

2-Wire, ±1.0°C Accurate Multichannel Automotive Temperature Monitor

Features Overview

Temperature Measurement

- Up to Four External Temperature Monitors
 - ±1°C max. accuracy
 - $(-40^{\circ}C < T_{DIODE} < +125^{\circ}C)$
 - 0.125°C resolution
- Internal Temperature Monitor
 - ±1°C accuracy
 - 0.125°C resolution
- Anti-Parallel Diodes for Extra Diode Support
- Advanced measurement techniques:
 - Automatic beta compensation
 - Ideality factor correction
 - Resistance error correction

Communications

- SMBus 3.1/I²C Compatible
- Up to 1 MHz Clock Rate
 - Supports block mode reads and writes for faster access
 - Temperature registers duplicated in a separate, contiguous block for easy access
- Maskable ALERT/THERM pin
 - Maskable with register control
 - Set point controlled by I²C register write (+85°C default)
 - I²C compliant ALERT
- Compatible with EIA/JEDEC 8-7 standard for 1.8V and 3.3V logic levels
- Non-Maskable THERM/ADDR and SYS_SHDN Pins
 - Set point controlled by pull-up resistor option available (MCP998XD only)
 - Acts in either Interrupt or Comparator mode

Other Features

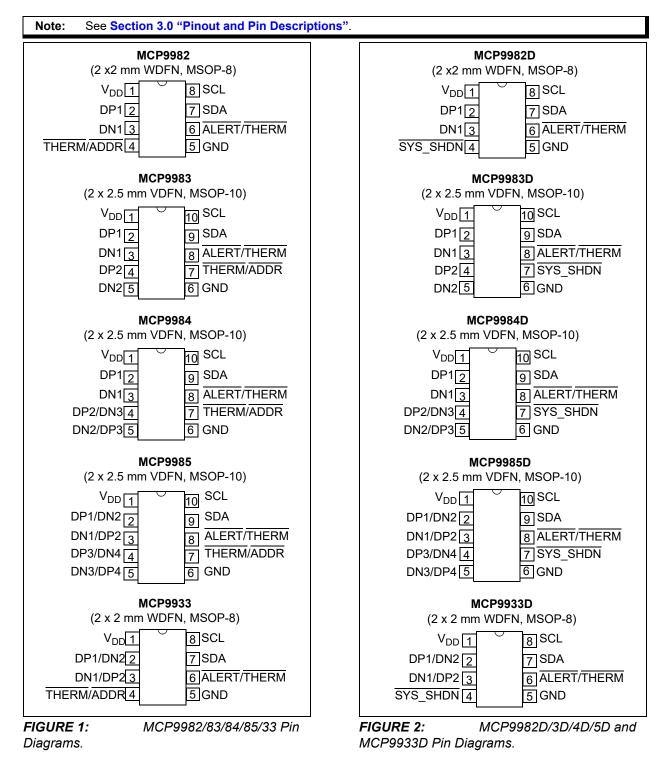
- Resistor Programmable System Shutdown Temperature (MCP998XD only)
- Operating voltage: 1.7V to 3.6V
- Low Power Operation Standby Current Less Than 30 μA typical, 85 μA maximum
- ESD Protection > 4 kV HBM
- Temperature Range: -40°C to +125°C
- Pin Compatible with EMC18XX Products

Packages

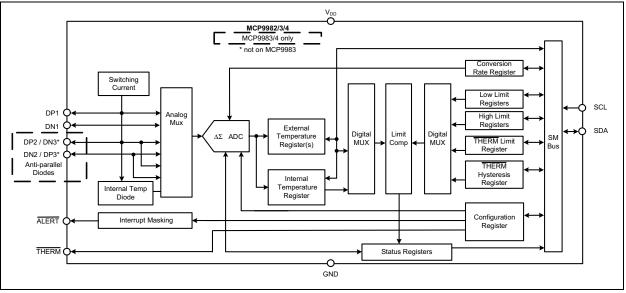
- 8-Lead MSOP
- 10-Lead MSOP
- 10-Lead VDFN
- 8-Lead WDFN

Description

The MCP998X/MCP9933/MCP998XD/MCP9933D family of devices is a high-accuracy, low-cost, 2-wire communication protocol (I²C/SMBus) temperature sensor.

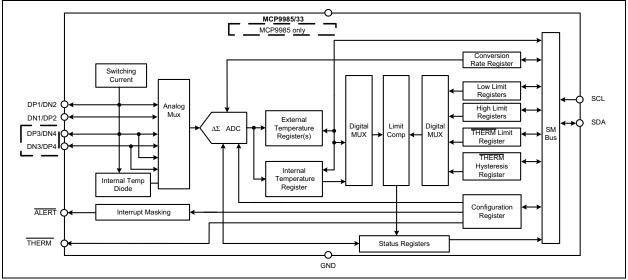

The MCP998X/MCP9933/MCP998XD/MCP9933D family can monitor up to five temperature channels. Advanced features such as Resistance Error Correction (REC), Beta Compensation (to support CPU diodes requiring the BJT/transistor model) and automatic diode type detection combine to provide a robust solution for complex environmental monitoring applications.

Resistance Error Correction automatically eliminates the temperature error caused by series resistance allowing greater flexibility in routing thermal diodes. Beta Compensation eliminates temperature errors caused by low, variable beta transistors common in today's fine geometry processors. The automatic beta detection feature monitors the external diode/transistor and determines the optimum sensor settings for accurate temperature measurements regardless of processor technology. This frees the user from providing unique sensor configurations for each temperature monitoring application.

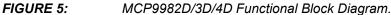

These advanced features and the $\pm 1^{\circ}$ C measurement accuracy for both external and internal diode temperatures provide a low-cost, highly flexible and accurate solution for critical temperature monitoring applications.

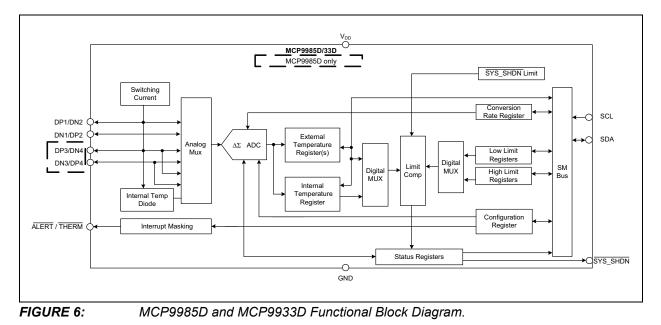
 I^2C communications are compatible with the EIA/JEDEC 8-7 standard for 1.8V and 3.3V levels. The I^2C address may be a fixed-address or set via a pull-up resistor.

Package Types



Functional Block Diagrams


MCP9982/3/4 Functional Block Diagram.



MCP9985 and MCP9933 Functional Block Diagram.

1.0 ELECTRICAL CHARACTERISTICS

1.1 Electrical Specifications

Absolute Maximum Ratings †

V _{DD}	4.0V
Voltage at All Input/Output Pins	
Storage Temperature	
Ambient Temperature with Power Applied	40°C to +125°C
Junction Temperature (T _J)	+150°C
ESD Protection on All Pins (HBM, CDM)	(4 kV, ±750V)
Latch-Up Current at Each Pin	±105 mA

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1:DC CHARACTERISTICS

Opera	Operating Conditions: Unless otherwise indicated, $1.7V \le V_{DD} \le 3.6V$ at $-40^{\circ}C \le T_{A} \le +125^{\circ}C$.									
No.	Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions			
P1	Supply Voltage	V _{DD}	1.7	—	3.6	V				
P2	Supply Current	I _{DD}	_	40		μA	0.0625 conversions/second, dynamic averaging disabled (Note 1)			
P3				140			1 conversion/second, dynamic averaging disabled (Note 1)			
P4				450			4 conversion/second, dynamic averaging disabled (Note 1)			
P5				900	1115		≥ 16 conversions/second, dynamic averaging enabled, averaged over 150 ms			
P6	Standby Supply Current	I _{DD_SB}	_	30	85	μA	Device in Stand-by mode, no active I ² C communications, ALERT/THERM and THERM/ADDR pins not asserted, V _{DD} = 3.3V (Note 2)			
P7	Power-on Reset (POR) Release Voltage	PORR	—	1.45	—	V	Rising V _{DD}			
P8	Power-up Timer	t _{PWRT}	_	10	_	ms				
Intern	al Temperature Monitor				-					
P9	Temperature Accuracy			±0.2 ±0.4	±1.0 ±2.5	°C	+20C < T _A < +85°C, V _{DD} = 3.3V -40C < T _A < +125°C, V _{DD} = 3.3V			
P10	Temperature Resolution		—	0.125	—	°C				
Exter	nal Temperature Monitor									
P11	Temperature Accuracy		_	±0.2	±1.0	°C	+20C < T_A < +85C, -40C < T_{DIODE} < +125C, V_{DD} = 3.3V			
				±0.4	±2.5		$\begin{array}{l} -40C < T_A < +125C, \ -40C < T_{DIODE} < \\ +125C, \ V_{DD} = 3.3V \end{array}$			
P12	Temperature Resolution		—	0.125	—	°C				

Note 1: Characterized by design; not tested by production.

2: MCP998XD devices cannot enter Standby Mode.

Opera	ating Conditions: Unless of	herwise indi	cated, $1.7V \le$	V _{DD} ≤ 3.6\	′ at -40°C \le T	r _A ≤ +12	25°C.
No.	Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Timin	g and Capacitive Filter						
P13	Time to First Communications	t _{INT_T}	_	15	_	ms	Time after power-up before device is ready to begin communications and measurements
P14	Conversion Time per Channel	t _{CONV}	—	25	-	ms	Default settings
P15	Time to First Conversion from Standby	t _{CONV1}	_	125	_	ms	Default settings
ALER	RT and THERM Pins						
P16	Output Low Voltage	V _{OL}	—	_	0.4	V	I _{SINK} = 3 mA
P17	Leakage Current	I _{LEAK}	—	_	±5	μA	ALERT/THERM and THERM/ADDR of SYS_SHDN pins, device powered or unpowered,
							pull-up voltage \leq 3.6V
SCL a	and SDA Pins						
I	nput						
P18	High-Level Voltage	V _{IH}	$0.7 \times V_{DD}$	_	—	V	
P19	Low-Level Voltage	V _{IL}	—	_	$0.3 \times V_{DD}$		
P20	Input Current	I _{IN}	—	_	±5	μA	SDA and SCL pins only
(Output (SDA pin only)						
P21	Low-Level Voltage	V _{OL}	—	—	0.4	V	I _{OL} = 3 mA
P22	High-Level Current (leakage)	I _{ОН}	_	—	5	μA	V _{OH} = V _{DD}
P23	Low-Level Current	I _{OL}	—	_	3	mA	V _{OL} = 0.4V, V _{DD} = 2.2V to 3.6V
P24	Capacitance	C _{IN}	_	5	_	pF	
;	SDA and SCL Inputs						<u> </u>
P25	Hysteresis	V _{HYST}	_	0.05	_	V	
P26	Spike Suppression	t _{SP}	_	50	_	ns	

TABLE 1-1: DC CHARACTERISTICS (CONTINUED)

Note 1: Characterized by design; not tested by production.

2: MCP998XD devices cannot enter Standby Mode.

TABLE 1-2: SMBUS SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, 1.7V < V _{DD} < 3.6V, T _A = -40°C to +125°C and C _L = 80 pF.										
Parameters	Sym.	Min.	Max.	Units	Notes					
2-Wire SMBus Interface										
Clock Frequency	f _{SMB}	10	1000	kHz						
Bus Free Time Stop to Start	t _{BUF}	0.5	-	μs						
Start Setup Time	t _{SU:STA}	0.26	-	μs						
Start Hold Time	t _{HD:STA}	0.26	-	μs						
Stop Setup Time	t _{SU:STO}	0.26	-	μs						
Data Hold Time	t _{HD:DAT}	0	-	μs	When transmitting to the host					
Data Hold Time	t _{HD:DAT}	0	-	μs	When receiving from the host					
Data Setup Time	t _{SU:DAT}	50	-	ns						
Clock Low Period	t _{LOW}	0.5	-	μs						
Clock High Period	t _{HIGH}	0.26	50	μs						
Clock/Data Fall Time	t _{FALL}	-	120	ns	Min = $20+0.1C_{LOAD}$ ns					

120

400

35

ns

pF

ms

 $Min = 20+0.1C_{LOAD} ns$

Per bus line

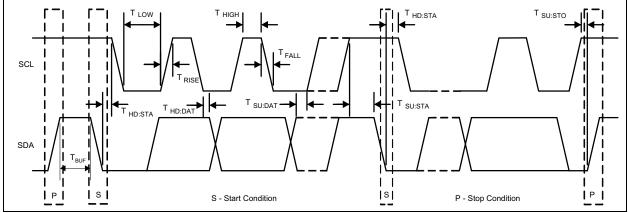


FIGURE 1-1:

Clock/Data Rise Time

Capacitive Load

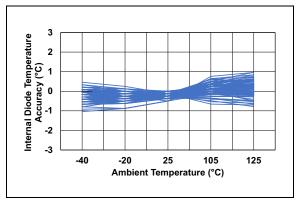
Timeout

SMBus Timing Diagram.

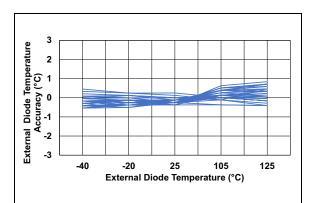
t_{RISE}

 C_{LOAD}

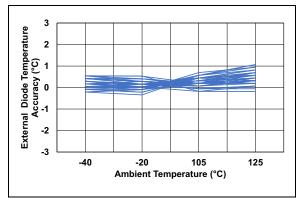
t_{TIMEOUT}

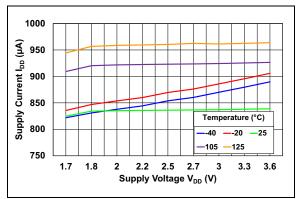

_

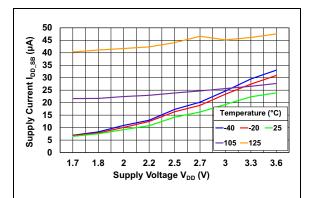
_


25

NOTES:


2.0 TYPICAL OPERATING CURVES


FIGURE 2-1: Internal Temperature Monitor Accuracy vs. Ambient Temperature (120 units).


FIGURE 2-2: External Temperature Accuracy vs. Diode Temperature (V_{DD} = 3.3V, 116 units, T_{AMB} = T_{ext}).

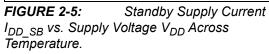


FIGURE 2-3: External Temperature Accuracy vs. Ambient Temperature (V_{DD} = 3.3V, 116 units, T_{DIODE} = +25°C).

FIGURE 2-4: Supply Current I_{DD} vs. Supply Voltage V_{DD} Across Temperature.

3.0 PINOUT AND PIN DESCRIPTIONS

The pinout is described in Table 3-1.

TABLE 3-1: MCP998X/MCP9933/MCP998XD/MCP9933D FAMILY PINOUT DESCRIPTION

										DECON		-
Pin Name	MCP 9982	MCP 9983	MCP 9984	MCP 9985	MCP 9933	MCP 9982D	MCP 9983D	MCP 9984D	MCP 9985D	MCP 9933D	Pin Type	Pin Descriptior
V _{DD}	1	1	1	1	1	1	1	1	1	1	Р	Power
GND	5	6	6	6	5	5	6	6	6	5	Р	Ground
ALERT/THERM	6	8	8	8	6	6	8	8	8	6	OD	I ² C Alert Pin
THERM/ADDR	4	7	7	7	4	—	—	—	—	—	OD	Thermal Alert
SYS_SHDN	_	—	—	—	—	4	7	7	7	4	OD	System Shutdown
SDA	7	9	9	9	7	7	9	9	9	7	OD	I ² C Data
SCL	8	10	10	10	8	8	10	10	10	8	OD	I ² C Clock
DP1	2	2	2	—	—	2	2	2	—	—	A	Diode 1 Connection
DN1	3	3	3	—	—	3	3	3	—	—	A	Diode 1 Connection
DP2	_	4	—	—	—	—	4	—	—	—	A	Diode 2 Connection
DN2	_	5	—	—	—	—	5	—	—	—	A	Diode 2 Connection
DP2/DN3	_	—	4	—	—	—	—	4	—	—	A	Diode 2/3 Connection
DN2/DP3	_	—	5	—	—	—	—	5	—	—	A	Diode 2/3 Connection
DP1/DN2	_	—	-	2	2	—	—	—	2	2	A	Diode 1/2 Connection
DN1/DP2	—	—	—	3	3	—	—	—	3	3	A	Diode 1/2 Connection
DP3/DN4	-	—	—	4	—	—	—	—	4	—	A	Diode 3/4 Connection
DN3/DP4	_	—	—	5	—	—	—	—	5	—	A	Diode 3/4 Connection
Legend:		P = F	ower			A = Ana	alog Pin		(DD = Op	en-Drair	n Pin

3.1 Pin Configurations

The MCP998X/MCP9933/MCP998XD/MCP9933D family has ten variants that include features unique to each device. Refer to Table 3-1 to determine the applicability of the pin descriptions below:

3.1.1 V_{DD} PIN

This pin is used to supply power to the device.

