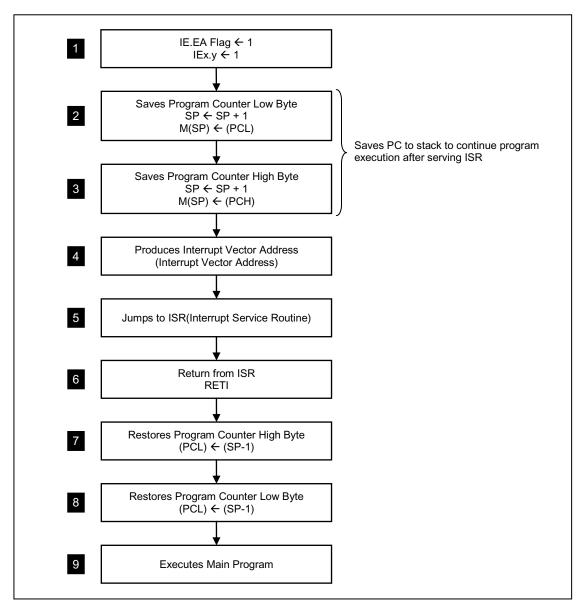


Figure 10.3 Sequence of Interrupt handling

10.6 Effective time of Interrupt Request

To activate interrupt request from interrupt sources, both EA bit in IE register and individual enable bit INTnE in IEx register must be enabled. At this time, the effective time of interrupt request after setting control registers is as follows.

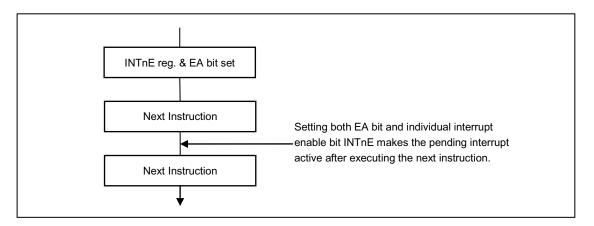


Figure 10.4 Effective time of interrupt request after setting IEx registers

10.7 Multiple Interrupts

If more than two interrupts are requested simultaneously, one of higher priority level is serviced first and others remain pending. Among pending interrupts, the interrupt of second highest priority is serviced next after excuting current interrupt service.

In addition, as shown in Figure 10-6, another interrupt request can be serviced while servicing previously requested interrupt. In this case, interrupt requested later must have higher priority level and the interrupt handler should allow another interrupt request.

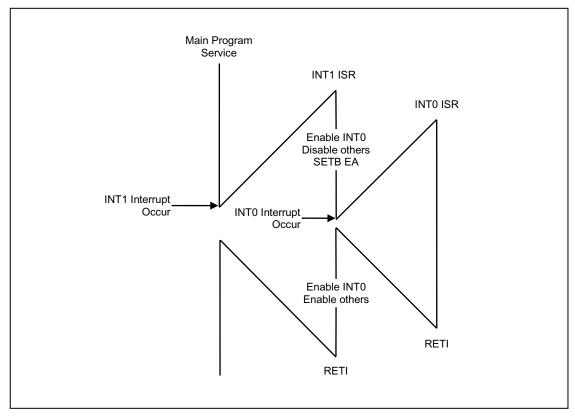


Figure 10.5 Accept of another interrupt request in interrupt service routine

The following example shows how to allow INT0 interrupt request while executing INT1 interrupt service routine. In this example, INT0 has higher group priority than INT1 interrupt according to IP0,

January, 2012 Rev.2.0

IP1 registers. Other interrupts having lower group priority than INT0 cannot be serviced until INT0 service routine is finished even if the INT0 interrupt handler allows those interrupt requests.

Example) Software Multi Interrupt

```
INT1:
          MOV
                   IE, #01H
                                ;Enable INT0 only
          MOV
                   IE1, #00H
                                ;Disable other interrupts
          SETB
                   EΑ
                                ;Enable global interrupt (necessary for multi interrupt)
          MOV
                   IE, #0FFH
                                ;Enable all Interrupts
          MOV
                   IE1, #0FFH
          RETI
```

In short, an interrupt service routine may only be interrupted by an interrupt of higher priority than being serviced. And when more than two interrupts are requested at the same time, the one of highest priority is serviced first.

10.8 Interrupt Service Procedure

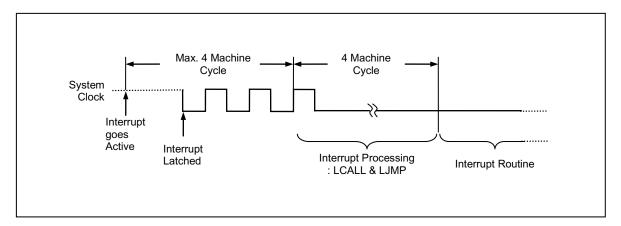


Figure 10.6 Interrupt Request and Service Procedure

10.9 Generation of Branch Address to Interrupt Service Routine(ISR)

The following figure shows the relationship between the vector address of BIT interrupt and the branch address to service routine.

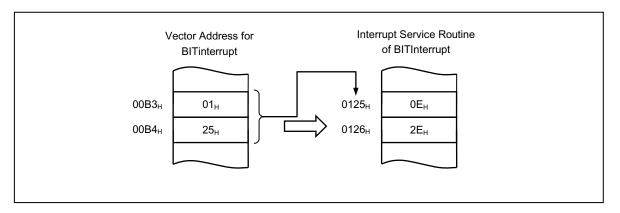


Figure 10.7 Generating branch address to BIT interrupt service routine from vector table

10.10 Saving and Restoring General Purpose Registers

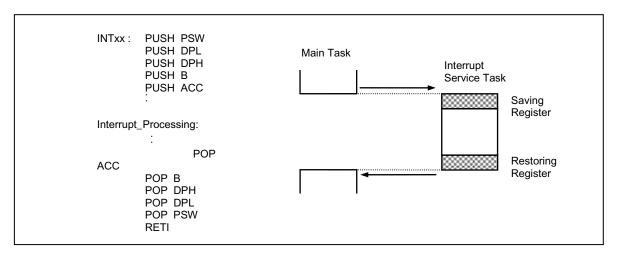


Figure 10.8 Processing General registers while an interrupt is serviced

Interrupt sampled here CLP2 NOTE CLP1 CLP2 C1P1 C1P2 C2P1 C2P2 SCLK INT_SRC INTR_ACK LAST_CYC INTR_LCALL 8-bit interrupt Vector INT_VEC {8'h00, INT_VEC} **PROGA**

10.11 Interrupt Timing

Figure 10.9 Timing chart for Interrupt Accept and Branch Address Generation

The interrupt request is sampled at the last cycle of the command currently being executed. On recognition of interrupt request, the interrupt controller hands over the corresponding lower 8-bit vector address to the CPU, M8051W and the CPU acknowledges the request at the first cycle of the next command to jump to the interrupt vector address.

NOTE command cycle C?P?: L=Last cycle, 1=1st cycle or 1st phase, 2=2nd cycle or 2nd phase

10.12 Interrupt Registers

1	0 1	12 1	R	aio	ter	Map
	U . I	Z .	176	ะนเจ) LCI	IVIAD

Name	Address	Dir	Default	Description
IE	A8 _H	R/W	00 _H	Interrupt Enable Register
IE1	A9 _H	R/W	00 _H	Interrupt Enable Register 1
IE2	AA _H	R/W	00н	Interrupt Enable Register 2
IE3	AB _H	R/W	00н	Interrupt Enable Register 3
IP	B8 _H	R/W	00 _H	Interrupt Polarity Register
IP1	F8 _H	R/W	00н	Interrupt Polarity Register 1
EIFLAG	AC _H	R/W	00 _H	External Interrupt Flag Register
EIEDGE	AD _H	R/W	00 _H	External Interrupt Edge Register
EIPOLA	AE _H	R/W	00 _H	External Interrupt Polarity Register
EIENAB	AF _H	R/W	00 _H	External Interrupt Enable Register

Table 10-3 Register Map of Interrupt Controller

10.12.2 Interrupt Enable Register (IE, IE1, IE2, IE3)

There're 4 interrupt enable registers which are IE, IE1, IE2 and IE3. In IE register, there's two kinds of interrupt enable bits called the global interrupt enable bit, EA, and 6 individual interrupt enable bits, INTnE. Each IE1, IE2 and IE3 register only has 6 individual interrupt enable bits. Totally 16 peripheral and external interrupts are controlled by these registers.

10.12.3 Interrupt Priority Register (IP, IP1)

As described above, each interrupt enable register has 6 individual interrupt enable bits. So, interrupt controller itself can deal upto 24 interrupt sources. These 24 sources are classified into 6 groups by 4 sources. Each group can have 4 level of priority through IP and IP1 registers. The level 3 group interrupt is of the highest priority, and the level 0 group interrupt is of the lowest priority. The initial values of IP and IP1 registers are 00_H. By default, the lower numbered interrupt has the higher priority if group priority is the same. When the group priority is decided by configuring IP and IP1 registers, among 4 interrupt sources within the group, the lower numbered interrupt has the higher priority.

10.12.4 External Interrupt Flag Register (EIFLAG)

External Interrupt Flag Register shows the status of external interrupts. Each flag is set to '1' when a port is configured as a external interrupt source, and the port state changes to equal to the interrupt generating condition according to EIEDGE and EIPOLA register. To clear each flag, write '0' to corresponding bit position of this register.

10.12.5 External Interrupt Edge Register (EIEDGE)

External Interrupt Edge Register decides the trigger mode of external interrupt, edge or level mode. To make a external interrupt triggered by a falling or rising edge, write '00_B' to the corresponding bit position. And to make a external interrupt triggered by a low or high level, write '01_B', '10_B' or '11_B' to the corresponding bit position. Initially, all external interrupts are triggered by high level. Note there are 2 bits for each external interrupt pin.

10.12.6 External Interrupt Polarity Register (EIPOLA)

This regiser has different meaning according to the value set in EIEDGE register. When a external interrupt is configured to be triggered by a level, the high or low trigger level is selected through this register. When a external interrupt is configured to be triggered by a edge, the value in this register has nothing to do with the triggerring edge.

10.12.7 External Interrupt Enable Register (EIENAB)

External Interrupt Enable Register selects each port pin, which has sub function for external interrupt, whether to use as external interrupt pin or normal port pin. When a bit in this register is written '0', the corresponding pin is used as general purpose I/O pin.

10.12.8 Register Description

IE (Interrupt Enable Register)

A8_H

7	6	5	4	3	2	1	0
EA	-	INT5E	INT4E-	INT3E	INT2E	INT1E	INT0E
RW	R	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

EA Globla Interrupt Enable Bit

0 Ignore interrupt request from any interrupt source.

1 Accept interrupt request

INT5E Enable or disable Pin Change Interrupt

0 Disable1 Enable

INT4E Enable or disable External Interrupt 3

0 Disable1 Enable

INT3E Enable or disable External Interrupt 2

0 Disable1 Enable

INT2E Enable or disable External Interrupt 1

0 Disable1 Enable

INT1E Enable or disable External Interrupt 0

0 Disable1 enableReserved

0 Disable1 enable

IE1 (Interrupt Enable Register 1)

 $A9_{H}$

7	6	5	4	3	2	1	0
-	-	INT11E	INT10E-	INT9E	INT8E	INT7E	INT6E
R	R	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

INT11E Reserved

INT0E

0 Disable1 Enable

INT10E Enable or disable USART Tx Interrupt

0 Disable1 Enable

INT9E Enable or disable UART Rx Interrupt

0 Disable1 Enable

INT8E, INT7E, Reserved

INT6E 0 Disable

1 enable

IE2 (Interrupt Enable Register 2)

 AA_H

7	6	5	4	3	2	1	0
-	-	INT17E	INT16E-	INT15E	INT14E	INT13E	INT12E
R	R	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

INT17E Reserved

0 Disable

1 Enable

INT16E Enable or disable Timer 3 Interrupt

0 Disable

1 Enable

INT15E Enable or disable Timer 2 Interrupt

0 Disable 1 Enable

INT14E Enable or disable Timer 1 Interrupt

0 Disable1 Enable

INT13E Enable or disable Timer 0 Interrupt

0 Disable

1 enable

INT12E Reserved

0 Disable

1 enable

IE3 (Interrupt Enable Register 3)

 AB_H

7	6	5	4	3	2	1	0
-	-	INT23E	INT22E-	INT21E	INT20E	INT19E	INT18E
R	R	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

INT23E Enable or disable EEPROM Interrupt

0 Disable

1 Enable

INT22E Enable or disable BIT Interrupt

0 Disable

1 Enable

INT21E Enalbe or disable WDT Interrupt

0 Disable

1 Enable

INT20E Reserved

0 Disable

1 Enable

INT19E Enable or disable KEYSCAN Interrupt

0 Disable

1 Enable

INT18E REMOCON (Carrier generator) Interrupt

0 Diable

1 Enable

IP (Interrupt Priority Register) B8_H 7 6 5 4 3 2 1 0 IP5 IP4 IP3 IP2 IP1 IP0 R R RW-RW RW RW RW RW

Initial value: 00_H

IP1 (Interrupt Priority Register 1)

F8_H

7	6	5	4	3	2	1	0
-	1	IP15	IP14	IP13	IP12	IP11	IP10
R	R	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

IP[5:0], IP1[5:0] Select Interrupt Group Priority

IP1x IPx Description
0 0 Group x is of level 0 priority (lowest)
0 1 Group x is of level 1 priority
1 0 Group x is of level 2 priority
1 1 Group x is of level 3 priority (highest)

EIFLAG (External Interrupt Flag Register)

AC_H

7	6	5	4	3	2	1	0
-	-	-	-	FLAG3	FLAG2	FLAG1	FLAG0
R	R	R-	R	RW	RW	RW	RW

Initial value: 00_H

FLAG[3:0]

External interrupt falg bit. To clear a flag, write '0' to each bit position.

0 External Interrupt not occurred

1 External Interrupt occurred

EIEDGE (External Interrupt Edge Register)

 AD_H

7	6	5	4	3	2	1	0
EDGE3R	EDGE3F	EDGE2R	EDGE2F	EDGE1R	EDGE1F	EDGE0R	EDGE0F
RW-	RW-	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

EDGEnR

Selects the trigger mode of each external interrupt pin. Trigger mode is also affected by the EDGEnF bit.

0 External interrupt is triggered by level (default)

1 External interrupt is triggered by a rising edge

EDGEnF

Selects the trigger mode of each external interrupt pin. Trigger mode is also affected by the EDGEnR bit.

0 External interrupt is triggered by level (default)

1 External interrupt is triggered by a falling edge

When EDGEnR and EDGEnF bits are set at the same time, an external interrupt is triggered by both rising and falling edge.

EIPOLA (External Interrupt Polarity Register)

 AE_{H}

7	6	5	4	3	2	1	0
-	-	-	-	POLA3	POLA2	POLA1	POLA0
RW	RW	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

POLA[3:0]

Selects the trigger level of external interrupt, high or log level.

When configured as level trigger mode

- 0 External interrupt is triggered by a high level (default)
- 1 External interrupt is triggered by a low level

EIENAB (External Interrupt Enable Register)

 AF_H

7	6	5	4	3	2	1	0
-	-	-	-	ENAB3	ENAB2	ENAB1	ENAB0
RW-	RW-	RW-	RW	RW	RW	RW	RW

Initial value: 00_H

ENAB[3:0]

Configure each port pin as external interrupt pin input

- 0 The port is not used for external interrupt (default)
- 1 The port is used for external interrupt

11. PERIPHERAL UNITS

11.1 Clock Generator

11.1.1 Overview

The clock generator module plays a main role in making a stable operating clock, SCLK. There's only one clock source in MC95FR332/432/364/464, which is the output of main oscillator, XINCLK, connected to the XIN and XOUT pins. The main clock input XINCLK is divided by 2, 4 or 8, and one of the divided clocks is used as internal operating clock, SCLK, according to the DIV[1:0] bits in SCCR register. By default, frequency of SCLK is same as that of XINCLK, ie, divided by 1.

11.1.2 Block Diagram

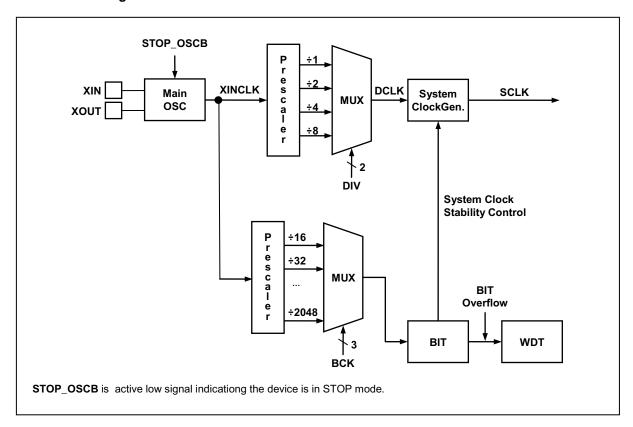


Figure 11.1 Block Diagram of Clock Generator

11.1.3 Register Map

Name	Address	Dir	Default	Description
SCCR	8A _H	R/W	00 _H	System and Clock Control Register

Table 11-1 Register Map of Clock Generator

11.1.4 Register Description

SCCR (System and Clock Control Register)

8A_H

7	6	5	4	3	2	1	0
-	DIV1	DIV0	CBYS	-	-	•	-
-	RW	RW-	RW	-	-	-	-

Initial value: 00_H

DIV[1:0] Selects the divide ratio of internal operating clock, SCLK.

 $\begin{array}{llll} \text{DIV1} & \text{DIV0} & \text{Description (in case of } f_{\text{XIN}} = 8 \text{MHz}) \\ 0 & 0 & f_{\text{XIN}} / 1 \ (8 \text{MHz}) \\ 0 & 1 & f_{\text{XIN}} / 2 \ (4 \text{MHz}) \\ 1 & 0 & f_{\text{XIN}} / 4 \ (2 \text{MHz}) \\ 1 & 1 & f_{\text{XIN}} / 8 \ (1 \text{MHz}) \end{array}$

CBYS

This bit controls the moment when the SCLK is altered. When this bit is '0', the internal operating clock is updated after the device enters STOP mode by the command "PCON=03 $_{\rm H}$ " and wakes-up from that mode. But when this bit is '1', the SCLK changes right after DIV[1:0] is modified.

- 0 Internal clock is altered during STOP mode.
- 1 Internal clock is altered while user program is running

11.2 Basic Interval Timer (BIT)

11.2.1 Overview

BIT module is a 8-bit counter used to guarantee oscillator stabilization time when MC95FR332/432/364/464 is reset or waken from STOP mode. The BIT counter is clocked by a clock divided from XINCLK and the divide ratio is selected from BCK[2:0] bits in BCCR register, from 16 to 2048. At reset, the BIT counter is clocked by a clock which is divided by 2048 from XINCLK.

BIT is a 8-bit binary counter and has the following features.

- Guarantees the oscillation stabilization time when a power-on or reset occurs
- Guarantees the oscillation stabilization time when this device awakes from STOP mode
- Generates interval timer interrupt as a watch function

11.2.2 Block Diagram

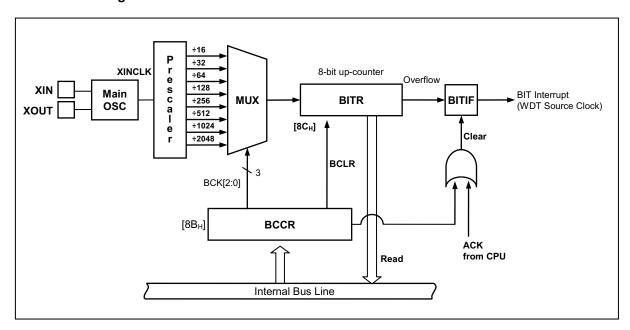


Figure 11.2 Block Diagram of BIT

11.2.3 Register Map

Name	Address	Dir	Default	Description
BCCR	8B _H	R/W	77 _H	BIT Clock Control Register
BITR	8C _H	R	00н	Basic Interval Timer Register

Table 11-2 Register Map of BIT

11.2.4 Register Description

BCCR (BIT Clock Control Register)

8B_H

7	6	5	4	3	2	1	0
BITF	BCK2	BCK1	BCK0	BCLR	PRD2	PRD1	PRD0
RW							

Initial value: 77_H

BITF

Reflects the state of BIT interrupt. To clear this flag, write '0' to this bit position. The BIT interrupt occurs when BIT counter reaches to the predefined value. The interrupt interval is decided from BCK[2:0] and PRD[2:0] bits.

0 BIT Interrupt not occurred

1 BIT Interrupt occurred

BCK[2:0]	BCK2	BCK1	BCK0	BIT Clock	BIT Interrupt Period NOTE
	0	0	0	f _{XIN} /2^4	0.512ms
	0	0	1	fxIN/2^5	1.024ms

0 $f_{XIN}/2^{\hspace{-0.1cm} \wedge \hspace{-0.1cm} 6}$ 1 0 2.048ms 0 1 1 $f_{XIN}/2^7$ 4.096ms 1 0 0 $f_{XIN}/2^8$ 8.192ms 0 f_{XIN}/2^9 16.384ms 0 f_{XIN}/2^10 32.768ms f_{XIN}/2^11 65.536ms (default)

BCLR Clears BIT Counter. Writing '1' to this bit resets BIT counter to 00_H. BCLR bit is auto cleared.

0 BIT counter free runs

1 BIT counter is cleared and counter re-starts

PRD[2:0]

Selects BIT interrupt interval. When BIT counter reaches to the value listed below, an interrupt may be issued. The BIT nterrupt period is same as the clock period for WDT counter.

PRD2	PRD1	PRD0	Interrupt condition				
0	0	0	When BITR[0] = 1				
0	0	1	When BITR[1:0] = 11				
0	1	0	When BITR[2:0] = 111				
0	1	1	When BITR[3:0] = 1111				
1	0	0	When BITR[4:0] = 11111				
1	0	1	When BITR[5:0] = 111111				
1	1	0	When BITR[6:0] = 1111111				
1	1	1	When BITR[7:0] = 11111111				

NOTE This is the case when the frequency of main oscillator input clock, XIN, is 8MHz and the overflow period PRD[2:0] is set to 111_B , where f_{XIN} is the frequency of XIN clock.

The BIT interrupt period is acquired by multiplying clock period of BIT counter and the pre-defined value of BIT counter. That is, $T_{BIT_INT} = T_{BIT_CLK} \times 2^{(PRD[2:0]+1)}$, where T_{BIT_INT} is the interval of BIT interrupt and T_{BIT_CLK} is the clock period of BIT counter.

BITR (Basic Interval Timer Register)

8C_H

7	6	5	4	3	2	1	0
ВП7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
R	R	R	R	R	R	R	R

Initial value : 00_H

BIT[7:0] BIT counter value

11.3 Watch Dog Timer (WDT)

11.3.1 Overview

The WDT, if enabled, generates an interrupt or a system reset when the WDT counter reaches the given time-out value set in WDTR. In normal operation mode, it is required that the user software clears the WDT counter by setting WDTCL bit in WDTMR register before the time-out value is reached. If the system doesn't restart the counter, an interrupt or a system reset will be issued.

The main features are:

- 2 operating modes : Interrupt or System Reset mode
- Selectable Time-out period

In Interrupt mode, the WDT gives an interrupt when the WDT counter expires. This interrupt can be used to wake the device from SLEEP mode (not from STOP mode NOTE), and also as a general system timer. One example is to limit the maximum time allowed for certain operations, giving an interrupt when the operation has run longer than expected. In System Reset mode, the WDT gives a reset when the timer expires. This is typically used to prevent system hang-up in case of runaway code.

The clock source of Watch Dog Timer is the BIT overflow. The interval of WDT interrupt is decided by BIT overflow period and WDTR value, and is calculated as follows.

WDT Interrupt Interval = (BIT overflow period) x (WDTR + 1)

NOTE MC95FR332/432/364/464 has only one clock source, XINCLK, and in STOP mode, the main oscillator stops. Also, the WDT/BIT module stops operation.

11.3.2 Block Diagram

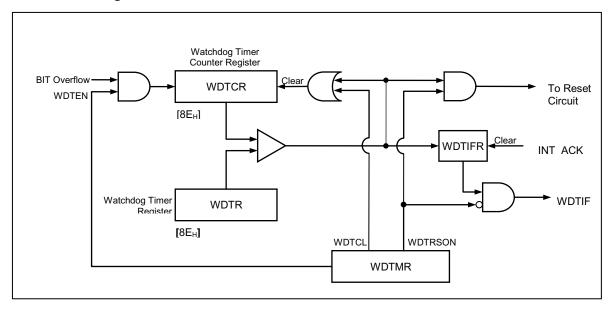


Figure 11.3 Block Diagram

11.3.3 Register Map

Name	Address	Dir	Default	Description
WDTR	8E _H	W	FF _H	Watch Dog Timer Register
WDTCR	8E _H	R	00 _H	Watch Dog Timer Counter Register
WDTMR	8D _H	R/W	00н	Watch Dog Timer Mode Register

Table 11-3 Register Map of WDT

11.3.4 Register Description

WDTR (Watch Dog Timer Register, Write Case)

8E_H

7	6	5	4	3	2	1	0
WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0
W	W	W	W	W	W	W	W

Initial value: FF_H

WDTR[7:0] Time-out value of WDT counter (=the period of WDT interrupt)
WDT Interrupt Interval = (BIT Interrupt Interval) x (WDTR + 1)

Precaution must be taken when writing this register. To ensure proper operation, the written value, WDTR should be greater that 01_{H} .

