ME4094概述

ME4094是一款耐压36V的单节锂离子电池恒压恒流充电管理芯片,最大充电电流可达1A(ESOP8)。由于线性充电器在输入和输出大压差情况下会严重发热,其内部有热反馈电路可以对在充电过程中对芯片温度加以控制,将充电电流调节到较低水平,以适应相应的系统散热要求。外加很少的外部元件,可以使其成为便携应用的理想选择。

ME4094不需要电流检测电阻,也不需要外部隔离二极管实现防倒灌应用。充电截止电压固定在4.2V,充电电流可以外接电阻调节,当充电电流达到恒流电流的1/10时,ME4094将终止充电。

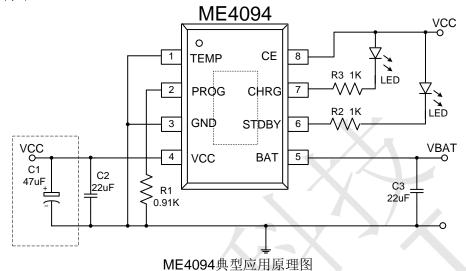
当输入电压(适配器或USB)被拿掉后,ME4094进入睡眠模式。芯片内部自动关断充电通路,输入电压变低。此时电池漏电流降低到2uA以下。当ME4094有电源而电池拿掉时,芯片电流为降低至100uA,来降低系统损耗。

ME4094还具有电池温度检测,输入欠压锁定,自 动再充电和两个充电指示引脚。

ME4094应用场合

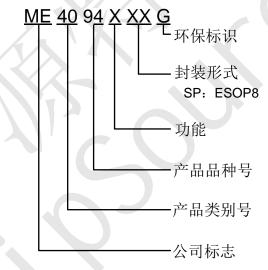
- 移动电话
- 数码相机
- 蓝牙应用
- 便携设备
- USB电源,适配器

ME4094特点


- 最高输入耐压36V,提高系统可靠性
- 可编程充电电流可达: 1A(ESOP8)
- 防电池反接保护功能
- 内部热反馈保护功能,控制系统在合理充电范围
- 无需MOSFET,检测电阻或隔离二极管
- 单节完整线性充电器
- 恒流恒压切换
- 精度可达±1%的4.2V固定充电截止电压
- 自动再充电功能
- 充电状态双输出,无电池和故障状态显示
- C/10 终止充电
- 待机电流100µA
- 输入过压保护: 6.5V
- 2.9V 涓流切换阈值
- 软启动限制浪涌电流

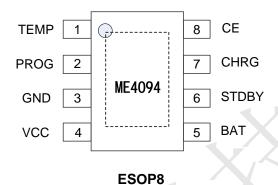
ME4094封装形式

• 8 - pin ESOP8


TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com E-mail: Sales@ChipSourceTek.com

ME4094典型应用图

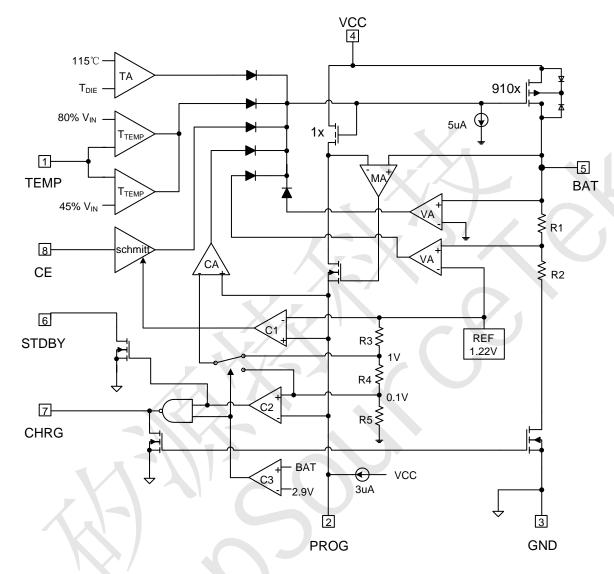
注:对于有输入热插拔应用,芯片输入管脚VCC需要对地加上47uF以上的电解电容。