3.1.2 GND PIN

This pin is used to ground the device.

3.1.3 ALERT/THERM - ALERT AND THERM PINS

Open-drain output with a pull-up resistor to determine the Hardware Thermal Shutdown Limit on the MCP998XD devices. This pin functions as either an ALERT output or a THERM output, depending on the configuration settings, and deasserts when the appropriate status register is read and when the condition is removed (see Section 4.7 "ALERT/THERM Output"). A pull-up resistor on this pin is recommended regardless of usage.

3.1.4 THERM/ADDR - THERM FUNCTION PIN

Open-drain output which needs a pull-up resistor. With address decode devices (product names ending in "-A"), this pull-up resistor determines the $I^2C/SMBus$ client address. This pin functions as a THERM output and deasserts when the condition is removed. A pull-up resistor on this pin is recommended regardless of usage.

3.1.5 SYS_SHDN - HARDWARE SYSTEM SHUTDOWN PIN

The MCP998XD devices contain a hardware <u>configured temperature limit circuit that controls the</u> SYS_SHDN pin. The threshold temperature is <u>determined by the pull-up resistors on both the</u> SYS SHDN and ALERT/THERM pins.

Note:	Standby and One-Shot modes cannot be
	enabled in device configurations including
	system shutdown functionality.

The final temperature decode is the responsibility of the digital block. The overall decode is shown in Table 4-5.

The hardware shutdown circuitry measures the External Diode 1 channel and compares it against the hardware thermal shutdown limit. The THERM consecutive alert counter (set to four by default for the SYS_SHDN pin) applies to this comparison. If the temperature meets or exceeds the limit for the set number of consecutive measurements, the SYS_SHDN pin is asserted. The SYS_SHDN pin remains asserted until the temperature drops below the limit minus 10°C. While the Therm limit hysteresis is configurable, the SYS_SHDN hysteresis is locked to 10°C. All of the measurement channels (including the External Diode 1 channel) can be configured to assert the SYS_SHDN pin using the Hardware Thermal Shutdown Limit (see <u>Register 5-29</u>). If a channel is configured to assert the SYS_SHDN pin using the Hardware Thermal Shutdown Limit, the temperature on the measured channel must exceed the Hardware Thermal Shutdown Limit value. If a channel is not configured to assert the SYS_SHDN pin using the Hardware Thermal Shutdown Limit, the SYS_SHDN pin using the Hardware Thermal Shutdown Limit, the SYS_SHDN pin using the Hardware Thermal Shutdown Limit, the SYS_SHDN pin will behave the same way as the THERM output.

3.1.6 SDA - I^2C DATA

This is the open drain, bidirectional data pin for $\mathsf{I}^2\mathsf{C}$ communication

3.1.7 SCL - I²C CLOCK

This is the I^2C input clock pin for I^2C communication.

3.1.8 DP1 - DIODE 1 POSITIVE CONNECTION

This is the External Diode 1 bias pin and positive differential measurement. Beta Compensation is available.

3.1.9 DN1 - REMOTE DIODE 1 NEGATIVE CONNECTION

This is the External Diode 1 bias return pin and negative differential measurement. Beta Compensation is available.

3.1.10 DP2 - DIODE 2 POSITIVE CONNECTION

This is the External Diode 2 bias pin and positive differential measurement. Beta Compensation is available.

3.1.11 DN2 - REMOTE DIODE 2 NEGATIVE CONNECTION

This is the External Diode 2 bias return pin and negative differential measurement. Beta Compensation is available.

3.1.12 DP1/DN2 - DIODE 1 POSITIVE/DIODE 2 NEGATIVE

External Diode 1 bias pin and positive differential measurement. External Diode 2 bias return pin and negative differential measurement. Beta compensation is not available when anti-parallel diode (APD) is enabled.

3.1.13 DN1/DP2 - DIODE 1 NEGATIVE/DIODE 2 POSITIVE

External Diode 1 bias return pin and negative differential measurement. External Diode 2 bias pin and positive differential measurement. Beta compensation is not available when APD is enabled.

3.1.14 DP2/DN3 - DIODE 2 POSITIVE/DIODE 3 NEGATIVE

External Diode 2 bias pin and positive differential measurement. If enabled, External Diode 3 bias return pin and negative differential measurement. Beta compensation is not available when APD is enabled.

3.1.15 DN2/DP3 - DIODE 2 NEGATIVE/DIODE 3 POSITIVE

External Diode 3 bias return pin and negative differential measurement and if enabled, External Diode 2 bias pin and positive differential measurement. Beta compensation is not available when APD is enabled.

3.1.16 DP3/DN4 - DIODE 3 POSITIVE/DIODE 4 NEGATIVE

External Diode 3 bias pin and positive differential measurement. External Diode 4 bias return pin and negative differential measurement. Beta compensation is not available when APD is enabled.

3.1.17 DN3/DP4 - DIODE 3 NEGATIVE / DIODE 4 POSITIVE

External Diode 3 bias return pin and negative differential measurement. External Diode 4 bias pin and positive differential measurement. Beta compensation is not available when APD is enabled.

4.0 PRODUCT DESCRIPTION

The MCP998X/MCP9933/MCP998XD/MCP9933D family monitors one internal diode and up to four externally connected temperature diodes.

Thermal management is performed in cooperation with a host device. This consists of the host reading the temperature data of both the external and internal temperature diodes of the MCP998X/MCP9933/MCP998XD/MCP9933D and using that data to manage thermal events or to control the speed of one or more fans.

The MCP998X/MCP9933/MCP998XD/MCP9933D family has two levels of monitoring. The first provides a maskable ALERT signal to the host when the measured temperatures exceed the user-programmed limits This allows the MCP998X/MCP9933/MCP998XD/MCP9933D family to be used as an independent thermal watchdog to warn the host of temperature hot-spots without direct control by the host. The second level of monitoring provides a non-maskable interrupt on the THERM/ADDR or SYS SHDN pins if the measured temperatures meet or exceed a second programmable limit.

The MCP9982/82D is a single-channel remote temperature sensor, while the MCP9983/83D features a dual-channel design. The remote channels for this selection of devices can support substrate diodes, discrete diode connected transistors, or embedded processor thermal diodes. The MCP9984/84D supports APD only on one channel. For the channel that does not support APD functionality substrate diodes, discrete diode connected transistors or embedded processor thermal diodes are supported.

For the channel that does support APD, only discrete diode connected transistors may be implemented. However, if APD is disabled on the MCP9984/84D, the channel that does support APD will be functional with substrate diodes, discrete diode connected transistors and embedded processor thermal diodes.

The MCP9985/85D supports APD on all channels. When APD is enabled then the channels only support diode connected transistors. If APD is disabled, then the channels will support substrate transistors, discrete diode connected transistors, and embedded processor thermal diodes.

The MCP9933/33D supports APD on its two external channels. When APD is enabled, the channels only support diode-connected transistors. When APD is disabled, the channels only support substrate transistors, discrete diode-connected transistors, and embedded processor thermal diodes.

Note: Disabling APD functionality to implement substrate diodes eliminates the benefit of APD (two diodes on one channel).

Figure 4-1 shows a system-level block diagram of the MCP998X.

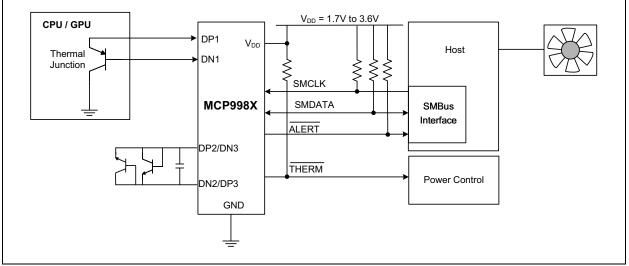


FIGURE 4-1:

MCP998X System Diagram.

4.1 Power States

The MCP998X devices have two power states:

· Active (Run) state:

In this state, the ADC is converting on all temperature channels at the programmed conversion rate. The temperature data is updated at the end of every conversion and the limits are checked. In the Active state, writing to the One-Shot Register will do nothing.

 Standby (One-shot) state: While the device is in Standby, the host can initiate a conversion cycle on demand by writing to the One-Shot register (see Register 5-5). After the conversion cycle is complete, the device will return to the Standby state.

Note: The MCP998XD and MCP9933D devices do not support Standby (One-Shot) state.

4.2 Conversion Rates

..

The MCP998X/MCP9933/MCP998XD/MCP9933D devices may be configured for different conversion rates based on the system requirements (see Register 5-15). The default conversion rate is four conversions per second. Other available conversion rates are shown in Table 4-1.

So as not to interfere with the hardware shutdown feature, the MCP998XD devices cannot be set with a conversion rate slower than 1 conversion per second.

TABLE 4-1:		CON	VERS	ION RA	ATE				
	CON	V[3:0]		Conversions per					
HEX	3	2	1	0	Second				
0h	0	0	0	0	1/16 (Note 1)				
1h	0	0	0	1	1/8 (Note 1)				
2h	0	0	1	0	1/4 (Note 1)				
3h	0	0	1	1	1/2 (Note 1)				
4h	0	1	0	0	1				
5h	0	1	0	1	2				
6h	0	1	1	0	4 (default)				
7h	0	1	1	1	8				
8h	1	0	0	0	16				
9h	1	0	0	1	32				
Ah	1	0	1	0	64				
Bh - Fh		All o	thers	•	1				
Note 1. Not evallable on MCD009VD devices									

Note 1: Not available on MCP998XD devices.

4.3 Dynamic Averaging

Dynamic averaging causes the MCP998X/MCP9933/MCP998XD/MCP9933D to measure the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled for increased power savings at the lower conversion rates (see Register 5-14, DA_ENA bit). When dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time for the external diode channels. This allows the device to average 2x to 16x longer than the normal 11-bit operation (nominally 25 ms per channel) while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved noise rejection due to the longer integration time as well as less random variation of the temperature measurement.

When enabled, the dynamic averaging applies when a one-shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate.

When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate, as shown in Figure 4-2, and the averaging factor based on an 11-bit operation as seen in Table 4-2.

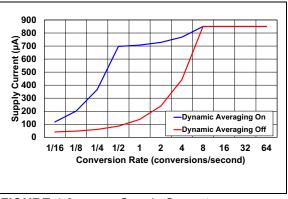


FIGURE 4-2: Supply Current vs. Conversion Rate.

TABLE 4-2:SUPPLY CURRENT VS.
CONVERSION RATE

	Averaging Factor (based on 11-bit operation)					
Conversion Rate	Dynamic Averaging State					
	Enabled (default)	Disabled				
1/16 sec.	16x	1x				
1/8 sec.	16x	1x				
1/4 sec.	16x	1x				
1/2 sec.	16x	1x				
1/sec.	16x	1x				
2/sec.	16x	1x				
4/sec. (default)	8x	1x				
8/sec.	4x	1x				
16/sec.	2x	1x				
32/sec.	1x	1x				
64/sec.	0.5x	0.5x				

Note: The conversion time for external diodes will be dependent upon the chosen conversion rate. For the slower conversion rates, the external diode channels will convert over a longer period of time to provide more averaging at the cost of increased supply current.

4.4 Device Option Selection

TABLE 4-3: DEVICE SELECT BIT ASSIGNMENT

Device	Address	Device ID
MCP9982-1	4C	3101h
MCP9982-2	4D	3101h
MCP9982-A	Addr. decode	3101h
MCP9983-1	4C	3107h
MCP9983-2	4D	3107h
MCP9983-A	Addr. decode	3107h
MCP9984-1	4C	3104h
MCP9984-2	4D	3104h
MCP9984-A	Addr. decode	3104h
MCP9985-1	4C	3105h
MCP9985-2	4D	3105h
MCP9985-A	Addr. decode	3105h
MCP9933-1	4C	3103h
MCP9933-2	4D	3103h
MCP9933-A	Addr. decode	3103h
MCP9982D-1	4C	3109h
MCP9982D-2	4D	3109h
MCP9983D-1	4C	310Fh
MCP9983D-2	4D	310Fh
MCP9984D-1	4C	310Ch
MCP9984D-2	4D	310Ch
MCP9985D-1	4C	310Dh
MCP9985D-2	4D	310Dh
MCP9933D-1	4C	310Bh
MCP9933D-2	4D	310Bh

4.5 Hottest Diode Recognition Comparison

At the end of every measurement cycle, the MCP998X/MCP9933/MCP998XD/MCP9933D compares all of the user-selectable Internal and External Diode channels to determine which of these channels is reporting the hottest temperature. The hottest temperature is stored in the Hottest Temperature Registers and the appropriate status bit in the Hottest Status Register is set (see Register 5-28). If multiple temperature channels measure the same temperature and are equal to the hottest temperature, the hottest status will be based on the measurement order.

As an optional feature, the MCP998X/MCP9933/MCP998XD/MCP9933D can also flag an event if the hottest temperature channel changes by enabling the REMHOT (Remember Hottest) bit (see Register 5-33). For example, suppose that External Diode channels 1, 3, and 4 are programmed to be compared in the Hottest Diode Recognition Comparison. If the External Diode 1 channel reports the hottest temperature of the three, its temperature is copied into the Hottest Temperature Registers (in addition to the External Diode 1 Temperature registers, see Register 5-26 and Register 5-27) and it is flagged in the Hottest Status bit. If, on the next measurement, the External Diode 3 channel temperature has increased such that it is now the hottest temperature, the MCP998X/MCP9933/MCP998XD/MCP9933D can flag this event as an interrupt condition and assert the ALERT/THERM pin.

4.6 THERM Output

The THERM output is asserted independently of the ALERT output and cannot be masked. Whenever any of the measured temperatures exceed the user programmed Therm Limit values (see Register 5-12 and Register 5-13) for the programmed number of consecutive measurements, the THERM output is asserted. Once it has been asserted, it will remain asserted until all measured temperatures drop below the Therm Limit minus the Therm Hysteresis (also programmable, see Register 5-16).

When the ALERT/THERM pin is asserted, the Therm status bits will likewise be set (see Register 5-21 and Register 5-25). Reading these bits will not clear them until the THERM pin is deasserted. Once the ALERT/THERM pin is deasserted, the THERM status bits will be automatically cleared.

4.7 ALERT/THERM Output

The $\overline{\text{ALERT}/\text{THERM}}$ pin is an open-drain output and requires a pull-up resistor to V_{DD} and has two modes of operation: Interrupt mode and THERM (Comparator)

mode. The mode of the ALERT/THERM output is selected via the ALERT/THERM bit (see Register 5-14, AT/THM bit).

4.7.1 ALERT/THERM PIN INTERRUPT MODE

When configured to operate in interrupt mode, the ALERT/THERM pin asserts low when an out of limit measurement (less than or equal to the LOW limit or greater than the HIGH limit) is detected on any diode or when a diode fault is detected. The ALERT/THERM pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT/THERM pin will remain asserted until the appropriate status bits are cleared.

The ALERT/THERM pin can be masked by setting the MASK_ALL bit. Once the ALERT/THERM pin has been masked, it will be deasserted and remain deasserted until the MASK_ALL bit is cleared by the user. Any interrupt conditions that occur while the ALERT/THERM pin is masked will update the Status Register normally. There are also individual channel masks (see Register 5-31, addresses '33h' and '34h').

The $\overline{\text{ALERT}/\text{THERM}}$ pin is used as an interrupt signal or as an I²C Alert signal that allows an I²C client to communicate an error condition to the host. One or more $\overline{\text{ALERT}/\text{THERM}}$ outputs can be hard-wired together.

4.7.2 ALERT/THERM PIN IN THERM MODE

When the ALERT/THERM pin is configured to operate in THERM mode, it will be asserted if any of the measured temperatures exceeds the respective high limit. The ALERT/THERM pin will remain asserted until all temperatures drop below the corresponding high limit minus the Therm Hysteresis value.

When the ALERT/THERM pin is asserted in THERM mode, the corresponding high limit status bits will be set. Reading these bits will not clear them until the ALERT/THERM pin is deasserted. Once the ALERT/THERM pin is dasserted, the status bits will be automatically cleared.

The MASK_ALL bit will not block the ALERT/THERM pin in this mode; however, the individual channel masks will prevent the respective channel from asserting the ALERT/THERM pin.

4.8 Temperature Measurement

The MCP998X/MCP9933/MCP998XD/MCP9933D can monitor the temperature of up to four externally connected diodes. Each external diode channel is configured with Resistance Error Correction and Beta Compensation based on user settings and system requirements.