WDTCR (Watch Dog Timer Counter Register, Read Case)

8E_H

7	6	5	4	3	2	1	0
WDTCR	7 WDTCR6	WDTCR5	WDTCR4	WDTCR3	WDTCR2	WDTCR1	WDTCR0
R	R	R	R	R	R	R	R

Initial value: 00_H

WDTCR[7:0] The value of WDT counter

WDTMR (Watch Dog Timer Mode Register)

8D_H

7	6	5	4	3	2	1	0
WDTEN	WDTRSON	WDTCL	-	-	-	-	WDTIFR
RW	RW	RW	-	-	-	-	RW

Initial value: 00H

WDTEN Enable or disable WDT module

0 Disable1 Enable

WDTRSON Decides whether to use WDT interrupt as a reset source or not

0 WDT operates as a free-running 8-bit timer

1 WDT reset is generated when WDT counter overflows

WDTCL Initialize WDT counter

0 Free runs

1 Reset WDT counter. This bit is auto-cleared after 1 machine cycle.

WDTIFR

This flag is set when WDT interrupt is generated. This bit is cleared when the CPU services or acknowledges WDT interrupt or s/w write'0' to this bit position.

- 0 WDT interrupt not occurred
- 1 WDT interrupt occurred

11.3.5 WDT Interrupt Timing

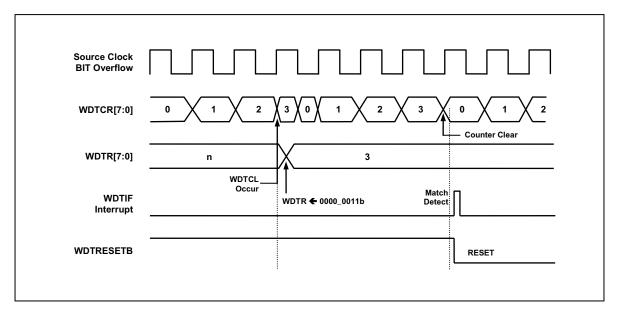


Figure 11.4 WDT Interrupt and Reset Timing

11.4 TIMER/PWM

11.4.1 8-bit Timer/Event Counter 0, 1

11.4.1.1 Overview

Timer 0 and Timer 1 can be used as either separate 8-bit Timer/Counter or one combined 16-bit Timer/Counter. Each 8-bit Timer/Event Counter module has a multiplexer, 8-bit timer data register, 8-bit counter register, mode control register, input capture register and comparator. For PWM mode of operation, Timer 1 has additional registers which are PWM1PR, PWM1DR and PWM1HR.

Timer 0 and Timer 1 have 5 operating modes as following.

- two separate 8-bit Timer/Counter Mode
- two separate 8-bit Capture Mode
- 16-bit Timer/Counter Mode
- 16-bit Capture Mode
- PWM Mode

Timer 0, 1 are clocked by an internal an external clock source (EC0). The clock source is selected by clock select logic which is controlled by the clock select bits(T0CK[2:0], T1CK[2:0]) located in the T0CR and T1CR registers. By configuring T1CK[2:0] bits, Timer 1 can be clocked by the clock source used for Timer 0 or by its own divided clock NOTE. Internal clock source is derived from the divider logic of each timer module. In Capture Mode, the counter value is captured into each Input Capture Reigster when a external interrupt condition is generated on INT0 or INT1 pins. In 8/16-bit Timer/Counter Mode, Timer 0 compares counter value with the value in timer data register and when counter reaches to the compare value, the timer output is toggled internally. When the T0_PE bit in T0CR register is set, the timer output overrides the normal port functionality of the I/O pin it is connected to. Timer 1 operates similar to Timer 0, and in addition can generate PWM wave form when configured as PWM mode. And the Timer 1 output or PWM output appears on T1/PWM1 pin.

NOTE SCLK is internal operating clock, which is the output of clock divider logic. The input source of clock divider is XINCLK, the output of main oscillator. The divide ratio can be selected from DIV[1:0] bits in SCCR register and the default frequency is that of main oscillator output, XINCLK. For more information about clock scheme, efer to chapter 11.1.

The next table shows register setting for each timer operating mode.

16 Bit	CAP0	CAP1	PWM1E	T0CK[2:0]	T1CK[1:0]	T0/1_PE	Timer 0	Timer 1	
0	0	0	0	XXX	XX	00	8-bit Timer	8-bit Timer	
0	0	1	0	111	XX	00	8-bit Event Counter	8-bit Capture	
0	1	0	0	XXX	XX	01	8-bit Capture	8-bit Compare Output	
0	0	0	1	XXX	XX	11	8-bit Timer/Counter	10-bit PWM	
1	0	0	0	XXX	11	00	16-bit Timer		
1	0	0	0	111	11	00	16-bit Event Counter		
1	1	1	0	XXX	11	00	16-bit Capture		
1	0	0	0	XXX	11	01	16-bit Compare Output		

Table 11-4 Operating modes of Timer 0, 1

11.4.1.2 8-Bit Timer/Counter Mode

8-bit Timer/Counter Mode is selected when the T0CR and T1CR registers are configured as follows.

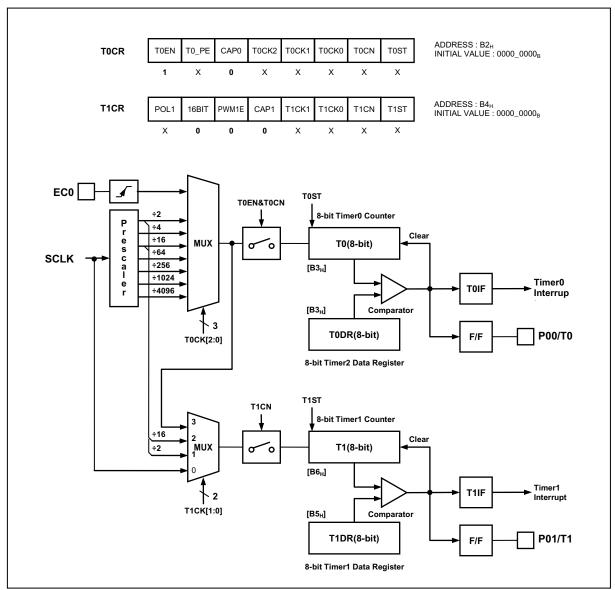


Figure 11.5 Block Diagram of Timer 0,1 in 8-bit timer/counter mode

Each Timer 0 and Timer 1 has its own counter register and data register. The counter is clocked by an internal or external clock source. Internal clock source comes from divider logic whose input clock is SCLK. For Timer 0 module, SCLK is divided by 2, 4, 16, 64, 256, 1024 and 4096. One of these divided clock is used as internal clock source of Timer 0. Divider logic of Timer 1 is much simpler. The SCLK is divided by 2 or 16. Along with these divided clock sources, the SCLK itself can be used as internal clock source of Timer 1. And Timer 1 can also be clocked by the clock source of Timer 0. Each divide ratio is decided by T0CK[2:0] and T1CK[2:0] bits. When the external clock , EC0 is selected as a clock source, the counter increases at rising edge of the clock. When the counter value of each 8-bit timer matches individual data register, an interrupt can be requested. The interrupt flags can be read through T3CR2 register.

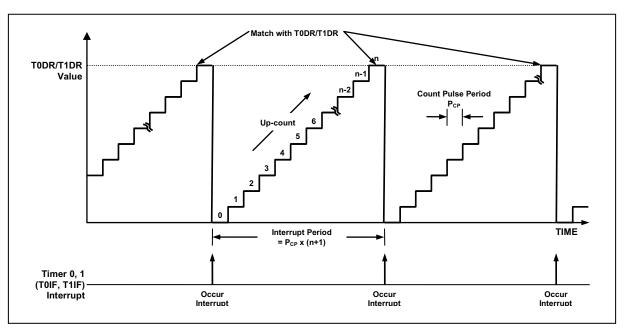


Figure 11.6 Interrupt Period of Timer 0, 1

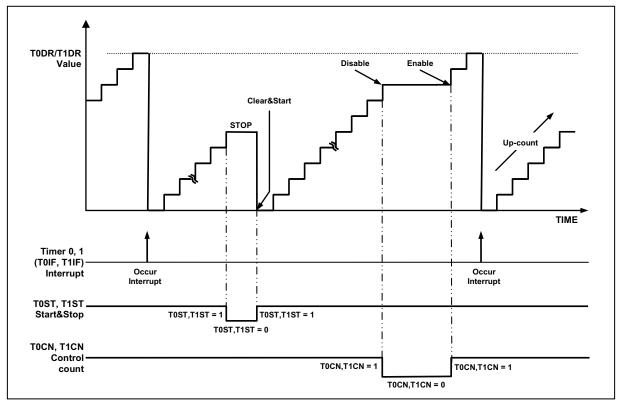


Figure 11.7 Counter Operation of Timer 0, 1

11.4.1.3 16-bit Timer/Counter Mode

When Timer 0, 1 are configured as 16-bit Timer/Counter Mode, Timer 0 becomes the lower part of the new 16-bit counter. When the lower 8-bit counter T0 matches T0DR and higher 8-bit counter T1 matches T1DR simultaneously, a 16-bit timer interrupt is issued via Timer 0 interrupt(not Timer 1). Both T0 and T1 should use the same clock source, which leads to the configuration, T1CK1=1, T1CK0=1 and 16BIT=1 in T1CR register. This means to use two separate 8-bit counters(T0, T1) as a single 16-bit counter, T1 must be clocked by the clock source of T0. This is shown in the following figure.

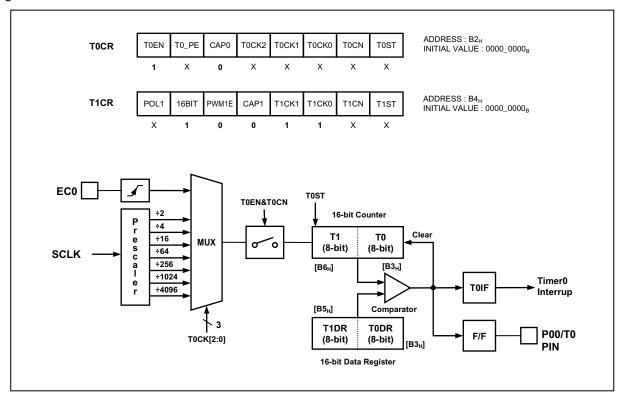


Figure 11.8 Block Diagram of Timer 0, 1 in 16-bit Timer/ Counter mode

In 8-bit Timer/Counter Mode, timer output is toggled and appears on P00(P01) port whenever T0(T1) matches T0DR(T1DR). In 16-bit Timer/Counter Mode, timer output is toggled and appears on P01 port whenever T1+T0 matches T1DR+T0DR. The initial value of each timer's output is '0' and output frequency is calculated by the following equation.

$$f_{COMP} = \frac{\text{Timer Clock Frequency}}{2 \times \text{Prescaler Value} \times (TnDR + 1)}$$

where f_{COMP} is the frequency of timer output, TnDR is T0DR or T1DR in 8-bit timer mode or concatenated T1DR+T0DR in 16-bittimer mode.

To observe timer output via port, T0_PE in T0CR register or T1_PE in PWM1HR register must be set.

11.4.1.4 8-bit Capture Mode

By setting CAP0(CAP1) to '1' in T0CR(T1CR) register, Timer 0(Timer 1) operates in Capture Mode. Basic timer function is still effective even in capture mode. So when the counter value reaches to the pre-defined data value in data register, an interrupt can be issued. When an external interrupt generating condition is detected on port P36(P37), the counter value is captured into capture register CDR0(CDR1). At the same time the counter T0(T1) is cleared to 00_H and counts up again.

The timer interrupt in Capture Mode is very useful when the interval of capture event on port P36(P37) is longer than the interrupt period of timer. That is, by counting number of timer interrupt, user software can figure out the time interval of external event. As you know, external interrupt is triggered by a falling edge, a rising edge or both edge according to the setting of EDEDGE register(Interrupt Edge Selection Register, AD_H).

CDR0, T0 and T0DR registers share peripheral address. Reading T0DR gives the value of CDR0 in Capture Mode, T0 in Timer/Count Mode. Writing T0DR alters the contents of T0DR in any mode. CDR1, T1 and T1DR is all the same as above.

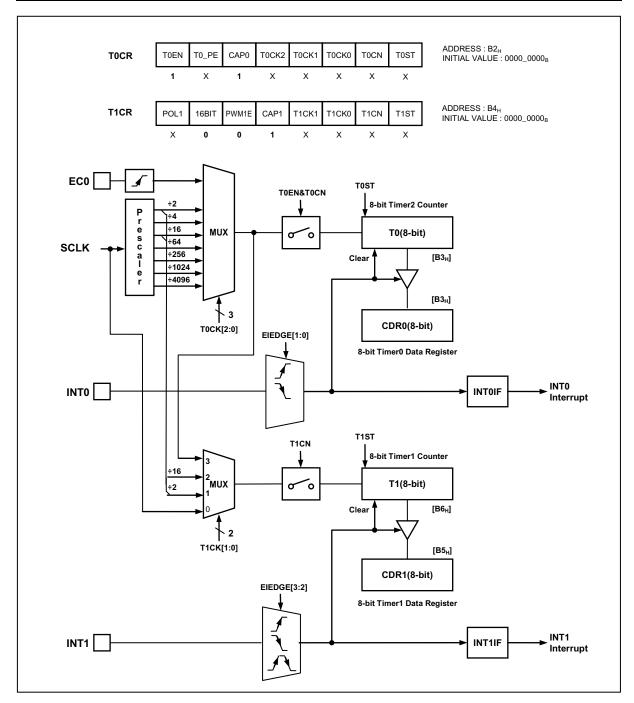


Figure 11.9 Block Diagram of Timer 0, 1 in 8-bit Capture mode

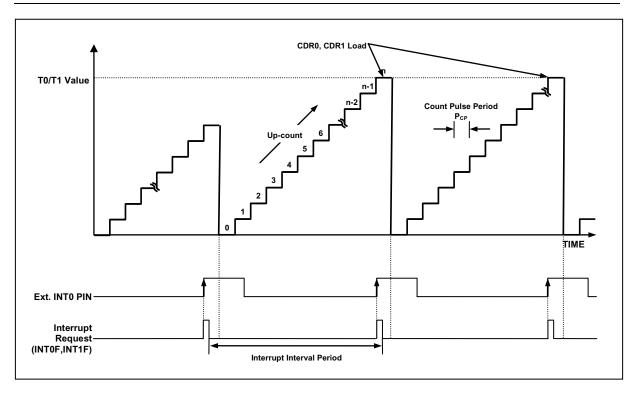


Figure 11.10 Timer 0,1 Operation in 8-bit Input Capture Mode

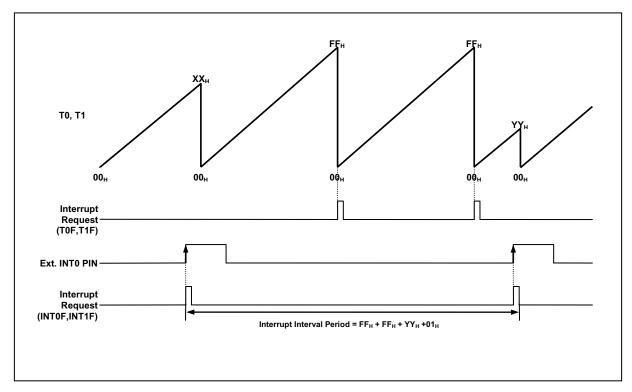


Figure 11.11 Example of Capture Interval Calculation in 8-bit Input Capture Mode

11.4.1.5 16-bit Capture Mode

If two 8-bit timers are combined to operate as a single 16-bit timer, this new timer can be in 16-bit Capture Mode. The operating mechanism is just like a 8-bit timer in capture mode except counter and capture register is 16-bit wide which are concatenated T0+T1 and CDR0+CDR1. The 16-bit counter T0+T1 is clocked by a clock source selected by T0CK[2:0] bits in T0CR register. And the T1CK1, T1CK0 and 16BIT bits in T1CR register must be set to '1' to operate correctly. The following figure shows how the Timer 0, 1 operate in 16-bit Capture Mode.

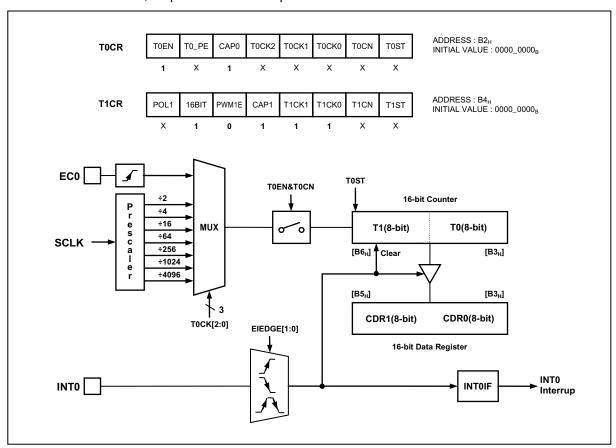


Figure 11.12 Block Diagram of Timer 0, 1 in 16-bit Capture Mode

11.4.1.6 PWM Mode (Timer 1)

Timer 1 supports simple PWM waveform generating function by setting PWM1E bit in T1CR regiser. To output the PWM waveform through T1/PWM1 pin, the T1_PE bit in PWM1HR register is to be set. The period and duty of PWM waveform are decided by PWM1PR(PWM Period Register), PWM1DR(PWM Duty Register) and PWM1HR registers. Note the PWM resolution is 10-bit depth, the period and duty is calculated by next equation.

PWM Period = [PWM1HR[3:2], PWM1PR] X Timer 1 Clock Period PWM Duty = [PWM1HR[1:0], PWM1DR] X Timer 1 Clock Period

D. J. C.	Frequency							
Resolution	T1CK[1:0]=00 (125ns)	T1CK[1:0]=01 (250ns)	T1CK[1:0]=10 (2us)					
10-bit	7.8KHz	3.9KHz	0.49KHz 0.98KHz					
9-bit	15.6KHz	7.8KHz						
8-bit	31.2KHz	15.6KHz	1.95KHz					
7-bit	62.4KHz	31.2KHz	3.91KHz					

Table 11-5 PWM Frequency vs. Resolution (In case frequency of SCLK(=f_{SCLK}) is 8MHz)

The POL1 bit in T1CR register determines the polarity of PWM waveform. Setting POL1=1 makes PWM waveform high for duty value. In other case, PWM waveform is low for duty value.

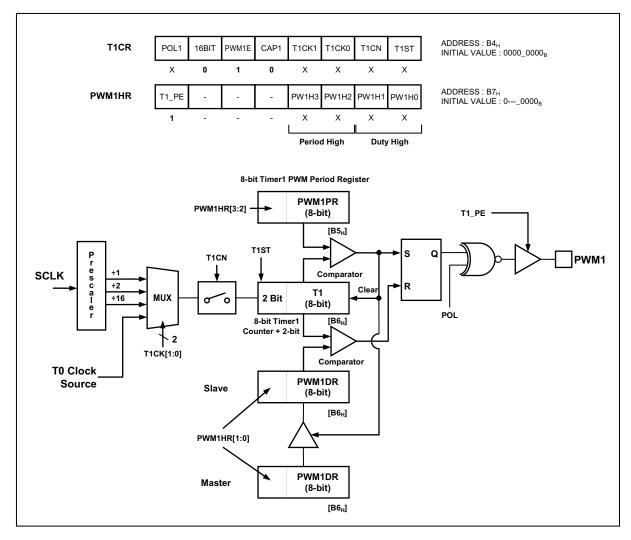


Figure 11.13 Block Diagram of Timer 1 in PWM mode

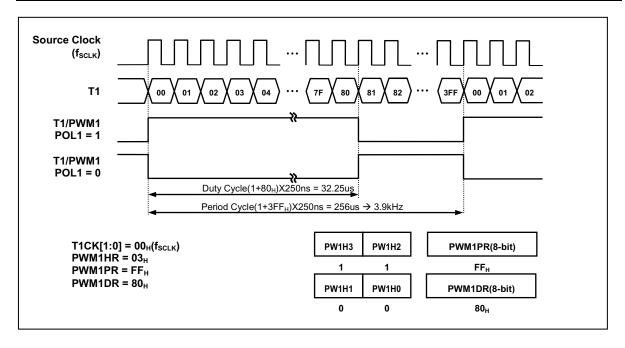


Figure 11.14 Example of PWM Waveform (In case frequency of SCLK(=f_{SCLK}) is 4MHz)

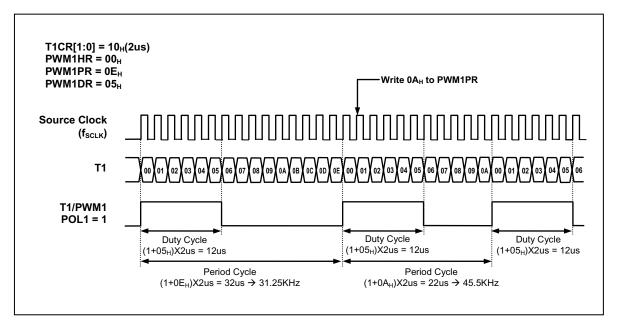


Figure 11.15 Behaviour of waveform when changing period (In case f_{SCLK} is 4MHz)

11.4.1.7 Register Map

Name	Address	Dir	Default	Description
T0CR	B2 _H	R/W	00н	Timer 0 Mode Control Register
T0	ВЗн	R 00 _H Timer 0 Register		Timer 0 Register
T0DR	ВЗн	W	FF _H	Timer 0 Data Register
CDR0	ВЗн	R	00 _H	Capture 0 Data Register
T1CR	B4 _H	R/W	00 _H	Timer 1 Mode Control Register

T1DR	В5н	W FF _H		Timer 1 Data Register
PWM1PR	B5 _H	W FF _H Timer 1 PWM Period Register		Timer 1 PWM Period Register
T1	В6н	R	R 00 _H Timer 1 Register	
PWM1DR	В6н	R/W	00 _H	Timer 1 PWM Duty Register
CDR1	B6 _H	R	00 _H	Capture 1 Data Register
PWM1HR	B7 _H	W	00 _H	Timer 1 PWM High Register

Table 11-6 Register Map of Timer 0, 1

11.4.1.8 Register Description

T0CR (Time	T0CR (Timer 0 Mode Control Register) B2 _H											
7	5	4		3	2	1	0					
T0EN	T0_PE	CAP0	TOC	K2	T0CK1	TOCKO	T0CN	T0ST				
RW	RW	RW	RA	N	RW	RW	RW	RW				
								Initial value: 00 _H				
		T0EN	Enables	s or disa	ables Timer 0	module.						
			0	Disabl	e Timer 0							
	1	Enable	e Timer 0									
		T0_PE	Controls whether to output Timer 0 output or not through I/O pin.									
			0 Timer 0 output does not come out through I/O pin									
			1	Timer	0 output over	rides the norn	nal port function	onality of I/O pin				
		CAP0	Selects	operati	ing mode of T	Timer 0.						
			0	Timer/	Counter mod	е						
			1	-	re mode							
T0CK[2:0]			Selects	clock s	ource of Time	er 0. ^{NOTE}						
			T0CK2	T0Cł	K1 T0CK0	Timer 0 clo	ock					
			0	0	0	f _{SCLK} /2						

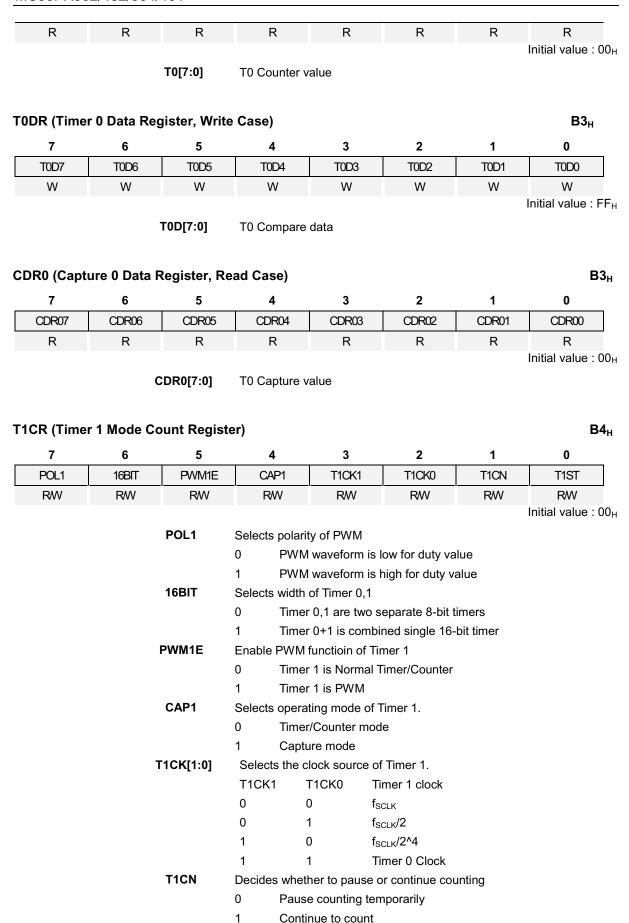
T0CK2	T0CK1	T0CK0	Timer 0 clock
0	0	0	f _{SCLK} /2
0	0	1	f _{SCLK} /2^2
0	1	0	f _{SCLK} /2^4
0	1	1	f _{SCLK} /2^6
1	0	0	f _{SCLK} /2^8
1	0	1	f _{SCLK} /2^10
1	1	0	f _{SCLK} /2^12
1	1	1	External Clock (EC0)

TOCN Decides whether to pause or continue counting

0 Pause counting temporarily

1 Continue to count

T0ST Desides whether to start or stop counter


0 Stops counting

1 Clear counter and starts up-counting

 $^{^{\}mbox{\scriptsize NOTE}}$ $f_{\mbox{\scriptsize SCLK}}$ is the frequency of internal operating clock, SCLK.