ME4094选购指南

产品型号	产品说明				
ME4094BSPG	$V_{FLOAT} = 4.2V;$	可编程充电电流:	1A;	封装形式:	ESOP8

注: 其他电压值或封装形式,请联系我司销售人员。

ME4094产品脚位图(顶视图)



ME4094脚位说明

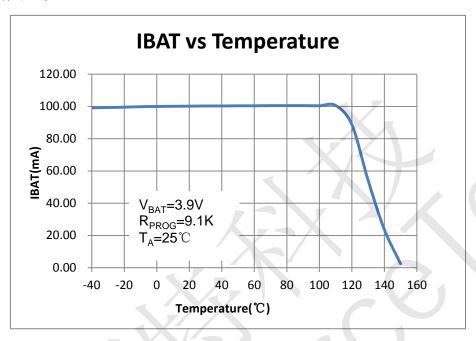
引脚号 ESOP8	名称	功能
1	TEMP	电池温度检测,TEMP外部连接一个温度检测电阻,用来监视电池温度。 当TEMP脚电压低于45%或高于80%VCC电压时,意味着电池温度过高或 者过低,充电停止。当外部不用温度检测功能时,可将TEMP直接接到GND.
2	PROG	恒流电流设置和充电电流监测引脚,充电电流可以通过外接一个电阻 R _{PROG} 到地来设置。
3	GND	地
4	vcc	芯片输入引脚,提供电源给内部电路,当电源比BAT脚电压低至70mV以内时,芯片内部关闭,进入睡眠模式,电池漏电流在1µA.以内。
5	BAT	电池连接引脚,连接电池到BAT引脚。BAT引脚充电截止电压为4.2V.
6	STDBY	充电截止状态指示STDBY当检测到充电截止时,内部开关下拉。其他状态 此引脚为高阻态。
7	CHRG	开漏充电状态指示,当检测到电池正在充电时,CHRG引脚内部开关下拉, 其他状态此引脚高阻态。
8	CE	芯片使能引脚,引脚拉高芯片开始正常工作,引脚拉低,芯片停止工作。 CE引脚可以被TTL或CMOS逻辑电路驱动。
散热 PAD		散热PAD需要接地

ME4094芯片功能示意图

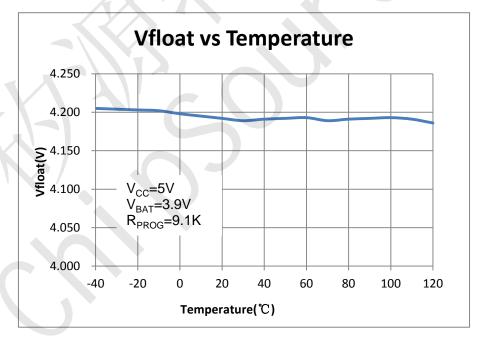
ME4094绝对最大额定值

参数	范围	单位
输入电压:V _{CC}	-0.3~36	V
PROG、TEMP 引脚电压	-0.3~6	V
BAT 引脚电压	-0.3~16	V
CHRG、STDBY、CE 引脚电压	-0.3~36	V
BAT 引脚电流	1200	mA
PROG 引脚电流	1200	μA
结温范围	-40~150	$^{\circ}$
工作最大环境温度范围Topa	-40~85	${\mathbb C}$
存储温度范围T _{str}	-55~150	${\mathbb C}$
引脚温度和时间	+260 (10S)	$^{\circ}$
封装热阻θ _{JA}	63	°C/W
允许最大功耗PD	1.98	W

