

## **MDA2550** MDA2551

#### RECTIFIER ASSEMBLY

. . . utilizing individual void-free molded rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base 1800 Volts

#### SINGLE-PHASE **FULL-WAVE BRIDGE**

25 AMPERES 50-100 VOLTS





### MAXIMUM RATINGS

|                                                                                                            |                                                        | MDA            |           |       |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|-----------|-------|
| Rating (Per Diode)                                                                                         | Symbol                                                 | 2550           | 2551      | Unit  |
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                     | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | 50             | 100       | Volts |
| DC Output Voltage<br>Resistive Load<br>Capacitive Load                                                     | Vdc                                                    | 30<br>50       | 62<br>100 | Volts |
| Sine Wave RMS Input Voltage                                                                                | V <sub>R</sub> (RMS)                                   | 35             | 70        | Volts |
| Average Rectified Forward Current<br>(Single phase bridge resistive load,<br>60 Hz, T <sub>C</sub> = 55°C) | 10                                                     | 25             |           | Amp   |
| Nonrepetitive Peak Surge Current<br>(Surge applied at rated load<br>conditions)                            | <sup>I</sup> FSM                                       | 400            |           | Amp . |
| Operating and Storage Junction<br>Temperature Range                                                        | T <sub>J</sub> , T <sub>Stg</sub>                      | <b>-</b> 65 to | +175      | °C    |

#### THERMAL CHARACTERISTICS

| Characteristic                       | Symbol          | Тур | Max | Unit |
|--------------------------------------|-----------------|-----|-----|------|
| Thermal Resistance, Junction to Case | $R_{\theta}$ JC |     |     | °C/W |
| Each Die                             |                 | 8.0 | 10  | ł    |
| Total Bridge                         |                 | 2.0 | 2.8 |      |

#### ELECTRICAL CHARACTERISTICS (T<sub>C</sub> = 25°C unless otherwise noted.)

| Characteristic                                           | Symbol | Min | Тур  | Max  | Unit  |
|----------------------------------------------------------|--------|-----|------|------|-------|
| Instantaneous Forward Voltage<br>(Per Diode) (iF = 55 A) | ٧F     | -   | 0.95 | 1.05 | Volts |
| Reverse Current (Per Diode)<br>(Rated V <sub>R</sub> )   | IR     | _   |      | 0.50 | mA    |

#### **MECHANICAL CHARACTERISTICS**

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal-designation embossed on case

- +DC output
- -DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicon heat sink compound on mounting surface for maximum heat transfer.

WEIGHT: 25 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes.

MOUNTING TORQUE: 20 in. lb. max.



- MEASURED ON HEATSINK SIDE OF PACKAGE.
- 2. DIMENSIONS "F" AND "G" SHALL BE MEASURED AT THE REFERENCE PLANE.

| 1   | MILLIMETERS |       | INCHES |       |
|-----|-------------|-------|--------|-------|
| DIM | MIN         | MAX   | MIN    | MAX   |
| Α   | 25.65       | 26.16 | 1.010  | 1.030 |
| C   | 12.44       | 13.97 | 0.490  | 0.550 |
| D   | 6.10        | 6.60  | 0.240  | 0.260 |
| F   | 10.01       | 10.49 | 0.394  | 0.413 |
| G   | 19.99       | 21.01 | 0.787  | 0.827 |
| J   | 0.71        | 0.86  | 0.028  | 0.034 |
| K   | 9.52        | 11.43 | 0.375  | 0.450 |
| L   | 1.52        | 2.06  | 0.060  | 0.081 |
| P   | 2.79        | 2.92  | 0.110  | 0.115 |
| Q   | 4.42        | 4.67  | 0.174  | 0.184 |

CASE 309A-03















#### NOTE 1



To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The therman ass connected to the case is normally large en TJ = TC + ATJC

where  $\Delta$  T  $_{\rm JC}$  is the increase in junction temperature above the case temperature. It may be determined by:

 $\Delta T_{JC} \approx P_{DK} \bullet R_{\partial JC} (D + (1 - D) \bullet r(t_1 + t_D) + r(t_D) - r(t_1))$ 

r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e.,

r (t  $_1$  +  $_p$ ) = normalized value of transient thermal resistance at time t  $_1$  +  $_p$ .



### FIGURE 8 - FORWARD RECOVERY TIME



### FIGURE 9 - REVERSE RECOVERY TIME



#### AMBIENT TEMPERATURE DERATING INFORMATION





### NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1) 
$$\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$$
 where  $\Delta T_{J1}$  is the change in junction temperature of diode 1,  $R_{\theta 1}$  through 4 is the thermal resistance of diodes 1 through 4,  $P_{D1}$  through 4 is the power dissipated in diodes 1 through 4,  $K_{\theta 2}$  through 4 is the thermal coupling between diode 1, and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2) 
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

where PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3) 
$$\Delta T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the conditions where  $P_{D1} = P_{D2} = P_{D3} = P_{D4}$ ,  $P_{DT} = 4$   $P_{D1}$ , equation (3) can be further simplified and by substituting into equation (2) results in

(4) 
$$R_{\theta}(EFF) = R_{\theta} 1 (1 + K_{\theta} 2 + K_{\theta} 3 + K_{\theta} 4)/4$$

When the case is used as a reference point, coupling between opposite die is negligible for the MDA2550, and coupling between adjacent die is approximately 6%.

#### FIGURE 10B - IERC HEAT SINK UP3



#### NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where  $I_A = I_B$ . For circuit B where  $I_A = I_B$ , derating information can be calculated as follows:

(6) 
$$T_{R(max)} = T_{J(max)} - \Delta T_{J1}$$

Where  $T_{R(max)}$  is the reference temperature (either case or ambient),  $\Delta T_{J1}$  can be calculated using equation (3) in Note 2. For example, to determine  $T_{C(max)}$  for the MDA2550 with the following capacitive load conditions:

 $I_A = 20 A$  average with a peak of 60 A,

IB = 10 A average with a peak of 70 A,

first calculate the peak to average ratio for  $I_A$ .  $I(p_K)/I(AV) = 60/10 = 6.0$ . (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average.)

From Figure 5, for an average current of 20 A and an  $I_{(PK)}/I_{(AV)} = 6.0$ , read  $P_{DT}(AV) = 40$  watts or 10 watts/diode. Thus  $P_{D1} = P_{D3} = 10$  watts.

Similarly, for a load current I<sub>B</sub> of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an  $I_{PK}/I_{(AV)} = 14$ . Thus, the package power dissipation for 10 A is 20 watts or

5.0 watts/diode. Therefore,  $P_{D2} = P_{D4} = 5.0$  watts.

The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1,

$$\Delta T_{J1} = 10[10 + 0(5) + 0.06(10) + 0.06(5)]$$
  
 $\Delta T_{J1} \approx 109^{\circ}C.$ 

Thus,  $T_{C(max)} = 175 - 109 = 66^{\circ}C$ .

The total package dissipation in this example is

$$P_{DT(AV)} = 2 \times 10 + 2 \times 5.0 = 30 \text{ watts},$$

which must be considered when selecting a heat sink.



# FIGURE 11 – BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