٠	T0 (Timer 0	Register, Re	ead Case)					B	3 _H
	7	6	5	4	3	2	1	0	
	T07	T06	T05	T04	T03	T02	T01	T00	

Decides whether to start or stop counter

T1ST

0 Stops counting

1 Clear counter and starts up-counting

T1DR (Timer 1 Data Register, Write Case)

B₅_H

7	6	5	4	3	2	1	0
T1D7	T1D6	T1D5	T1D4	T1D3	T1D2	T1D1	T1D0
W	W	W	W	W	W	W	W

Initial value : FF_H

T1D[7:0] T1 Compare data

PWM1PR (Timer 1 PWM Period Register, Write Case)

B5_H

7	6	5	4	3	2	1	0
T1PP7	T1PP6	T1PP5	T1PP4	T1PP3	T1PP2	T1PP1	T1PP0
W	W	W	W	W	W	W	W

Initial value : FF_H

T1PP[7:0] Period of PWM waveform

T1 (Timer 1 Register, Read Case)

B₆H

7	6	5	4	3	2	1	0
T17	T16	T15	T14	T13	T12	T11	T10
R	R	R	R	R	R	R	R

Initial value: 00_H

T1[7:0] T1 Counter value

PWM1DR (Timer 1 PWM Duty Register, Write Case)

B6_H

7	6	5	4	3	2	1	0
T1PD7	T1PD6	T1PD5	T1PD4	T1PD3	T1PD2	T1PD1	T1PD0
W	W	W	W	W	W	W	W

Initial value: 00_H

T1PD[7:0] Duty of PWM waveform. NOTE) This register is meaningful only when PWM1E bit in T1CR register is '1'.

CDR1 (Capture 1 Data Register, Read Case)

B₆H

7	6	5	4	3	2	1	0
CDR17	CDR16	CDR15	CDR14	CDR13	CDR12	CDR11	CDR10
R	R	R	R	R	R	R	R

Initial value: 00_H

CDR1[7:0] T1 Capture value

PWM1HR (Timer 1 PWM High Register)

B7_H

7	6	5	4	3	2	1	0
T1_PE	_	-	-	PW1H3	PW1H2	PW1H1	PW1H0

W	-	-	-	W	W	W	W		
							Initial value : 00 _H		
		T1_PE	Controls whet this bit is write	•	Timer 1 outpu	ut or not throu	gh I/O pin. Note		
			0 Timer 1 output does not come out through I/O pin						
			1 Timer	1 output over	rrides the norn	nal port function	onality of I/O pin		
	F	PW1H[3:2]	High (bit [9:8]) value of PW	M period				
	F	PW1H[1:0]	High (bit [9:8]) value of PW	'M duty				

When Timer 1 operates in PWM mode, PW1H[3:2] and T1PP constitute the period of PWM, PW1H[1:0] and T1PD constitute the duty of PWM.

11.4.2 16-bit Timer 2

11.4.2.1 Overview

16-bit Timer 2 is composed of Multiplexer, Timer Data Register High/Low, Timer Register High/Low and Mode Control Register.

Timer 2 is clocked by Carrier Signal (CRF) from Carrier Generator module or by an internal clock source deriving from clock divider logic where the base clock is SCLK. This timer supports output compare(Timer/Counter) and input capture function.

11.4.2.2 16-bit Output Compare Mode

When Timer 2 is in Output Compare Mode, timer output is toggled and appears on P02 port whenever T2(T2H+T2L) matches T2DR(T2DRH+T2DRL). An interrupt can be requested if enabled and the interrupt flag can be read through T3CR2 register. The initial value of timer output is '0' and output frequency is calculated by the following equation.

$$f_{COMP} = \frac{\text{Timer Clock Frequency}}{2 \times \text{Prescaler Value} \times (T2DR + 1)}$$

where f_{COMP} is the frequency of timer output, T2DR is concatenated T2DRH+T2DRL. The clock source of Timer 2 is selected by T2CK[2:0] bits in T2CR register. To observe timer output via port, set T2_PE bit in T2CR register to '1'.

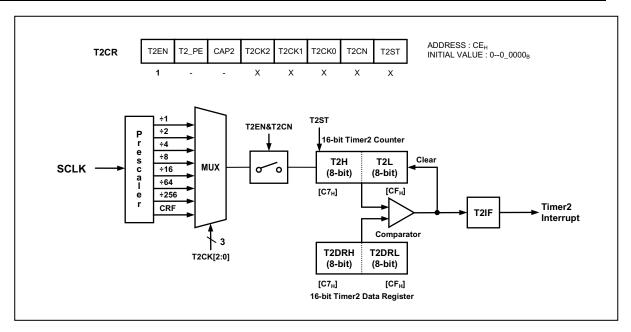


Figure 11.16 Block Diagram of 16-bit Timer 2 in Output Compare Mode

11.4.2.3 16-bit Capture Mode

Capture Mode is enabled by setting CAP2 bit in T2CR register. The clock source is the same as in output compare mode of operation. When T2H+T2L reaches to the value of T2DRH+T2DRL, an interrupt is requested if enabled. When a compare-match occurs, the counter values T2H and T2L are captured into the capture registers CDR2H and CDR2L respectively. At the same time, the counter is cleared to $0000_{\rm H}$ and starts up-counting.

Bit 4 and 5 in EIEDGE (External Interrupt Edge Selection Register, AD_H) register select the triggering condition of external interrupt 2(INT2), a falling edge, a rising edge or both edge.

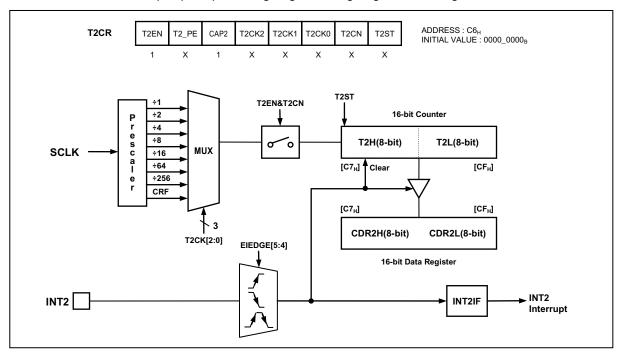


Figure 11.17 Block Diagram of Timer 2 in Capture Mode

11.4.2.4 Register Map

Name	Address	Dir	Default	Description
T2CR	C6 _H	R/W	00 _H	Timer 2 Mode Control Register
T2H	C7 _H	R	00 _H	Timer 2 Counter High
T2DRH	С7н	W	FF _H	Timer 2 Data Register High
CDR2H	C7 _H	R	00 _H	Timer 2 Capture Data Register High
T2L	CF _H	R/W	00н	Timer 2 Counter Low
T2DRL	CF _H	W	FF _H	Timer 2 Data Register Low
CDR2L	CF _H	R	00 _H	Timer 2 Capture Data Register Low

Table 11-7 Register Map of Timer 2

11.4.2.5 Register Description

CDR2H, T2DRH and T2H registers share peripheral address. Reading T2DRH gives CDR0 in Capture Mode, T2H in Output Compare Mode. Writing T2DRH alters the contents of T2DRH in any mode. This applies to the case of CDR2L, T2DRL and T2L registers.

R (Time	er 2 Mode Co	ontrol Regi	ster)					С			
7	6	5	4	ı	3	2	1	0			
T2EN	T2_PE	CAP2	T20	CK2	T2CK1	T2CK0	T2CN	T2ST			
RW	RW	RW	R/	W	RW	RW	RW	RW			
								Initial value :			
		T2EN	Enable	s or disat	oles Timer 2	module.					
			0	Disable	Timer 2						
			1 Enable Timer 2								
		T2_PE	Control	s whethe	r to output T	imer 2 output	or not throug	h I/O pin.			
			0	Timer 2	output does	not come ou	t through I/O	pin			
			1	Timer 2	output over	rides the norn	nal port function	onality of I/O _I			
		CAP2	Selects	operatin	g mode of T	ïmer 2.					
			0	Timer/C	ounter mod	е					
			1	Capture							
	Т	2CK[2:0]	Selects	clock so	urce of Time	er 2. ^{NOTE}					
			T2CK2	T2CK ²	T2CK0	Timer 2 clo	ock				
			0	0	0	f_{SCLK}					
			0	0	1	f _{SCLK} /2 ¹					
			0	1	0	$f_{SCLK}/2^2$					
			0	1	1	$f_{SCLK}/2^3$					
			1	0	0	$f_{SCLK}/2^4$					
			1	0	1	f _{SCLK} /2^6					
			1	1	0	f _{SCLK} /2^8					
			1 1 CRF (Carrier)								
		T2CN	Decides whether to pause or continue counting.								
			0 Pasue counting temporarily								
			1	Continu	e to count						

Decides whether to start or stop counter

T2ST

0 Stops counting

1 Clears counter and starts up-counting

 $^{\mbox{\scriptsize NOTE}}$ $f_{\mbox{\scriptsize SCLK}}$ is the frequency of internal operating clock, SCLK.

T2L (Timer 2 Counter Low, Read Case)

 CF_H

7	6	5	4	3	2	1	0
T2L7	T2L6	T2L5	T2L4	T2L3	T2L2	T2L1	T2L0
R	R	R	R	R	R	R	R

Initial value: 00_H

T2L[7:0] T2 Counter Low

T2DRL (Timer 2 Data Register Low, Write Case)

CF_H

	7	6	5	4	3	2	1	0
T2	DRL7	T2DRL6	T2DRL5	T2DRL4	T2DRL3	T2DRL2	T2DRL1	T2DRL0
	W	W	W	W	W	W	W	W

Initial value: FF_H

T2DRL[7:0] T2 Compare Data Low

CDR2L (Capture Data Register 2 Low, Read Case)

CF_H

7	6	5	4	3	2	1	0
CDR2L7	CDR2L6	CDR2L5	CDR2L4	CDR2L3	CDR2L2	CDR2L1	CDR2L0
R	R	R	R	R	R	R	R

Initial value: 00_H

CDR2L[7:0] T2 Capture Data Low

T2H (Timer 2 Counter High, Read Case)

С7_н

7	6	5	4	3	2	1	0
T2H7	T2H6	T2H5	T2H4	T2H3	T2H2	T2H1	T2H0
R	R	R	R	R	R	R	R

Initial value: 00H

T2H[7:0] T2 Counter High

T2DRH (Timer 2 Data Register High, Write Case)

C7_H

7	6	5	4	3	2	1	0
T2DRH7	T2DRH6	T2DRH5	T2DRH4	T2DRH3	T2DRH2	T2DRH1	T2DRH0
W	W	W	W	W	W	W	W

Initial value : FF_H

T2DRH[7:0] T2 Compare Data High

CDR2H (Capture Data Register 2 High, Read Case)

C7_H

	7	6	5	4	3	2	1	0
	CDR2H7	CDR2H6	CDR2H5	CDR2H4	CDR2H3	CDR2H2	CDR2H1	CDR2H0
Ī	R	R	R	R	R	R	R	R

Initial value: 00_H

CDR2H[7:0] T2 Capture Data High

11.4.3 16-bit Timer 3

11.4.3.1 Overview

16-bit Timer 3 is composed of Multiplexer, Timer Data Register High/Low, Timer Register High/Low, Input Capture Register High/Low, Mode Control Register, PWM Duty High/Low and PWM Period High/Low Register.

Timer 3 is can be clocked by Carrier Signal(CRF) from Carrier Generator module or by an internal clock source deriving from clock divider logic where the base clock is SCLK.

11.4.3.2 16-bit Output Compare Mode

When Timer 3 is in Output Compare Mode, timer output is toggled and appears on P03 port whenever T3(T3H+T3L) matches T3DR(T3DRH+T3DRL). An interrupt can be requested if enabled and the interrupt flag can be read through T3CR2 register. The initial value of timer output is '0' and output frequency is calculated by the following equation.

$$f_{COMP} = \frac{\text{Timer Clock Frequency}}{2 \times \text{Prescaler Value} \times (T3DR + 1)}$$

where f_{COMP} is the frequeny of timer output. T3DR is concatenated T3DRH+T2DRL. The clock source of Timer 3 is selected by T3CK[2:0] bits in T3CR register. To observe timer output via port, set T3_PE bit in T3CR2 register to '1'.

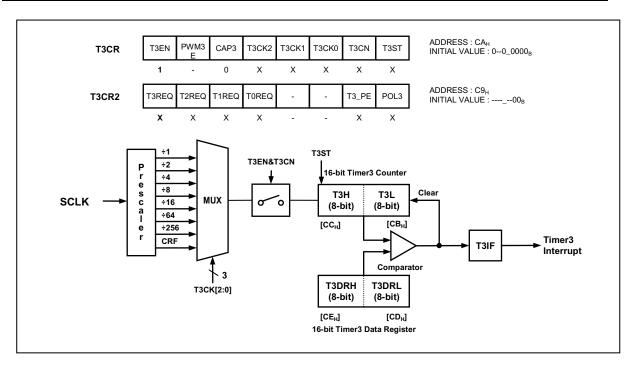


Figure 11.18 Block Diagram of Timer 3 in Output Compare Mode

11.4.3.3 16-bit Capture Mode

Capture Mode is enabled by setting CAP3 bit in T3CR register. The clock source is the same as in output compare mode of operation. When T3H+T3L reaches to the value of T3DRH+T3DRL, an interrupt is requested if enabled. When a compare-match occurs, the counter values T3H and T3L are captured into the capture registers CDR3H and CDR3L respectively. At the same time, the counter is cleared to $0000_{\rm H}$ and starts up-counting.

Bit 6 and 7 in EIEDGE(External Interrupt Edge Selection Register, AD_H) register select the triggering condition of external interrupt 3(INT3), a falling edge, a rising edge or both edge.

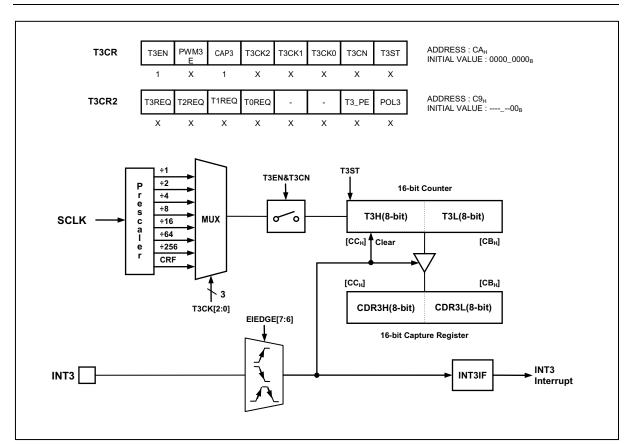


Figure 11.19 Block Diagram of Timer 3 in Capture Mode

11.4.3.4 PWM Mode

Timer 3 supports simple PWM waveform generating function by setting PWM3E bit in T3CR register. As Timer 3 is 16-bit wide, the PWM resolution is also 16-bit depth. To output the PWM waveform through T3/PWM3 pin, the T3_PE bit in T3CR2 register is to be set. The period and duty of PWM waveform are decided by PWM3PRH, PWM3PRL, PWM3DRH and PWM3DRL registers. The equation to calculate period and duty is as follows.

PWM Period = [PWM3PRH, PWM3PRL] X Timer 3 Clock Period PWM Duty = [PWM3DRH, PWM3DRL] X Timer 3 Clock Period

D	Frequency								
Resolution	T3CK[2:0]=000 (250ns)	T3CK[2:0]=001 (500ns)	T3CK[2:0]=011 (2us)						
16-bit	60.938Hz	30.469Hz	7.617Hz						
15-bit	121.87Hz	60.938Hz	15.234Hz						
10-bit	3.9KHz	1.95KHz	0.49KHz						
9-bit	7.8KHz	3.9KHz	0.98KHz						
8-bit	15.6KHz	7.8KHz	1.95KHz						

Table 11-8 PWM Frequency vs. Resolution (In case of f_{SCLK}=4MHz)

The POL3 bit in T3CR register determines the polarity of PWM waveform. Setting POL3=1 makes the PWM waveform high for duty value. In other case, PWM waveform is low for duty value.

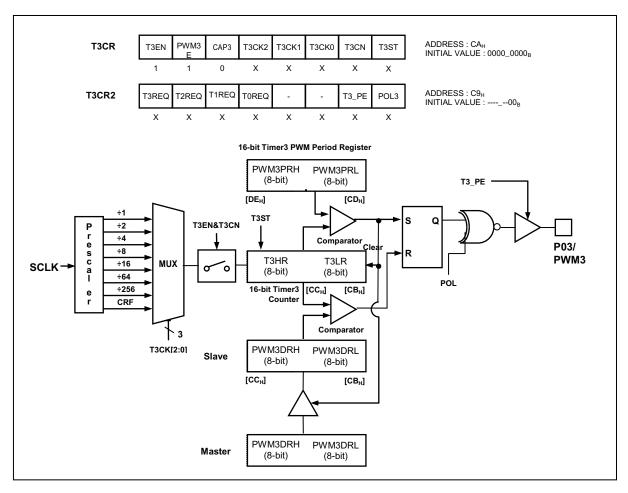


Figure 11.20 Block Diagram of Timer 3 in PWM Mode

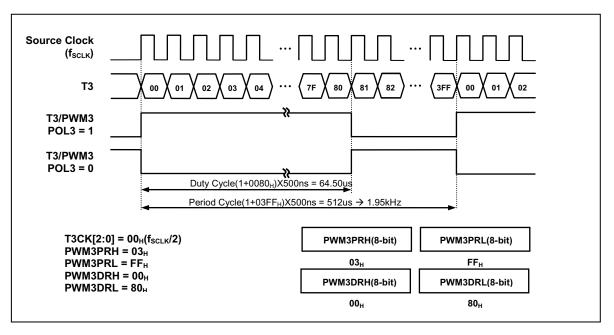


Figure 11.21 Example of PWM waveform (In case of f_{SCLK}=4MHz)

11.4.3.5 Register Map

Name	Address	Dir	Default	Description
T3CR2	С9 _н	R/W	00 _H	Timer 3 Mode Control Register 2
T3CR	CA _H	R/W	00 _H	Timer 3 Mode Control Register
T3L	СВн	R	00 _H	Timer 3 Counter Low
PWM3DRL	СВн	R/W	00 _H	PWM 3 Duty Register Low
CDR3L	СВн	R	00 _H	Timer 3 Capture Data Register Low
ТЗН	ССн	R	00 _H	Timer 3 Counter High
PWM3DRH	ССн	R/W	00 _H	PWM 3 Duty Register High
CDR3H	ССн	R	00 _H	Timer 3 Capture Data Register High
T3DRL	CD _H	W	FF _H	Timer 3 Data Register Low
PWM3PRL	CD _H	W	FF _H	PWM 3 Period Register Low
T3DRH	DE _H	W	FF _H	Timer 3 Data Register High
PWM3PRH	DE _H	W	FF _H	PWM 3 Period Data Register High

Table 11-9 Register Map of Timer 3

11.4.3.6 Register Description

Timer3 can generate PWM output of 16-bit resolution. The period of PWM3 is decided by PWM3PRH and PWM3PRL registers and the duty of PWM3 is decided by PWM3DRH and PWM3DRL registers. PWM3PRH and PWM3PRL registers are write-only. Note that the value of period and duty registers can be changed only when PWM3E bit in T3CR register is set.

CDR3H, PWM3DRH and T3H registers share peripheral address. When PWM mode is enabled, reading this address gives PWM3DRH. When PWM mode is disabled, reading this address gives

CDR3H in Capture Mode or T3H in Output Compare Mode. Writing this address alters PWM3DRH when PWM3E bit is '1'. When PWM mode is disabled, writing this address alters T3DRH.

CDR3L, PWM3DRL and T3L registers share peripheral address. When PWM mode is enabled, reading this address gives PWM3DRL. When PWM mode is disabled, reading this address gives CDR3L in Capture Mode or T3L in Output Compare Mode. Writing this address alters PWM3DRL when PWM3E bit is '1'. When PWM mode is disabled, writing this address alters T3DRL.

7	6	5	4	ı	3	2	1	0
T3EN	PWM3E	CAP3	T3C		T3CK1	T3CK0	T3CN	T3ST
RW	RW	RW	R/	w	RW	RW	RW	RW
		T3EN	Enable:	s or disabl	es Timer 3	module.		Initial value
			1	Enable T				
		PWM3E	-		ction of Tim	or 2		
	ļ	PANINISE	0			imer/Counter		
			1	Timer 1 is		imer/Counter		
		CAP3	-		mode of T	imor 3		
		CAPS	0		unter mode			
			1	Capture		5		
	т	3CK[2:0]		-		Гimer 3. ^{NOTE}		
	•	JON[2.0]	T3CK2		T3CK0	Timer 3.	nck	
			0	0	0	f _{SCLK}	JOK	
			0	0	1	f _{SCLK} /2^1		
			0	1	0	f _{SCLK} /2^2		
			0	1	1	f _{SCLK} /2^3		
			1	0	0	f _{SCLK} /2^4		
			1	0	1	f _{SCLK} /2^6		
			1	1	0	f _{SCLK} /2^8		
			1	1	1	CRF (Carr	ier)	
		T3CN	Decides	s whether	to pause o	r continue cou	•	
			0		unting tem		Ü	
			1	Continue	_	. ,		
		T3ST	Decides	s whether	to start or s	stop counter		
			0	Stops co		•		
			1	-	_	tarts up-count	ina	

 $^{^{\}text{NOTE}}$ f_{SCLK} is the frequency of internal operating clock, SCLK.

T3CR2 (Timer 3 Mode Control Register 2) C9_H 7 6 5 4 0 3 2 1 T3REQ T2REQ T1REQ TOREQ T3_PE POL3 R R R RW RW

Initial value: 00_H

T3REQ Timer 3 Interrupt Flag NOTE

	0	Timer 3 interrupt not occurred					
	1	Timer 3 interrupt occurred					
T2REQ	Timer 2 Interrupt Flag NOTE						
	0	Timer 2 interrupt not occurred					
	1	Timer 2 interrupt occurred					
T1REQ	Timer	⁻ 1 Interrupt Flag ^{NOTE}					
	0	Timer 1 interrupt not occurred					
	1	Timer 1 interrupt occurred					
T0REQ	Timer 0 Interrupt Flag NOTE						
	0	Timer 0 interrupt not occurred					
	1	Timer 0 interrupt occurred					
POL3	Selec	ets polarity of PWM					
	0	PWM waveform is low for duty value					
	1	PWM waveform is high for duty value					
T3_PE	Contr	ols whether to output Timer 3 output or not through I/O pin.					
	0	Timer 3 output does not come out through I/O pin					

Timer 3 output overrides the normal port functionality of I/O pin

NOTE Writing '0' to this bit position clears interrupt flag of each timer.