注意: 绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。


ME4094电气参数

符号	参数	条 件		最小值	典型值	最大值	单位
V _{CC}	输入电压			4.7	5.0	6.5	V
松)山迩		待机模式(充电结束)		-	100	200	μΑ
I _{CC}	输入电流 	关断模式(R _{PROG} 不接, V _{CC} <v<sub>BAT, or V_{CC}<v<sub>UV)</v<sub></v<sub>		-	100	200	μΑ
V _{FLOAL}	充电截止电压	0°C≤T _A ≤85°C		4.158	4.20	4.242	V
	R _{PROG} =0.91KΩ,电流模式	1	900	1000	1100	mA	
		待机模式	VBAT=4.3V	7-	±2.4	±3	μA
	充电电流 (电流模式	R _{PROG} 悬空		/-	±0.1	±1	μΑ
I _{BAT}	V _{BAT} =3.9V)	睡眠模式, V _{CC} =0V		-	±0.1	±1	μA
		$V_{BAT} < V_{TRIKL}, R_{PROG} = 0.91 \text{K}\Omega$		-	120	-	mA
		R _{PROG} =0.91KΩ, V _{BAT} 上升		2.8	2.9	3.0	V
V _{TRHYS}	涓流切换阈值迟滞	R _{PROG} =0.91KΩ		V.	300	-	mV
V _{UV}	V _{cc} 欠压锁定	V _{cc} 由低到高		3.7	3.9	4.1	V
V _{UVHYS}	Vcc 欠压锁定迟滞			-	150	-	mV
V _{OVP}	Vcc过压保护	V _{cc} 由低到高		6.3	6.5	6.7	V
V _{ASD} V _{CC} -V _{BAT} 锁定阈值 电压		V _{CC} 由低到高		-	150	-	
		V _{CC} 由高到低		-	70	-	mV
I _{TERM}	C/10 充电终止电 流	R _{PROG} =0.91ΚΩ		-	100	-	mA
V _{PROG}	PROG 引脚电压	R _{PROG} =0.91KΩ,电流模式		0.9	1.0	1.1	V
V _{CHRG}	CHRG引脚输出低 电压	I _{CHRG} =5mA		-	0.3	0.6	V
ΔV_{RECHRG}	再充电阈值	V _{FLOAT} -V _{RECHRG}		50	120	200	mV
V _{STDBY}	STDBY引脚输出低 电压	I _{STDBY} =5mA		-	0.3	0.6	V
V _{TEMP-H}	温度升高检测阈值			42	45	-	%V _{cc}
V _{TEMP-Hys}	温度升高检测阈值 迟滞			-	3	-	%V _{CC}
V _{TEMP-L}	温度降低检测阈值			-	80	83	%V _{CC}
V _{TEMP-Lys}	温度降低检测阈值 迟滞			-	3	-	%V _{CC}
V _{CEON}	CE开启电压			2.0	-	-	V
V _{CEOFF}	CE 关断电压			-	-	0.8	V

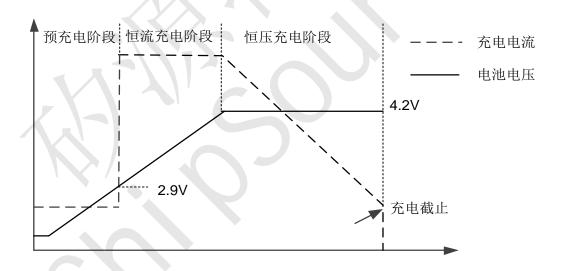

测试条件: T_A=25℃, V_{CC}=5V, 除非特别说明。

ME4094典型性能特性

恒流电流随温度的变化曲线

充电截止电压随温度变化的曲线

ME4094原理描述


ME4094是一款单节锂电池充电管理芯片,具有恒压恒流充电特点。最大充电电流可达1A不需要另加二极管和电 流检测电阻。ME4094包含两个漏级开路输出的状态指示端: 充电状态指示CHRG。

芯片内部的热反馈电路使温度超过115℃自动降低充电电流。这个功能可以使用户最大限度利用芯片的功率处理能 力。不用担心芯片过热而损坏芯片或外部器件,最大限度保证芯片的可靠性。