For MCP998XD and MCP9933D devices, Resistance Error Correction, Beta Compensation, and Ideality Factor features cannot be turned off or changed, and the Conversion Rate cannot be set slower than one conversion per second. This ensures that the Hardware Shutdown feature cannot be overridden

The device contains programmable High, Low, and Therm limits for all measured temperature channels. If the measured temperature goes below the Low limit or above the High limit, the ALERT/THERM pin can be asserted (based on user settings). If the measured temperature meets or exceeds the Therm Limit, the THERM/ADDR or SYS_SHDN pin is asserted unconditionally, providing two tiers of temperature detection.

4.9 System Shutdown

The MCP998XD devices contain a hardware configured temperature limit circuit that controls the SYS_SHDN pin. The threshold temperature is determined by the pull-up resistors on both the SYS_SHDN and ALERT/THERM pins. Note, Standby and One-Shot modes cannot be enabled in device configurations including system shutdown functionality.

Pull-Up Resistor (1%)	Bit 2	Bit 1	Bit 0
4.7k	0	0	0
6.8k	0	0	1
10k	0	1	0
15k	0	1	1
22k	1	0	0
33k	1	0	1

TABLE 4-4: PULL-UP RESISTOR VALUES

The final temperature decode is the responsibility of the digital block. The overall decode is shown in Table 4-5.

SYS_SHDN Pull-Up Decode			ALE	RT Pull-Up D	Combined Decode (HEX)	Threshold Temperatur	
2	1	0	2	1	0	-	_
0	0	0	0	0	0	00h	+77°C
0	0	0	0	0	1	01h	+78°C
0	0	0	0	1	0	02h	+79°C
0	0	0	0	1	1	03h	+80°C
0	0	0	1	0	0	04h	+81°C
0	0	0	1	0	1	05h	+82°C
0	0	1	0	0	0	08h	+83°C
0	0	1	0	0	1	09h	+84°C
0	0	1	0	1	0	0Ah	+85°C
0	0	1	0	1	1	0Bh	+86°C
0	0	1	1	0	0	0Ch	+87°C
0	0	1	1	0	1	0Dh	+88°C
0	1	0	0	0	0	10h	+89°C
0	1	0	0	0	1	11h	+90°C
0	1	0	0	1	0	12h	+91°C
0	1	0	0	1	1	13h	+92°C
0	1	0	1	0	0	14h	+93°C
0	1	0	1	0	1	15h	+94°C
0	1	1	0	0	0	18h	+95°C
0	1	1	0	0	1	19h	+96°C
0	1	1	0	1	0	1Ah	+97°C
0	1	1	0	1	1	1Bh	+98°C
0	1	1	1	0	0	1Ch	+99°C
0	1	1	1	0	1	1Dh	+100°C
1	0	0	0	0	0	20h	+101°C
1	0	0	0	0	1	21h	+102°C
1	0	0	0	1	0	22h	+103°C
1	0	0	0	1	1	23h	+104°C
1	0	0	1	0	0	24h	+105°C
1	0	0	1	0	1	25h	+106°C
1	0	1	0	0	0	28h	+107°C
1	0	1	0	0	1	29h	+108°C
1	0	1	0	1	0	2Ah	+109°C
1	0	1	0	1	1	2Bh	+110°C
1	0	1	1	0	0	2Ch	+111°C
1	0	1	1	0	1	2Dh	+112°C

TABLE 4-5: TEMPERATURE SELECT ENCODING

The Hardware Shutdown circuitry measures the External Diode 1 Channel and compares it against the Hardware Thermal Shutdown Limit. The THERM consecutive alert counter (set to four by default for the SYS_SHDN pin) applies to this comparison. If the temperature meets or exceeds the limit for the number of consecutive measurements, the SYS_SHDN pin is asserted. The SYS_SHDN pin remains asserted until

the temperature drops below the limit minus 10°C. As well, all of the measurement channels (including the External Diode 1 channel) can be configured to assert the <u>SYS_SHDN</u> pin. If a channel is configured to assert the <u>SYS_SHDN</u> pin, the temperature on the measured channel must exceed the programmed therm limit value. This is treated in the same way as the ALERT/THERM output in THERM mode.

4.10 Limit Registers

The MCP998X/MCP9933/MCP998XD/MCP9933D contains both high and low limits for all temperature channels. If the measured temperature exceeds the high limit, then the corresponding status bit is set and the ALERT/THERM pin is asserted. Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status bit is set and the ALERT/THERM pin is asserted.

The data format for the limits must match the selected data format for the temperature so that if the extended temperature range is used, the limits must be programmed in the extended data format (see Section 4.20 "External Diode Connections").

The Limit registers with multiple addresses are fully accessible at either address.

When the device is in Standby state, updating the Limit registers will have no effect until the next conversion cycle occurs. This can be initiated via a write to the One-shot Register (see Register 5-5) or by clearing the RUN/STOP bit (see Register 5-14).

4.11 Limit Register interaction

The various Limit registers of the device interact based on both external conditions present on the diode pins as well as changes in register bits in the l^2C interface.

4.11.1 HIGH LIMIT REGISTER

The High Limit Status Register (see Register 5-23) contains the status bits that are set when a temperature channel high limit is exceeded. If any of these bits are set, then the HIGH status bit in the Status Register is set. Reading from the High Limit Status Register will clear all bits. Reading from the register will also clear the HIGH status bit in the Status Register (see Register 5-21).

The ALERT/THERM pin will be asserted if the programmed number of consecutive alert counts have been met and any of these status bits are set.

The status bits will remain set until read unless the ALERT/THERM pin is configured as a THERM (comparator) output (see Section 4.7.2 "ALERT/THERM Pin in THERM Mode").

4.11.2 LOW LIMIT REGISTER

The Low Limit Status Register contains the status bits that are set when a temperature channel drops below the low limit. If any of these bits are set, then the LOW status bit in the Status Register is set. Reading from the Low Limit Status Register will clear all bits.

The ALERT/THERM pin will be asserted if the programmed number of consecutive alert counts have been met and any of these status bits are set.

If the auto-detection circuitry is disabled, these bits will determine the beta configuration setting that is used for

The status bits will remain set until read unless the ALERT/THERM pin is configured as a THERM (comparator) output (see Section 4.7.2 "ALERT/THERM Pin in THERM Mode").

4.11.3 THERM LIMIT REGISTER

The Therm Limit Registers are used to determine whether a critical thermal event has occurred. If the <u>measured</u> temperature exceeds the Ther<u>m Limit</u>, the THERM pin for MCP998X devices or the SYS_SHDN pin for MCP998XD devices is asserted. The limit setting must match the chosen data format of the temperature reading registers.

Unlike the ALERT/THERM pin, the THERM/ADDR or SYS_SHDN pin cannot be masked. Additionally, the THERM/ADDR or SYS_SHDN pin will be released once the temperature drops below the corresponding threshold minus the Therm Hysteresis.

4.12 Beta Compensation

The MCP998X/MCP9933/MCP998XD/MCP9933D Family is configured to monitor the temperature of basic diodes (e.g., 2N3904) or CPU thermal diodes. It automatically detects the type of external diode (CPU diode or diode connected transistor) and determines the optimal setting to reduce temperature errors introduced by beta variation. Compensating for this error is also known as implementing the transistor or BJT model for temperature measurement.

For discrete transistors configured with the collector and base shorted together, the beta is generally sufficiently high such that the percent change in beta variation is very small. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction is used for temperature measurement and the collector is tied to the substrate, the proportional beta variation will cause large error. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C.

User programmable Beta Compensation is only supported on External Diode 1 and 2. If APD is enabled on the MCP9984/4D and MCP9985/5D, External Diode 2 will lock to Diode mode. So as not to interfere with the Hardware Shutdown feature, Beta Compensation on External Channel 1 on the MCP998XD devices cannot be changed and is locked to the default setting.

At the beginning of every conversion, the optimal Beta Compensation factor setting will be determined and applied. The BETA(N)[3:0] bits (see Register 5-31) will be automatically updated to indicate the current setting. This is the default for MCP998X/MCP9933/MCP998XD/MCP9933D devices.

their respective channels.

Care should be taken when setting the BETA(N)[3:0] bits when the auto-detection circuitry is disabled. If the Beta Compensation factor is set at a beta value that is higher than the transistor beta, the circuit may introduce measurement errors. When measuring a discrete thermal diode (such as 2N3904) or a CPU diode that functions like a discrete thermal diode (such as an embedded processor), the BETA(N)[3:0] bits should be set to '1111b'.

	DI_BE	TA[3:0]	I _C - EMC4	Minimum
3	2	1	0	ĪΡ (μΑ)	Beta
0	0	0	0	0.47	0.050
0	0	0	1	0.6	0.066
0	0	1	0	0.8	0.087
0	0	1	1	1	0.114
0	1	0	0	1.3	0.150
0	1	0	1	1.6	0.197
0	1	1	0	2.1	0.260
0	1	1	1	2.5	0.342
1	0	0	0	3.1	0.449
1	0	0	1	3.7	0.591
1	0	1	0	4.4	0.778
1	0	1	1	5	1.024
1	1	0	0	5.7	1.348
1	1	0	1	6.4	1.773
1	1	1	0	7	2.333
1	1	1	1	9.5	Diode Mode

4.13 Resistance Error Correction (REC)

Parasitic resistance in series with the external diodes will limit the accuracy obtainable from temperature measurement devices. The voltage developed across this resistance by the switching diode currents causes the temperature measurement to read higher than the true temperature. Contributors to series resistance are PCB trace resistance, on die (i.e., on the processor) metal resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error caused by series resistance is +0.7°C per Ω . The MCP998X/MCP9933/MCP998XD/MCP9933D automatically corrects up to 100 Ω of series resistance. See the typical performance of the Resistance Error Correction feature in Figure 4-3.

This feature can be turned on and off in the Configuration Register (see Register 5-14).

So as not to interfere with the Hardware Shutdown feature, Resistance Error Correction on External Channel 1 on the MCP998XD devices cannot be changed and is locked to the default setting (ON).

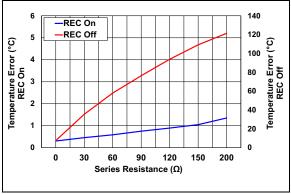


FIGURE 4-3: Resistance Error Correction.

4.14 Programmable External Diode Ideality Factor

The MCP998X/MCP9933/MCP998XD/MCP9933D is designed for external diodes with an ideality factor of 1.008. Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality factor introduces error in the temperature measurement which must be corrected for. This correction is typically done using programmable offset registers. Since an ideality factor mismatch introduces an error that is a function of temperature, this correction is only accurate within a small range of temperatures. To promaximum flexibility to the vide user, the MCP998X/MCP9933/MCP998XD/MCP9933D family provides a 6-bit register for each external diode where the ideality factor of the diode used is programmed to eliminate errors across all temperatures.

When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most ideality errors.

So as not to interfere with the Hardware Shutdown feature, Ideality Factor on External Channel 1 on the MCP998XD devices cannot be changed and is locked to the default setting (12h).

These registers (see Register 5-32) store the ideality factors that are applied to the external diodes. Table 4-7 defines each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction automatically correct for most diode ideality errors; therefore, it is not recommended that these settings be updated without consulting Microchip.

TABLE (DIODE MODEL)								
Setting	Factor	Setting	Factor	Setting	Factor			
08h	0.9949	18h	1.0159	28h	1.0371			
09h	0.9962	19h	1.0172	29h	1.0384			
0Ah	0.9975	1Ah	1.0185	2Ah	1.0397			
0Bh	0.9988	1Bh	1.0200	2Bh	1.0410			
0Ch	1.0001	1Ch	1.0212	2Ch	1.0423			
0Dh	1.0014	1Dh	1.0226	2Dh	1.0436			
0Eh	1.0027	1Eh	1.0239	2Eh	1.0449			
0Fh	1.0040	1Fh	1.0253	2Fh	1.0462			
10h	1.0053	20h	1.0267	30h	1.0475			
11h	1.0066	21h	1.0280	31h	1.0488			
12h	1.0080	22h	1.0293	32h	1.0501			
13h	1.0093	23h	1.0306	33h	1.0514			
14h	1.0106	24h	1.0319	34h	1.0527			
15h	1.0119	25h	1.0332	35h	1.0540			
16h	1.0133	26h	1.0345	36h	1.0553			
17h	1.0146	27h	1.0358	37h	1.0566			

IDEALITY FACTOR LOOK-UP

TABLE 4-7:

For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly differently than for discrete diode-connected transistors. Refer to Table 4-8 when using a CPU substrate transistor.

TABLE 4-8: SUBSTRATE DIODE IDEALITY FACTOR LOOK-UP TABLE (BJT MODEL)

Setting	Factor	Setting	Factor	Setting	Factor
08h	0.9869	18h	1.0079	28h	1.0291
09h	0.9882	19h	1.0092	29h	1.0304
0Ah	0.9895	1Ah	1.0105	2Ah	1.0317
0Bh	0.9908	1Bh	1.0120	2Bh	1.0330
0Ch	0.9921	1Ch	1.0132	2Ch	1.0343
0Dh	0.9934	1Dh	1.0146	2Dh	1.0356
0Eh	0.9947	1Eh	1.0159	2Eh	1.0369
0Fh	0.9960	1Fh	1.0173	2Fh	1.0382
10h	0.9973	20h	1.0187	30h	1.0395
11h	0.9986	21h	1.0200	31h	1.0408
12h	1.0000	22h	1.0213	32h	1.0421
13h	1.0013	23h	1.0226	33h	1.0434
14h	1.0026	24h	1.0239	34h	1.0447
15h	1.0039	25h	1.0252	35h	1.0460
16h	1.0053	26h	1.0265	36h	1.0473
17h	1.0066	27h	1.0278	37h	1.0486

Note: When measuring a 65 nm Intel[®] CPU, the Ideality Setting should be the default '12h'. When measuring a 45 nm Intel CPU, the Ideality Setting should be '15h'.

4.15 Diode Faults

The MCP998X/MCP9933/MCP998XD/MCP9933D detects an open on the DP and DN pins, and a short across the DP and DN pins. For each temperature measurement made, the device checks for a diode fault on the external diode channel(s). When a diode fault is detected, the ALERT/THERM pin asserts (unless masked) and the temperature data reads '00h' in the MSB and LSB registers (note: the low limit will not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short from V_{DD} to DP, or a short from V_{DD} to DN.

If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set and the ALERT/THERM pin asserts (unless masked). This condition is indistinguishable from a temperature measurement of 0.000°C (-64°C in extended range) resulting in temperature data of '00h' in the MSB and LSB registers.

If a short from DN to GND occurs (with a diode connected), temperature measurements will continue as normal with no alerts.

4.16 Consecutive Alerts

The MCP998X/MCP9933/MCP998XD/MCP9933D contains multiple consecutive alert counters. One set of counters applies to the ALERT/THERM pin and the second set of counters applies to the THERM/ADDR pin for MCP998X devices or SYS_SHDN pin for MCP998XD devices. Each temperature measurement channel has a separate consecutive alert counter for each of the ALERT/THERM and THERM/ADDR or SYS_SHDN pins. All counters are user programmable and determine the number of consecutive measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is asserted.

The Consecutive Alert Register determines how many times an out-of-limit error or diode fault must be detected in consecutive measurements before the ALERT/THERM, THERM/ADDR or SYS_SHDN pins are asserted (see Register 5-17).

An out-of-limit condition (i.e., HIGH, LOW, or FAULT) occurring on the same temperature channel in consecutive measurements will increment the consecutive alert counter. The counters will also be reset if no out-of-limit condition or diode fault condition occurs in a consecutive reading.

When the ALERT/THERM pin is configured as an interrupt, when the consecutive alert counter reaches its programmed value, the following will occur: the STA-TUS bit(s) for that channel and the last error condition(s) (i.e., E1HIGH, or E2LOW and/or E2FAULT) will be set to '1', the ALERT/THERM pin will be asserted, the consecutive alert counter will be cleared, and measurements will continue.

When the ALERT/THERM pin is configured as a comparator, the consecutive alert counter will ignore diode fault and low limit errors and only increment if the measured temperature exceeds the High Limit. Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT/THERM pin will be asserted, but the counter will not be reset. It will remain set until the temperature drops below the High Limit minus the Therm Hysteresis value.

Channels that are not enabled are not included in the consecutive alert checking. The signal logic chain is: Limit -> Counter -> Status -> Mask -> Pin (THERM and ALERT).