T3L (Timer 3 Counter Low, Read Case)

 CB_H

7	6	5	4	3	2	1	0	
T3L7	T3L6	T3L5	T3L4	T3L3	T3L2	T3L1	T3L0	
R	R	R	R	R	R	R	R	
							Initial value: 0	0_{H}

T3L[7:0] T3 Counter Low

CDR3L (Capture Data Register 3 Low, Read Case)

 CB_H

	7	6	5	4	3	2	1	0
	CDR3L7	CDR3L6	CDR3L5	CDR3L4	CDR3L3	CDR3L2	CDR3L1	CDR3L0
•	R	R	R	R	R	R	R	R

Initial value: 00_H

CDR3L[7:0] T3 Capture Data Low

PWM3DRL (PWM3 Duty Register Low, Write Case)

CB_H

7	6	5	4	3	2	1	0
T3PDL7	T3PDL6	T3PDL5	T3PDL4	T3PDL3	T3PDL2	T3PDL1	T3PDL0
W	W	W	W	W	W	W	W

Initial value: 00_H

T3PDL[7:0] PWM3 Duty Low

NOTE Writing is effective only when PWM3E = 1 and T3ST = 0.

T3H (Timer 3 Counter High, Read Case)

 CC_H

7	6	5	4	3	2	1	0
T3H7	ТЗН6	T3H5	T3H4	T3H3	T3H2	T3H1	T3H0

NBOV MC95FR332/432/364/464 R R R R R R R R Initial value: 00H T3H[7:0] T3 Counter High CDR3H (Capture Data Register 3 High, Read Case) CCH 7 6 5 3 2 1 0 CDR3H7 CDR3H6 CDR3H5 CDR3H4 CDR3H3 CDR3H2 CDR3H1 CDR3H0 R R R R R R R R Initial value: 00_H CDR3H[7:0] T3 Capture Data High PWM3DRH (PWM3 Duty Register High, Write Case) CC_H 7 6 5 3 2 1 0 T3PDH7 T3PDH6 T3PDH5 T3PDH4 T3PDH3 T3PDH2 T3PDH1 T3PDH0 W W W W Initial value: 00_H

T3PDH[7:0] PWM3 Duty High

NOTE Writing is effective only when PWM3E = 1 and T3ST = 0.

 CD_{H} T3DRL (Timer 3 Data Register Low, Write Case) 7 6 5 3 2 1 0 T3DRL7 T3DRL6 T3DRL5 T3DRL4 T3DRL3 T3DRL2 T3DRL1 T3DRL0 W W W W W W W W

T3DRL[7:0] T3 Compare Data Low

 $^{\mbox{\scriptsize NOTE}}$ Be sure to clear PWM3E in T3CR register before loading this register.

CD_H PWM3PRL (PWM3 Period Register Low, Write Case) 7 6 5 3 2 0 T3PPL7 T3PPL6 T3PPL5 T3PPL4 T3PPL3 T3PPL2 T3PPL1 T3PPL0 W W W W W W W W Initial value: FF_H

T3PPL[7:0] PWM3 Period Low

NOTE Writing is effective only when PWM3E = 1 and T3ST = 0.

T3DRH (Timer 3 Data Register High, Write Case) CEH 7 6 5 4 3 2 1 0 T3DRH7 T3DRH6 T3DRH5 T3DRH4 T3DRH3 T3DRH2 T3DRH1 T3DRH0 W W W W W W W W Initial value: FFH

T3DRH[7:0] T3 Compare Data High

NOTE Be sure to clear PWM3E in T3CR register before loading this register.

Initial value: FFH

PWM3PRH (PWM3 Period Register High, Write Case)

 CE_H

7	6	5	4	3	2	1	0
P3PPH7	P3PPH6	P3PPH5	P3PPH4	P3PPH3	P3PPH2	P3PPH1	P3PPH0
W	W	W	W	W	W	W	W

Initial value : FF_H

P3PPH[7:0]

PWM3 Period High $$^{\rm NOTE}$$ Writing is effective only when PWM3E = 1 and T3ST = 0.

11.5 Carrier Generator

11.5.1 Overview

MC95FR332/432/364/464 has a specific module to generate carrier signal for remote control application. The internal carrier(CRF) signal is AND-ed with register value(RODR) and outputs through REMOUT port. The frequency and duty ratio of carrier signal is controlled by two 8-bit registers, CFRH and CFRL. Carrier signal can be on/off at previous stage of REMOUT port by the CEN bit in RMR register. When CEN=1, the remote out signal is generated by AND-ing carrier signal with RODR value. When CEN=0, the 8-bit counter for carrier generation(=CRC) stops and the remote out signal comes directly from RODR value. The RODR register is updated by ROB register when the 6-bit counter for data pulse generation(=RDC) reaches to RDRH or RDRL. In this case, the RDPE bit in RMR should be '1'. At each match event, an interrupt can be issued. The RODR register can also be altered by writing to this register. In this case, the RDPE bit is to be cleared to '0'. The base clock for RDC and CRC is system clock, SCLK or its divided clock. Note that the output clock of main oscillator, XINCLK, may differ from SCLK.

11.5.2 Block Diagram

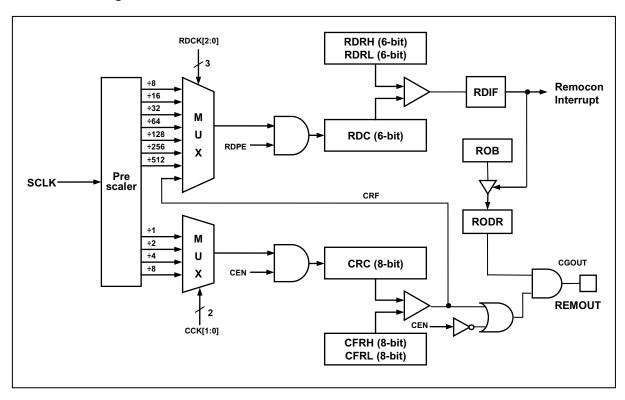


Figure 11.22 Block Diagram of Carrier Generator

11.5.3 Register Map

Name	Address	Dir	Default Description		
RMR	E8 _H	R/W	00 _H	Remocon Mode Register	
CFRH	ВВн	R/W	FF _H	Carrier Frequency Register High	
CFRL	ВСн	R/W	FF _H	Carrier Frequency Register Low	

January, 2012 Rev.2.0

CRC	BD _H	R	00 _H	Remocon Carrier Counter
RODR	BE _H	R/W	00 _H	Remocon Output Data Register
ROB	BF _H	R/W	00 _H	Remocon Output Buffer
RDRH	C2 _H	R/W	3F _H	Remocon Data Register High
RDRL	СЗн	R/W	3F _H	Remocon Data Register Low

Table 11-10 Register Map of Carrier Generator

11.5.4 Register Description

RMR (Remocon Mode Register)

E8_H

7	6	5	4	3	2	1	0
RDIF	CEN	CCK1	CCK0	RDPE	RDCK2	RDCK1	RDCK0
R	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

RDIF

Interrupt flag. This flag is cleared when the interrupt is serviced, RDPE bit is cleared or software writes '0' to this bit position. This flag has nothing to do with CEN bit.

RDCK[2:0]

Selects clock source for 6-bit RDC counter. These bits are effective only when RDPE=1. $^{\rm NOTE}$

,			
RDCK2	RDCK1	RDCK0	
0	0	0	f _{SCLK} /8
0	0	1	f _{SCLK} /16
0	1	0	f _{SCLK} /32
0	1	1	f _{SCLK} /64
1	0	0	f _{SCLK} /128
1	0	1	f _{SCLK} /256
1	1	0	f _{SCLK} /512
1	1	1	Carrier Signal(=CRF)

RDPE

Remote Data Pulse Enable. Setting this bit enables RDC counter. Interrupt can only be issued when this bit is set.

- 0 Disable RDC counter
- 1 Enable RDC counter

CCK[1:0]

Select clock source for 8-bit CRC counter. These bits are effective only when CEN=1. $^{\rm NOTE}$

0	0	f _{SCLK} /1
0	1	f _{SCLK} /2
1	0	f _{SCLK} /4
1	1	f _{SCLK} /8

CEN

Carrier Frequency Enable. This bit enables CRC counter.

- O Carrier Frequency is not generated.
- Carrier Frequency is generated and goes out through the REMOUT port with RODR value and-ed.

 $^{^{\}mbox{\scriptsize NOTE}}$ $f_{\mbox{\scriptsize SCLK}}$ is the frequency of system clock, SCLK.

CFRH (Carrier Frequency Register High)

 BB_H

7	6	5	4	3	2	1	0
CFH7	CFH6	CFH5	CFH4	CFH3	CFH2	CFH1	CFH0
RW							

Initial value: FFH

CFH[7:0] Carrier Frequency High

Carrier High Interval = CFH[7:0] X T_{CR CLK}

 $T_{\text{CR_CLK}}$ is the period of clock source for CRC counter selected by CCK[1:0].

CFRL (Carrier Frequency Register Low)

BC_H

7	6	5	4	3	2	1	0
CFL7	CFL6	CFL5	CFL4	CFL3	CFL2	CFL1	CFL0
RW							

Initial value: FF_H

CFL[7:0] Carrier Frequency Low

Carrier Low Interval = CFL[7:0] X T_{CR_CLK}

 $T_{\text{CR_CLK}}$ is the period of clock source for CRC counter selected by CCK[1:0].

RDRH (Remocon Data Register High)

C2_H

7	6	5	4	3	2	1	0
-	-	RDH5	RDH4	RDH3	RDH2	RDH1	RDH0
-	-	RW	RW	RW	RW	RW	RW

Initial value: 3F_H

RDH[5:0] Remote Data High

Remote Data High Interval = RDH[5:0] X T_{RD_CLK}

 $T_{\text{RD_CLK}}$ is the period of clock source for RDC counter selected by RDCK[2:0].

RDRL (Remocon Data Register Low)

C3_H

7	6	5	4	3	2	1	0
-	-	RDL5	RDL4	RDL3	RDL2	RDL1	RDL0
-	-	RW	RW	RW	RW	RW	RW

Initial value: 3FH

RDL[5:0] Remote Data Low

Remote Data Low Interval = RDL[5:0] X T_{RD_CLK}

 $T_{\text{RD_CLK}}$ is the period of clock source for RDC counter selected by RDCK[2:0].

CRC (Remocon Carrier Counter)

 BD_H

7	6	5	4	3	2	1	0
CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0
RW							

Initial value: 00_H

CRC[7:0]

Remote Carrier Counter Value

RODR (Remocon Output Data Register) BE_H 2 0 ROD RW Initial value: 00_H ROD Remote Data Output BF_H **ROB (Remocon Output Buffer)** 7 5 3 2 0 4 1 ROB RW Initial value: 00H

11.5.5 Carrier Signal and Data Pulse

The Remote Out signal(=CGOUT in Block Diagram) on REMOUT port is generated from carrier signal and RODR value. The carrier signal and RODR value are controlled independently. The CEN bit in RMR register makes the carrier signal on or off. The RODR register is updated by ROB on interrupt or by direct writing to this register. In this way, four kinds of signal muxing is supported using carrier signal and RODR value.

Remote Data Output Buffer

The period/frequency of carrier signal and remote data pulse is calculated by the following equation. The waveform is shown below.

t_H (Length of Carrier Signal's High Phase) = T_{CR_CLK} x CFRH

ROB

t_L (Length of Carrier Signal's Low Phase) = T_{CR CLK} x CFRL

 f_C (Carrier Frequency) = $1/(t_H + t_L)$

 t_{DH} (Length of Data Pulse's High Phase) = $T_{RD CLK} x RDRH$

 t_{DL} (Length of Data Pulse's Low Phase) = $T_{RD_CLK} x RDRL$

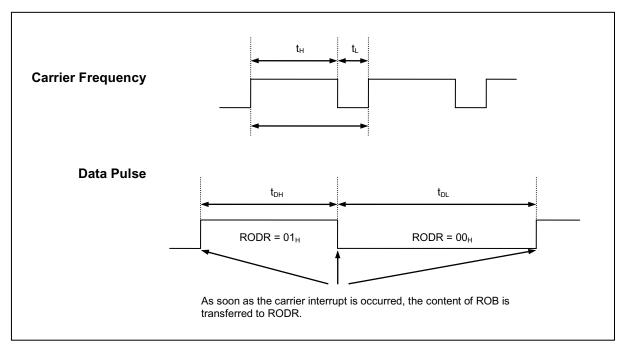


Figure 11.23 Period of Carrier signal and Remote data pulse

11.5.6 Examples of REMOUT control

Three examples of controlling REMOUT port are shown below.

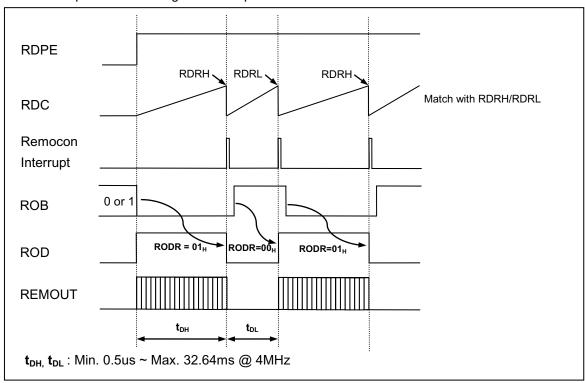


Figure 11.24 REMOUT by CRF & ROB (In case of CEN=1, RDPE=1)

The next figure shows the case carrier signal is off. As can be seen, only RODR value appears on REMOUT port. The difference between previous and below figure is apparent.

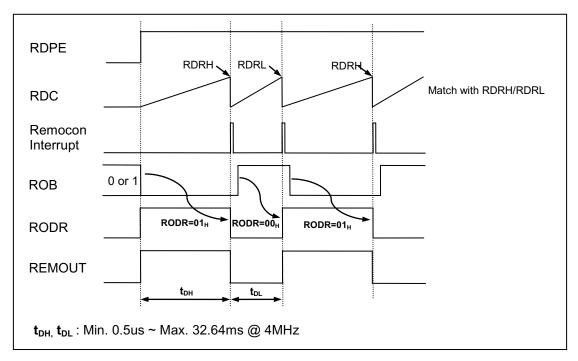


Figure 11.25 REMOUT by ROB only (In case of CEN=0, RDPE=1)

In the last figure, RODR is updated directly by writing to this register when the 16-bit Timer 2, 3 interrupts occur. As shown, the REMOUT waveforms are different according to CEN bit.

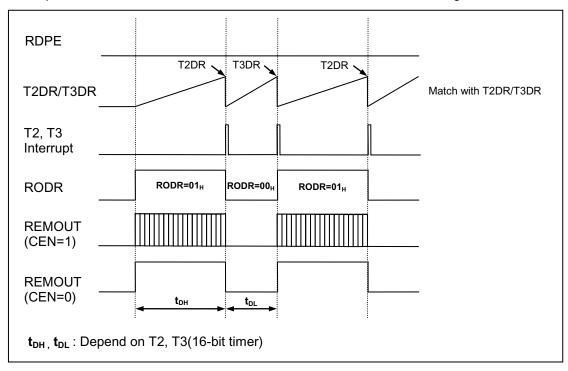


Figure 11.26 REMOUT by RODR

11.5.7 Carrier Generator Interrupt

When RDC counter reaches to RDRH or RDRL register, an interrupt can be requested. As the RDC counter functions when RDPE bit is '1', the interrupt is requested only when RDPE bit is '1'. Even if the interrupt is not required to be serviced by CPU, the flag can be read through RMR register. And

this flag is cleared when the interrupt is serviced, RDPE bit is cleared or software writes '0' to the bit position.

11.5.8 Examples of Carrier Signal Selection

The next table shows examples of selecting carrier signal according to CFRH and CFRL registers for two kinds of carrier clocks.

Registers		CR_CLK=PS1		CR_CLK=PS3		Registers		CR_CLK=PS1		CR_CLK=PS3	
CFRH	CFRL	t _H (us)	t _L (us)	t _H (us)	t _L (us)	CFRH	CFRL	t _H (us)	t∟(us)	t _H (us)	t∟(us)
00 _H	00н	-	-	-	-	20 _H	20 _H	8.00	8.00	32.00	32.00
01 _H	01 _H	0.25	0.25	1.00	1.00	21 _H	21 _H	8.25	8.25	33.00	33.00
02 _H	02 _H	0.50	0.50	2.00	2.00	22_{H}	22 _H	8.50	8.50	34.00	34.00
03 _H	03 _H	0.75	0.75	3.00	3.00	23_{H}	23 _H	8.75	8.75	35.00	35.00
04 _H	04 _H	1.00	1.00	4.00	4.00	24 _H	24 _H	9.00	9.00	36.00	36.00
05 _H	05 _H	1.25	1.25	5.00	5.00	25 _H	25 _H	9.25	9.25	37.00	37.00
06 _H	06 _H	1.50	1.50	6.00	6.00	26 _H	26 _H	9.50	9.50	38.00	38.00
07 _H	07 _H	1.75	1.75	7.00	7.00	27 _H	27 _H	9.75	9.75	39.00	39.00
08 _H	08 _H	2.00	2.00	8.00	8.00	28 _H	28 _H	10.00	10.00	40.00	40.00
09 _H	09 _H	2.25	2.25	9.00	9.00	29 _H	29 _H	10.25	10.25	41.00	41.00
$0A_{H}$	$0A_H$	2.50	2.50	10.00	10.00	$2A_{H}$	2A _H	10.50	10.50	42.00	42.00
$0B_{H}$	0B _H	2.75	2.75	11.00	11.00	$2B_{H}$	2B _H	10.75	10.75	43.00	43.00
$0C_H$	0C _H	3.00	3.00	12.00	12.00	$2C_H$	2C _H	11.00	11.00	44.00	44.00
$0D_{H}$	0D _H	3.25	3.25	13.00	13.00	$2D_{H}$	2D _H	11.25	11.25	45.00	45.00
0E _H	0E _H	3.50	3.50	14.00	14.00	2E _H	2E _H	11.50	11.50	46.00	46.00
$0F_H$	0F _H	3.75	3.75	15.00	15.00	$2F_H$	2F _H	11.75	11.75	47.00	47.00
10 _H	10 _H	4.00	4.00	16.00	16.00	30 _H	30 _H	12.00	12.00	48.00	48.00
11 _H	11 _H	4.25	4.25	17.00	17.00	31 _H	31 _H	12.25	12.25	49.00	49.00
12 _H	12 _H	4.50	4.50	18.00	18.00	32 _H	32 _H	12.50	12.50	50.00	50.00
13 _H	13 _H	4.75	4.75	19.00	19.00	33 _H	33 _H	12.75	12.75	51.00	51.00
14 _H	14 _H	5.00	5.00	20.00	20.00	34 _H	34 _H	13.00	13.00	52.00	52.00
15 _H	15 _H	5.25	5.25	21.00	21.00	35 _H	35 _H	13.25	13.25	53.00	53.00
16 _H	16 _H	5.50	5.50	22.00	22.00	36 _H	36 _H	13.50	13.50	54.00	54.00
17 _H	17 _H	5.75	5.75	23.00	23.00	37 _H	37 _H	13.75	13.75	55.00	55.00
18 _H	18 _H	6.00	6.00	24.00	24.00	38 _H	38 _H	14.00	14.00	56.00	56.00
19 _H	19 _H	6.25	6.25	25.00	25.00	39 _H	39 _H	14.25	14.25	57.00	57.00
$1A_{H}$	1A _H	6.50	6.50	26.00	26.00	$3A_H$	3A _H	14.50	14.50	58.00	58.00
1B _H	1B _H	6.75	6.75	27.00	27.00	$3B_{H}$	3Вн	14.75	14.75	59.00	59.00
1C _H	1C _H	7.00	7.00	28.00	28.00	3Сн	3Сн	15.00	15.00	60.00	60.00
$1D_{H}$	1D _H	7.25	7.25	29.00	29.00	$3D_{H}$	3D _H	15.25	15.25	61.00	61.00
1E _H	1E _H	7.50	7.50	30.00	30.00	$3E_H$	3E _H	15.50	15.50	62.00	62.00
$1F_H$	1F _H	7.75	7.75	31.00	31.00	$3F_H$	3F _H	15.75	15.75	63.00	63.00

Table 11-11 Period of carrier signal according to CFRH/CFRL

In above table, we assume the frequency of main oscillator, f_{XIN} is 8MHz and system clock is not divided from that clock, that is $f_{SCLK} = f_{XIN}$. PSn represents SCLK-divided clock, PS1=SCLK/2 and PS3=SCLK/8. CR_CLK is the clock source for CRC counter.

11.6 Key Scan

11.6.1 Overview

Port 0 and Port 1 can be used as key input sources. If KEY interrupt is enabled, this can be a wake-up source in STOP mode. Usually Port 0(Port 1) is used as output strobe lines, and Port 1(Port 0) is used as key input sources. The key interrupt is triggered by a high or low level of key input.

11.6.2 Block Diagram

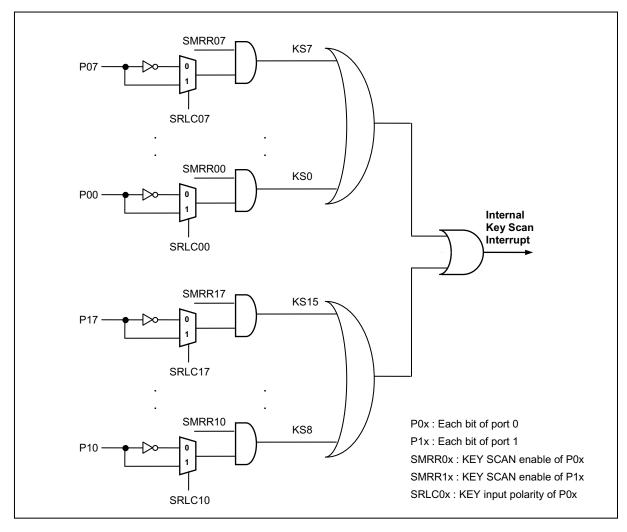


Figure 11.27 Block Diagram of KEYSCAN module

11.6.3 Register Map

Name	Name Address		Default	Description
SMRR0 D2 _H R/W 00 _H Standl		Standby Mode Release Register 0		
SMRR1 D3 _H		R/W	00 _H	Standby Mode Release Register 1
SRLC0	D6 _H	R/W	00н	Standby Release Level Control Register 0
SRLC1 D7 _H		R/W	00 _H	Standby Release Level Control Register 1

Table 11-12 Register Map of KEYSCAN module

11.6.4 Register Description

SMRR0 (Standby Mode Release Register 0)

 $D2_H$

7	6	5	4	3	2	1	0
SMRR07	SMRR06	SMRR05	SMRR04	SMRR03	SMRR02	SMRR01	SMRR00
RW							

Initial value: 00_H

SMRR0[7:0] Enables key function of Port 0 pins.

0 Key function is not used.

1 Key function overrides the normal port functionality of I/O pin.

SMRR1 (Standby Mode Release Register 1)

D3_H

7	6	5	4	3	2	1	0
SMRR17	SMRR16	SMRR15	SMRR14	SMRR13	SMRR12	SMRR11	SMRR10
RW							

Initial value: 00_H

SMRR1[7:0] Enables key function of Port 1 pins.

0 Key function is not used.

1 Key function overrides the normal port functionality of I/O pin.

SRLC0 (Standby Release Level Control Register 0)

D6_H

7	6	5	4	3	2	1	0
SRLC07	SRLC06	SRLC05	SRLC04	SRLC03	SRLC02	SRLC01	SRLC00
RW							

Initial value: 00_H

SRLC0[7:0]

Selects the trigger level of key input & interrupt when Port 0 is used as key input source.

0 Triggered by a low level

1 Triggered by a high level

SRLC1 (Standby Release Level Control Register 1)

 $D7_{H}$

7	6	5	4	3	2	1	0
SRLC17	SRLC16	SRLC15	SRLC14	SRLC13	SRLC12	SRLC11	SRLC10
RW							

Initial value: 00_H

SRLC1[7:0]

Selects the trigger level of key input & interrupt when Port 1 is used as key input source.

- 0 Triggered by a low level
- 1 Triggered by a high level

11.7 USART

11.7.1 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible serial communication device. The main features are listed below.

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Master or Slave Clocked Synchronous and SPI Operation
- Supports all four SPI Modes of Operation (Mode 0, 1, 2, 3)
- LSB First or MSB First Data Transfer @SPI mode
- High Resolution Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data Bits and 1 or 2 Stop Bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Digital Low Pass Filter
- Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
- Double Speed Asynchronous Communication Mode

USART has three main parts of Clock Generator, Transmitter and Receiver. The Clock Generation logic consists of synchronization logic for external clock input used by synchronous or SPI slave operation, and the baud rate generator for asynchronous or master (synchronous or SPI) operation. The Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. The write buffer allows a continuous transfer of data without any delay between frames. The receiver is the most complex part of the USART module due to its clock and data recovery units. The recovery unit is used for asynchronous data reception. In addition to the recovery unit, the Receiver includes a parity checker, a shift register, a two level receive FIFO (UDATAn) and control logic. The Receiver supports the same frame formats as the Transmitter and can detect Frame Error, Data OverRun and Parity Errors.