当输入电压大于电压欠压保护阈值,同时使能端接高电平时,ME4094开始对电池充电,CHRG管脚输出低电平, 表示充电正在进行,如果电池电压低于2.9V,充电器用小电流对电池进行预充电。当电池电压超过2.9V时,切换到恒 流模式对电池充电,充电电流由PROG管脚和GND之间的电阻确定。当电池电压接近4.2V时,充电电流逐渐减小。当 电流减小到充电结束阈值时(恒流电流的1/10),充电周期结束,CHRG端输出高阻态。

当电池电压降到再充电阈值以下时,自动开始新的充电周期。芯片内部的高精度电压基准源,误差放大器和电阻 分压网络确保电池端调制电压精度在1%以内。满足锂离子电池和锂聚合物电池的要求。当输入电压掉电或者输入电压 低于电池电压时,充电器进入睡眠模式。电池端漏电电流低至2uA,从而增加待机时间。如果将使能端接低电平,芯片 将停止充电。

充电过程示意图如下:

充电电流设定

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定。设定电阻器和充电电流的计算公式如下:

R_{PROG}=910/I_{BAT}

充电终止

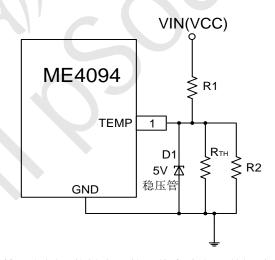
当充电电流在达到最终浮充电压之后将至设定值的1/10时,充电循环被终止。该条件是通过采用一个内部滤波比 较器对PROG引脚进行监控来检测的。当PROG引脚电压降至约恒流充电1/10以下时,充电被终止。充电电流被锁断, ME4094进入待机模式。此时输入电源电流将至100uA。(注: C/10终止在涓流充电和热限制模式中失效)。

在待机模式中,ME4094对BAT引脚电压进行连续监控。如果该引脚电压降到4.1V的再充电门限以下,则另一个充 电循环开始再次向电池供应电流。

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com E-mail: Sales@ChipSourceTek.com Tony.Wang@ChipSourceTek.com

充电状态指示

ME4094有两个漏级开路状态指示输出端,CHRG和STDBY。当充电器处于充电状态时,CHRG 被拉到低电平,在其他状态CHRG处于高阻态。当电池温度处于温度范围之外时,CHRG和STDBY管脚都输出高阻态。


当TEMP端典型接发无法使用时,当电池没有接到充电时,表示故障状态: CHRG和STDBY管脚都输出高阻态。 当TEMP端接地时,电池温度检测不起作用,当电池没有接到充电器时,CHRG输出脉冲信号,表示没有安装电池。 当电池连接端BAT管脚的外接电容为10uF时,CHRG闪烁频率约为1-4秒。当不用状态指示功能时,将不用的状态指示输入端接到地。

充电状态		红灯 CHRG	绿灯 STDBY
正在充电状态	亮	灭	
电池充满状态		灭	亮
欠压, 电池温度过高, 过低等故障状态	<u> </u>	灭	灭
	/ X_	绿灯亮,红灯闪烁 F=1-4 S (这时如果电池反接,红灯和绿灯都不亮, 种是正常现象,当电池正接或是电源重新上	
BAT端接10uF电容,无电池(TEMP=GND)			
BAT编设Toul 电台,尤电池(TEIVIF -GND)			
	4 / X	后,又变为绿灯	亮,红灯闪烁)

热限制

如果芯片温度升至约115℃预设值以上,则一个内部热反馈环路将减小设定的充电电流。该功能可以防止ME4094 过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏ME4094的风险。在保证充电器将在最坏情况条件下 自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

TEMP功能选择 R1 和 R2

R1和R2的值要根据电池的温度检测范围和热敏电阻的阻值来确定,举例说明如下:

假设设定的电池温度范围为 $T_L \sim T_H$,(其中 $T_L < T_H$);电池使用的是负温度系数的热敏电阻(NTC), R_{TL} 为其在温度 T_H 的阻值, R_{TH} 为其在 T_H ,则 $R_{TL} > R_{TH}$,那么在温度 T_H 时第一管脚 T_H EMP端的电压为:

$$V_{\text{TEMPH}} = \frac{R2/\!/R_{\text{TH}}}{R1 + R2/\!/R_{\text{TH}}} \times VIN$$