For example, if the CALRT[2:0] bits are set for four consecutive alerts on an MCP998X/MCP9933/MCP998XD/MCP9933D device, the high limits are set at +70°C, and none of the channels are masked, then the ALERT/THERM pin will be asserted after the following four measurements:

- Internal Diode reads +71°C and both the external diodes read +69°C. Consecutive alert counter for INT is incremented to 1.
- Both the Internal Diode and the External Diode 1 read +71°C and External Diode 2 read +68°C. Consecutive alert counter for INT is incremented to 2 and for EXT1 is set to 1.
- The External Diode 1 reads +71°C and both Internal Diode and External Diode 2 read +69°C. Consecutive alert counters for INT and EXT2 are cleared and EXT1 is incremented to 2.
- The Internal Diode reads +71°C and both external diodes read +71°C. Consecutive alert counter for INT is set to 1, EXT2 is set to 1, and EXT1 is incremented to 3.

• The Internal Diode reads +71°C and both external diodes read +71°C. Consecutive alert counter for INT is incremented to 2, EXT2 is set to 2, and EXT1 is incremented to 4. The appropriate status bits are set for EXT1 and the ALERT/THERM pin is asserted. EXT1 counter is reset to 0 and all other counters hold the last value until the next temperature measurement.

All temperature channels use this value to set the respective counters. The consecutive Therm counter is incremented whenever any measurement exceeds the corresponding Therm Limit.

If the temperature drops below the Therm Limit, the counter is reset. If a number of consecutive measurements above the Therm Limit occurs, the THERM/ADDR or SYS_SDHDN pin is asserted low.

Once the THERM/ADDR or SYS_SDHDN pin has been asserted, the consecutive therm counter will not reset until the corresponding temperature drops below the Therm Limit minus the Therm Hysteresis value.

All temperature channels use the Consecutive Alert/THERM Setting value to set the respective counters. The bits are decoded as shown in Table 4-9. The default setting for the ALERT/THERM pin is one consecutive out-of-limit conversions, while the default setting for the THERM/ADDR pin is four.

When the ALERT/THERM pin is in Comparator mode, the Low Limit and Diode fault will bypass the consecutive alert counter and set the appropriate status bits but will <u>not</u> assert the ALERT/THERM pin.

When a value is written to this register that is not defined in Table 4-9, the command is ignored and the last valid value is maintained.

TABLE 4-9: CONSECUTIVE ALERT/THERM SETTINGS

2	1	0	Number of Consecutive Out of Limit Measurements
0	0	0	1 (default for CALRT[3:1])
0	0	1	2
0	1	1	3
1	1	1	4 (default for CTHRM[6:4]))

4.17 Digital Filter

To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode 1 channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled (default). The typical filter performance is shown in Figure 4-4 and Figure 4-5. The Filter Configuration Register (Register 5-19) controls the digital filter on the External Diode 1 channel. It will apply after the digital block has taken the appropriate 11 bits based on the dynamic averaging.

TABLE 4-10: FILTER SETTINGS

FILTER[1:0]		Averaging
1	0	Averaging
0	0	Disabled (default)
0	1	Level 1 (note1)
1	0	Level 1 (note1)
1	1	Level 2 (note2)

Note 1: Filtering Level 1 corresponds to 4x attenuation of a temperature spike.

2: Filtering Level 2 corresponds to 8x attenuation of a temperature spike.

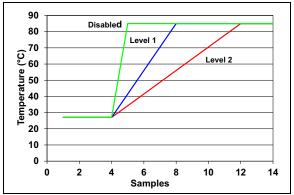


FIGURE 4-4: Response.

Temperature Filter Step

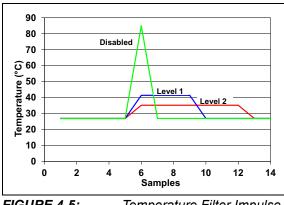


FIGURE 4-5: Temperature Filter Impulse Response.

The filter consists of a running average on the external diode channel. The Level 1 filter is a running average of the previous four samples while the Level 2 filter is a running average of the previous eight samples. For the first measurement immediately after power-up, the filter will be filled with the results of the first measurement. After this, the filter is operated normally. Any temperature comparisons will be done with the filtered results that are stored in the user register.

4.18 Temperature Measurement Results and Data

The temperature measurement results are stored in the Internal and External Temperature registers. Both external and internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB positions of the low byte register. All other bits of the low byte register are set to zero.

The MCP998X/MCP9933/MCP998XD/MCP9933D has two selectable temperature ranges (see Register 5-14). The default range is from 0°C to +127°C and the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C in 0.125°C steps.

The extended range is an extended temperature range from -64°C to +191°C. The data format is a binary number offset by 64°C. The extended range is used to measure temperature diodes with a large known offset (such as embedded processor diodes) where the diode temperature plus the offset would be equivalent to a temperature higher than +127°C.

Table 4-11 shows the default and extended rangeformats.

TABLE 4-11: TEMPERATURE DATA FORMAT

Temperature (°C)	Default Range (0°C to +127°C)	Extended Range (-64°C to +191°C)
Diode Fault	000 0000 0000	000 0000 0000
-64	000 0000 0000	000 0000 0000 (Note 2)
-1	000 0000 0000	001 1111 1000
0	000 0000 0000 (Note 1)	010 0000 0000
0.125	000 0000 0001	010 0000 0001
1	000 0000 1000	010 0000 1000

Note 1: In default range, all temperatures < 0°C will be reported as 0°C.

2: In the extended range, all temperatures < -64°C will be reported as -64°C.

For the default range, all temperatures
 +127.875°C will be reported as +127.875°C.

4: For the extended range, all temperatures > +191.875°C will be reported as +191.875°C.

TABLE 4-11: TEMPERATURE DATA FORMAT (CONTINUED)

Temperature (°C)	Default Range (0°C to +127°C)	Extended Range (-64°C to +191°C)			
64	010 0000 0000	100 0000 0000			
65	010 0000 1000	100 0000 1000			
127	011 1111 1000	101 1111 1000			
127.875	011 1111 1111	101 1111 1111			
128	011 1111 1111 (Note 3)	110 0000 0000			
190	011 1111 1111	111 1111 0000			
191	011 1111 1111	111 1111 1000			
≥ 191.875	011 1111 1111	111 1111 1111 (Note 4)			

Note 1: In default range, all temperatures < 0°C will be reported as 0°C.

- **2:** In the extended range, all temperatures < -64°C will be reported as -64°C.
- **3:** For the default range, all temperatures > +127.875°C will be reported as +127.875°C.
- 4: For the extended range, all temperatures > +191.875°C will be reported as +191.875°C.

4.19 Anti-Parallel Diode Connections

The MCP9984/85/33 and MCP9984D/85D/33D support reading two external diodes on the same set of pins (ex. DP1/DN1 and DP2/DN2). These diodes are connected as shown in Figure 4-6. Due to the anti-parallel connection of these diodes, both diodes will be reverse biased by a VBE voltage (approximately 0.7V). Because of this reverse bias, only discrete thermal diodes (such as a 2N3904) are recommended to be placed on these pins.

4.20 External Diode Connections

The MCP9982 and MCP9982D can be configured to measure a CPU substrate transistor, a discrete 2N3904 thermal diode, or an embedded processor diode. The diodes can be connected as indicated in Figure 4-6.

The MCP9983 and MCP9983D can be configured to measure a CPU substrate transistor, a discrete 2N3904 thermal diode, or an embedded processor diode on the External Diode 1 or External Diode 2 channels. For the MCP9984 and MCP9984D, External Diode 2 and External Diode 3 channels are configured to measure a pair of discrete anti-parallel diodes (shared on pins DP2 and DN2). The supported configurations for the external diode channels are shown in Figure 4-6.

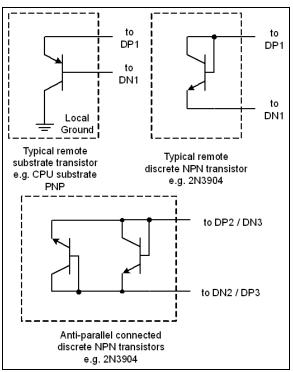
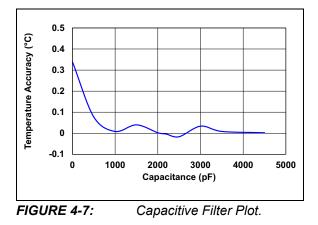



FIGURE 4-6: Diode Configurations.

To reduce error in noisier environments, use a capacitive filter in parallel with the external diodes. For an NPN transistor, a typical value of 2.2 nF is recommended. For a PNP transistor, the maximum value should be 470 pF. See Figure 4-7 for typical capacitive filter effects on temperature accuracy.

5.0 SYSTEM MANAGEMENT BUS PROTOCOL

The MCP998X/MCP9933/MCP998XD/MCP9933D communicates with a host controller through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 1-1. Stretching of the SMCLK signal is supported; however, the MCP998X/MCP9933/MCP998XD/MCP9933D will not stretch the clock signal.

5.1 SMBus Start Bit

The SMBus Start bit is defined as a transition of the SMBus Data line from a logic '1' state to a logic '0' state while the SMBus Clock line is in a logic '1' state.

5.2 SMBus Address and RD / WR Bit

The SMBus Address Byte consists of the 7-bit client address followed by the RD/WR indicator bit. If this RD/WR bit is a logic '0', the SMBus Host is writing data to the client device. If this RD/WR bit is a logic '1', the SMBus Host is reading data from the client device.

The MCP998X/MCP9933/MCP998XD/MCP9933D responds to the client address '1001_100xb' for '-1' parts and '1001_101xb' for '-2' parts. Multiple addressing options are available for the '-A' parts, as shown in Table 5-1.

THERM Pull-Up Res. (1%)	I ² C 7-Bit Client Address				
4.7k	1111_100xb				
6.8k	1011_100xb				
10k	1001_100xb				
15k	1101_100xb				
22k	0011_100xb				
33k	0111_100xb				

 TABLE 5-1:
 I²C ADDRESS DECODE

5.3 SMBus Data Bytes

All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information.

5.4 SMBus ACK and NACK Bits

The SMBus client will acknowledge all data bytes that it receives. This is done by the client device pulling the SMBus Data line low after the 8th bit of each byte that is transmitted. This applies to both the Write Byte and Block Write protocols.

The Host will NACK (not acknowledge) the last data byte to be received from the client by holding the SMBus data line high after the 8th data bit has been sent. For the Block Read protocol, the Host will ACK each data byte that it receives except the last data byte.

5.5 SMBus Stop Bit

The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic '0' state to a logic '1' state while the SMBus clock line is in a logic '1' state. When the MCP998X/MCP9933/MCP998XD/MCP9933D detects an SMBus Stop bit, and it has been communicating with the SMBus protocol, it will reset its client interface and prepare to receive further communications.

5.6 SMBus Time-out

The MCP998X/MCP9933/MCP998XD/MCP9933D includes an SMBus time-out feature. Following a 30 ms period of inactivity on the SMBus where the SMCLK pin is held low, the device will time-out and reset the SMBus interface.

The Time-Out function defaults to disabled. It can be enabled by setting the TIMEOUT bit in the Consecutive Alert register (see Register 5-17).

5.7 SMBus and I²C Compliance

The major difference between SMBus and I²C devices is highlighted here. For complete compliance information, refer to the SMBus 3.1 specification.

- 1. Minimum frequency for SMBus communications is 10 kHz.
- 2. The client protocol will reset if the clock is held low longer than 30 ms.
- I²C devices do support the Alert Response Address functionality (which is optional for SMBus).

5.8 SMBus Protocols

The MCP998X/MCP9933/MCP998XD/MCP9933D is SMBus 3.1 compatible. The device supports Write Byte, Read Byte, and Block Read. All of the below protocols use the convention in Table 5-2.

The register address determines whether a single byte or multiple byte (block) operation is run. For a single byte operation, the MSB of the register address is set to '0'; for a multiple byte operation, it is set to '1'. The addresses quoted in the register map and throughout this data sheet assume single byte operation. For multiple byte operations, the user must set the MSB of each register address to '1'.

TABLE 5-2: SMBUS PROTOCOL

Data Sent to Device	Data Sent to the Host
(# of bits sent)	(# of bits sent)

TABLE 5-3: MEMORY BLOCKS

Memory Block	Reg. Location	# of Bytes	
All Temp.	80h - 89h	10	
All Status	90h - 97h	8	

The Write Byte is used to write one byte of data to a specific register, as shown in Tables 5-4.

TABLE 5-4:WRITE BYTE PROTOCOL

S								
Т	Α			Α		D		S
A R	D D R		Α	D	Α	Α	Α	Т
R	D	W R	С	D	С	Т	A C K	T O P
Т	R	R	A C K	A D D R	A C K	A T A	κ	Ρ

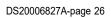
5.9 SMBus Read Byte

The Read Byte protocol is used to read one byte of data from the registers as shown in Tables 5-5.

TABLE 5-5: READ BYTE PROTOCOL

S A T D A D R R T	W R	A C K	A D D R	A C K	
-------------------------------	--------	-------------	------------------	-------	--

S T A	A D		А	A D	A	D A	N A	S T
R T	D D R	R D	A C K	D D R	A C K	A T A	A C K	O P


5.10 Block Read

The Block Read Process Call (Tables 5-6) is a two-part message. The call begins with a client address and a write condition. After the pointer location is set, the client should acknowledge (ACK). In the second part of the message, the host issues a start condition followed by a 7-bit client address with the read command. The client will ACK followed by byte count. The byte count is the number of user readable bytes, from the pointer location to the end of the memory block. When the host acknowledges following the byte count the client will clock out the data byte at the current pointer location. For every subsequent ACK by the host, the pointer will increment to the location of the next user-readable data byte. The Block read process is ended by a NACK followed by a STOP command from the host. If the host continues to ACK beyond the last register location for the memory block, the pointer will stay at the last register location within the memory block and the device will output 'FFh'.

TABLE 5-6: BLOCK READ PROTOCOL

S T A R T	A D D R	W R	A C K	A D D R	A C K			
S T A R T	A D R	R D	A C K	C O U N T	A C K	D A T A 1	A C K	D A T A 2

A C K	D A T A 3		D A T A N	N A C K	S T O P	
-------------	-----------------------	--	-----------------------	------------------	------------------	--

5.11 SMBus Send Byte

The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol, as shown in Table 5-7.

TABLE 5-7:	SEND BYTE PROTOCOL
------------	--------------------

S T A R T	CLIENT ADDR.	W R	A C K	REG. ADDR.	A C K	S T O P
-----------------------	-----------------	--------	-------------	---------------	-------------	------------------

5.12 SMBus Receive Byte

The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register as shown in Table 5-8.

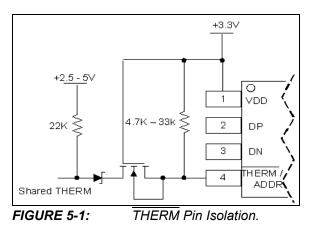
TABLE 5-8: RECEIVE BYTE PROTOCOL

S T A R T	CLIENT ADDR.	R D	A C K	REG. DATA	N A C K	S T O P
-----------------------	-----------------	--------	-------------	--------------	------------------	------------------

5.13 Alert Response Address (ARA)

The MCP998X/MCP9933/MCP998XD/MCP9933D supports the Alert Response Address (ARA) protocol. A client-only device can signal the host through SMBALERT# that it wants to talk. The host processes the interrupt and simultaneously accesses all SMBALERT# devices through the Alert Response Address. Only the device(s) which pulled SMBALERT# low will acknowledge the Alert Response Address. The host performs a modified Receive Byte operation. The 7-bit device address provided by the client transmit device is placed in the seven most significant bits of the byte. The eighth bit (X) can be a zero or one.

TABLE 5-9:	7-BIT-ADDRESSABLE
	DEVICE RESPONDS TO ARA


S T A R	A R A	R D	A C K	A D D R	X	N A C K	S T O P
T				ĸ		n	Р

5.14 THERM Pin Considerations

Because of the decode method used to determine the I^2C Address, it is important that the pull-up resistance on the THERM/ADDR or SYS_SHDN pin be within the tolerances shown in Table 5-1.

<u>For t_{INT_T} after power-up</u>, the THERM/ADDR or SYS_SHDN pin must not be pulled low or the I²C address will not be decoded properly. If the system requirements do not permit these conditions, the THERM/ADDR or SYS_SHDN pin must be isolated from its hard-wired OR'd bus during this time.

One method of isolating this pin is shown in Figure 5-1.

5.15 Register Description

Table 5-10 shows brief descriptions of MCP998X/MCP9933/MCP998XD/MCP9933D registers in hexadecimal order.