11.7.2 Block Diagram

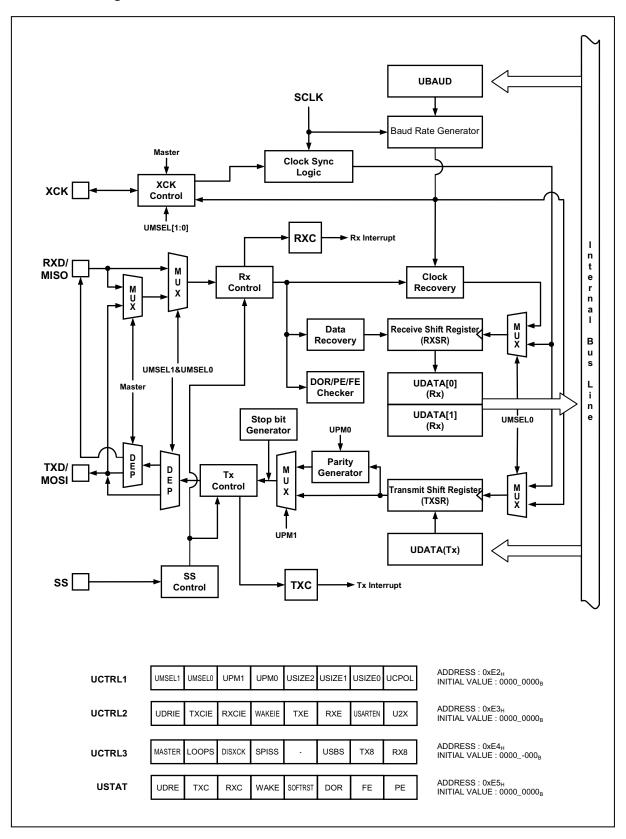


Figure 11.28 The Block Diagram of USART

11.7.3 Clock Generation

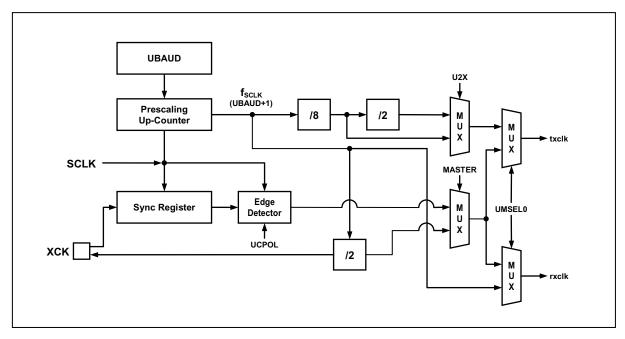


Figure 11.29 The Block Diagram of Clock Generation

The Clock generation logic generates the base clock for the Transmitter and Receiver. The USART supports four modes of clock operation and those are Normal Asynchronous, Double Speed Asynchronous, Master Synchronous and Slave Synchronous. The clock generation scheme for Master SPI and Slave SPI mode is the same as Master Synchronous and Slave Synchronous operation mode. The UMSELn bit in UCTRL1 register selects between asynchronous and synchronous operation. Asynchronous Double Speed mode is controlled by the U2X bit in the UCTRL2 register. The MASTER bit in UCTRL2 register controls whether the clock source is internal (Master mode, output port) or external (Slave mode, input port). The XCK pin is only active when the USART operates in Synchronous or SPI mode.

Table below contains equations for calculating the baud rate (in bps).

Operating Mode	Equation for Calculating Baud Rate
Asynchronous Normal Mode (U2X=0)	Baud Rate = $\frac{\text{fSCLK}}{16(\text{UBAUD} + 1)}$
Asynchronous Double Speed Mode (U2X=1)	Baud Rate = $\frac{\text{fSCLK}}{8(\text{UBAUD} + 1)}$
Synchronous or SPI Master Mode	Baud Rate = $\frac{\text{fSCLK}}{2(\text{UBAUD} + 1)}$

Table 11-13 Equations for Calculation Baud Rate

11.7.4 External Clock (XCK)

External clocking is used by the synchronous or spi slave modes of operation.

External clock input from the XCK pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must then pass through an edge detector before it can be used by the Transmitter and Receiver. This process introduces a two CPU clock period delay and therefore the maximum frequency of the external XCK pin is limited by the following equation.

$$fXCK = \frac{fSCLK}{4}$$

where fXCK is the frequency of XCK and fSCLK is the frequency of main system clock (SCLK).

11.7.5 Synchronous mode operation

When synchronous or spi mode is used, the XCK pin will be used as either clock input (slave) or clock output (master). The dependency between the clock edges and data sampling or data change is the same. The basic principle is that data input on RXD (MISO in spi mode) pin is sampled at the opposite XCK clock edge of the edge in the data output on TXD (MOSI in spi mode) pin is changed.

The UCPOL bit in UCTRL1 register selects which XCK clock edge is used for data sampling and which is used for data change. As shown in the figure below, when UCPOL is zero the data will be changed at rising XCK edge and sampled at falling XCK edge.

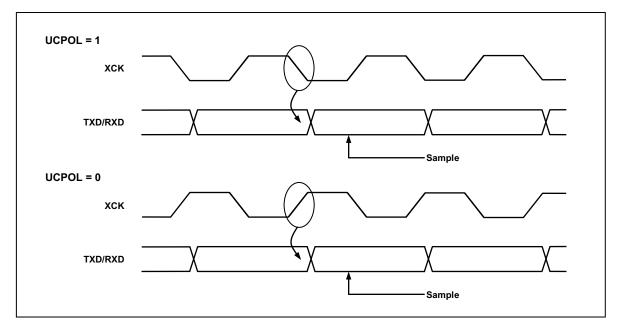


Figure 11.30 Synchronous Mode XCKn Timing.

11.7.6 Data format

110

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error checking.

The USART supports all 30 combinations of the following as valid frame formats.

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit (LSB). Then the next data bits, up to a total of nine, are succeeding, ending with the most significant bit (MSB). If enabled the parity bit is inserted after the data bits, before the stop bits. A high to low transition on data pin is considered as start bit. When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. The next figure shows the possible combinations of the frame formats. Bits inside brackets are optional.

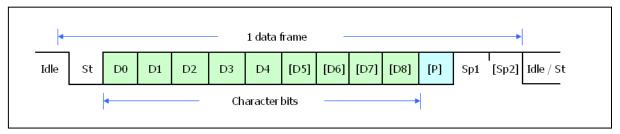


Figure 11.31 frame format

1 data frame consists of the following bits

- Idle No communication on communication line (TxD/RxD)
- St Start bit (Low)
- Dn Data bits (0~8)
- Parity bit ----- Even parity, Odd parity, No parity
- Stop bit(s) ----- 1 bit or 2 bits

The frame format used by the USART is set by the USIZE[2:0], UPM[1:0] and USBS bits in UCTRL1 register. The Transmitter and Receiver use the same setting.

11.7.7 Parity bit

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclusive-or is inverted. The parity bit is located between the MSB and first stop bit of a serial frame.

$$P_{\text{even}} = D_{\text{n-1}} \wedge ... \wedge D_3 \wedge D_2 \wedge D_1 \wedge D_0 \wedge 0$$

$$P_{odd} = D_{n-1} ^{ } ... ^{ } D_3 ^{ } D_2 ^{ } D_1 ^{ } D_0 ^{ } 1$$

Peven: Parity bit using even parity

Podd : Parity bit using odd parity

D_n: Data bit n of the character

11.7.8 USART Transmitter

The USART Transmitter is enabled by setting the TXE bit in UCTRL1 register. When the Transmitter is enabled, the normal port operation of the TXD pin is overridden by the serial output pin of USART. The baud-rate, operation mode and frame format must be setup once before doing any transmissions. If synchronous or spi operation is used, the clock on the XCK pin will be overridden and used as transmission clock. If USART operates in spi mode, SS pin is used as SS input pin in slave mode or can be configured as SS output pin in master mode. This can be done by setting SPISS bit in UCTRL3 register.

11.7.8.1 Sending Tx data

A data transmission is initiated by loading the transmit buffer (UDATA register I/O location) with the data to be transmitted. The data written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with new data, it will transfer one complete frame at the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode (USIZE[2:0]=7), the ninth bit must be written to the TX8 bit in UCTRL3 register before loading transmit buffer (UDATA register).

11.7.8.2 Transmitter flag and interrupt

The USART Transmitter has 2 flags which indicate its state. One is USART Data Register Empty (UDRE) and the other is Transmit Complete (TXC). Both flags can be interrupt sources.

UDRE flag indicates whether the transmit buffer is ready to be loaded with new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains data to be transmitted that has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is prevented.

When the Data Register Empty Interrupt Enable (UDRIE) bit in UCTRL2 register is set and the Global Interrupt is enabled, USART Data Register Empty Interrupt is generated while UDRE flag is set.

The Transmit Complete (TXC) flag bit is set when the entire frame in the transmit shift register has been shifted out and there are no more data in the transmit buffer. The TXC flag is automatically cleared when the Transmit Complete Interrupt service routine is executed, or it can be cleared by writing '0' to TXC bit in USTAT register.

When the Transmit Complete Interrupt Enable (TXCIE) bit in UCTRL2 register is set and the Global Interrupt is enabled, USART Transmit Complete Interrupt is generated while TXC flag is set.

11.7.8.3 Parity Generator

The Parity Generator calculates the parity bit for the sending serial frame data. When parity bit is enabled (UPM[1]=1), the transmitter control logic inserts the parity bit between the MSB and the first stop bit of the sending frame.

11.7.8.4 Disabling Transmitter

Disabling the Transmitter by clearing the TXE bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXD pin is used as normal General Purpose I/O (GPIO) or primary function pin.

11.7.9 USART Receiver

The USART Receiver is enabled by setting the RXE bit in the UCTRL1 register. When the Receiver is enabled, the normal pin operation of the RXD pin is overridden by the USART as the serial input pin of the Receiver. The baud-rate, mode of operation and frame format must be set before starting serial reception. If synchronous or spi operation is used, the clock on the XCK pin will be used as transfer clock. If USART operates in spi mode, SS pin is used as SS input pin in slave mode or can be configured as SS output pin in master mode. This can be done by setting SPISS bit in UCTRL3 register.

11.7.9.1 Receiving Rx data

When USART is in synchronous or asynchronous operation mode, the Receiver starts data reception when it detects a valid start bit (LOW) on RXD pin. Each bit after start bit is sampled at pre-defined baud-rate (asynchronous) or sampling edge of XCK (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received. Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the Receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and the contents of shift register are to be moved into the receive buffer. The receive buffer is read by reading the UDATA register.

If 9-bit characters are used (USIZE[2:0] = 7) the ninth bit is stored in the RX8 bit position in the UCTRL3 register. The 9th bit must be read from the RX8 bit before reading the low 8 bits from the UDATA register. Likewise, the error flags FE, DOR, PE must be read before reading the data from UDATA register. This is because the error flags are stored in the same FIFO position of the receive buffer.

11.7.9.2 Receiver flag and interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXC) flag indicates whether there are unread data present in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty. If the Receiver is disabled (RXE=0), the receiver buffer is flushed and the RXC flag is cleared.

When the Receive Complete Interrupt Enable (RXCIE) bit in the UCTRL2 register is set and Global Interrupt is enabled, the USART Receiver Complete Interrupt is generated while RXC flag is set.

The USART Receiver has three error flags which are Frame Error (FE), Data OverRun (DOR) and Parity Error (PE). These error flags can be read from the USTAT register. As data received are stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from UDATA register, read the USTAT register first which contains error flags.

The Frame Error (FE) flag indicates the state of the first stop bit. The FE flag is zero when the stop bit was correctly detected as one, and the FE flag is one when the stop bit was incorrect, ie detected as zero. This flag can be used for detecting out-of-sync conditions between data frames.

The Data OverRun (DOR) flag indicates data loss due to a receive buffer full condition. A DOR occurs when the receive buffer is full, and another new data is present in the receive shift register which are to be stored into the receive buffer. After the DOR flag is set, all the incoming data are lost. To prevent data loss or clear this flag, read the receive buffer.

The Parity Error (PE) flag indicates that the frame in the receive buffer had a Parity Error when received. If Parity Check function is not enabled (UPM[1]=0), the PE bit is always read zero.

Caution: The error flags related to receive operation are not used when USART is in spi mode.

11.7.9.3 Parity Checker

If Parity Bit is enabled (UPM[1]=1), the Parity Checker calculates the parity of the data bits in incoming frame and compares the result with the parity bit from the received serial frame.

11.7.9.4 Disabling Receiver

In contrast to Transmitter, disabling the Receiver by clearing RXE bit makes the Receiver inactive immediately. When the Receiver is disabled the Receiver flushes the receive buffer and the remaining data in the buffer is all reset. The RXD pin is not overridden the function of USART, so RXD pin becomes normal GPIO or primary function pin.

11.7.9.5 Asynchronous Data Reception

To receive asynchronous data frame, the USART includes a clock and data recovery unit. The Clock Recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXD pin.

The Data recovery logic samples and low pass filters the incoming bits, and this removes the noise of RXD pin.

The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times the baud-rate for normal mode, and 8 times the baud rate for Double Speed mode (U2X=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the Double Speed mode.

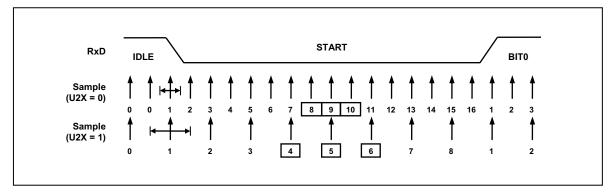


Figure 11.32 Start Bit Sampling

When the Receiver is enabled (RXE=1), the clock recovery logic tries to find a high to low transition on the RXD line, the start bit condition. After detecting high to low transition on RXD line, the clock recovery logic uses samples 8,9, and 10 for Normal mode, and samples 4, 5, and 6 for Double Speed mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the Receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for Normal mode and 8 times for Double Speed mode. And uses sample 8, 9, and 10 to decide data value for Normal mode, samples 4, 5, and 6 for Double Speed mode. If more than 2 samples have low levels, the received bit is considered to a logic 0 and more than 2 samples have high levels, the received bit is considered to a logic 1. The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.

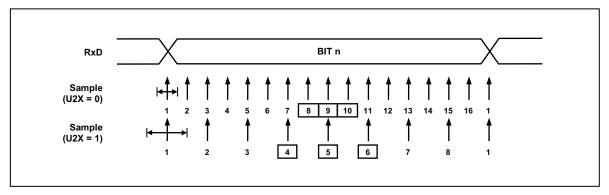


Figure 11.33 The Sampling of Data and Parity Bit

The process for detecting stop bit is like clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected, else a Frame Error flag is set. After deciding first stop bit whether a valid stop bit is received or not, the Receiver goes idle state and monitors the RXD line to check a valid high to low transition is detected (start bit detection).

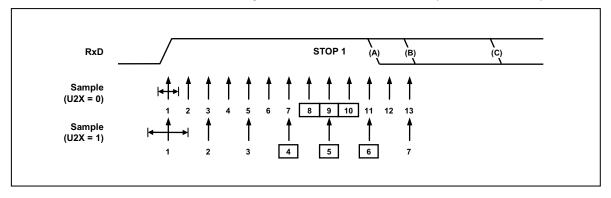


Figure 11.34 Stop Bit Sampling and Next Start Bit Sampling

11.7.10 SPI Mode

The USART can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full duplex, three-wire synchronous data transfer
- Master or Slave operation
- Supports all four SPI modes of operation (mode0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When SPI mode is enabled (UMSEL[1:0]=11_B), the Slave Select (SS) pin becomes active low input in slave mode operation, or can be output in master mode operation if SPISS bit is set.

Note that during SPI mode of operation, the pin RXD is renamed as MISO and TXD is renamed as MOSI for compatibility to other SPI devices.

11.7.10.1 SPI Clock Formats and Timing

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the USART has a clock polarity bit (UCPOL) and a clock phase control bit (UCPHA) to select one of four clock formats for data transfers. UCPOL selectively insert an inverter in series with the clock. UCPHA chooses between two different clock phase relationships between the clock and data. Note that UCPHA and UCPOL bits in UCTRL1 register have different meaning according to the UMSEL[1:0] bits which decides the operating mode of USART.

Table below shows four combinations of UCPOL and UCPHA for SPI mode 0, 1, 2, and 3.

SPI Mode	UCPOL	UCPHA	Leading Edge	Trailing Edge
0	0	0	Sample (Rising)	Setup (Falling)
1	0	1	Setup (Rising)	Sample (Falling)
2	1	0	Sample (Falling)	Setup (Rising)
3	1 1		Setup (Falling)	Sample (Rising)

Table 11-14 SPI Mode by UCPOL & UCPHA

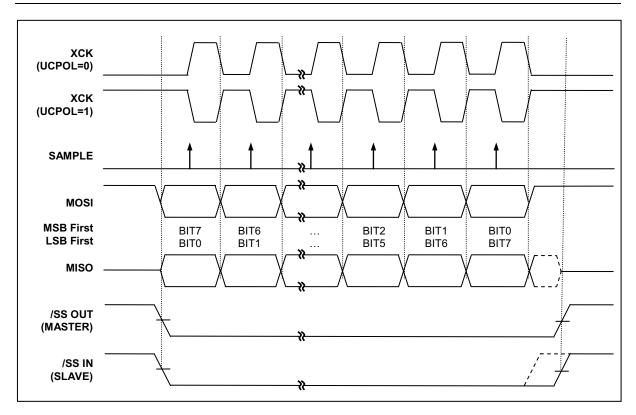


Figure 11.35 SPI Clock Formats when UCPHA=0

When UCPHA=0, the slave begins to drive its MISO output with the first data bit value when SS goes to active low. The first XCK edge causes both the master and the slave to sample the data bit value on their MISO and MOSI inputs, respectively. At the second XCK edge, the USART shifts the second data bit value out to the MOSI and MISO outputs of the master and slave, respectively. Unlike the case of UCPHA=1, when UCPHA=0, the slave's SS input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SS input.

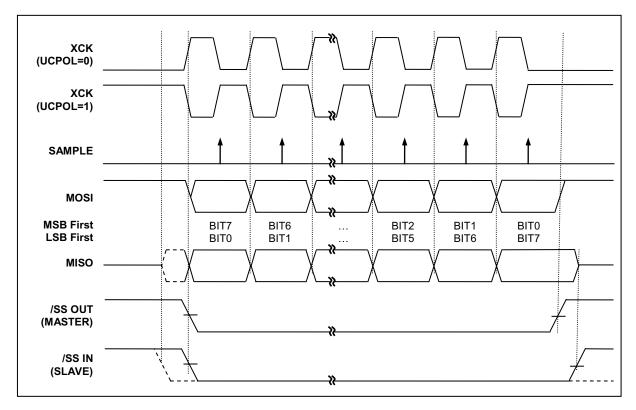


Figure 11.36 SPI Clock Formats when UCPHA=1

When UCPHA=1, the slave begins to drive its MISO output when SS goes active low, but the data is not defined until the first XCK edge. The first XCK edge shifts the first bit of data from the shifter onto the MOSI output of the master and the MISO output of the slave. The next XCK edge causes both the master and slave to sample the data bit value on their MISO and MOSI inputs, respectively. At the third XCK edge, the USART shifts the second data bit value out to the MOSI and MISO output of the master and slave respectively. When UCPHA=1, the slave's SS input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USART resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USART Data Register Empty flag (UDRE=1) and then writing a byte of data to the UDATA Register.

Caution: In master mode of operation, even if transmission is not enabled (TXE=0), writing data to the UDATA register is necessary because the clock XCK is generated from transmitter block.

11.7.11 Register Map

Name	Address Dir		Default	Description
UCTRL1	E3 _H R/W 00 _H		00 _H	USART Control 1 Register
UCTRL2			00 _H	USART Control 2 Register
UCTRL3			00 _H	USART Control 3 Register
USTAT	E5 _H	R	80 _H	USART Status Register
UBAUD	Е6н	R/W FF _H USART Baud Rate Generation Regis		USART Baud Rate Generation Register
UDATA	E7 _H R/W FF _H USART Data Register		USART Data Register	

Table 11-15 Register map of USART

11.7.12 Register Description

UCTRL1 (USART Control 1 Register)

E2_H

7	6	5	4	3	2	1	0
UMSEL1	UMSEL0	UPM1	UPM0	USIZE2	USIZE1 UDORD	USIZE0 UCPHA	UCPOL
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

UMSEL[1:0] Selects operation mode of USART

UMSEL1	UMSEL0	Operating Mode
0	0	Asynchronous Mode (Normal Uart)
0	1	Synchronous Mode (Synchronous Uart)
1	0	Reserved
1	1	SPI Mode

UPM[1:0]

Selects Parity Generation and Check methods

UPM1	UPM0	Parity mode
0	0	No Parity
0	1	Reserved
1	0	Even Parity
1	1	Odd Parity

USIZE[2:0]

When in asynchronous or synchronous mode of operation, selects the length of data bits in frame.

USIZE2	USIZE1	USIZE0	Data length
0	0	0	5 bit
0	0	1	6 bit
0	1	0	7 bit
0	1	1	8 bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9 bit

UDORD

This bit is in the same bit position with USIZE1. In SPI mode, when set to one the MSB of the data byte is transmitted first. When set to zero the LSB of the data byte is transmitted first.

- 0 LSB First
- 1 MSB First

UCPOL Selects polarity of XCK in synchronous or spi mode

- TXD change @Rising Edge, RXD change @Falling Edge
- 1 TXD change @ Falling Edge, RXD change @ Rising Edge

UCPHA

This bit is in the same bit position with USIZE0. In SPI mode, along with UCPOL bit, selects one of two clock formats for different kinds of synchronous serial peripherals. Leading edge means first XCK edge and trailing edge means $2^{\rm nd}$ or last clock edge of XCK in one XCK pulse. And Sample means detecting of incoming receive bit, Setup means preparing transmit data.

UCPOL	UCPHA	Leading Edge	Trailing Edge
0	0	Sample (Rising)	Setup (Falling)
0	1	Setup (Rising)	Sample (Falling)
1	0	Sample (Falling)	Setup (Rising)
1	1	Setup (Falling)	Sample (Rising)

UCTRL2 (USART Control 2 Register)

E3_H

7	6	5	4	3	2	1	0
UDRIE	TXCIE	RXCIE	WAKELE	TXE	RXE	USARTEN	U2X
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00_H

UDRIE Interrupt enable bit for USART Data Register Empty.

0 Interrupt from UDRE is inhibited (use polling)

When UDRE is set, request an interrupt

TXCIE Interrupt enable bit for Transmit Complete.

0 Interrupt from TXC is inhibited (use polling)

1 When TXC is set, request an interrupt

RXCIE Interrupt enable bit for Receive Complete

0 Interrupt from RXC is inhibited (use polling)

1 When RXC is set, request an interrupt

WAKEIE Interrupt enable bit for Asynchronous Wake in STOP mode. When

device is in stop mode, if RXD goes to LOW level an interrupt can be

requested to wake-up system.

0 Interrupt from Wake is inhibited

When WAKE is set, request an interrupt

TXE Enables the transmitter unit.

0 Transmitter is disabled

1 Transmitter is enabled

RXE Enables the receiver unit.

0 Receiver is disabled

Receiver is enabled

USARTEN Activate USART module by supplying clock.

0 USART is disabled (clock is halted)

1 USART is enabled

U2X This bit only has effect for the asynchronous operation and selects

receiver sampling rate.

0 Normal asynchronous operation

1 Double Speed asynchronous operation

UCTRL3 (USART Control 3 Register)

E4_H

7	6	5	4	3	2	1	0
MASTER	LOOPS	DISXCK	SPISS	-	USBS	TX8	RX8
RW	RW	RW	RW	-	RW	RW	RW

Initial value: 00_H

MASTER Selects master or slave in SPI or Synchronous mode operation and controls the direction of XCK pin.

0 Slave mode operation and XCK is input pin.

1 Master mode operation and XCK is output pin

LOOPS Controls the Loop Back mode of USART, for test mode

0 Normal operation

1 Loop Back mode

DISXCK In Synchronous mode of operation, selects the waveform of XCK output.

0 XCK is free-running while USART is enabled in synchronous

master mode.

1 XCK is active while any frame is on transferring.

SPISS Controls the functionality of SS pin in master SPI mode.

0 SS pin is normal GPIO or other primary function

1 SS output to other slave device

USBS Selects the length of stop bit in Asynchronous or Synchronous mode of operation.

0 1 Stop Bit

1 2 Stop Bit

TX8 The ninth bit of data frame in Asynchronous or Synchronous mode of operation. Write this bit first before loading the UDATA register.

0 MSB (9th bit) to be transmitted is '0'

1 MSB (9th bit) to be transmitted is '1'

RX8 The ninth bit of data frame in Asynchronous or Synchronous mode of operation. Read this bit first before reading the receive buffer.