那么在温度TL时第一管脚TEMP端的电压为:

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com E-mail: Sales@ChipSourceTek.com

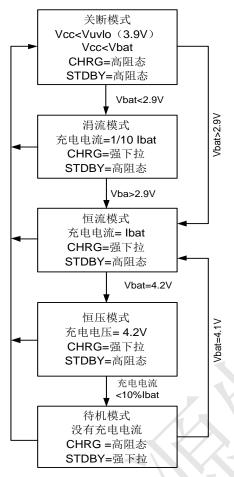
$$V_{TEMPL} = \frac{R2//R_{TL}}{R1 + R2//R_{TL}} \times VIN$$

然后,由 VTEMPL=VHIGH=K2×Vcc (K2=0.8); VTEMPH=VLOW=K1×Vcc (K1=0.45) 可得:

$$R1 = \frac{R_{TL} \times R_{TH}(K2 - K1)}{(R_{TL} - R_{TH})K1 \times K2} \qquad R2 = \frac{R_{TL} \times R_{TH}(K2 - K1)}{R_{TL}(K1 - K1 \times K2) - R_{TH}(K2 - K1 \times K2)}$$

举例, NCP03YS110,工作温度范围为 -40℃ to 125℃. 如果使用环境温度范围是-25℃ to 125℃, 那么RT 就是 NCP03YS110在-25℃的阻值大约等于66.148Ω; RTH就是NCP03YS110 在125℃时的阻值,大约1.077Ω。 同理如果电池内部是正温度系数 (PTC)的电阻,则RTH>RTL,我们可以计算得到:

$$R1 = \frac{R_{TL} \times R_{TH}(K2 - K1)}{(R_{TH} - R_{TL})K1 \times K2} \qquad R2 = \frac{R_{TL} \times R_{TH}(K2 - K1)}{R_{TH}(K1 - K1 \times K2) - R_{TL}(K2 - K1 \times K2)}$$


从上面的推导中可以看出,待设定的温度范围与电源电压Vcc时无关的,仅仅与R1,R2,RTL和RTH有关,R2 和R1可通过查阅相关的电池或通过实验测试得到。

需要注意的是:在应用TEMP管脚时,需要在TEMP对GND加上一个5V的稳压管,防止在VCC是高电压时候把这个管脚损坏。如果不用电池温度检测功能,TEMP可以直接接GND。 欠压锁定 (UVLO)

一个内部欠压锁定电路对输入电压进行监控,并在VCC升至欠压锁定门限以上之前使充电器保持在停机模式。如果UVLO比较器发生跳变,则在VCC升至比电池电压高100mV之前充电器将不会退出停机模式。自动再启动

一旦充电循坏被终止,ME4094立即对BAT引脚上的电压进行连续监控。当电池电压降至4.1V时,大致对应于电池容量的80%~90%以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个充满电状态,并免除了进行周期性充电循环启动的需要。在再充电循环过程中,CHRG引脚进入一个强下拉状态。

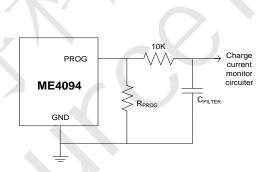


图 1: 一个典型的充电循环状态图

图 2: 隔离 PROG 引脚上的容性负载和滤波电路

稳定性考虑

在恒定电流模式中,位于反馈环路中的是PROG引脚,而不是电池。恒定电流模式的稳定性受PROG引脚阻抗的影响。当PROG引脚没有附加电容会减小设定电阻器的最大容许阻值。PROG引脚上的极点频率应保持在Cprog,则可采用以下公式来计算Rprog的最大电阻值:

$$R_{PROG} \le \frac{1}{2\pi \times 10^5 \times C_{PROG}}$$

对于用户来说,他们更感兴趣的可能是充电电流,而不是瞬态电流。例如,如果一个运行在低电流模式的开关电源与电池并联,则冲BAT引脚流出的平均电流通常比瞬态电流脉冲更加重要。在这种场合,可在PROG引脚上采用一个简单的RC滤波器来测量平均电池电流(如图2所示)。在PROG引脚和滤波电容器之间增设了一个10k电阻器以确保稳定性。