ABLE 5-10: REGISTER SET IN HEXADECIMAL ORDER											
Register Name	Reg. Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR Value	
INT HIGH BYTE	00h	IHB7	IHB6	IHB5	IHB4	IHB3	IHB2	IHB1	IHB0	00h	
INT LOW BYTE	01h	ILB2	ILB1	ILB0	—	—	—		_	00h	
EXT1 HIGH BYTE	02h	E1HB7	E1HB6	E1HB5	E1HB4	E1HB3	E1HB2	E1HB1	E1HB0	00h	
EXT1 LOW BYTE	03h	E1LB2	E1LB1	E1LB0				—	_	00h	
EXT2 HIGH BYTE	04h	E2HB7	E2HB6	E2HB5	E2HB4	E2HB3	E2HB2	E2HB1	E2HB0	00h	
EXT2 LOW BYTE	05h	E2LB2	E2LB1	E2LB0	_	_	—	_	—	00h	
EXT3 HIGH BYTE	06h	E3HB7	E3HB6	E3HB5	E3HB4	E3HB3	E3HB2	E3HB1	E3HB0	00h	
EXT3 LOW BYTE	07h	E3LB2	E3LB1	E3LB0	—	_	—	—	—	00h	
EXT4 HIGH BYTE	08h	E4HB7	E4HB6	E4HB5	E4HB4	E4HB3	E4HB2	E4HB1	E4HB0	00h	
EXT4 LOW BYTE	09h	E4LB2	E4LB1	E4LB0	—	—	—	—	—	00h	
ONE SHOT	0Ah	ONSH7	ONSH6	ONSH5	ONSH4	ONSH3	ONSH2	ONSH1	ONSH0	00h	
INT DIODE HIGH LIMIT	0Bh	IDHL7	IDHL6	IDHL5	IDHL4	IDHL3	IDHL2	IDHL1	IDHL0	55h (85°C)	
INT DIODE LOW LIMIT	0Ch	IDLL7	IDLL6	IDLL5	IDLL4	IDLL3	IDLL2	IDLL1	IDLL0	00h (0°C)	
EXT1 HIGH LIMIT HIGH BYTE	0Dh	E1HLH7	E1HLH6	E1HLH5	E1HLH4	E1HLH3	E1HLH2	E1HLH1	E1HLH0	55h (85°C)	
EXT1 HIGH LIMIT LOW BYTE	0Eh	E1HLL2	E1HLL1	E1HLL0	_	_	_	_	_	00h	
EXT1 LOW LIMIT HIGH BYTE	0Fh	E1LLH7	E1LLH6	E1LLH5	E1LLH4	E1LLH3	E1LLH2	E1LLH1	E1LLH0	00h (0°C)	
EXT1 LOW LIMIT LOW BYTE	10h	E1LLL2	E1LLL1	E1LLL0	_	_	_	_	_	00h	
EXT2 HIGH LIMIT HIGH BYTE	11h	E2HLH7	E2HLH6	E2HLH5	E2HLH4	E2HLH3	E2HLH2	E2HLH1	E2HLH0	55h (85°C)	
EXT2 HIGH LIMIT LOW BYTE	12h	E2HLL2	E1HLL1	E1HLL0	—	—	—	—	—	00h	
EXT2 LOW LIMIT HIGH BYTE	13h	E2LLH7	E2LLH6	E2LLH5	E2LLH4	E2LLH3	E2LLH2	E2LLH1	E2LLH0	00h (0°C)	

TABLE 5-10: REGISTER SET IN HEXADECIMAL ORDER

TABLE 5-10:	REG	GISTER S	ET IN HEX	ADECIM	AL ORDEF	R (CONTIN	IUED)			
Register Name	Reg. Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR Value
EXT2 LOW LIMIT LOW BYTE	14h	E2LLL2	E2LLL1	E2LLL0	_	—	—	_	_	00h
EXT3 HIGH LIMIT HIGH BYTE	15h	E3HLH7	E3HLH6	E3HLH5	E3HLH4	E3HLH3	E3HLH2	E3HLH1	E3HLH0	55h (85°C)
EXT3 HIGH LIMIT LOW BYTE	16h	E3HLL2	E3HLL1	E3HLL0	_	—	—	_	_	00h
EXT3 LOW LIMIT HIGH BYTE	17h	E3LLH7	E3LLH6	E3LLH5	E3LLH4	E3LLH3	E3LLH2	E3LLH1	E3LLH0	00h (0°C)
EXT3 LOW LIMIT LOW BYTE	18h	E3LLL2	E3LLL1	E3LLL0	_	—	—	—	_	00h
EXT4 HIGH LIMIT HIGH BYTE	19h	E4HLH7	E4HLH6	E4HLH5	E4HLH4	E4HLH3	E4HLH2	E4HLH1	E4HLH0	55h (85°C)
EXT4 HIGH LIMIT LOW BYTE	1Ah	E4HLL2	E4HLL1	E4HLL0	_	_	_	_	_	00h
EXT4 LOW LIMIT HIGH BYTE	1Bh	E4LLH7	E4LLH6	E4LLH5	E4LLH4	E4LLH3	E4LLH2	E4LLH1	E4LLH0	00h (0°C)
EXT4 LOW LIMIT LOW BYTE	1Ch	E4LLL2	E4LLL1	E4LLL0	_	_	_	_		00h
INT DIODE THERM LIMIT	1Dh	IDTHL7	IDTHL6	IDTHL5	IDTHL4	IDTHL3	IDTHL2	IDTHL1	IDTHL0	55h (85°C)
EXT1 THERM LIMIT	1Eh	E1THL7	E1THL6	E1THL5	E1THL4	E1THL3	E1THL2	E1THL1	E1THL0	55h (85°C)
EXT2 THERM LIMIT	1Fh	E2THL7	E2THL6	E2THL5	E2THL4	E2THL3	E2THL2	E2THL1	E2THL0	55h (85°C)
EXT3 THERM LIMIT	20h	E3THL7	E3THL6	E3THL5	E3THL4	E3THL3	E3THL2	E3THL1	E3THL0	55h (85°C)
EXT4 THERM LIMIT	21h	E4THL7	E4THL6	E4THL5	E4THL4	E4THL3	E4THL2	E4THL1	E4THL0	55h (85°C)
CONFIG	22h	MSKAL	R/S	AT/THM	RECD1/2	RECD3/4	RANGE	DA_ENA	APDD	00h
CONVERT	24h	—	—			CONV3	CONV2	CONV1	CONV0	06h (4/sec)
THRM HYS	25h	THMH7	THMH6	THMH5	THMH4	THMH3	THMH2	THMH1	THMH0	0Ah (10°C)
CONSEC ALRT	26h	TMOUT	CTHM2	CTHM1	CTHM0	CALRT2	CALRT1	CALRT0	—	70h

Register Name	Reg. Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR Value
DIODE ALRT MASK	27h	_	—	_	E4MSK	E3MSK	E2MSK	E1MSK	INTMSK	00h
FILTER SEL	28h		_		_	_	_	FLTER1	FLTER0	00h
HOTTEST CONFIG	29h	_	—	REM- HOT	E4ENB	E3ENB	E2ENB	E1ENB	IENB	00h
STATUS	2Ah	-	HOTCHG	BUSY	HIGH	LOW	FAULT	ETHRM	ITHRM	00h
EXT DIODE FAULT STS	2Bh				E4FLT	E3FLT	E2FLT	E1FLT		00h
HIGH LIMIT STATUS	2Ch	—	—		E4HIGH	E3HIGH	E2HIGH	E1HIGH	IHIGH	00h
LOW LIMIT STATUS	2Dh		—		E4LOW	E3LOW	E2LOW	E1LOW	ILOW	00h
THERM LIMIT STATUS	2Eh	HWSD- LIM			E4THM	E3THM	E2THM	E1THM	ITHM	00h
HOTTEST DIODE HIGH BYTE	2Fh	HDHB7	HDHB6	HDHB5	HDHB4	HDHB3	HDHB2	HDHB1	HDHB0	00h
HOTTEST DIODE LOW BYTE	30h	HDLB2	HDLB1	HDLB0		_	—	—		00h
HOTTEST STATUS	31h		_		E4HOT	E3HOT	E2HOT	E1HOT	IHOT	00h
SW THER- MAL LIMIT CONFIG	32h	_	—	_	E4SYS	E3SYS	E2SYS	E1SYS	INTSYS	00h
THERM SHDN TEMP	33h	SDNL7	SDNL6	SDNL5	SDNL4	SDNL3	SDNL2	SDNL1	SDNL0	00h
EXT1 BETA CONFIG	34h	_			ENBL1	BETA13	BETA12	BETA11	BETA10	00h
EXT2 BETA CONFIG	35h	_			ENBL2	BETA23	BETA22	BETA21	BETA20	08h
EXT1 IDE- ALITY FAC- TOR	36h	—	—	IDEL15	IDEL14	IDEL13	IDEL12	IDEL11	IDEL10	12h (1.008)
EXT2 IDE- ALITY FAC- TOR	37h	_	—	IDEL25	IDEL24	IDEL23	IDEL22	IDEL21	IDEL20	12h (1.008)
EXT3 IDE- ALITY FAC- TOR	38h	_	Ι	IDEL35	IDEL34	IDEL23	IDEL32	IDEL31	IDEL30	12h (1.008)
EXT4 IDE- ALITY FAC- TOR	39h	—		IDEL45	IDEL44	IDEL43	IDEL42	IDEL41	IDEL40	12h (1.008)
PRODUCT ID HIGH BYTE	3Eh	PIDHB7	PIDHB6	PIDHB5	PIDHB4	PIDHB3	PIDHB2	PIDHB1	PIDHB0	31h
PRODUCT ID LOW BYTE	3Fh	PIDLB7	PIDLB6	PIDLB5	PIDLB4	PIDLB3	PIDLB2	PIDLB1	PIDLB0	xxh

TABLE 5-10:	RE	GISTER S	ET IN HEX		AL ORDEF		IUED)			
Register Name	Reg. Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR Value
MANUFAC- TURER ID HIGH BYTE	40h	MCH- P_IDHB7	MCH- P_IDHB6	MCH- P_IDHB5	MCH- P_IDLB4	MCH- P_IDLB3	MCH- P_IDHB2	MCH- P_IDHB1	MCH- P_IDHB0	00h
MANUFAC- TURER ID LOW BYTE	41h	MCH- P_IDLB7	MCH- P_IDLB6	MCH- P_IDLB5	MCH- P_IDLB4	MCH- P_IDLB3	MCH- P_IDLB2	MCH- P_IDLB1	MCH- P_IDLB0	54h
REVISION ID	42h	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0	00h
SCRATCH- PD1	43h	SPD17	SPD16	SPD15	SPD14	SPD13	SPD12	SPD11	SPD10	00h
SCRATCH- PD2	44h	SPD27	SPD26	SPD25	SPD24	SPD23	SPD22	SPD21	SPD20	00h
			TEMPE	ERATURE I	MEMORY B	LOCK (BE	LOW)			
INT HIGH BYTE	80h	IHB7	IHB6	IHB5	IHB4	IHB3	IHB2	IHB1	IHB0	00h
INT LOW BYTE	81h	ILB2	ILB1	ILB0	—	—		—	—	00h
EXT1 HIGH BYTE	82h	E1HB7	E1HB6	E1HB5	E1HB4	E1HB3	E1HB2	E1HB1	E1HB0	00h
EXT1 LOW BYTE	83h	E1LB2	E1LB1	E1LB0	—	_	—	—	—	00h
EXT2 HIGH BYTE	84h	E2HB7	E2HB6	E2HB5	E2HB4	E2HB3	E2HB2	E2HB1	E2HB0	00h
EXT2 LOW BYTE	85h	E2LB2	E2LB1	E2LB0	—		—	—	—	00h
EXT3 HIGH BYTE	86h	E3HB7	E3HB6	E3HB5	E3HB4	E3HB3	E3HB2	E3HB1	E3HB0	00h
EXT3 LOW BYTE	87h	E3LB2	E3LB1	E3LB0	_		_	_	_	00h
EXT4 HIGH BYTE	88h	E4HB7	E4HB6	E4HB5	E4HB4	E4HB3	E4HB2	E4HB1	E4HB0	00h
EXT4 LOW BYTE	89h	E4LB2	E4LB1	E4LB0	_			_	_	00h
						CK (BELOW	/)			
STATUS	90h	—	HOTCHG	BUSY	HIGH	LOW	FAULT	ETHRM	ITHRM	00h
EXT DIODE FAULT STS	91h	—	—	—	E4FLT	E3FLT	E2FLT	E1FLT	—	00h
HIGH LIMIT STATUS	92h	—	—	—	E4HIGH	E3HIGH	E2HIGH	E1HIGH	IHIGH	00h
LOW LIMIT STATUS	93h	—		—	E4LOW	E3LOW	E2LOW	E1LOW	ILOW	00h
THERM LIMIT STATUS	94h	—	—	—	E4THM	E3THM	E2THM	E1THM	ITHM	00h
HOTTEST DIODE HIGH BYTE	95h	HDHB7	HDHB6	HDHB5	HDHB4	HDHB3	HDHB2	HDHB1	HDHB0	80h

TADLE J-10.	TABLE 3-10. REGISTER SET IN THE RADECIMAE ORDER (CONTINUED)									
Register Name	Reg. Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR Value
HOTTEST DIODE LOW BYTE	96h	HDLB2	HDLB1	HDLB0	—	—	—	—	_	00h
HOTTEST STATUS	97h	—	—	—	E4HOT	E3HOT	E2HOT	E1HOT	IHOT	00h

REGISTER SET IN HEXADECIMAL ORDER (CONTINUED) TARI E 5-10.

5.16 **Data Read Interlock**

When any temperature channel high byte register is read, the corresponding low byte is copied into an internal 'shadow' register. The user is free to read the low byte at any time and be guaranteed that it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading from the same high byte register again will automatically refresh this stored low byte data.

REGISTER 5-1: INTERNAL HIGH BYTE REGISTER (ADDRESS 00H)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			IH	B[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writeable bit		U = Unimplemen	ted bit, rea	ad as '0'	
-n = Value at PO	R	'1' = bit is set		'0' = Bit is cleared	ł	x = Bit in unkr	nown
bit 7-0 IH	B[7:0]:						

Unsigned binary diode temperature reading

REGISTER 5-2: INTERNAL LOW BYTE REGISTER (ADDRESS 01H)

R-0	R-0	R-0	U-0	U-0	U-0	U-0	U-0
	ILB[7:5]		—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writeable bit		e bit	U = Unimplemented bit, read as '0' (0) = Bit is cleared x = Bit in unknown				
-n = Value	n = Value at POR '1' = bit is set			'0' = Bit is clea			nown
bit 7-5	ILB[7:5]:						
	Fractional	portion of the Inter	rnal Diode Terr	perature to be	added to the v	alue at register	00h
	111 = 0.87	75 °C					
	110 = 0.75	50 °C					
	101 = 0.62	25 °C					
	100 = 0.50	0° 00					
	011 = 0.37	75 °C					
	010 = 0.25	50 °C					
	001 = 0.12	25 °C					
	000 = 0.00	0° 00					
bit 4-0	Unimpleme	ented: Read as '0	,				
	•						

REGISTER 5-3: EXT(N) HIGH BYTE REGISTER (ADDRESSES 02H,04H,06H,08H)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
EXT(N)HB[7:0]								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EXT(N)HB[7:0]**:

Unsigned binary integer value of the External Diode 'N' temperature reading, where N = 1 to 4, depending on the device.

REGISTER 5-4: EXT(N) LOW BYTE REGISTER (ADDRESSES 03H,05H,07H,09H)

R-0	R-0	R-0	U-0	U-0	U-0	U-0	U-0
	EXT(N)LB[7:5]		—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 **EXT(N)LB[7:5]**:

Fractional portion of the External Diode Temperature to be added to the value at the respective External Diode High Byte register (see Register 5-3).

111	= 0.875 °C
110	= 0.750 °C
	= 0.625 °C
	= 0.500 °C
	= 0.375 °C
	= 0.250 °C
001	= 0.125 °C
000	= 0.000 °C

bit 4

Unimplemented: Read as '0'

REGISTER 5-5: ONE SHOT REGISTER (ADDRESS 0AH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ONS	SH[7:0]			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpleme	ented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unknow	า

bit 7-0 **ONSH[7:0]**:

When the device is in the Standby state, writing to the One-shot Register will initiate a conversion cycle and update the temperature measurements. Writing to the One Shot Register while the device is in the Active state or when the BUSY bit is set in the Status Register Register 5-21 (2Ah) will have no effect. For MCP998XD devices, this register does not affect operation since all MCP998XD devices cannot enter Standby state.

REGISTER 5-6: INTERNAL DIODE HIGH LIMIT REGISTER (ADDRESS 0BH)

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	
IDHL[7:0]								
bit 7							bit 0	
Legend:								

3						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-0 **IDHL[7:0]**:

Unsigned binary integer value of the Internal Diode's High temperature limit, programmable by the user.

REGISTER 5-7: INTERNAL DIODE LOW LIMIT REGISTER (ADDRESS 0CH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IDLL[7:0]							
bit 7 bit (bit 0

Legend:			
R = Readable bit	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **IDLL[7:0]**:

Integer value of the Internal Diode's Low temperature limit, programmable by the user.