0 MSB (9th bit) received is '0'

1 MSB (9th bit) received is '1'

USTAT (USART Status Register)

E₅_H

7	6	5	4	3	2	1	0
UDRE	TXC	RXC	WAKE	SOFTRST	DOR	FE	PE
RW	RW	RW	RW	RW	R	R	R

Initial value: 80H

UDRE

The UDRE flag indicates if the transmit buffer (UDATA) is ready to be loaded with new data. If UDRE is '1', it means the transmit buffer is empty and can hold one or two new data. This flag can generate an UDRE interrupt. Writing '0' to this bit position will clear UDRE flag.

- 0 Transmit buffer is not empty.
- Transmit buffer is empty.

TXC

This flag is set when the entire frame in the transmit shift register has been shifted out and there is no new data currently present in the transmit buffer. This flag is automatically cleared when the interrupt service routine of a TXC interrupt is executed. It is also cleared by writing '0' to this bit position. This flag can generate a TXC interrupt.

- 0 Transmission is ongoing.
- 1 Transmit buffer is empty and the data in transmit shift register are shifted out completely.

RXC

This flag is set when there are unread data in the receive buffer and cleared when all the data in the receive buffer are read. The RXC flag can be used to generate a RXC interrupt.

- 0 There is no data unread in the receive buffer
- 1 There are more than 1 data in the receive buffer

WAKE

This flag is set when the RX pin is detected low while the CPU is in stop mode. This flag can be used to generate a WAKE interrupt. This bit is set only when in asynchronous mode of operation. NOTE

- 0 No WAKE interrupt is generated.
- WAKE interrupt is generated.

SOFTRST

This is an internal reset and only has effect on USART. Writing '1' to this bit initializes the internal logic of USART and is auto cleared.

- 0 No operation
- 1 Reset USART

DOR This bit is set if a Data OverRun occurs. While this bit is set, the

January, 2012 Rev.2.0

incoming data frame is ignored. This flag is valid until the receive buffer is read.

0 No Data OverRun

1 Data OverRun detected

This bit is set if the first stop bit of next character in the receive buffer is detected as '0'. This bit is valid until the receive buffer is read.

0 No Frame Error

1 Frame Error detected

This bit is set if the next character in the receive buffer has a Parity Error when received while Parity Checking is enabled. This bit is valid until the receive buffer is read.

0 No Parity Error

1 Parity Error detected

NOTE When the WAKE function of USART is used as a release source from STOP mode, it is required to clear this bit in the RX interrupt service routine. Else the device will not wake-up from STOP mode again by the change of RX pin.

UBAUD (USART Baud-Rate Generation Register)

PΕ

E₆H

7	6	5	4	3	2	1	0
UBAUD7	UBAUD6	UBAUD5	UBAUD4	UBAUD3	UBAUD2	UBAUD1	UBAUD0
RW							

Initial value: FFH

UBAUD [7:0]

The value in this register is used to generate internal baud rate in asynchronous mode or to generate XCK clock in synchronous or spi mode. To prevent malfunction, do not write '0' in asynchronous mode, and do not write '0' or '1' in synchronous or spi mode.

UDATA (USART Data Register)

E7_H

7	6	5	4	3	2	1	0
UDATA7	UDATA6	UDATA5	UDATA4	UDATA3	UDATA2	UDATA1	UDATA0
RW							

Initial value : FF_H

UDATA [7:0]

The USART Transmit Buffer and Receive Buffer share the same I/O address with this DATA register. The Transmit Data Buffer is the destination for data written to the UDATA register. Reading the UDATA register returns the contents of the Receive Buffer.

Write this register only when the UDRE flag is set. In spi or synchronous master mode, write this register even if TX is not enabled to generate clock, XCK.

11.7.13 Baud Rate Setting (example)

	fOSC=1.00MHz					fOSC=1.	8432MHz		fOSC=2.00MHz			
Baud	U2X=0		U2X=1		U2	U2X=0		X=1	U2	X=0	U2	X=1
Rate	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R
2400	25	0.2%	51	0.2%	47	0.0%	95	0.0%	51	0.2%	103	0.2%
4800	12	0.2%	25	0.2%	23	0.0%	47	0.0%	25	0.2%	51	0.2%
9600	6	-7.0%	12	0.2%	11	0.0%	23	0.0%	12	0.2%	25	0.2%
14.4K	3	8.5%	8	-3.5%	7	0.0%	15	0.0%	8	-3.5%	16	2.1%
19.2K	2	8.5%	6	-7.0%	5	0.0%	11	0.0%	6	-7.0%	12	0.2%
28.8K	1	8.5%	3	8.5%	3	0.0%	7	0.0%	3	8.5%	8	-3.5%
38.4K	1	- 18.6%	2	8.5%	2	0.0%	5	0.0%	2	8.5%	6	-7.0%
57.6K	-	-	1	8.5%	1	- 25.0%	3	0.0%	1	8.5%	3	8.5%
76.8K	-	-	1	- 18.6%	1	0.0%	2	0.0%	1	- 18.6%	2	8.5%
115.2 K	-	-	-	-	_	-	1	0.0%	-	-	1	8.5%
230.4 K	-	-	-	-	-	-	-	-	-	-	-	-

		fOSC=3.	6864MHz			fOSC=4	I.00MHz			fOSC=7.	3728MHz	
Baud	U2X=0		U2X=1		U2	U2X=0		X=1	U2	X=0	U2	X=1
Rate	UBAU D	ERRO R										
2400	95	0.0%	191	0.0%	103	0.2%	207	0.2%	191	0.0%	-	-
4800	47	0.0%	95	0.0%	51	0.2%	103	0.2%	95	0.0%	191	0.0%
9600	23	0.0%	47	0.0%	25	0.2%	51	0.2%	47	0.0%	95	0.0%
14.4K	15	0.0%	31	0.0%	16	2.1%	34	-0.8%	31	0.0%	63	0.0%
19.2K	11	0.0%	23	0.0%	12	0.2%	25	0.2%	23	0.0%	47	0.0%
28.8K	7	0.0%	15	0.0%	8	-3.5%	16	2.1%	15	0.0%	31	0.0%
38.4K	5	0.0%	11	0.0%	6	-7.0%	12	0.2%	11	0.0%	23	0.0%
57.6K	3	0.0%	7	0.0%	3	8.5%	8	-3.5%	7	0.0%	15	0.0%
76.8K	2	0.0%	5	0.0%	2	8.5%	6	-7.0%	5	0.0%	11	0.0%
115.2 K	1	0.0%	3	0.0%	1	8.5%	3	8.5%	3	0.0%	7	0.0%
230.4 K	-	-	1	0.0%	-	-	1	8.5%	1	0.0%	3	0.0%
250K	-	ı	1	-7.8%	-	-	1	0.0%	1	-7.8%	3	-7.8%
0.5M	-	ı	-	ı	-	-	-	-	-	-	1	-7.8%

		fOSC=8.00MHz			fOSC=11.0592MHz				fOSC=14.7456MHz			
Baud	U2	X=0 U2)		X=1 U2		U2X=0 U2X		2X=1	U2X=0		U2X=1	
Rate	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R	UBAU D	ERRO R
2400	207	0.2%	-	1	-	-	-	-	-	-	-	-
4800	103	0.2%	207	0.2%	143	0.0%	-	-	191	0.0%	-	-
9600	51	0.2%	103	0.2%	71	0.0%	143	0.0%	95	0.0%	191	0.0%
14.4K	34	-0.8%	68	0.6%	47	0.0%	95	0.0%	63	0.0%	127	0.0%
19.2K	25	0.2%	51	0.2%	35	0.0%	71	0.0%	47	0.0%	95	0.0%
28.8K	16	2.1%	34	-0.8%	23	0.0%	47	0.0%	31	0.0%	63	0.0%
38.4K	12	0.2%	25	0.2%	17	0.0%	35	0.0%	23	0.0%	47	0.0%
57.6K	8	-3.5%	16	2.1%	11	0.0%	23	0.0%	15	0.0%	31	0.0%

76.8K	6	-7.0%	12	0.2%	8	0.0%	17	0.0%	11	0.0%	23	0.0%
115.2 K	3	8.5%	8	-3.5%	5	0.0%	11	0.0%	7	0.0%	15	0.0%
230.4 K	1	8.5%	3	8.5%	2	0.0%	5	0.0%	3	0.0%	7	0.0%
250K	1	0.0%	3	0.0%	2	-7.8%	5	-7.8%	3	-7.8%	6	5.3%
0.5M	-	-	1	0.0%	-	-	2	-7.8%	1	-7.8%	3	-7.8%
1M	-	-	-	-	-	-	-	-	-	-	1	-7.8%

12. POWER MANAGEMENT

12.1 Overview

MC95FR332/432/364/464 supports two kinds of power saving modes, SLEEP and STOP. In these modes, the program execution is stopped. There's also BOD mode caused by voltage drop, which is almost the same as STOP mode.

12.2 PERIPHERAL OPERATION IN SLEEP/STOP/BOD MODE

Peripheral	SLEEP Mode	STOP Mode	BOD mode		
CPU	ALL CPU Operations are disabled	ALL CPU Operations are disabled	ALL CPU Operations are disabled		
RAM	Retain	Retain	Retain		
Basic Interval Timer	Operates Continuously	Stop	Stop		
Watch Dog Timer	Operates Continuously	Stop	Stop		
Timer0~3	Operates Continuously	Halted	Halted		
KEYSCAN	Operates Continuously	Stop	Stop		
Carrier Generator	Operates Continuously	Stop	Stop		
USART	Operates Continuously	Stop	Stop		
BOD	Enabled	Disabled	Enabled		
Main OSC (1~10MHz)	Oscillation	Stop	Stop		
I/O Port	Retain	Retain	Retain or Input pull-up mode		
Control Register	Retain	Retain	Retain		
Address / Data Bus	Retain	Retain	Retain		
Release Method	By RESET, all Interrupts	By RESET, Key interrupt, External Interrupt, UART by ACK, PCI	By Reset, By power rise detect		

Table 12-1 CPU and peripherals state in power saving modes

12.3 SLEEP mode

To enter SLEEP mode, write 01_H to Power Control Register(PCON, 87_H). In this mode, only the CPU halts and other peripherals including main oscillator operate normally. SLEEP mode can be released by a reset or interrupt. When SLEEP mode is released by a reset, all internal logics is initialized.

The following example shows the way to enter SLEEP mode.

(ex) MOV PCON, #0000_0001b ; Enter SLEEP mode : set bits of STOP and SLEEP Control register (PCON)

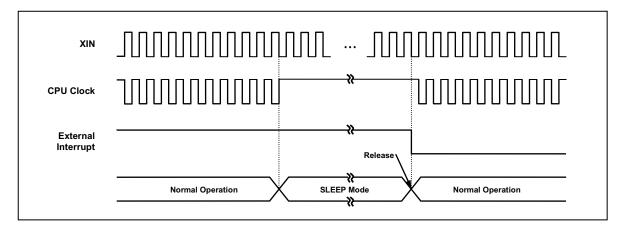


Figure 12.1 Wake-up from SLEEP mode by an interrupt

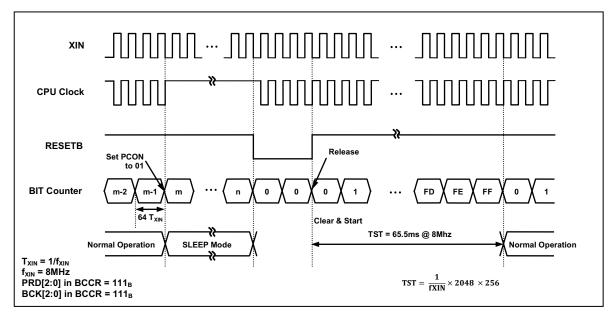


Figure 12.2 SLEEP mode release by an external reset

12.4 STOP mode

The least power consuming state called STOP mode is initiated by writing 03_H to Power Control Register (PCON, 87_H). In STOP mode, all analog and digital blocks including main oscillator stop operation. The analog block VDC also enters its own stop mode and BOD is disabled, so power consumption is radically reduced. All registers value or RAM data are reserved.

STOP mode release is done by a reset or interrupt request. When a reset is detected in STOP mode, the device is initialized, so all registers except for BODR register is reset to initial state. BODR register may or may not be initialized 'cause it has reset flags which are affected only by it's specific reset source. There're three kinds of reset sources which can be used to release STOP mode, power on reset(nPOR), external reset(P20) and BOD reset. As main oscillator stops oscillation in STOP mode, WDT reset cannot be generated.

When a reset or interrupt occurs in STOP mode, the clock control logic makes system clock active when a pre-defined time is passed. This is needed because the oscillator needs oscillation stability time. So we recommend to ensure at least 20ms of stability time by configuring BCCR register before

entering STOP mode. The oscillation stability time can be calculated by the overflow period of BIT counter. $^{\mathsf{NOTE}}$

NOTE The oscillation stability time is up to the characteristic of an oscillator or a resonator connected to the device. So the 20ms of recommended stability time is not absolute.

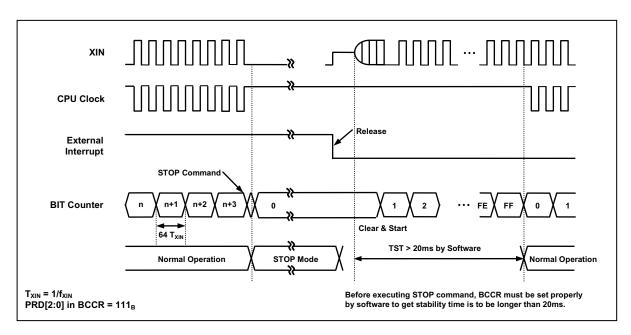


Figure 12.3 Wake-up from STOP mode by an interrupt

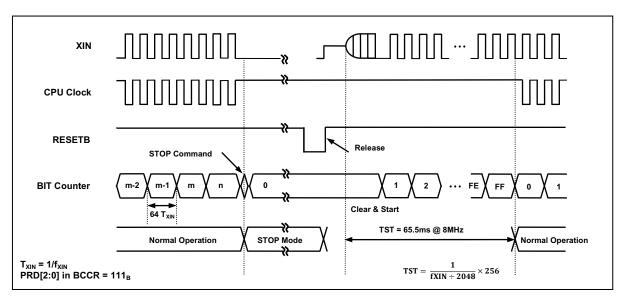


Figure 12.4 STOP mode release by an external reset

MC95FR332/432/364/464 acts in a little different manner after it awakes from STOP mode according to the external power condition after wake-up event.

In stop mode, the main oscillator is halted and any internal peripheral does not operate normally. So only an interrupt from external world can wake the device up from STOP mode. These kinds of interrupts are an external interrupt, key input or MISO(RXD) pin in UART mode. When an interrupt is detected, the wake-up logic enables BOD to check the external voltage level. If the voltage level is higher than the BOD stop level(=BODOUT0), the device wakes up normally to resume program

execution. Otherwise if the checked voltage level is below the BODOUT0, it remains in STOP mode. This continues unless the power level is recovered. Thereafter the device wakes up by another interrupt when the power level detected by BOD is sufficient. In this case, BOD reset is generated to initialize the device.

To wake up by an interrupt and accept interrupt request, the EA bit in IE register and the individual interrupt enable bit INTnE in IEx registers should be set.

12.5 BOD mode

When BOD is enabled and the external voltage drops below BODOUT0, the device enters BOD mode instantaneously. In BOD mode, all analog and digital blocks except for BOD stop operation. The internal state of the device is almost the same as in STOP mode. But there are 3 different points as follows. First, on entering BOD mode, the I/O ports can be set input ports with pull-up registers on if PxBPC registers are not altered from reset value. Second, BOD mode can only be released by voltage rise detected by BOD. And after mode exit, the device is initialized by a BOD reset event. Third, because BOD is enabled to detect voltage variation, the current consumption is larger than STOP mode of operation, typically maximum 100uA of current is consumed. Except the three different points descrbed above, BOD mode is the same as STOP mode.

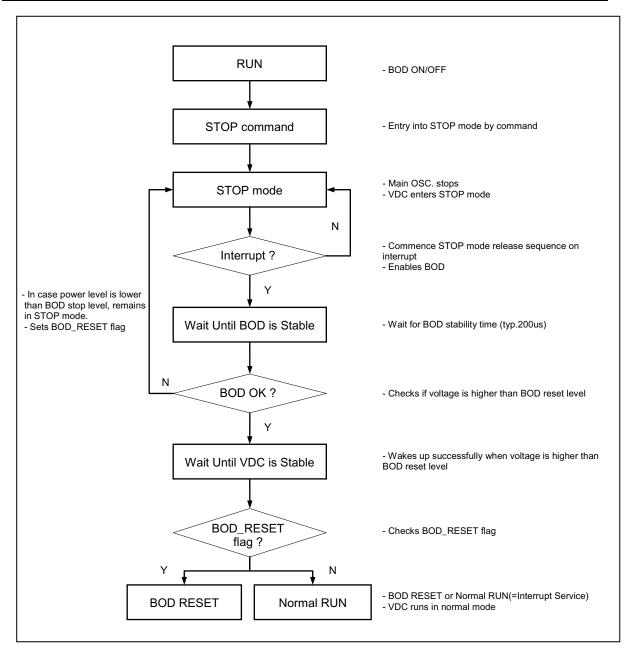


Figure 12.5 Entry into STOP mode and Release sequence

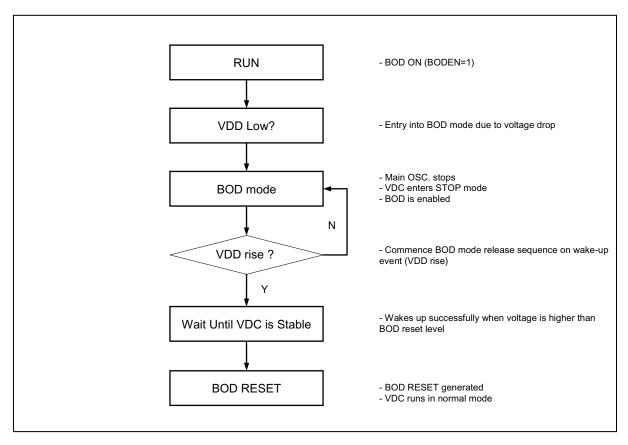


Figure 12.6 Entry into BOD mode and Release sequence

12.6 Register Map

Name	Name Address		Default	Description
PCON	87 _H	R/W	00 _H	Power Control Register

Table 12-2 Register Map of Power Control Logic

12.7 Register Description

PCON (Power Control Register) 87_H 7 6 5 2 4 3 1 0 BIT7 BIT6 BIT5 BIT4 ВП3 ВП2 BIT1 BIT0 RW RW RW RW RW RW RW RW Initial value: 00_H

SLEEP mode

01_H Enters SLEEP mode

STOP mode

03_H Enters STOP mode

 $^{\text{NOTE}}~$ 1. Write PCON register $01_{\text{H}}~$ or 03_{H} to enter SLEEP or STOP mode.

2. When mode exit from STOP or SLEEP is done successfully, the PCON register is auto-cleared.

January, 2012 Rev.2.0

13. RESET

13.1 Overview

When a reset event occurs, the CPU immediately stops whatever it is doing and all internal logics except for BODR register is initialized. The external reset pin(P20) shares normal I/O pin and the functionality is defined by fuse configuration(FUSE_CONF register). The hardware configuration right after reset event is as follows.

On Chip Hardware	Initial Value				
Program Counter (PC)	0000 _H				
Accumulator	00 _H				
Stack Pointer (SP)	07 _H				
Peripheral Clocks	On				
Control Registers	Refer to Peripheral Registers				
Brown-Out Detector	Enabled on power-on-reset				

Table 13-1 Internal status when a reset is asserted

13.2 Reset source

Reset can be caused by a power-on-reset (nPOR) event, watchdog overflow, voltage drop detection by BOD, OCD command, or by assertion of an external active-low reset pin. Four of reset sources except for power-on-reset can be configured whether to be used as a reset source or not.

- -. External reset pin (P20) (Share with P20 pin. Active low)
- -. Power-on reset (nPOR, Active low)
- -. WDT overflow (when WDTEN is '1' and WDTRSON is '1')
- -. BOD reset (when BODEN is '1') $^{\mathsf{NOTE}}$
- -. OCD command (When debugger issues a command)

13.3 Block Diagram



Figure 13.1 Block Diagram of Reset Circuit

NOTE Unlike other reset sources, BOD reset does not take place as soon as BODOUT0 goes HIGH(=voltage drops below BOD stop level). On detecting low voltage while the device is in normal run mode, the device enters BOD(STOP) mode first. And then by detecting voltage rise, the power control logic wakes the device up to give a reset signal.

Note that when the device is in STOP mode by CPU command(PCON=0x03), the BOD cannot detect voltage drop because the BOD is disabled to reduce power consume. In this case, the BOD reset may be issued when a wake-up event or interrupt is generated with the external voltage below the BOD stop level.

13.4 Noise Canceller for External Reset Pin

A glitch-like or short pulse on external reset pin(P20) is ignored by the dedicated noise-canceller. To have an effect as a reset source, P20 port should be maintained low continuously at least 8us of time(T_{RNC}) in typical condition. The T_{RNC} may vary from 4.8us upto 13.8us according to the condition of manufacturing process.

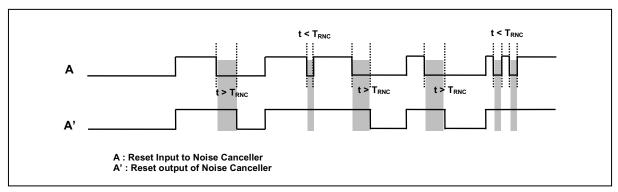


Figure 13.2 Noise Cancelling of External Reset Pin

13.5 Power-On-RESET

When power is initially applied to the MCU, or when the supply voltage drops below the V_{POR} level, the POR circuit will cause a reset condition. Owing to presence of POR, the external reset pin can be used as a normal I/O pin. Thus additional resistor and capacitor can be removed to be connected to reset pin.

Figure 13.3 Reset Release Timing when Power is supplied (VDD Rises Rapidly)

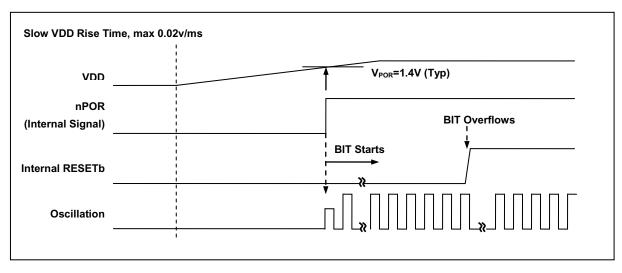


Figure 13.4 Reset Release Timing when Power is supplied (VDD Rises Slowly)



Figure 13.5 Fuse Configuration Value Read Timing after Power On (External 8MHz Clock)

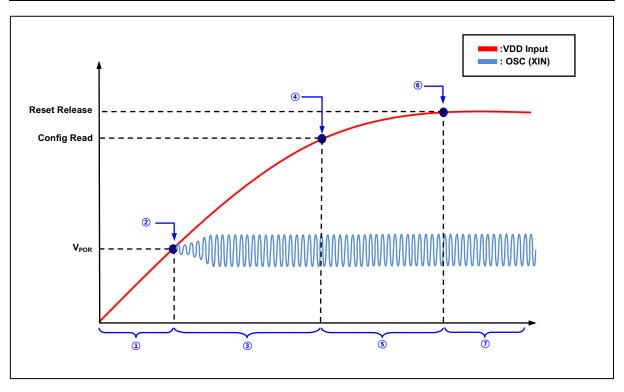


Figure 13.6 Operation according to Power Level

The above figure shows internal operation according to the voltage level and time. And the following table is short description about the figure.

Process	Description	Remarks
1	-POR	
2	-POR release point -Main OSC (Typically 8MHz) starts oscillation	-Around 1.4V ~ 1.6V
3	-(T_{XIN} X 2048) \times F2 _H (60ms) delay section -VDD must rise above flash operating voltage	-T _{XIN} is period of XIN -Slew Rate >= 0.025V/ms
4	-Configuration value read point	-Around 1.5V ~ 1.6V -Config value is determined by writing option
5	-Rising section to reset release level	-64ms after power-on-reset or external reset is released
6	-Reset release point (BIT overflow)	-BIT is used to ensure oscillation stability time
7	-Normal operation	

Table 13-2 Power On Sequence

13.6 External RESETB Input

External reset pin is a Schmitt Trigger type input. External reset input should be asserted low at least for 8us(typically) for normal reset function when operating voltage and output of main oscillator are stable.

When the external reset input goes high, the internal reset is released after 64ms of stability time in case external clock frequency is 8MHz. For 5 clock periods from the point internal reset is released, an initialization procedure is performed. Thereafter the user program is executed from the address $0000_{\rm H}$.