功率损耗

ME4094因热反馈的缘故而减小充电电流的条件可通过IC中的功率损耗开估算。这种功率损耗几乎全部都是由内部MOSFET产生的,可有下式近似得出:

$$P_{D} = (V_{CC} - V_{BAT}) \times I_{BAT}$$

式中的PD为耗散的功率,VCC为输入电源电压,VBAT为电池电压,IBAT为充电电流,当热反馈开始对IC提供保护时,环境温度近似为:

TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Sales@ChipSourceTek.com

Tony.Wang@ChipSourceTek.com

 $T_{A}\!=\!\!115^{\circ}\text{C--}P_{D}\theta_{JA}; \qquad T_{A}\!=\!\!115^{\circ}\text{C--}\left(V_{CC}\!-\!V_{BAT}\right)\!\times\!I_{BAT}\times\theta_{JA}$

对于一个给定的环境温度, 充电电流可有下式近似求出:

$$I_{BAT} = \frac{115^{\circ}C - T_{A}}{(VCC - V_{BAT}) \cdot \theta_{JA}}$$

正如工作原理部分所讨论的那样,当热反馈使充电电流减小时,PROG 引脚上的电压也将成比例的减小。切记不要在 ME4094 应用设计中考虑最坏的热条件,因为该芯片将在节温达到 115℃时自动降低功耗。

热考虑

由于产品的外形尺寸很小,因此,需要采用热设计精良的PC板布局以最大幅度的增加可使用的充电电流。用于耗散IC所产生的热量的散热通路从芯片至引线框架,并通过底部的散热片达到PC铜面。PC板铜面为散热器。散热片相连的铜箔面积应尽可能地宽阔,并向外延伸至较大的铜面面积,以便将热量散播到周围环境中。至内部或背部铜电路层的通孔在改善充电器的总体热性能方面也是颇有用处的。当进行PC板布局设计时,电路板上与充电器无关的其他热源必须予以考虑,因此他们将对总体温升和最大充电电流有所影响。

VCC 旁路电容

输入旁路电容可使用多种类型的电容器。然而,在采用多层陶瓷电容器时必须谨慎。由于有些类型的陶瓷电容器有自谐振和高Q值得特点,因此,在某些启动条件下(比如将充电器输入与一个工作中的电源相连)有可能产生高的电压瞬态信号。增加一个与X5R陶瓷电容器串联的1.5Ω 电阻器将极大限度减小启动电压瞬态信号。

充电电流软启动

ME4094包括一个用于在充电循环开始时最大限度减小涌入电流的软启动电路。当一个充电循环被启动时,充电电流将在20us左右的时间里从0上升至满幅电流。在启动过程中,这能够最大限度减小电源上的瞬变电流负载。

USB 和交流适配器电源

ME4094允许从一个交流适配器或一个USB端口进行充电。如图5所示,如何将交流适配器与USB电源输入加以组合的实例。一个PMOSFET(MP1)被用于防止交流适配器接入时信号反向流入USB端口,而一个肖特基二极管(D1)则被用于防止USB功率在经过1k下拉电阻时产生损耗。

一般来说,交流适配器能够提供电流比值为500mA的USB端口的电流要大得多。因此,当交流适配器接入时,可采用一个NMOSFET(MN1)和一个附加的10k设定电阻来把充电电流增加至600mA。