REGISTER 5-8: EXT(N) HIGH LIMIT HIGH BYTE REGISTER (ADDRESSES 0DH, 11H, 15H, 19H)

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1
EXT(N)HLBH[7:0]							
bit 7 bi							

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **EXT(N)HLBH[7:0]**:

Integer value of the External Diode N High temperature limit's high byte, where N = 1 to 4 depending on device.

EXT(N) HIGH LIMIT LOW BYTE REGISTER (ADDRESSES 0EH, 12H, 16H, 1AH) **REGISTER 5-9:** R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 EXT(N)HLLB[7:5] ____ ____ ___ ____ ___ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 EXT(N)HLLB[7:5]: Fractional portion of the High Limit Temperature to be added to the value at the respective high byte

registers.							
111	=	0.875 °C					
110	=	0.750 °C					
101	=	0.625 °C					
		0.500 °C					
		0.375 °C					
		0.250 °C					
		0.125 °C					
000	=	O° 000.0					

bit 4-0 Unimplemented: Read as '0'.

REGISTER 5-10: EXT(N) LOW LIMIT HIGH BYTE REGISTER (ADDRESSES 0FH, 13H, 17H, 1BH)

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1
EXT(N)LLHB[7:0]							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EXT(N)LLHB[7:0]:

Integer portion of External Diode N Low temperature Limit, where N = 1 to 4 depending on device.

REGISTER	5-11: EXT(I	N) LOW LIMIT	LOW BYTE	E REGISTER	(ADDRESSE	S 10H, 14H, 1	8H, 1CH)
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	EXT(N)LLLB[7	:5]	_	—	—	—	_
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
	111 = 0.875 $110 = 0.750$ $101 = 0.625$ $100 = 0.500$ $011 = 0.375$ $010 = 0.250$ $001 = 0.125$ $000 = 0.000$	2° 2° 2° 2°					
bit 4-0	Unimpleme	nted: Read as '	o'.				
REGISTER	5-12: INTEI	RNAL DIODE		IIT REGISTE	R (ADDRESS	1DH)	
R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1
			ודחו	HI [7·0]			

	IDTHL[7:0]	
bit 7		bit 0
Legend:		

Legenu.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **IDTHL[7:0]**: Integer value of the Internal Diode THERM Limit

REGISTER 5-13: EXT(N) THERM LIMIT REGISTER (ADDRESSES 1EH, 1FH, 20H, 21H)

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1
EXT(N)THL[7:0]							
bit 7							bit 0

Legend:			
R = Readable bit W = Writable bit		U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EXT(N)THL[7:0]**: Integer value of the External Diode N THERM temperature limits, where N = 1 to 4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
MSKA	L R/S	AT/THM	RECD1/2	RECD3/4	RANGE	DA_ENA	APDD			
bit 7	·	•			•		bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 7	MSKAL: MA			_						
						pin is in Interru				
		ffect when the bit will not deas			HERM (Compa	rator) mode. T	urning on the			
				•	esserted for any	/ interrupt condi	tion when the			
						e updated norm				
					•	iate status bits	-			
		HERM pin will		5			,			
bit 6	R/S: RUN/S									
					n all MCP998X	D devices. ot has been com	mandad)			
		ce is in Active s				ot has been con	imanueu).			
bit 5		ERT/THERM B		0						
	Controls the	Controls the operation of the ALERT/THERM pin. (Note 1)								
		1 = The ALERT/THERM pin acts in THERM (Comparator) mode as described in Section 4.7.2 "ALERT/THERM Pin in THERM Mode". In this mode the MASK_ALL bit is ignored								
		RT/THERM pir rupt Mode"	n acts in interr	upt mode as o	described in <mark>Se</mark>	ction 4.7.1 "AL	ERT/THERM			
bit 4	RECD1/2: R	esistance Error	Correction 1/2	2 Bits						
		Resistance Erro Channels 1 an				n the MCP9982/	3/4/2D/3D/4D			
	1 = REC is d	lisabled for Ext	ernal Channel	1 on the MCF	9982/3/4 and E	External Channe	els 1 and 2 on			
	-	9985/33/5D/33								
		nabled for Extent the MCP9985		1 on the MCPS	9982/3/4/2D/3D	/4D and Extern	al Channels 1			
bit 3		esistance Error		4 Bits						
					nal Channel 2 d	on the MCP9983	3/3D. External			
						on the MCP998				
						rnal Channels 2	and 3 on the			
					e MCP9985/5D		and O an the			
					e MCP9985/5D	nal Channels 2).	and 5 on the			
bit 2	RANGE:		-							
						channels (Note				
	1 = The temp (see <mark>Tab</mark>		rement range	is -64°C to +1	91.875°C and tl	ne data format i	s offset binary			
			rement range	is 0°C to +127	.875°C and the	data format is l	binary			
Note 1:	When the ALERT						-			
	OR'ed to assert th	e ALERT/THE	RM pin. The A	LERT/THERM						
-	below the High Li		-			1. I I				
2:	REC on External					is locked to '0'.				
3:	The maximum am	ibieni temperat	ure while the c	ievice is opera	$1000 \text{ mm} \text{ mm} \text{ s} + 125^{\circ} \text{C}.$					

REGISTER 5-14: CONFIGURATION REGISTER (ADDRESS 22H)

REGISTER 5-14: CONFIGURATION REGISTER (ADDRESS 22H) (CONTINUED)

bit 1	 DA_ENA: Dynamic Averaging Enable bit Enables the Dynamic Averaging feature on all temperature channels. 1 = The Dynamic Averaging feature is enabled. All temperature channels will be converted with an averaging factor that is based on the conversion rate as shown in Table 4-1 0 = The Dynamic Averaging feature is disabled. All temperature channels will be converted with a maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this averaging factor will be reduced as shown in Table 4-2
bit 0	 APDD: Anti-Parallel Diode Operation bit Disables the anti-parallel diode operation, only allowing each APD pin set to bias and measure one diode (only applicable to the MCP9984/5/33 and MCP9984D/5D/33D). 1 = Anti-parallel diode mode is disabled. Only one external diode will be measured on the channels capable of APD (ex. DP1/DN2 and DP2/DN1). 0 = Anti-parallel diode mode is enabled. Two external diodes will be measured on the channels capable of APD (ex. DP1/DN2 and DP2/DN1).
Note 1:	OR'ed to assert the ALERT/THERM pin. The ALERT/THERM pin is deasserted after one measurement is below the High Limit minus the Therm Hysteresis.
2:	REC on External Channel 1 on MCP998XD devices cannot be disabled and is locked to '0'.

3: The maximum ambient temperature while the device is operating is +125°C.

REGISTER 5-15: CONVERT REGISTER (ADDRESS 24H)

U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0
—	—	—	—		CON	V[3:0]	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: will be read as '0'.
---------	-------------------------------------

bit 3-0	CONV[3:0]:
	See Section 4.2 "Conversion Rates":
	0000 = 1/16
	0001 = 1/8
	0010 = 1/4
	0011 = 1/2
	0100 = 1
	0101 = 2
	0110 = 4 (default)
	0111 = 8
	1000 = 16
	1001 = 32
	1010 = 64
	All other configurations = 1
	-

REGISTER 5-16: THERM LIMIT HYSTERESIS REGISTER (ADDRESS 25H)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1
			THN	/H[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpleme	ented bit, rea	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clear	٥d	x = Bit is unkno	מאור

bit 7-0

THMH[7:0]: Integer value of the THERM Limit hysteresis (see Section 4.8 "Temperature Measurement").

R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	U-0
TMOUT		CTHM[6:4]			CALRT[3:1]		
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 7	1 = The I ² C is held 0 = The I2C	AEOUT Bit time-out and idle time-out and idle low for longer tha time-out and idle eld low for longe	functionality n 30 ms. functionality	v are enabled.	The I ² C interfac		
bit 6-4		the <u>number of c</u> the THERM/ADI				eed the correspo	onding Therm
bit 3-1		I: the <u>number of c</u> the ALERT/THE			that must exc	eed the correspo	onding Thern
bit 0		nted: Read as '0)'.				
	Mask Register /hen a cha	controls individua nnel is mask	l channel				

REGISTER 5-17: CONSECUTIVE ALERT REGISTER (ADDRESS 26H)

masking. When a channel is masked, the ALERT/THERM pin will not be asserted when the masked channel reads a diode fault or out of limit error. The channel mask does not mask the THERM/ADDR pin.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_		E4MSK	E3MSK	E2MSK	E1MSK	INTMSK
bit 7							bit 0
[
Legend:							
R = Readabl		W = Writable		-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 7-5	Unimplomont	ed: will be read	1 ac '0'				
bit 4	-						
DIL 4	E4MSK: E4M		nin from asse	rting when the	e External Diod	e / channel is	out of limit or
	reports a diod			and g when the			
			nannel will not	cause the AL	ERT/THERM pi	n to be asserte	ed if it is out of
		ports a diode l					
		nal Diode 4 ch a diode fault.	nannel will cau	ise the ALER I	THERM pin to	be asserted if	it is out of limit
bit 3	E3MSK: E3M						
DIL 3			pin from asse	rting when the	e External Diod	e 3 channel is	out of limit or
	reports a diod	le fault.					
				cause the AL	ERT/THERM pi	n to be asserte	ed if it is out of
		ports a diode f		ing the ALEDT	/THERM pin to	be accorted if	t is out of limit
		s a diode fault.				be asserted in	
bit 2	E2MSK: E2M						
	Masks the AL	ERT/THERM	pin from asse	rting when the	e External Diod	e 2 channel is	out of limit or
	reports a diod						
		rnal Diode 2 cl ports a diode f		cause the AL	ERT/THERM pi	n to be asserte	ed if it is out of
				se the ALERT	THERM pin to	be asserted if	it is out of limit
		s a diode fault.			•		
bit 1	E1MSK: E1M						
			pin from asse	erting when the	e External Diod	e 1 channel is	out of limit or
	reports a diod		nannel will not	cause the \overline{AI}	ERT/THERM pi	n to be asserte	ed if it is out of
		ports a diode f					
				ise the ALERT	THERM pin to	be asserted if	it is out of limit
	•	s a diode fault.					
bit 0	INTMSK: INT		in from	ting where the - I	ntornal Diada 4		ut of line:4
					nternal Diode to		
					IERM pin to be		
					-		

REGISTER 5-18: DIODE ALERT MASK REGISTER (ADDRESS 27H)

REGISTER 5-19: FILTER SELECTION REGISTER (ADDRESS 28H) U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 FLTER[1:0] ___ ____ ___ ___ ___ ___ bit 7 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-2 Unimplemented: Read as '0'. bit 1-0 FLTER[1:0]: Control the level of digital filtering that is applied to the External Diode 1 temperature measurement, as shown in Table 4-10. HOTTEST DIODE RECOGNITION REGISTER (ADDRESS 29H) REGISTER 5-20:

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	REMHOT	E4ENB	E3ENB	E2ENB	E1ENB	IENB
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	Unimpler	nented: Read as '0'.		
bit 5	REMHOT			
	set. 1 = Reme	he Remember Hottest funct mber hottest function enable mber hottest function disabl	ed	nanges, the ALERT/THERM pin is
bit 4	1 = Exterr	External Diode 4 for Hottest I nal Diode 4 is enabled nal Diode 4 is not enabled	Diode Recognition compariso	ns.
bit 3	1 = Exterr	External Diode 3 for Hottest I nal Diode 3 is enabled nal Diode 3 is not enabled	Diode Recognition compariso	ns.
bit 2	1 = Extern	External Diode 2 for Hottest I nal Diode 2 is enabled nal Diode 2 is not enabled	Diode Recognition compariso	ns.
bit 1	1 = Exterr	External Diode 1 for Hottest I nal Diode 1 is enabled nal Diode 1 is not enabled	Diode Recognition compariso	ns.
bit 0	1 = Intern	he Internal Diode for Hottest al Diode is enabled al Diode is not enabled	Diode Recognition comparis	ons.

.

.

R/W-0

bit 0

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
	HOTCHG	BUSY	HIGH	LOW	FAULT	ETHRM	ITHRM				
bit 7							bit				
Legend:											
R = Readab		W = Writable		-	nented bit, rea						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN				
bit 7	Unused: Rea	d as '0'.									
bit 6	HOTCHG:										
		tes if the hotte	st channel ha	s changed from	n the previous t	emperature me	asurement.				
	1 = The hotte	st channel has	changed fron	n the previous t	emperature m	easurement					
	0 = The hottes	st channel has	not changed	from the previo	ous temperatur	e measurement					
bit 5	BUSY:										
				onverting meas	ured data.						
		is currently con is not currently									
bit 4	HIGH:	is not currently	, converting in								
	This bit indicates if a temperature channel exceeds its programmed high limit. When set, this bit w										
	assert the ALERT/THERM pin.										
	 1 = Reported temperature is above the high limit 0 = Reported temperature is not above the high limit 										
	0 = Reported	temperature is	s not above the	e high limit							
bit 3	LOW: This bit indicates if a temperature channel drops below its programmed low limit. When set, this bit wi										
		ERT/THERM p		drops below its	s programmed I	ow limit. When s	set, this bit w				
		temperature is		v limit							
		temperature is									
bit 2	FAULT:	·									
	This bit indicates when a external diode fault is detected. When set, this bit will assert the										
	ALERT/THERM pin.										
	•	uit or short of a	a diode								
	0 = No fault re	eported									
bit 1	ETHRM:	too the Extern	al Diada abar	anal avaaada tk		d Thorm Limit \	Nhon oot th				
	This bit indicates the External Diode channel exceeds the programmed Therm Limit. When bit will assert the THERMADDR or SYS_SHDN pin. This bit will remain set until the THER										
	or SYS_SHDN pin is released at which point it will be automatically cleared.										
	1 = Reported temperature above the Therm limit										
	0 = Reported	temperature is	s not above the	e Therm limit							
bit 0	ITHRM:										
						d Therm Limit.					
				SHDN pin. Thi bint it will be au		n set until the T	HERM/ADD				
				and it will be au	Conaccally Clea	arcu.					
	1 = Reported	temperature a	bove the Ther	m limit							

REGISTER 5-21: STATUS REGISTER (ADDRESS 2AH)

U-0	U-0	U-0	RC-0	RC-0	RC-0	RC-0	U-0				
_	—	—	E4FLT	E3FLT	E2FLT	E1FLT	_				
bit 7							b				
Legend:											
•	d-then-clear bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 7-5	Unused: Re	ad as '0'.									
bit 4	E4FLT:	E4FLT:									
	This bit is se	t if the External	Diode 4 chan	nel reported a	diode fault.						
1 = Diode Fault condition present											
	0 = No Diode Fault present										
bit 3	E3FLT:										
		t if the External		nel reported a	diode fault.						
		ault condition pre e Fault present	esent								
		e Fault present									
bit 2	E2FLT:	t if the External	Diodo 2 chan	nol reported a	diada fault						
		ault condition pre		inel reported a							
		•									
	0 - NO DIOU	e Fault present									
bit 1	E1FLT:	e Fault present									
oit 1	E1FLT:	e Fault present t if the External	Diode 1 chan	nel reported a	diode fault.						
bit 1	E1FLT: This bit is se			nel reported a	diode fault.						
bit 1	E1FLT: This bit is se 1 = Diode Fa	t if the External		nel reported a d	diode fault.						
bit 1 bit 0	E1FLT: This bit is se 1 = Diode Fa 0 = No Diode	t if the External ault condition pre	esent	nel reported a	diode fault.						
	E1FLT: This bit is se 1 = Diode Fa 0 = No Diode	t if the External ault condition pre e Fault present nted: Read as '	e sent 0'.	·		sed the FAULT I	oit in the				

REGISTER 5-22: EXTERNAL DIODE FAULT STATUS REGISTER (ADDRESS 2BH)(Note 1)

U-0	U-0	U-0	RC-0	RC-0	RC-0	RC-0	RC-0		
_	—	—	E4HIGH	E3HIGH	E2HIGH	E1HIGH	IHIGH		
bit 7							bit 0		
Legend:	then elsen hit		L:4	II — I heinen le r	a suffered by the second	(O'			
-n = Value a	-then-clear bit	W = Writable bit '1' = Bit is set		0 = Unimpler	nented bit, read	x = Bit is unkn	01/10		
	al POR	I – DILIS SEL			areu	X – DILIS UNKN	IOWI		
bit 7-5	Unimplemer	ted: Read as '	o'.						
bit 4	E4HIGH:								
	This bit is set	when the Exter	nal Diode 4 ex	ceeds its prog	rammed High L	imit. Reading th	is register will		
	also clear the	-							
	1 = High Limit exceeded 0 = High Limit not exceeded								
bit 3	E3HIGH:								
Sit 0		when the Exter	nal Diode 3 ex	ceeds its prog	rammed High L	imit. Reading th	is register will		
	also clear the	e HIGH bit.			C	C	Ū		
	1 = High Limi								
bit 2	E2HIGH:	it not exceeded							
		when the Exter	nal Diode 2 ex	ceeds its proa	rammed High Li	imit. Reading th	is register will		
	also clear the			1 3	5	5	5		
	1 = High Limi								
1.11.4	•	it not exceeded							
bit 1	E1HIGH: This bit is set	when the Exter	nal Diode 1 ex	ceeds its prog	rammed High L	imit Reading th	is register will		
	also clear the			loceus no prog	ranninga riigh E	init. Redding th	no register will		
	1 = High Limi								
	-	it not exceeded							
bit 0	IHIGH:	twhen the Inter	nal Diada ave	oodo ito progr	ammed High Li	mit. Dooding th	ia ragiatar will		
	also clear the			eeus its progr	апппеч піўп сі	niit. Reading th	is register will		
	1 = High Limi								
	0 = High Limi	it not exceeded							