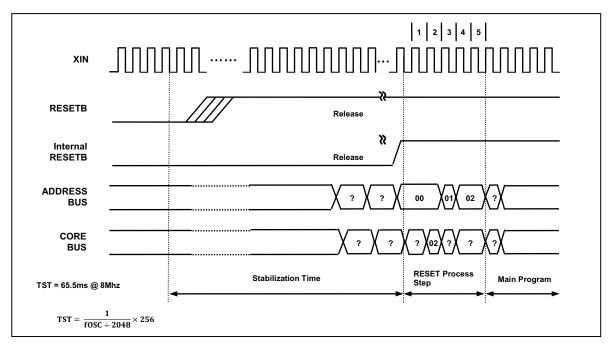


Figure 13.7 Reset procedure due to external reset input

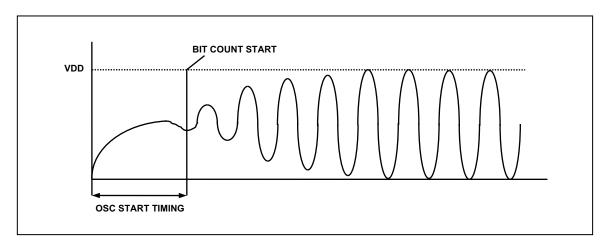


Figure 13.8 Example of oscillation

January, 2012 Rev.2.0

 $[\]ensuremath{^{\text{NOTE}}}$ Oscillation start time does not belong to oscillation stability time.

13.7 Brown Out Detector

The MC95FR332/432/364/464 includes a system to protect against low voltage conditions in order to preserve memory contents and control MCU system states during supply voltage variations. The system is comprised of a power-on-reset(nPOR) and an BOD with 4 voltage level indicators. The BOD is enabled when BODEN in BODR is high. The BOD is auto-disabled upon entering STOP mode. This auto-disable function reduces operating power noticeably consumed by BOD itself.

The BOD has two main functions. One is to generate a BOD stop level(=BODOUT0) and the other is to indicate voltage levels above BOD stop level denoted by BODOUT1,2,3,4 each.

Remember that BOD itself does not generate a reset signal. When operating voltage drops below a pre-defined level(BODOUT0), the BOD does not cause the whole system to be reset, but signals main chip to enter BOD(STOP) mode instantaneously. For more information about BOD reset, refer to section 12.4 POWER MANAGEMENT.

Besides BOD stop level, the BOD gives four low voltage warning flags to indicate to the user that the supply voltage is approaching, but is still above, the BOD stop level. These flags can be read through the BODSR register, but do not have any interrupt associated with them.

Like external reset, BODOUT0 is also filtered by a dedicated noise cancelling logic. A pulse shorter than about 7us is ignored by the system in condition Vdd is between 1.75V and 3.6V.

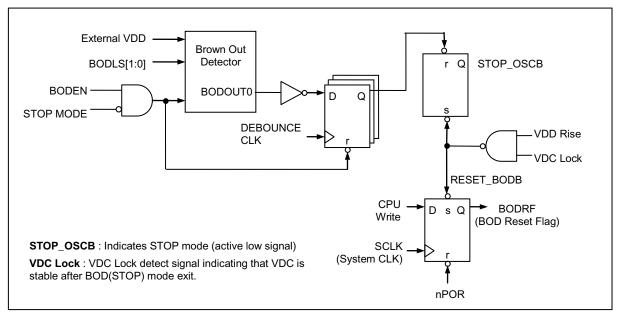


Figure 13.9 Block Diagram of BOD

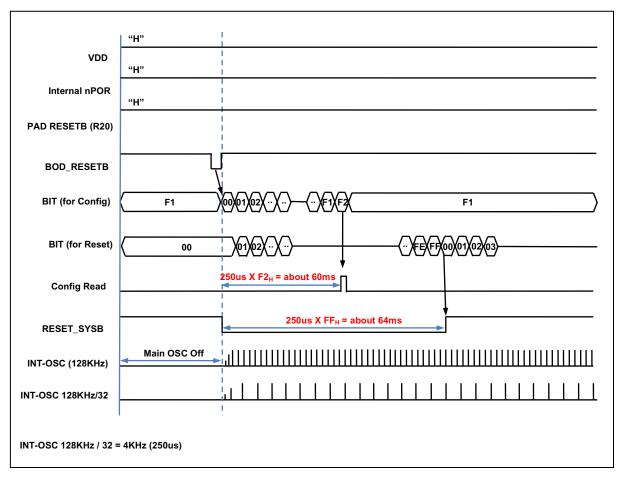


Figure 13.10 Configuration value read timing when BOD RESET is asserted

13.8 Register Map

Name	Name Address		Default	Description		
BODR	BODR 86 _H		81 _H	BOD Control Register		
BODSR	8F _H	R/W	00 _H	BOD Status Register		

Table 13-3 Register Map of BOD

13.9 Register Description

BODR (BOD Control Register) 86_H 6 7 5 3 1 0 **PORF EXTRF** WDTRF **OCDRF BODRF BODEN** RW RW RW RW RW RW Initial value: 81_H

PORF Power-On Reset Event NOTE

0 No POR event detected after clear

1 POR occurred

EXTRF External Reset Event NOTE

January, 2012 Rev.2.0

0	No external reset detected after clear
1	External reset occurred
Watcl	h Dog Reset Event ^{NOTE}
0	No WDT reset detected after clear
1	WDT reset occurred
On-C	hip Debugger Reset Event NOTE
0	No OCD reset detected after clear
1	OCD reset occurred
Brow	n-Out Detector Reset Event NOTE
0	No BOD reset detected after clear
1	BOD reset occurred
Enabl	les or disables BOD
0	Disable BOD
1	Enable BOD
	1 Watc 0 1 On-C 0 1 Brow 0 1 Enable

NOTE To clear each reset flag, write '0' to associated bit position.

BODSR (BOD Status Register)

8F_H

7	6	5	4	3	2	1	0
-	-	-	-	BODOUT4	BODOUT3	BODOUT2	BODOUT1
-	-	-	-	R	R	R	R

Initial value: 00_H

BODOUT4 VDD level indicator 4. After calibration, this flag turns on around 2.05V.

0 VDD level is higher than BODOUT4

1 VDD dropped below BODOUT4

BODOUT3 VDD level indicator 4. After calibration, this flag turns on around 1.95V.

0 VDD level is higher than BODOUT3

1 VDD dropped below BODOUT3

BODOUT2 VDD level indicator 4. After calibration, this flag turns on around 1.85V.

0 VDD level is higher than BODOUT2.

1 VDD dropped below BODOUT2

BODOUT1 VDD level indicator 4. After calibration, this flag turns on around 1.75V.

0 VDD level is higher than BODOUT1

1 VDD dropped below BODOUT1

14. ON-CHIP DEBUG SYSTEM

14.1 Overview

14.1.1 Description

The On-chip debug system(OCD) of MC95FR332/432/364/464 is used to program/erase the non-volitile memory or debug the device. The main features are shown as follows.

14.1.2 Features

- Two-wire external interface : 1-wire serial clock input, 1-wire bi-directional serial data bus
- Debugger Access to :
 - · All Internal Peripheral Units
 - Internal data RAM
 - Program Counter
 - Non-volatile Memories
- Extensive On-chip Debug Support for Break Conditions, Including
 - Break Instruction
 - Single Step Break
 - Program Memory Break Points on Single Address
 - Programming of Flash/EEPROM, Fuses, and Lock Bits through the two-wire Interface
 - On-chip Debugging Supported by Dr.Choice[®]
- · Operating frequency : Supports the maximum frequency of the target MCU

Caution: When the device operates with OCD module connected, the main oscillator of MC95FR332/432/364/464 does not stop even if it is in STOP mode.

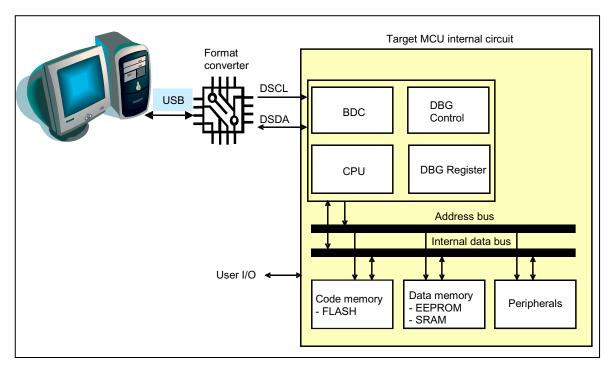


Figure 14.1 Block Diagram of On-Chip Debug System

14.2 Two-pin external interface

14.2.1 Basic transmission packet

- √ 10-bit packet transmission via two-wire interface.
- ✓ 1 packet consists of 8-bit data, 1-bit parity and 1-bit acknowledge.
- ✓ Even parity for 8-bit transmit data.
- ✓ Receiver gives acknowledge bit by pulling the data line low when 8-bit transmit data and parity bit has no error.
- ✓ When transmitter receives no acknowledge bit from the receiver, error process is done by transmitter.
- ✓ When acknowledge error is generated, host PC issues a stop condition and re-transmits the command.
- ✓ Background debugger command is composed of a bundle of packets.
- ✓ Each packet starts with a start condition and ends with a stop condition.

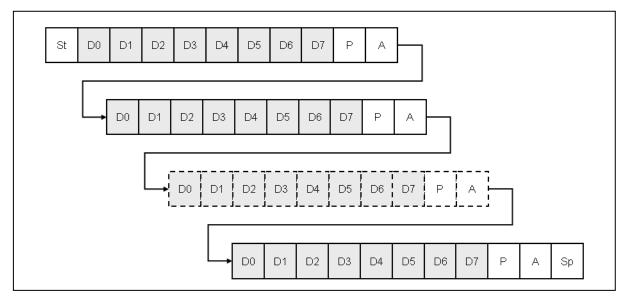


Figure 14.2 10-bit transmission packets

14.2.2 Packet transmission timing

14.2.2.1 Data transfer

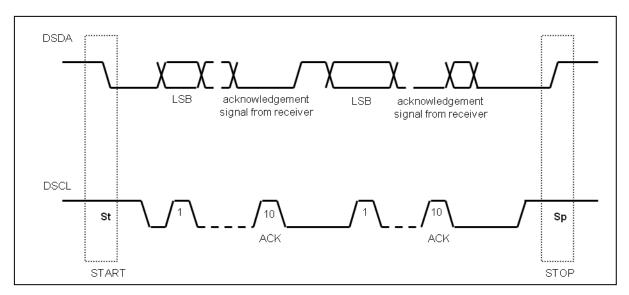


Figure 14.3 Data transfer on the twin bus

14.2.2.2 Bit transfer

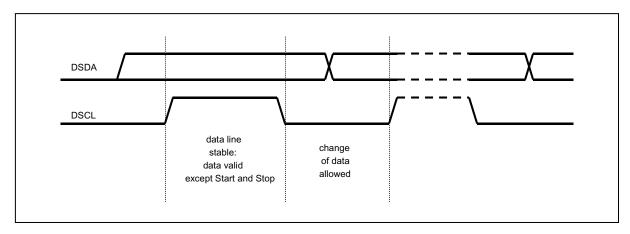


Figure 14.4 Bit transfer on the serial bus

14.2.2.3 Start and stop condition

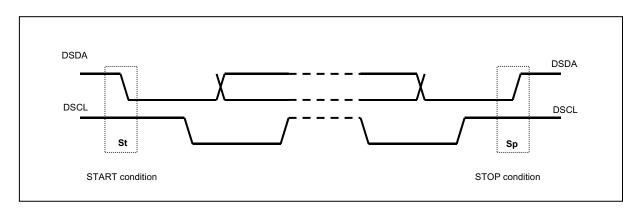


Figure 14.5 Start and stop condition

14.2.2.4 Acknowledge bit

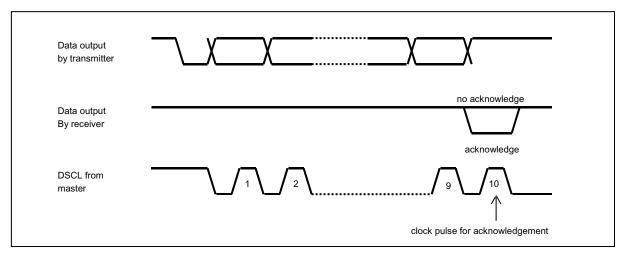


Figure 14.6 Acknowledge by receiver

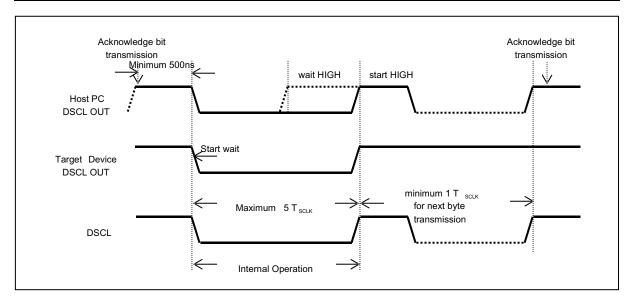


Figure 14.7 Clock synchronization during wait procedure

14.2.3 Connection of transmission

Two-pin interface connection uses open-drain (wired-AND bidirectional I/O).

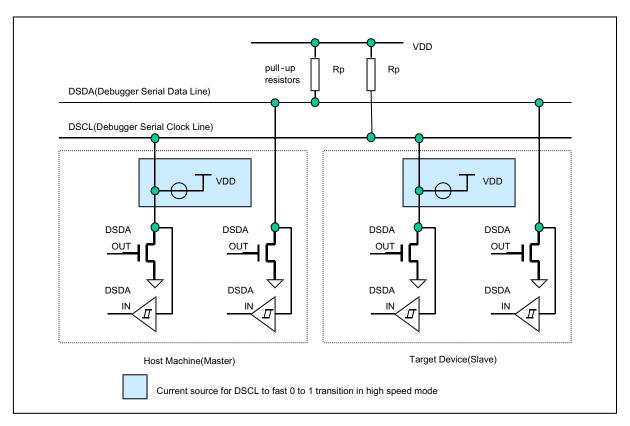


Figure 14.8 Wire connection for serial communication

15. FLASH/EEPROM CONTROLLER

15.1 Overview

15.1.1 Description

The MC95FR332/432/364/464 has 32KB/64KB of embedded non-volatile memory, defined as FLASH or EEPROM region. On reset, this non-volatile memory is used as code memory, but latter part of this memory can be used as DATA EEPROM by configuring DEARM and DEARL registers. DATA EEPROM is defined as a XDATA region and accessed via movx command. Program and erase is performed by ISP via OCD or parallel ROM writer in byte size.

15.1.2 Features of FLASH/EEPROM

- Memory size: 32K/64Kbytes
- Can be divided into CODE(PROGRAM) and DATA EEPROM region
- Program or erase operation is performed with single power supply
- Command interface for fast program and erase operation
- Up to 10,000 program/erase cycles at typical voltage and temperature
- · Program or erase operation is done by page unit
- One page consists of 64 bytes
- Security feature

15.2 Register Map

Name	Address	Dir	Default	Description
DISTR	D9 _H	R/W	04 _H	Discharge Time Control Register
FEMR	EA _H	R/W	00 _H	FLASH and EEPROM Mode Register
FECR	EB _H	R/W	03 _H	FLASH and EEPROM Control Register
FESR	EСн	R/W	80 _H	FLASH and EEPROM Status Register
FETCR	ED _H	R/W	00 _H	FLASH and EEPROM Time Control Register
DEARL	EE _H	R/W	00 _H	Data EEPROM Address Low Register
DEARM	EF _H	R/W	00 _H	Data EEPROM Address Middle Register
FEARL	F2 _H	R/W	00 _H	FLASH and EEPROM Address Low Register
FEARM	F3 _H	R/W	00 _H	FLASH and EEPROM Address Middle Register
FEDR	F5 _H	R/W	00 _H	FLASH and EEPROM Data Register
FETR	F6 _H	R/W	00 _H	FLASH and EEPROM Test Register

Table 15-1 Register Map of EEPROM Controller

15.3 Register Description

15.3.1 FLASH and EEPROM Control Registers Description

DISTR (Discharge Time Control Register)

D9_H

7	6	5	4	3	2	1	0	
-	-	-	-	DISTR3 DISTR2		DISTR1	DISTR0	
-	-	-	-	RW	RW	RW	RW	

Initial value: 04_H

DISTR[3:0] Discharge time.

When Data EEPROM is programmed or erased, it is needed to allow discharge time for the memory entity to be stable. We recommend 20us of discharge time and it is calculated by the following equation.

 $tDIS = tXIN \times 64 \times DISTR$

where tXIN is the period of main oscillator output.

FEMR (FLASH and EEPROM Mode Register)

EA_H

7	6	5	4	3	2	1	0
FSEL	ESEL PGM		ERASE	PBUFF	OTPE	FEEN	
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00_H

FSEL Selects FLASH

0 No operation

1 Select FLASH

ESEL Selects EEPROM

0 No operation

1 Select DATA EEPROM

PGM PROGRAM

0 No operation

1 Program mode enabled

ERASE ERASE

0 No operation

1 Erase mode enabled

PBUFF Selects page buffer

0 Deselect page buffer

1 Select page buffer

OTPE Selects OTP region

0 No operation

1 Select OTP region

VFY Enable verify mode with PGM or ERASE bit

Program Verify: PGM=1, VFY=1

Erase Verify: ERASE=1, VFY=1

FEEN Enable PROGRAM or ERASE operation of non-volatile memory. When

disabled, normal read operation is done.

Disable PROGRAM or ERASE

1 Enable PROGRAM or ERASE

FECR (FLASH and EEPROM Control Register)

EB_H

7	6	5	4	3	2	1	0
AEF	-	EXIT1	EXIT0	WRITE	READ	nFERST	nPBRST
RW	_	RW	RW	RW	RW	RW	RW

Initial value: 03_H

AEF	Bulk Er	ase mode	
	0	No operation	
	1	Enable Bulk E	rase
EXIT[1:0]		om program or clock period.	erase mode. This bit is auto-cleared after 1
	EXIT1	EXIT0	Description
	0	0	No exit
	0	1	No exit
	1	0	No exit
	1	1	Exit
WRITE	Write E	EPROM	
	0	No operation	
	1	Starts write op	eration like PROGRAM or ERASE.
READ	Auto ve	erify. This bit is a	uto-cleared after 1 system clock period.
	0	No operation	
	1	Starts auto-vei	rify cycle
nFERST	Reset f period.	or EEPROM co	ontroller. This bit is auto-set after 1 system clock
nPBRST	Reset f	or page buffer.	This bit is auto-set after 1 system clock period.
	PBUF	F nPBRS	T Description
	0	0	Page buffer reset
	1	0	Write checksum reset

WRITE and READ bits must be manipulated only in program, erase or verify mode along with FEARM and FEARL registers, which means indirect addressing is used. Normal read or write strobe signals related to memory cell or page buffer comes directly from memory controller.

Caution: Before stating program or erase operation by setting WRITE bit in FECR register, it is required to load the page buffer with 64 bytes of data. That is, partial loading of page buffer may cause unexpected result. Formally the MC95FR332/432/364/464 only support page program/erase.

Caution: After setting WRITE bit in FECR register, it is required to follow at least 3 "nop" instructions for proper operation. ABOV recommends to insert 5 nop instructions right after setting FECR register. Refer to section 15.5.3 Example of EEPROM control in C language.

FESR (FLASH and EEPROM Status Register)

EC_H

7	6	5	4	3	2	1	0
nPEVBSY	VFYGOOD	-	-	ROMINT	WMODE	EMODE	VMODE
R	RW R		R	RW	R	R	R

Initial value : 80_{H}

nPEVBSY BUSY flag. Represents that program, erase, or verify operation is on-

going, active low. This bit is auto-set when operation is done.

Busy (Operation processing)

1 Operation completed

VFYGOOD Auto-verification result flag

0 Auto-verification failed

Auto-verification succeeded

ROMINT Data EEPROM Interrupt Flag. This bit is auto-cleared when program,

January, 2012 Rev.2.0

erase, or verify operation is started.

0 No interrupt requested

1 Interrupt requested

WMODE Write mode flag
EMODE Erase mode flag
VMODE Verify mode flag

DEARL (Data EEPROM Address Low Register)

EE_H

7	6	5	4	3	2	1	0
DEARL7	DEARL6	-	-	-	-	-	-
RW	RW	-	-	-	-	-	-

Initial value: 00H

DEARL[7:6]

DATA EEPROM address low. Defines lower address of DATA EEPROM region. 'Cause the page buffer size is 64 Bytes and CODE or DATA region is divided by page size, only high 2 bits are needed.

DEARM (Data EEPROM Address Middle Register)

EF_H

7	6	5	4	3	2	1	0
DEARM7	DEARM7 DEARM6 DEARM5		DEARM4	DEARM3	DEARM2	DEARM1	DEARM0
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00_H

DEARM[7:0]

DATA EEPROM address middle. Defines higher address of DATA EEPROM region.

FEARL (FLASH and EEPROM address low Register)

F2_H

7	6	5	4	3	2	1	0		
ARL7	ARL7 ARL6 ARL		ARL4	ARL3	ARL2	ARL1	ARL0		
W	W	W	W	W	W	W	W		

Initial value: 00_H

ARL[7:0] Flash and EEPROM address low. Due to page buffer size, high 2 bits are meaningful.

FEARM (FLASH and EEPROM address middle Register)

F3_H

7	6 5		4	2	1	0	
ARM7	ARM6 ARM5		ARM4	ARM3	ARM2	ARM1	ARM0
W	W W		W		W	W	W

Initial value: 00H

ARM[7:0] Flash and EEPROM address middle.

FEARM and FEARL registers are used for program, erase, or auto-verify operation. In program or erase mode, these registers point to the page number to be programmed or erased. In auto-verify mode, the address increases automatically by one. FEARM and FEARL registers are write-only, and reading these registers return the 24-bit checksum result.

FEDR (FLASH and EEPROM data control Register)

F₅_H

7	6	5	4	2	1	0	
FEDR7	FEDR6	FEDR5	FEDR4	FEDR3	FEDR2	FEDR1	FEDR0
W	W W		W	W	W	W	W
							Initial value: 00

FEDR[7:0] Flash and EEPROM control data

To protect the contents of non-volitile memory from abnormal update, user software must obey a predefined procedure to enter program or erase mode, or writing operation will not work properly. To program or erase the non-volatile memory, first write $A5_H$ and $5A_H$ to this register in order.

FETCR (FLASH and EEPROM Time control Register)

ED_H

7	6	5	4	3	2	1	0
TCR7	TCR6	TCR5	TCR4	TCR3	TCR2	TCR1	TCR0
RW							
							1 '11' 1 1 00

Initial value: 00_H

TCR[7:0] Program or Erase Time control

Program or erase time is controlled by the value in FETCR register.

The EEPROM controller includes a 10-bit counter used to calculate program or erase time. The counter is clocked by a clock which is divided by 64 from XIN clock(XIN/64). It's a simple counter. When program or erase operation starts, the counter is cleared and start up-counting until it reaches the target value coming from FETCR. On matching, the counter stops and the PEVBSY flag is set.

In bulk erase mode, the TCR[7:0] becomes the most significant eight bits in counter target value, and the least significant two bits are filled with '11'. In program or erase mode, the most significant bit is filled with '0', the least significant bit is filled with '1', and the TCR[7:0] becomes the middle eight bits in counter target value. So the program or erase time is calculated by the following equation. In the following equation and description, it is assumed that the frequency of external clock source, f_{XIN} is 8MHz. In that case, the period of XIN/64 clock is about 8us.

where Tpe is time to be taken when program or erase operation is performed in byte- or page-size, Tbe is time for bulk erase operation. For proper program or erase operation, it is recommended to load FETCR register with value that makes Tpe longer than 2.5ms.

When 8MHz oscillator is used, the maximum program or erase time can be 8us * 512 = 4ms. And considering the error rate of $\pm 10\%$, about $3.6 \sim 4.4$ ms of program/erase time can be ensured. Similarly in bulk erase mode, the maximum time can be 8ms, so $7.2 \sim 8.8$ ms of bulk erase time will be applied.

15.4 Memory map

As described previously, MC95FR332/432/364/464 has 32KB/64KB of Program Memory called FLASH. User software can divide this FLASH memory into two memory space, Program Memory and Data EEPROM. If devided, lower address space from 0000_H is used for Program Memory and higher address space to FFFF_H are used for Data EEPROM. Like External RAM, Data EEPROM is also assigned to XDATA region, therefore the bottom address of Data EEPROM must higher than 03FF_H.

148

January, 2012 Rev.2.0

Logically the maximum size of Data EEPROM is 31KB/63KB, addresses from 0400_H through $7FFF_H/FFFF_H$. After reset, the entire FLASH memory is assigned to Program Memory. Note that there's only one memory entity.

The boundary between FLASH and EEPROM is defined by the DEARM and DEARL registers, and the register value is the start address of EEPROM. That is, when the memory address made by CPU is lower than the register value, the address becomes program memory address.