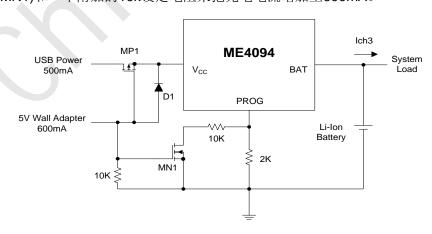
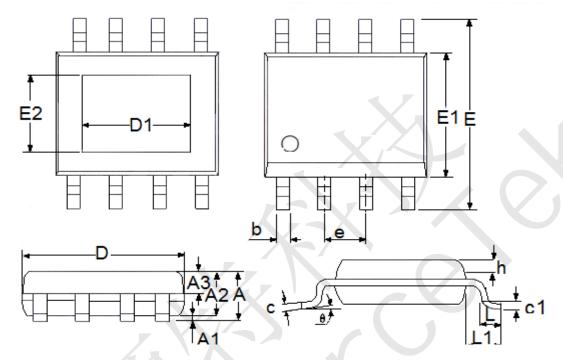


图 5: 交流适配器与 USB 电源的组合

ME4094 PCB 布板考虑

- R_{PROG}电阻和接到PROG管脚的电容应该尽量靠近PROG引脚。
- VCC和BAT管脚的电容应当尽量靠近芯片的管脚。
- 在PCB布板时考虑芯片的散热是非常重要的,散热通路是芯片的引脚(尤其是GND引脚和散热PAD)到PCB的覆铜。 为了尽可能的增加芯片的散热通路,首先连接芯片GND引脚的铜箔应当尽量宽,面积劲量大,其次连接芯片散热PAD 的铜箔应当打尽量多的通孔到PCB背面,通过背面大量铜箔进行散热,从而使更多的热量通过散热通路散到环境中去。 在相同条件下,散热好的PCB板方案往往比差的方案有更大的充电电流。

ME4094包装数量


封装形式	最小包装数量	单位	小箱	大箱
ESOP8	3000	盘/编带	6K	48K

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com E-mail: Sales@ChipSourceTek.com

ME4094封装信息

● 封装形式: ESOP8

参数	尺寸 (mm)		尺寸 (Inch)		
一	最小值	最大值	最小值	最大值	
Α	1.3	1.75	0.0512	0.0689	
A1	0	0.2	0.0000	0.0079	
A2	1.25	1.65	0.0492	0.0650	
А3	0.5	0.7	0.0197	0.0276	
b	0.33	0.51	0.0130	0.0201	
С	0.17	0.25	0.0067	0.0098	
D	4.7	5.1	0.1850	0.2008	
E	5.8	6.2	0.2283	0.2441	
E1	3.8	4	0.1496	0.1575	
е	1.27(ΓΥΡ)	0.05(TYP)		
h	0.25	0.5	0.0098	0.0197	
L	0.4	1.27	0.0157	0.0500	
L1	1.04(TYP)		0.0409(TYP)		
θ	0	8°	0.0000	8°	
c1	0.25(TYP)		0.0098(TYP)		
D1	3.1(TYP)		0.122(TYP)		
E2	2.21(7	2.21(TYP) 0.087(TY		TYP)	

- 本资料内容,随产品的改进,会进行相应更新,恕不另行通知。使用本资料前请咨询我司销售人员,以保证本资料内容为最新版本。
- 本资料所记载的应用电路示例仅用作表示产品的代表性用途,并非是保证批量生产的设计。
- 请在本资料所记载的极限范围内使用本产品,因使用不当造成的损失,我司不承担其责任。
- 本资料所记载的产品,未经本公司书面许可,不得用于会对人体产生影响的器械或装置,包括但不限于:健康器械、医疗器械、防灾器械、燃料控制器械、车辆器械、航空器械及车载器械等。
- 尽管本公司一向致力于提高产品质量与可靠性,但是半导体产品本身有一定的概率发生故障或错误工作,为防止因此类事故而造成的人身伤害或财产损失,请在使用过程中充分留心备用设计、防火设计、防止错误动作设计等安全设计。
- 将本产品或者本资料出口海外时,应当遵守适用的进出口管制法律法规。
- 未经本公司许可,严禁以任何形式复制或转载本资料的部分或全部内容。