REGISTER 5-23: HIGH LIMIT STATUS REGISTER (ADDRESS 2CH)

U-0	U-0	U-0	RC-0	RC-0	RC-0	RC-0	RC-0			
	_	—	E4LOW	E3LOW	E2LOW	E1LOW	ILOW			
bit 7		·			•	•	bit (
Legend:										
-	-then-clear bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	nown			
bit 7-5	Unimpleme	nted: Read as	'∩'							
bit 4	E4LOW:									
	This bit is se also clear th		rnal Diode 4 e	xceeds its prog	grammed Low L	imit. Reading th	nis register wi			
	1 = Low Lim									
	0 = Low Lim	it not exceeded								
bit 3	E3LOW:	t when the Exte	rnal Diada 2 a	vacada ita prod	rommod Low L	imit. Reading th	via ragiatar wi			
	also clear th			xceeus its prog	Jianineu Low L	innit. Reading ti	lis register wi			
	1 = Low Lim		1							
bit 2	0 = Low Lim E2LOW:	it not exceeded								
	-	E2LOW: This bit is set when the External Diode 2 exceeds its programmed Low Limit. Reading this register will								
	also clear the 1 = Low Lim	-								
		it not exceeded								
bit 1	E1LOW:									
			rnal Diode 1 e	xceeds its prog	grammed Low L	imit. Reading th	nis register wi			
		also clear the LOW bit. 1 = Low Limit exceeded								
	0 = Low Lim	it not exceeded								
bit 0	ILOW: This bit is set when the Internal Diode exceeds its programmed Low Limit. Reading this									
		at when the Inte					ie ronietor wi			
	also clear the			ceeds its progr		inter roodding til	is register wi			
	also clear the 1 = Low Lim	e LOW bit.		ceeds its progr			is register w			

REGISTER 5-24: LOW LIMIT STATUS REGISTER (ADDRESS 2DH)

R-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
HWSDLI	м —		E4THM	E3THM	E2THM	E1THM	ITHM
bit 7				·		·	bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	HWSDLIM: This bit is set	when the Exte	rnal Diode 1 d	channel is abov	ve the Hardware	e Thermal Shut	down limit.
bit 6-5	Unimplemen	ted: Read as '	0'.				
bit 4	E4THM:						
	bit will assert 1 = <u>THERM</u> p 0 = THERM p	the THERM/A	DDR or SYS_		s its programme	a menn Liniit.	when set, this
bit 3	bit will assert 1 = <u>THERM</u> p	the THERM/A	DDR or SYS_		s its programme	d Therm Limit. '	When set, this
bit 2	bit will assert 1 = <u>THERM</u> p	the THERM/A	DDR or SYS_		s its programme	d Therm Limit. '	When set, this
bit 1	E1THM: This bit is set bit <u>will asser</u> t 1 = THERM p	whe <u>n the Exter</u> the THERM/AI	nal Diode 1 ch DDR or SYS_		s its programme	d Therm Limit. '	When set, this
bit 0	bit will assert 1 = <u>THERM</u> p	the THERM/A	DDR or SYS_		its programmed	d Therm Limit. \	When set, this
 	The Therm Limit S Limit is exceeded. from the Therm Lin Therm Limit minus	If any of these mit Status Regi	bits are set, t ster will not cl	he THERM sta lear the status	tus bit in the Sta bits. Once the t	atus Register is emperature dro	set. Reading ps below the

THERM bit in the Status Register will be cleared when all individual channel THERM bits are cleared.

REGISTER 5-25: THERM LIMIT STATUS REGISTER (ADDRESS 2EH)(Note 1)

REGISTER 5-26: HOTTEST DIODE TEMPERATURE HIGH BYTE REGISTER (ADDRESS 2FH)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			HDł	HB[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	dable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unknow	wn

bit 7-0 **HDHB[7:0]**:

Integer value of the hottest diode's temperature reading from the most recent samples.

REGISTER 5-27: HOTTEST DIODE TEMPERATURE LOW BYTE REGISTER (ADDRESS 30H)

R-0	R-0	R-0	U-0	U-0	U-0	U-0	U-0		
	HDLB[7:5]		—	—	—	—	—		
bit 7				•			bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 7-5 HDLB[7:5]:

Fractional portion of the hottest diode's temperature reading for the most recent sample period. 111 = 0.875 °C 110 = 0.750 °C 101 = 0.625 °C 100 = 0.500 °C

- 101 = 0.625 °C 100 = 0.500 °C 011 = 0.375 °C 010 = 0.250 °C 001 = 0.125 °C 000 = 0.000 °C
- bit 4-0 Unimplemented: Read as '0'.

				(/		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—		E4HOT	E3HOT	E2HOT	E1HOT	IHOT
bit 7				• •			bit
Legend:							
R = Readat	ole bit	W = Writable	e bit	U = Unimpler	mented bit, reac	l as '0'	
-n = Value at POR '1' = Bit is set '0'				'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7-5	Unimplement	ed: Read as	ʻ0 ' .				
bit 4	E4HOT:						
	Indicates Exten 1 = External D						
	D = External D						
bit 3	E3HOT:						
	Indicates Exter						
	1 = External D 0 = External D						
bit 2	E2HOT:		nollesi				
DIL Z	Indicates Exter	rnal Diode 2	is the hottest				
	1 = External D						
	0 = External D	iode 2 is not	hottest				
bit 1	E1HOT:						
		ates External Diode 1 is the hottest. xternal Diode 1 is hottest					
	0 = External D						
bit 0	IHOT:						
	Indicates Inter	nal Diode is t	he hottest.				
	1 = Internal Di		-				
	0 = Internal Di	ode is not ho	ttest				

REGISTER 5-28: HOTTEST DIODE STATUS REGISTER (ADDRESS 31H)

REGISTER 5-29: SOFTWARE THERMAL SHUTDOWN CONFIGURATION REGISTER

(REGISTER 32H)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	E4SYS	E3SYS	E2SYS	E1SYS	INTSYS
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 Unimplemented: Read as '0'.

bit 4 E4SYS:

Configures the External Diode 4 channel to assert the SYS_SHDN pin based on the Hardware Thermal Shutdown Limit.

- 0 = The External Diode 4 channel is not linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E4THRM status bit is set but the SYS_SHDN pin is not asserted.
- 1 = The External Diode 4 channel is linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E4THRM status bit is set and the SYS_SHDN pin is asserted. It will remain asserted until the temperature drops below its Hardware Thermal Shutdown Limit minus the Therm Hysteresis.

bit 3 E3SYS:

Configures the External Diode 3 channel to assert the SYS_SHDN pin based on the Hardware Thermal Shutdown Limit.

- 0 = The External Diode 3 channel is not linked to the <u>SYS_SHDN</u> pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E3THRM status bit is set but the <u>SYS_SHDN</u> pin is not asserted.
- 1 = The External Diode 3 channel is linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E3THRM status bit is set and the SYS_SHDN pin is asserted. It will remain asserted until the temperature drops below its Hardware Thermal Shutdown Limit minus the Therm Hysteresis.

bit 2 E2SYS:

Configures the External Diode 2 channel to assert the SYS_SHDN pin based on the Hardware Thermal Shutdown Limit.

- 0 = The External Diode 2 channel is not linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E2THRM status bit is set but the SYS_SHDN pin is not asserted.
- 1 = The External Diode 2 channel is linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E2THRM status bit is set and the SYS_SHDN pin is asserted. It will remain asserted until the temperature drops below its Hardware Thermal Shutdown Limit minus the Therm Hysteresis.

bit 1 E1SYS:

Configures the External Diode 1 channel to assert the SYS_SHDN pin based on the Hardware Thermal Shutdown Limit.

- 0 = The External Diode 1 channel is not linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E1THRM status bit is set but the SYS_SHDN pin is not asserted.
- 1 = The External Diode 1 channel is linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the E1THRM status bit is set and the SYS_SHDN pin is asserted. It will remain asserted until the temperature drops below its Hardware Thermal Shutdown Limit minus the Therm Hysteresis.

REGISTER 5-29: SOFTWARE THERMAL SHUTDOWN CONFIGURATION REGISTER (REGISTER 32H) (CONTINUED)

bit 0 INTSYS:

Configures the Internal Diode channel to assert the SYS_SHDN pin based on the Hardware Thermal Shutdown Limit.

- 0 = The Internal Diode channel is not linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the INTTHRM status bit is set but the SYS_SHDN pin is not asserted.
- 1 = The Internal Diode channel is linked to the SYS_SHDN pin. If the temperature exceeds the Hardware Thermal Shutdown Limit, the INTTHRM status bit is set and the SYS_SHDN pin is asserted. It will remain asserted until the temperature drops below its Hardware Thermal Shutdown Limit minus the Therm Hysteresis.

REGISTER 5-30: HARDWARE THERMAL SHUTDOWN LIMIT REGISTER (ADDRESS 33H)(Note 1)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
SDNL[7:0]									
bit 7									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SDNL[7:0]:**

This read only register returns the Hardware Thermal Shutdown Limit selected by the value of the pull-up resistors on the ALERT/THERM and SYS_SHDN pins (see Table 4-5). The data represents the hardware set temperature in °C using the active temperature setting set by the RANGE bit in the Configuration Register. See Table 4-11 for the data format.

When the External Diode 1 Temperature exceeds this limit, the SYS_SHDN pin is asserted and will remain asserted until the External Diode 1 temperature drops below this limit minus 10°C.

Note 1: Only available on MCP998XD devices.

REGISTER 5-31: EXT(N) BETA COMPENSATION CONFIGURATION REGISTER (ADDRESSES 34H, 35H)

U-0	U-0	U-0	R-0	R-1	R-0	R-0	R-0
—	—	—	ENBL(N)	BETA(N)[3:0]			
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5	Unimplemented: Read as '0'
bit 4	ENBL(N): Enables the Beta Compensation factor auto-detection function. N = 1 or 2, depending on the device. 1 = Auto-Beta detection for External Diode N is enabled 0 = Auto-Beta detection for External Diode N is disabled
bit 3-0	BETA(N)[3:0]: These bits always reflect the current beta configuration settings. If auto-detection circuitry is enabled, these bits will be updated automatically and writing to these bits will have no effect. See Table 4-6 for details.

REGISTER 5-32: EXT(N) PROGRAMMABLE IDEALITY FACTOR REGISTER (ADDRESSES 36H,

37H, 38H, 39H)

	—		IDEAL	.(N)[5:0]	
bit 7					bit 0
Legend:					

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **IDEAL(N):[5:0]:**

External Diode N Ideality Factor, where N = 1 to 4 depending on device. See **Table 4-7** or **Table 4-8** for details.

REGISTER 5-33: PRODUCT ID HIGH BYTE REGISTER (ADDRESS 3EH)

R-0	R-0	R-1	R-1	R-0	R-0	R-0	R-1		
PIDHB[15:8]									
bit 15							bit 8		

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 **PIDHB[15:8]**

Hardwired as '31h'. See Table 4-3.

REGISTER 5-34: PRODUCT ID LOW BYTE REGISTER (ADDRESS 3FH)

R-X	R-X	R-X	R-X	R-X	R-X	R-X	R-X
			PIDLE	3[7:0]			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PIDLB[7:0]**

Integer value of Product ID Low Byte. Product ID is a 16-bit expression: HBLB (31LBh). See Table 4-3.

REGISTER 5-35: MANUFACTURER ID HIGH BYTE REGISTER (ADDRESS 40H)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			MCHP_I	DHB[15:8]			
bit 15							bit 8
Legend:							
R = Readable bit		W = Writable bit		U = Unimpler	mented bit. read	as '0'	

		• • • • • • • • • • • • • • • • • • •	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 MCHP_IDHB[15:8]: Hardwired as '00h'.

REGISTER 5-36: MANUFACTURER ID LOW BYTE REGISTER (ADDRESS 41H)

R-0	R-1	R-0	R-1	R-0	R-1	R-0	R-0
			MCHP	_IDLB[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

bit 7-0

-n = Value at POR

MCHP_IDLB[7:0]:

Hardwired as '54h'.

REGISTER 5-37: REVISION REGISTER (ADDRESS 42H)

'1' = Bit is set

R-X	R-X	R-X	R-X	R-X	R-X	R-X	R-X			
REV[7:0]										
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **REV[7:0]**:

DIE revision number.

REGISTER 5-38: SCRTCHPD(N): SCRATCHPAD REGISTER (ADDRESSES 43H AND 44H)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPD(I	N)[7:0]			
bit 7							bit 0

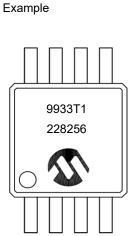
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SPD(N)[7:0]:

User temporary storage registers, where N = 1 to 2.

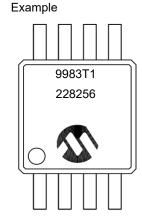
6.0 PACKAGING INFORMATION

6.1 Package Marking Information


8-Lead MSOP (**MCP9982/2D, MCP9933/33D**)

Part Number	Code
MCP9982T-1E/A3	9982T1
MCP9982T-2E/A3	9982T2
MCP9982T-AE/A3	9982TA
MCP9982DT-1E/A3	9982D1
MCP9982DT-2E/A3	9982D2
MCP9933T-1E/A3	9933T1
MCP9933T-2E/A3	9933T2
MCP9933T-AE/A3	9933TA
MCP9933DT-1E/A3	9933D1
MCP9933DT-2E/A3	9933D2

Note 1: Applies to MSOP8 parts only.

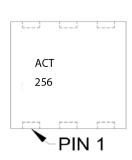

2: Automotive-qualified parts (part number ending in VAO) have the same code as their non-automotive counterpart.

10-Lead MSOP (**MCP9983/4/5/3D/4D/5D**)

Part Number	Code		
MCP9983T-1E/E3	9983T1		
MCP9983T-2E/E3	9983T2		
MCP9983T-AE/E3	9983TA		
MCP9983DT-1E/E3	9983D1		
MCP9983DT-2E/E3	9983D2		
MCP9984T-1E/E3	9984T1		
MCP9984T-2E/E3	9984T2		
MCP9984T-AE/E3	9984TA		
MCP9984DT-1E/E3	9984D1		
MCP9984DT-2E/E3	9984D2		
MCP9985T-1E/E3	9985T1		
MCP9985T- 2E/E3	9985T2		
MCP9985T-AE/E3	9985TA		
MCP9985DT-1E/E3	9985D1		
MCP9985DT-2E/E3	9985D2		
Note 1. Applies to MSOP10 parts only			

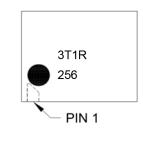
Note 1: Applies to MSOP10 parts only.

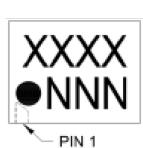
2: Automotive-qualified parts (part number ending in VAO) have the same code as their non-automotive counterpart.


Legend	: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator () can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

8-Lead WDFN (MCP9982/2D, MCP9933/33D)

Part Number	Code
MCP9982T-1E/RW	ACT
MCP9982T-2E/RW	ACU
MCP9982T-AE/RW	ACV
MCP9982DT-1E/RW	ACX
MCP9982DT-2E/RW	ACY
MCP9933T-1E/RW	ADA
MCP9933T-2E/RW	ADB
MCP9933T-AE/RW	ADC
MCP9933DT-1E/RW	ADF
MCP9933DT-2E/RW	ADF

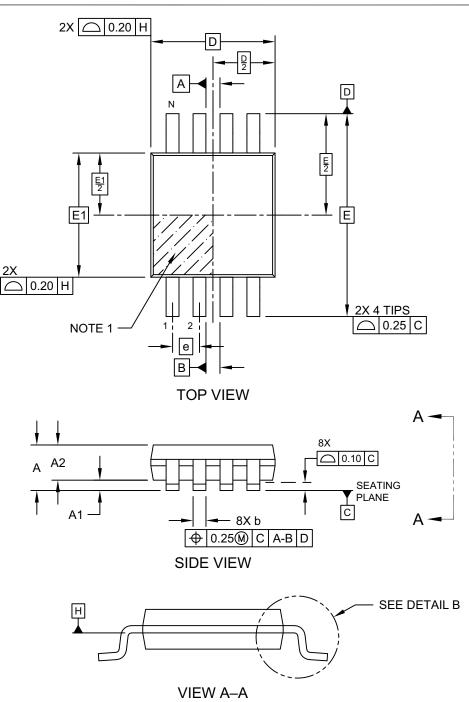

Example



Note 1: Applies to WDFN parts only.