Regardless of memory assignment, it is needed to write page address into FEARM and FEARL registers to program or erase the non-volatile memory. So, to update EEPROM area in user software, make the concatenated value DEARM:DEARL be smaller than or equal to the concatenated value FEARM:FEARL. This is also applied to page buffer loading operation. That is, when the value DEARM:DEARL is greater than FEARM:FEARL, page buffer loading is not performed. Also, no program or erase operation is done in Data EEPROM.

The next figure shows an example of memory area division where DEARM is 60_H and DEARL is 00_H . As the start address of Data EEPROM is defined by the DEARM and DEARL registers, address from 6000_H to address upto $7FFF_H/FFFF_H$ is assigned to EEPROM area. These address space are defined as XDATA region and can be accessed via movx instruction.

15.4.1 EEPROM area division

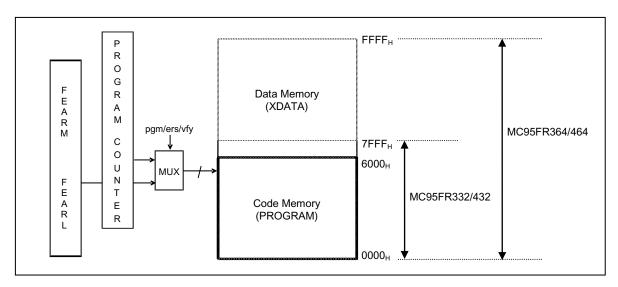


Figure 15.1 FLASH Memory Map

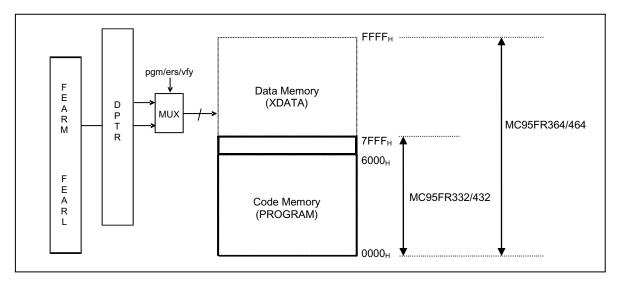


Figure 15.2 DATA EEPROM Memory Map

15.4.2 Address configuration of Data EEPROM memory

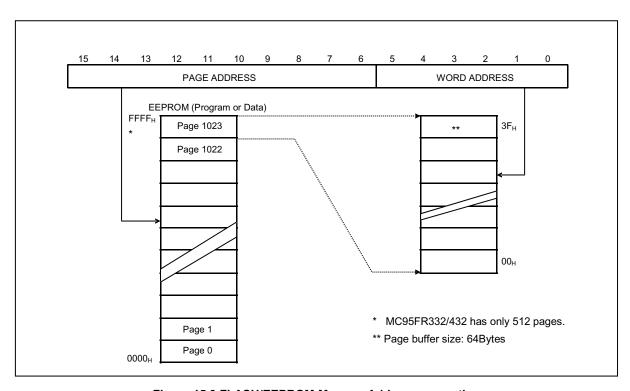


Figure 15.3 FLASH/EEPROM Memory Address generation

15.5 Data EEPROM Program/Erase

15.5.1 Data EEPROM operation

Program or erase operation for Data EEPROM area is performed in direct or indirect addressing mode. Direct addressing uses external data area(XDATA) of M8051 core, indirect addressing uses address and data registers.

Caution: For proper program or erase operation, the value DEARM:DEARL should be smaller than or equal to the value FEARM:FEARL even when loading page buffer. If not, operation may not work properly.

15.5.1.1 Enable program/erase mode

Step 0. Enter program/erase mode sequence. NOTE

- (1) Write A5_H to FEDR.
- (2) Write 5A_H to FEDR.

NOTE Command sequence to activate EEPROM program/erase mode. It is composed of sequential write to data register, FEDR.

15.5.1.2 EEPROM page write

- Step 0. Set Data EEPROM address. (DEARM:DEARL should be smaller than or equal to FEARM:FEARL.)
- Step 1. Set page address. FEARH:FEARM:FEARL=20'hx xxxx
- Step 2. Enable program mode.
- Step 3. Reset page buffer. FEMR:0100_0001_B FECR:0000_0010_B
- Step 4. Select page buffer. FEMR:0100 1001_B
- Step 5. Write data to page buffer (Load 64Bytes of data).
- Step 6. Set write mode. FEMR:0110_0001_B
- Step 7. Set FETCR.
- Step 8. Start program. FECR:0000_1011_B
- Step 9. Read FESR until PEVBSY is 1.
- Step 10. Repeat step2 to step 8 until all pages are written.

15.5.1.3 EEPROM page erase

- Step 0. Set Data EEPROM address. (DEARM:DEARL should be smaller than or equal to FEARM:FEARL.)
- Step 1. Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- Step 2. Enable program mode.
- Step 3. Reset page buffer. FEMR:0100_0001_B FECR:0000_0010_B
- Step 4. Select page buffer. FEMR:0100_1001_B
- Step 5. Write 00_H to page buffer. (Data value are not important. Load 64Bytes of data.)
- Step 6. Set erase mode. FEMR:0101_0001_B
- Step 7. Set FETCR.
- Step 8. Start erase. FECR:0000 1011_B
- Step 9. Read FESR until PEVBSY is 1.

Step 10. Repeat step2 to step 8 until all pages are erased.

15.5.2 Example of EEPROM control in C language

The next example code shows how to program or erase a specific page area of DATA EEPROM using C language. The program or erase sequence used in the test code complies with above rules.

Example:

```
//
        Project: Write data to EEPROM at 0xF000
//
        Device : MC95FR364/464
//
        Oscillator
                       : 4MHz
//
        Compiler
                       : Keil uvision C Compiler V7.20
#include <intrins.h>
#include "MC95FR464.h"
#define EEPROM_SIZE
#define EEPROM_PBUFF_SIZE 64
// PGM/ERASE Timing
#define PGMTIME
                               0x4F
                                       // 2.5ms @4MHz
#define ERSTIME
                               0x4F
                                       // 2.5ms @4MHz
void eeprom_init(unsigned int addr);
void eeprom_write(unsigned int addr);
void eeprom_erase(unsigned int addr);
void eeprom_mode_enter();
void eeprom_mode_program();
void eeprom_mode_exit();
void eeprom_set_pbuff();
void eeprom_set_write(unsigned int addr);
void eeprom_set_erase(unsigned int addr);
xdata unsigned char edata[EEPROM_SIZE] _at_ 0xF000;
void main()
        // If discharge time is less than 20us, set DISTR register appropriately.
{
        eeprom_init(0xF000);
        eeprom_erase(0xF000);
        eeprom_write(0xF000);
        while(1);
}
void eeprom_init(unsigned int addr)
{
        //Step0. Set Data EEPROM address
        DEARM = 0xff; // Data EEPROM from 0xFFxx (for safe code execution, xx is current DEARL)
```

```
DEARL = (unsigned char)(addr&0xff); // DEARM:L <= FEARM:L
        DEARM = (unsigned char)(addr>>8); // Data EEPROM from addr
        FEARL = (unsigned char)(addr&0xff); // DEARM:L <= FEARM:L
        FEARM = (unsigned char)(addr>>8);
        DISTR = DISCHARGE_TIME;
}
void eeprom_erase(unsigned int addr)
{
        //Step1. Set page address
        FEARL = (unsigned char)addr;
        FEARM = (unsigned char)(addr>>8);
        eeprom_mode_enter();
        eeprom_set_pbuff();
        eeprom_set_erase(addr);
        eeprom_mode_program();
        eeprom_mode_exit();
}
void eeprom_write(unsigned int addr)
{
        //Step1. Set page address
        FEARL = (unsigned char)addr;
        FEARM = (unsigned char)(addr>>8);
        eeprom_mode_enter();
        eeprom_set_pbuff();
        eeprom_set_write(addr);
        eeprom_mode_program();
        eeprom_mode_exit();
}
void eeprom_mode_enter()
{
        //Step2. Enable program mode
        FEDR = 0xA5;
        FEDR = 0x5A;
}
void eeprom_set_pbuff()
        //Step3. Reset Page buffer
        FEMR = 0x41;
        FECR = 0x02;
```

```
//Step4, Select Page buffer
        FEMR = 0x49;
}
void eeprom_set_erase(unsigned int addr)
{
        unsigned char i;
        //Step5. Erase data to page buffer
        for(i = 0; i < EEPROM_PBUFF_SIZE; i++) {
          edata[i] = 0x00;
        //Step6. Set erase mode
        FEMR = 0x51;
        //Step7. Set FETCR
        FETCR = PGMTIME;
}
void eeprom_set_write(unsigned int addr)
{
        unsigned char i;
        //Step5. Write data to page buffer
        for(i = 0; i < EEPROM_PBUFF_SIZE; i++) {
          edata[i] = i;
        //Step6. Set write mode
        FEMR = 0x61;
        //Step7. Set FETCR
        FETCR = ERSTIME;
}
void eeprom_mode_program()
        //Step8. Start Program
        FECR = 0x0B;
        _nop_(); _nop_(); _nop_(); _nop_();
        //Step9. Read FESR until PEVBSY in 1
        while(FESR>>7 == 0);
}
void eeprom_mode_exit()
{
        FEMR = 0x00;
        FECR = 0x33;
                         // EXIT[1:0], nFERST[1], nPBRST[0]
```

```
FESR = 0x80; // PEVBSY
FEDR = 0x00;
FETR = 0x00;
DEARM = 0xff; // Data EEPROM from 0xFFxx (for safe code execution, xx is addr low 8-bit)
DEARL = 0x00; // Data EEPROM from 0xFF00
DEARM = 0x00; // no data EEPROM, all code memory
}
```

The result acquired by executing this test code is as shown in the following figure. As can be seen, the page address F000_H is programmed correctly. The figure is obtained from the debugger tool.

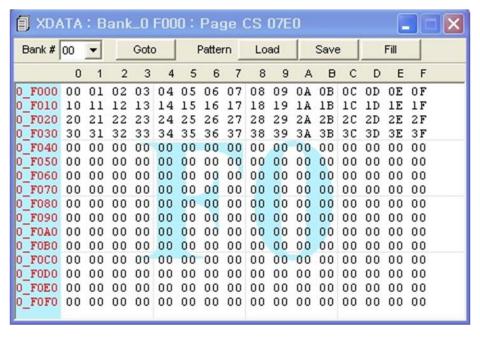


Figure 15.4 Memory in XDATA area after program operation (EEPROM, MC95FR364/464)

15.6 Security

The MC95FR332/432/364/464 provides one LOCKF bit to protect memory contents from illegal attempt to read. The LOCKF bit can be erased only by bulk erase operation.

		USER MODE											OCD(ISP) / PMODE											
LOC		FL	ASH		EEPROM OTP				FLASH			EEPROM			OTP									
KF	R	W	P E	B E	R	W	P E	B E	R	W	P E	B E	R	W	P E	B E	R	W	PΕ	B E	R	W	P E	B E
0	0	Х	Χ	Χ	0	0	0	Χ	Х	Х	Χ	Χ	0	0	0	0	0	0	0	0	0	0	0	0
1	0	Х	Χ	Χ	0	0	0	Χ	Х	Х	Χ	Χ	Х	Х	Χ	0	Х	Х	Χ	0	0	Х	Χ	0

Table 15-2 Memory protection using lock bit

· LOCKF: Lock bit of FLASH/EEPROM memory

R : ReadW : Write

• PE : Page erase

• BE : Bulk Erase

• O: Operation is possible.

• X : Operation is impossible.

15.7 FLASH/EEPROM operating mode

15.7.1.1 Electrical Characteristics

FLASH/E	EPROM 64H	(B IP		Spe	ec	
Description	Symbol	Condition	Min	Тур	Max	Unit
Operating Temperature	Temp	Commercial	-40	-	85	$^{\circ}$
Supply Voltage	VDD		1.62	1.8	1.98	V
Ground	VSS			0		V
Clock Frequency	fCLK	VDD=1.8V		-	10	MHz
Clock Period	tPER	VDD=1.8V	100	-		ns
Access Time	tAA	VDD=1.8V	100			ns
Setup Time	tSP	VDD=1.8V	2			ns
Address Hold Time	tAA	VDD=1.8V	10			ns
Address Setup Time	tAS	VDD=1.8V	2			ns
Set Down Time	tSD	VDD=1.8V	2			ns
Output Enable Access Time	tOE	VDD=1.8V			2	ns
Output Delay Time	tOD	VDD=1.8V	2			ns
Data Setup Time	tDS	VDD=1.8V	2			ns
Data Hold Time	tDH	VDD=1.8V	20			ns
Erase Time	tERS	VDD=1.8V	2.5			ms
Program Time	tPGM	VDD=1.8V	2.5			ms
Bulk Erase Time	tBERS	VDD=1.8V	5			ms
Power Down Time	tPD			5		us
Power Up Time	tPU			1		ms
Read Current	lcc1	VDD=1.8V			3	mA
Write Current	lcc2	VDD=1.8V			7	mA
Power Down Current	lpd	VDD=1.8V,Clock Off			5	uA
Input Low Voltage	VIL	VDD=1.8V		VDD/2	0.2VDD	V
Input High Voltage	VIH	VDD=1.8V	0.8VDD	VDD/2		V
Output Low Voltage	VOL	VDD=1.8V		VDD/2	0.45	V
Output High Voltage	VOH	VDD=1.8V	VDD-0.2	VDD/2		V

Table 15-3 AC Timing Specification

16. ETC.

16.1 FUSE Control Register

FUSE_CONF (Pseudo-Configure Data)

 FD_H

7	6	5	4	3	2	1	0
-	-	-	-	RSTDIS	-	-	LOCKF
R	R	R	R	R	R	R	R

Initial value: 00_H

RSTDIS Enables or disables external reset function

0 P20/RESETB is used as a external reset input

1 P20/RESETB is used as a normal I/O pin

LOCKF FLASH/EEPROM LOCK

0 LOCK Disable

1 LOCK Enable

Caution: The reserved bits in FUSE_CONF register, actually OTP region, should not be altered by user. Please do not attempt to erase or program the OTP region except for the above bits or the device will not operate as expected.

17. APPENDIX

A. Instruction Table

The instruction length of M8051W can be 1, 2, or 3 bytes as listed in the following table. It takes 1, 2, or 4 cycles for the CPU to execute an instruction. The cycle is composed of two internal clock periods.

ARITHMETIC					
Mnemonic	Description	Bytes	Cycles	Hex code	
ADD A,Rn	Add register to A	1	1	28-2F	
ADD A,dir	Add direct byte to A	2	1	25	
ADD A,@Ri	Add indirect memory to A	1	1	26-27	
ADD A,#data	Add immediate to A	2	1	24	
ADDC A,Rn	Add register to A with carry	1	1	38-3F	
ADDC A,dir	Add direct byte to A with carry	2	1	35	
ADDC A,@Ri	Add indirect memory to A with carry	1	1	36-37	
ADDC A,#data	Add immediate to A with carry	2	1	34	
SUBB A,Rn	Subtract register from A with borrow	1	1	98-9F	
SUBB A,dir	Subtract direct byte from A with borrow	2	1	95	
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	1	96-97	
SUBB A,#data	Subtract immediate from A with borrow	2	1	94	
INC A	Increment A	1	1	04	
INC Rn	Increment register	1	1	08-0F	
INC dir	Increment direct byte	2	1	05	
INC @Ri	Increment indirect memory	1	1	06-07	
DEC A	Decrement A	1	1	14	
DEC Rn	Decrement register	1	1	18-1F	
DEC dir	Decrement direct byte	2	1	15	
DEC @Ri	Decrement indirect memory	1	1	16-17	
INC DPTR	Increment data pointer	1	2	A3	
MUL AB	Multiply A by B	1	4	A4	
DIV AB	Divide A by B	1	4	84	
DA A	Decimal Adjust A	1	1	D4	

LOGICAL					
Mnemonic	Description	Bytes	Cycles	Hex code	
ANL A,Rn	AND register to A	1	1	58-5F	
ANL A,dir	AND direct byte to A	2	1	55	
ANL A,@Ri	AND indirect memory to A	1	1	56-57	
ANL A,#data	AND immediate to A	2	1	54	
ANL dir,A	AND A to direct byte	2	1	52	
ANL dir,#data	AND immediate to direct byte	3	2	53	
ORL A,Rn	OR register to A	1	1	48-4F	
ORL A,dir	OR direct byte to A	2	1	45	
ORL A,@Ri	OR indirect memory to A	1	1	46-47	
ORL A,#data	OR immediate to A	2	1	44	
ORL dir,A	OR A to direct byte	2	1	42	
ORL dir,#data	OR immediate to direct byte	3	2	43	
XRL A,Rn	Exclusive-OR register to A	1	1	68-6F	
XRL A,dir	Exclusive-OR direct byte to A	2	1	65	

XRL A, @Ri	Exclusive-OR indirect memory to A	1	1	66-67
XRL A,#data	Exclusive-OR immediate to A	2	1	64
XRL dir,A	Exclusive-OR A to direct byte	2	1	62
XRL dir,#data	Exclusive-OR immediate to direct byte	3	2	63
CLR A	Clear A	1	1	E4
CPL A	Complement A	1	1	F4
SWAP A	Swap Nibbles of A	1	1	C4
RL A	Rotate A left	1	1	23
RLC A	Rotate A left through carry	1	1	33
RR A	Rotate A right	1	1	03
RRC A	Rotate A right through carry	1	1	13

DATA TRANSFER					
Mnemonic	Description	Bytes	Cycles	Hex code	
MOV A,Rn	Move register to A	1	1	E8-EF	
MOV A,dir	Move direct byte to A	2	1	E5	
MOV A,@Ri	Move indirect memory to A	1	1	E6-E7	
MOV A,#data	Move immediate to A	2	1	74	
MOV Rn,A	Move A to register	1	1	F8-FF	
MOV Rn,dir	Move direct byte to register	2	2	A8-AF	
MOV Rn,#data	Move immediate to register	2	1	78-7F	
MOV dir,A	Move A to direct byte	2	1	F5	
MOV dir,Rn	Move register to direct byte	2	2	88-8F	
MOV dir,dir	Move direct byte to direct byte	3	2	85	
MOV dir,@Ri	Move indirect memory to direct byte	2	2	86-87	
MOV dir,#data	Move immediate to direct byte	3	2	75	
MOV @Ri,A	Move A to indirect memory	1	1	F6-F7	
MOV @Ri,dir	Move direct byte to indirect memory	2	2	A6-A7	
MOV @Ri,#data	Move immediate to indirect memory	2	1	76-77	
MOV DPTR,#data	Move immediate to data pointer	3	2	90	
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	2	93	
MOVC A,@A+PC	Move code byte relative PC to A	1	2	83	
MOVX A,@Ri	Move external data(A8) to A	1	2	E2-E3	
MOVX A,@DPTR	Move external data(A16) to A	1	2	E0	
MOVX @Ri,A	Move A to external data(A8)	1	2	F2-F3	
MOVX @DPTR,A	Move A to external data(A16)	1	2	F0	
PUSH dir	Push direct byte onto stack	2	2	C0	
POP dir	Pop direct byte from stack	2	2	D0	
XCH A,Rn	Exchange A and register	1	1	C8-CF	
XCH A,dir	Exchange A and direct byte	2	1	C5	
XCH A,@Ri	Exchange A and indirect memory	1	1	C6-C7	
XCHD A,@Ri	Exchange A and indirect memory nibble	1	1	D6-D7	

BOOLEAN					
Mnemonic	Description	Bytes	Cycles	Hex code	
CLR C	Clear carry	1	1	C3	
CLR bit	Clear direct bit	2	1	C2	
SETB C	Set carry	1	1	D3	
SETB bit	Set direct bit	2	1	D2	
CPL C	Complement carry	1	1	В3	
CPL bit	Complement direct bit	2	1	B2	

ANL C,bit	AND direct bit to carry	2	2	82
ANL C,/bit	AND direct bit inverse to carry	2	2	B0
ORL C,bit	OR direct bit to carry	2	2	72
ORL C,/bit	OR direct bit inverse to carry	2	2	A0
MOV C,bit	Move direct bit to carry	2	1	A2
MOV bit,C	Move carry to direct bit	2	2	92

BRANCHING					
Mnemonic	Description	Bytes	Cycles	Hex code	
ACALL addr 11	Absolute jump to subroutine	2	2	11→F1	
LCALL addr 16	Long jump to subroutine	3	2	12	
RET	Return from subroutine	1	2	22	
RETI	Return from interrupt	1	2	32	
AJMP addr 11	Absolute jump unconditional	2	2	01→E1	
LJMP addr 16	Long jump unconditional	3	2	02	
SJMP rel	Short jump (relative address)	2	2	80	
JC rel	Jump on carry = 1	2	2	40	
JNC rel	Jump on carry = 0	2	2	50	
JB bit,rel	Jump on direct bit = 1	3	2	20	
JNB bit,rel	Jump on direct bit = 0	3	2	30	
JBC bit,rel	Jump on direct bit = 1 and clear	3	2	10	
JMP @A+DPTR	Jump indirect relative DPTR	1	2	73	
JZ rel	Jump on accumulator = 0	2	2	60	
JNZ rel	Jump on accumulator ≠ 0	2	2	70	
CJNE A,dir,rel	Compare A,direct jne relative	3	2	B5	
CJNE A,#d,rel	Compare A,immediate jne relative	3	2	B4	
CJNE Rn,#d,rel	Compare register, immediate jne relative	3	2	B8-BF	
CJNE @Ri,#d,rel	Compare indirect, immediate jne relative	3	2	B6-B7	
DJNZ Rn,rel	Decrement register, jnz relative	3	2	D8-DF	
DJNZ dir,rel	Decrement direct byte, jnz relative	3	2	D5	

MISCELLANEOUS					
Mnemonic	Description	Bytes	Cycles	Hex code	
NOP	No operation	1	1	00	

ADDITIONAL INSTRUCTIONS (selected through EO[7:4])					
Mnemonic	Description	Bytes	Cycles	Hex code	
MOVC @(DPTR++),A	M8051W/M8051EW-specific instruction supporting software download into program memory	1	2	A5	
TRAP	Software break command	1	1	A5	

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11→F1 (for example), are used for absolute jumps and calls, with the top 3 bits of the code being used to store the top three bits of the destination address.

The CJNE instructions use the abbreviation #d for immediate data; other instructions use #data.

B. Instructions on how to use the input port.

- Error occur status
 - Using compare jump instructions with input port, it could cause error due to the timing conflict inside the MCU.
 - Compare jump Instructions which cause potential error used with input port condition:

```
JB bit, rel ; jump on direct bit=1

JNB bit, rel ; jump on direct bit=0

JBC bit, rel ; jump on direct bit=1 and clear

CJNE A, dir, rel ; compare A, direct jne relative

DJNZ dir, rel ; decrement direct byte, jnz relative
```

- It is only related with Input port. Internal parameters, SFRs and output bit ports don't cause an y error by using compare jump instructions.
- If input signal is fixed, there is no error in using compare jump instructions.
- Error status example

```
while(1){
    if (P00==1){ P10=1; }
    else { P10=0; }
    P11^=1;
}
```

```
unsigned char ret_bit_err(void)
{
    return !P00;
}
```

```
JNB
             080.0, xxx ; it possible to be error
ZZZ:
     SETB
              0.880
     SJMP
              ууу
     CLR
             0.880
XXX:
yyy: MOV
             C,088.1
     CPL
     MOV
             088.1,C
     SJMP
             ZZZ
     MOV
              R7, #000
     JB
             080.0, xxx; it possible to be error
     MOV
              R7, #001
     RET
xxx:
```

- Preventative measures (2 cases)
 - Do not use input bit port for bit operation but for byte operation. Using byte operation instead
 of bit operation will not cause any error in using compare jump instructions for input port.

```
while(1){
    if ((P0&0x01)==0x01) { P10=1; }
    else { P10=0; }
        P11^=1;
}
```

```
777:
     MOV
             A, 080
                        ; read as byte
     JNB
             0E0.0, xxx ; compare
     SETB
             0.880
     SJMP
             ууу
     CLR
             0.880
XXX:
     MOV
             C,088.1
ууу:
     CPL
             С
     MOV
             088.1,C
     SJMP
              ZZZ
```

• If you use input bit port for compare jump instruction, you have to copy the input port as intern all parameter or carry bit and then use compare jump instruction.

```
bit tt;

while(1){

tt=P00;

if (tt==0){ P10=1;}

else { P10=0;}

P11^=1;

}
```

```
zzz: MOV
            C,080.0 ; input port use internal parameter
     MOV
            020.0, C
                       ; move
     JB
            020.0, xxx
                      ; compare
     SETB
            0.880
     SJMP
            ууу
     CLR
            0.880
XXX:
     MOV
            C,088.1
ууу:
     CPL
            С
     MOV
            088.1,C
     SJMP
            ZZZ
```