OPERATIONAL AMPLIFIERS

MCCF1741 MCCF1741C

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC FLIP-CHIP OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCCF1741 and MCCF1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. The bumps are 95-5 solder on a chrome-copper-gold base. The interconnecting metalization is evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Va	Unit	
		MCCF1741C	MCCF1741	1.
Power Supply Voltage	V _{CC} V _{EE}	+18 -18	+22 -22	Vdc
Differential Input Signal	VID	t	Volts	
Common Mode Input Swing (Note 1)	VIC	+ 1	Volts	
Output Short Circuit Duration (Note 2)	ts	Continuous		
Operating Temperature Range	Τ _Α	0 to +75	-55 to +125	°C
Junction Temperature Range	Τj	-65 to	°C	

Note 1. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 V.

4-35

MCCF1741, MCCF1741C (continued)

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = 15 Vdc, T_A = +25^oC unless otherwise noted.)

Characteristic	Symbol	MCCF1741			MCCF1741C			
		Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain ($R_L = 2.0 \text{ k}\Omega$) ($V_O = \pm 10 \text{ V}$)	Avol	50,000	200,000	_	20,000	100,000	_	· -
Output Impedance (f = 20 Hz)	zo	_	75		_	75	_	Ω
Input Impedance (f = 20 Hz)	zin	_	1.0	_	_	1.0	-	MegΩ
Output Voltage Swing $(R_L = 10 k\Omega)$ $(B_L = 2.0 k\Omega)$	vo	±12	±14	_	±12	±14	_	V _{peak}
Input Common-Mode Voltage Swing	Vic	±10	±13	<u> </u>	±10	±13		
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR		90	-	-	90	-	dB
Input Bias Current	I _{IB}	-	0.2	0.5	_	0.2	0.5	μΑ
Input Offset Current	110	° -	0.03	0.2	_	0.03	0.2	μΑ
Input Offset Voltage (R _S = ≦ 10 kΩ)	V10		1.0	5.0	_	2.0	6.0	mV
Step Response Gain = 100	^t тн∟ td dV _O /dt ①		29 8.5 1.0			29 8.5 1.0		μs μs V/μs
Gain = 10	tTHL td dVO/dt (1)		3.0 1.0 1.0			3.0 1.0 1.0		μs μs V/μs
Gain ≈ 1	tTHL ta dVO/dt (1)		0.6 0.38 0.8			0.6 0.38 0.8	-	μs μs V/μs
Power Supply Current		-	1.67 1.67	2.83 2.83		1.67 1.67	2.83 2.83	mA
DC Quiescent Power Dissipation (Power Supply'= ± 15 V, V ₀ = 0)	PD		50	85	_	50	85	mW
Positive Supply Sensitivity (VEE constant)	S ⁺	_	30	150	_	30	150	μν/ν
Negative Supply Sensitivity (V _{CC} constant)	S⁻	_	30	150	-	30	150	μV/V

() dV_O/dt = Slew Rate See current MC1741/1741C data sheet for additional information .

MCCF1741/MCCF1741C BONDING DIAGRAM AND DEVICE DIMENSIONS

PACKAGING AND HANDLING

The popular 1741 type operational amplifier is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flip-chips, as well as in a variety of plastic hermetic packages. The flip-chip consists of a silicon chip with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer of phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.

Care must be exercised when removing the dice from the shipping carrier to avoid scratching the solder bumps. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

Bump Dia. at Base: 0.006 ± 0.001 in. Bump Height.⁷ 0.0040 ± 0.0005 in. Each bump centerline to be located within 0.001 in. of its true position with respect to any other bump centerline.