2: Automotive-qualified parts (part number ending in VAO) have the same code as their non-automotive counterpart.

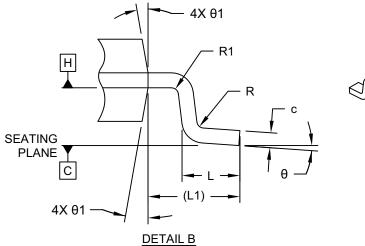
10-Lead VDFN (MCP9983/4/5/3D/4D/5D)

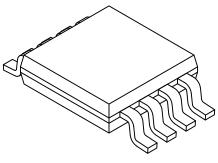

Part Number	Code
MCP9983T-1E/9R	3T1R
MCP9983T-2E/9R	3T2R
MCP9983T-AE/9R	3TAR
MCP9983DT-1E/9R	3D1R
MCP9983DT-2E/9R	3D2R
MCP9984T-1E/9R	4T1R
MCP9984T-2E/9R	4T2R
MCP9984T-AE/9R	4TAR
MCP9984DT-1E/9R	4D1R
MCP9984DT-2E/9R	4D2R
MCP9985T-1E/9R	5T1R
MCP9985T- 2E/9R	5T2R
MCP9985T-AE/9R	5TAR
MCP9985DT-1E/9R	5D1R
MCP9985DT-2E/9R	5D2R

Note 1: Applies to VDFN10 parts only.

2: Automotive-qualified parts (part number ending in VAO) have the same code as their non-automotive counterpart.

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

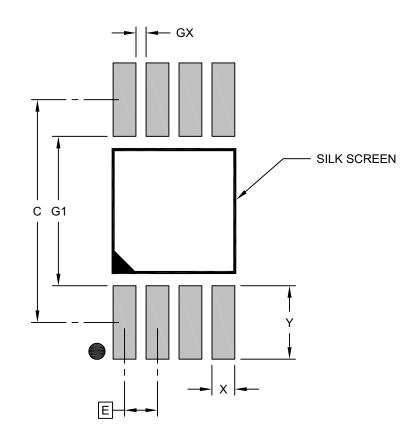


Microchip Technology Drawing C04-111-MS Rev F Sheet 1 of 2

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	١	MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX
Number of Terminals	N		8	
Pitch	е		0.65 BSC	
Overall Height	Α	_	-	1.10
Standoff	A1	0.00	-	0.15
Molded Package Thickness	A2	0.75	0.85	0.95
Overall Length	D	3.00 BSC		
Overall Width	E	4.90 BSC		
Molded Package Width	E1	3.00 BSC		
Terminal Width	b	0.22	-	0.40
Terminal Thickness	С	0.08	-	0.23
Terminal Length	L	0.40	0.60	0.80
Footprint	L1		0.95 REF	
Lead Bend Radius	R	0.07	-	-
Lead Bend Radius	R1	0.07	_	_
Foot Angle	θ	0°	_	8°
Mold Draft Angle	θ1	5°	_	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-MS Rev F Sheet 2 of 2

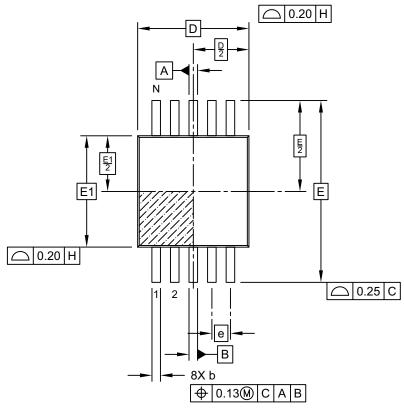
8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

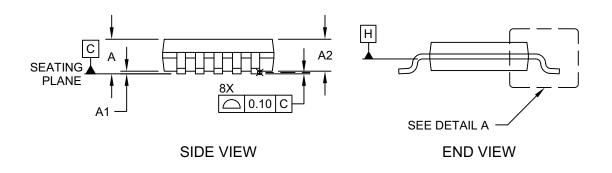
RECOMMENDED LAND PATTERN

	N	IILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		4.40	
Contact Pad Width (X8)	Х			0.45
Contact Pad Length (X8)	Y			1.45
Contact Pad to Contact Pad (X4)	G1	2.95		
Contact Pad to Contact Pad (X6)	GX	0.20		

Notes:

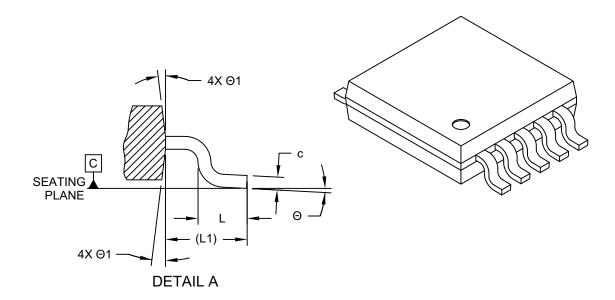

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-2111-MS Rev F

10-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

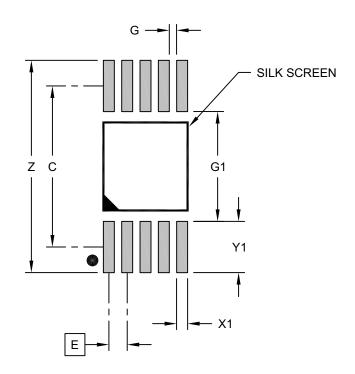

TOP VIEW

Microchip Technology Drawing C04-021-MS Rev F Sheet 1 of 2

10-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	10		
Pitch	е		0.50 BSC	
Overall Height	А	-	-	1.10
Molded Package Thickness	A2	0.75	0.85	0.95
Standoff	A1	0.00	-	0.15
Overall Width	Е	4.90 BSC		
Molded Package Width	E1	3.00 BSC		
Overall Length	D	3.00 BSC		
Foot Length	L	0.40	0.60	0.80
Footprint	L1		0.95 REF	
Foot Angle	Θ	0°	-	8°
Mold Draft Angle	Θ1	5°	-	15°
Lead Thickness	С	0.08	-	0.23
Lead Width	b	0.15	-	0.33


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or
- protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

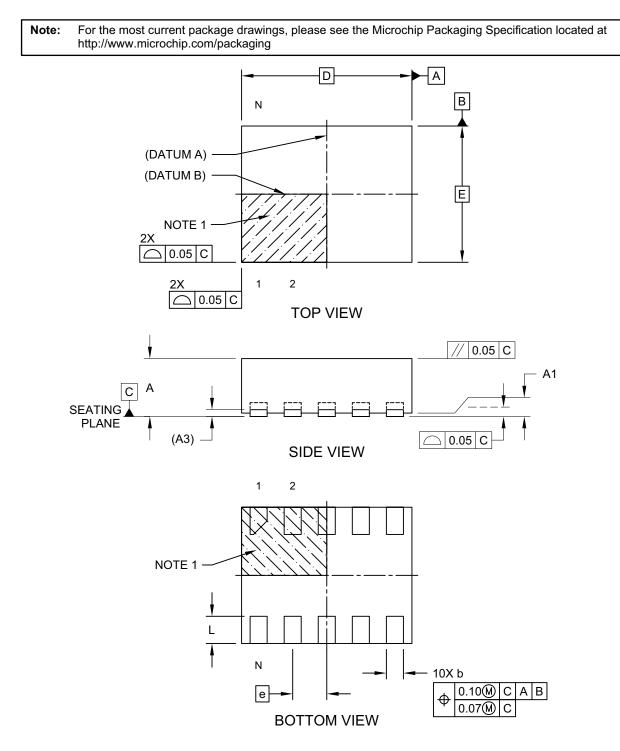
Microchip Technology Drawing C04-021-MS Rev F Sheet 2 of 2

10-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

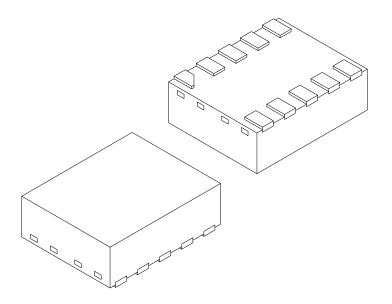
	Ν	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	С		4.40	
Overall Width	Z			5.80
Contact Pad Width (X10)	X1			0.30
Contact Pad Length (X10)	Y1			1.40
Distance Between Pads (X5)	G1	3.00		
Distance Between Pads (X8)	G	0.20		


Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2021-MS Rev F


10-Lead Very Thin Plastic Dual Flat, No Lead Package (9R) - 2.5x2.0 mm Body [VDFN]

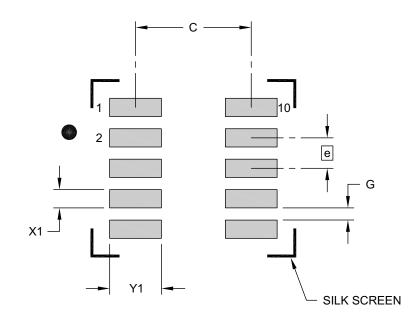
Microchip Technology Drawing C04-332B Sheet 1 of 2

10-Lead Very Thin Plastic Dual Flat, No Lead Package (9R) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	10				
Pitch	е		0.50 BSC			
Overall Height	Α	0.80	0.80 0.85 0			
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	(A3)	0.10 REF				
Overall Length	D	2.50 BSC				
Overall Width	E	2.00 BSC				
Terminal Width	b	0.20	0.25	0.30		
Terminal Length	0.30	0.40	0.50			

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-332B Sheet 2 of 2

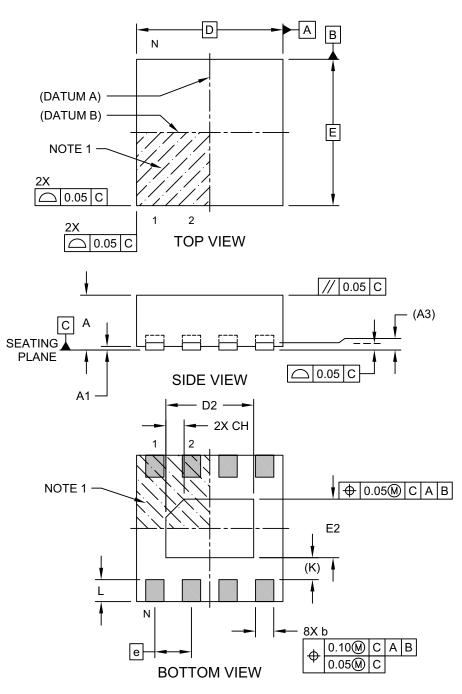
10-Lead Very Thin Plastic Dual Flat, No Lead Package (9R) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	С		1.90		
Contact Pad Width (X10)	X1			0.30	
Contact Pad Length (X10)	Y1			0.85	
Contact Pad to Center Pad (X10)	G1	0.20			

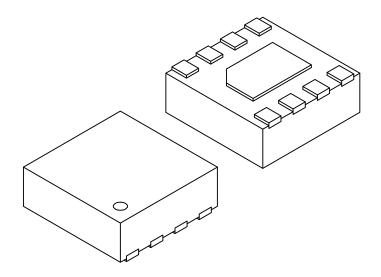
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2332A

8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (RW) - 2x2 mm Body [WDFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-261C Sheet 1 of 2

8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (RW) - 2x2 mm Body [WDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

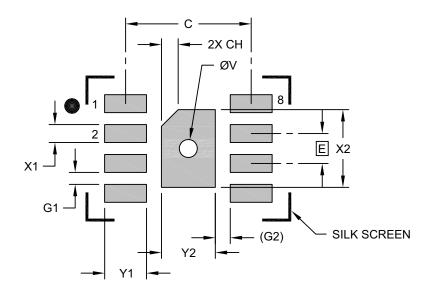
	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Terminals	N	8				
Pitch	е		0.50 BSC			
Overall Height	Α	0.70	0.75	0.80		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.10 REF				
Overall Width	E	E 2.00 BSC				
Exposed Pad Width	E2	0.70	0.80	0.90		
Overall Length	D	2.00 BSC				
Exposed Pad Length	D2	1.10	1.20	1.30		
Exposed Pad Chamfer	СН	-	0.25	-		
Terminal Width	b	0.20	0.25	0.30		
Terminal Length	L	0.25	0.30	0.35		
Terminal-to-Exposed-Pad	K	0.30 REF				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-261C Sheet 2 of 2

8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (RW) - 2x2 mm Body [WDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	0.50 BSC				
Optional Center Pad Width	Y2	0.90			
Optional Center Pad Length	X2			1.30	
Contact Pad Spacing	С		2.10		
Center Pad Chamfer	СН		0.28		
Contact Pad Width (X8)	X1			0.30	
Contact Pad Length (X8)	Y1			0.70	
Contact Pad to Contact Pad (X6)	G1	0.20			
Contact Pad to Center Pad (X8)	0.25 REF				
Thermal Via Diameter	V		0.30		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2261C

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (December 2023)

• Initial release of this document.

MCP998X/MCP998XD

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

		X [X] ⁽¹⁾ -X X /XX Hardware Tape and Reel Address Temperature Package Shutdown Option Option Range	Examples: a) MCP9982T-1E/A3:	8-Lead MSOP, Two-Channel, Tape and Reel, 1001_100 (R/W)
Device: Number of	MCP9	98X: Remote Diode Temperature Sensor 5 = Number of Channels	b) MCP9985T-AE/9R:	10-Lead VDFN, Five-Channel, Tape and Reel, Addressable
Channels: Hardware Shutdown Option:	D Blank	= 3-Channel 8-LD Option= Hardware Shutdown (MCP998XD)	c))MCP9985DT-2E/E3:	10-Lead MSOP, Five-Channel with Hardware Shutdown, Tape and Reel, 1001_101 (R/W)
Tape and Reel:	T Blank	= Tape and Reel ⁽¹⁾ = Tube		
Address Option:	1, 2 A	Fixed Address OptionsAddressable Option (MCP998X only)		
Temperature Range:	Е	= -40°C to +125°C (Extended)	Note 1: The Tape and F	Reel identifier only appears in
Package:	A3 E3 RW 9R	 8-Lead Plastic Micro Small Outline 10-Lead Plastic Micro Small Outline 8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (WDFN) 10-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (VDFN) 	the catalog par identifier is use not printed on t your Microchip	number description. This d for ordering purposes and is he device package. Check with Sales Office for package the Tape and Reel option.

MCP998X/MCP998XD

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	¥	¥	[X] ⁽¹⁾	<u>-X</u>	×	<u>/xx</u>	VAO	Example			
	nber of annels	Hardware T Shutdown	ape and Reel Option	Address Option	l Temperature Range	l Package	Automotive Qualified	a) MCP9982T-AE/A3VAO:			Two-Channel, Tape and Reel, Addressable,
Device:	MCP99	8 X : Remo	te Diode Temp	perature Se	ensor						Automotive Qualified
Number of Channels:	2, 3, 4, 33	5 = Number (= 3-Channe	of Channels el 8-LD Option					Note 1			Reel identifier only catalog part number
Hardware Shutdown Option:	D Blank	= No Hardv	e Shutdown (N vare Shutdowr						for of printe Cheo Offic	ordering pu ed on the ck with yo	is identifier is used urposes and is not e device package. ur Microchip Sales age availability with eel option.
Tape and Reel:	T Blank	= Tape and = Tube	Reel ⁽¹⁾					2	: The have teste	VAO/VXX been desig d and qua	automotive variant gned, manufactured, lified in accordance
Address Option:	1, 2 A		dress Options able Option (M	CP998X o	nly)					AEC-Q100 motive appl) requirements for lications.
Tempera- ture Range:	E	= -40°C to	+125°C (Exte	nded)							
Package:	A3 E3 RW 9R	= 10-Lead V = 8-Lead V Package (W	/DFN) Very, Very Thir	Mall Outlin Plastic Du							
Automotive Qualified	VAO	= Tested ar	nd qualified in	accordanc	e with AEC-Q1	00					
L											

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. ISBN: 978-1-6683-3604-5

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 60-4-227-8870

Tel: 63-2-634-9065

Taiwan - Hsin Chu

Taiwan - Kaohsiung Tel: 886-7-213-7830

Tel: 886-2-2508-8600

Tel: 66-2-694-1351

Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

Italy - Padova

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Malaysia - Kuala Lumpur Malaysia - Penang

Philippines - Manila

Singapore Tel: 65-6334-8870

Tel: 886-3-577-8366

Taiwan - Taipei

Thailand - Bangkok

Vietnam - Ho Chi Minh

China - Zhuhai

Tel: 86-756-3210040