Version: 1.09 # MG69M220 # **Data Sheet** # 8-Bit Micro-Controller with IO function Version 1.09 # **Table of Contents** | 1 | Features | 3 | 3 | |----|-----------|---------------------------------|------| | | 1.1 | Application Field | 3 | | 2 | General | Description | 4 | | 3 | Pin Cont | figurations | 5 | | | | Pad Assignment | | | | | Pin Description | | | 4 | Block Di | agram | 7 | | 5 | | Description | | | | 5.1 | Registers | 8 | | | 5.2 | Accumulator | 8 | | | 5.3 | Index Register(X,Y) | | | | | Processor Status Register | | | | 5.5 | Program Counter(PC) | | | | 5.6 | Stack Point(S) | 8 | | 6 | Memory | Organization | 9 | | | 6.1 | SFR Mapping | 10 | | | 6.2 | Write Protect Function Register | 11 | | _ | 6.3 | IAP Write Protect Register | 11 | | 7 | Interrupt | | . 12 | | | 7.1 | Interrupt Register | 12 | | | 7.2 | Interrupt System | 13 | | 8 | Reset | | . 14 | | | 8.1 | Low Voltage Reset (LVR) | 14 | | | 8.2 | Watchdog Timer (WDT) | 15 | | | | Reset OK | | | 9 | | Control | | | | 9.1 | Power Control Register | 16 | | 10 | Divid | er | . 17 | | | 10.1 | Divider | 17 | | 11 | | rr | | | | | Timer0 | | | | | Timer1 | | | 12 | | | . 20 | | - | | Port 0 | | | | | Port 1 | | | | 12.3 | Port 2 | 21 | | | 12.4 | Port 3 | 21 | | | | Port 4 | | | | | Port 5 | | | | | High sink output | | | 13 | Optic | on Register | . 23 | | 14 | Appli | cation Circuit | . 24 | | 15 | | rical Characteristics | | | - | | Absolute Maximum Rating | | | | | DC Characteristics | | | | | AC Characteristics | | | 16 | Revis | sion History | . 27 | #### 1 Features - Single Chip 8-bit CPU - Memory - Program MTP ROM : 8K Bytes - Data RAM : 144 Bytes - Operating voltage: 1.8V to 3.6V - 42 Programmable GPIO - High sink current output - Shared input or output pins: - ♦ Input/output pins P0[4:7] - ♦ Input pins P0[0:3] / ICP interface - Quasi-bi-directional IO pins P1[0:4] - ♦ Output pins P2[0:7], P3[0:7], P4[0:7], P5[0:3] - Watchdog timer built-in - Two re-loadable 8-bit timers - HALT mode and STOP mode for power saving - Build-in dual oscillation circuit: - RC type main oscillator - X32 for sub-oscillator - Dual clock operation - Build-in low voltage detectors (typical voltage: below 2.1V) and low voltage reset (typical voltage: below 1.8V) ### 1.1 Application Field General Key Pad Controller. # 2 General Description MG69M220 is a cost effective, high performance 8-bit micro-controller of MEGAWIN. It integrates an 8-bit CPU core, ROM, RAM, timers, I/O ports and system control circuits into a single chip. The MG69M220 provides a buildin oscillator as clock source. It is suitable for general key pad controller and other products. # 3 Pin Configurations # 3.1 Pad Assignment Figure 3-1 Pad Assignment # **Pin Description** Table 3-1 Pin Description | Pad | Name | Туре | Description | |---------|-------------|------|--| | 1 | OSCI | I | RC oscillator input pin. | | 2,3 | X32O, X32I | В | 32.768KHz crystal oscillator pins. | | 4 ~ 8 | P1[4:0] | В | Quasi-bi-directional I/O pin. | | 9 ~ 16 | P2[7:0] | 0 | Open-drain with pull-high output pin. | | 17 ~ 24 | P3[7:0] | 0 | Open-drain with pull-high output pin. | | 25 ~ 32 | P4[7:0] | 0 | Open-drain with pull-high output pin. | | 33 ~ 36 | P5.0 ~ P5.3 | 0 | Open-drain with pull-high output pin. | | 37 | P0.0 | ı | Input pin with interrupt function. Port0.0 pad shares with ICP interface CMD_b. | | 38 | P0.1 | 1 | Input pin with interrupt function. Port0.1 pad shares with ICP interface SCK. | | 39 | P0.2 | 1 | Input pin with interrupt function. Port0.2 pad shares with ICP interface SDA. | | 40 | P0.3 | ı | Input pin with interrupt function. | | 41 ~ 44 | P0.4 ~ P0.7 | В | Programmable I/O ports with interrupt function. | | 45 | VDD | Р | Positive power pins (need to connect together) | | 46 | HSO | 0 | Direct sink (sink current: 250mA) for high light LED. Default value is high after reset. | | 47 | VSS | Р | Ground pins (need to connect together) | | 48 | /RES | 1 | System reset pin (low active). | 6/27 Note: In the "Type" field, "I" means input only. [&]quot;O" means output only. [&]quot;B" means bi-direction. [&]quot;P" means Power, "G" means Ground. # 4 Block Diagram Figure 4-1 Block Diagram # 5 Function Description #### 5.1 Registers | | Α | |-----|-----| | | Υ | | | X | | | Р | | PCH | PCL | | 1 | S | #### 5.2 Accumulator The accumulator is a general-purpose 8-bit register, which stores the results of most arithmetic and logic operations. In addition, the accumulator usually contains one of two data words used in these operations. ### 5.3 Index Register(X,Y) There are two 8-bit index registers (X and Y), which may be used to count program steps or to provide an index value to be used in generating an effective address. When executing an instruction, which specifies indexed addressing, the CPU fetches the OP Code and the base address, and modifies the address by adding the index register to it prior to performing the desired operation. Pre- or post-index of index address is possible. #### 5.4 Processor Status Register The 8-bit processor status register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both the program and the CPU. | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-------|-------|-------|-------|-------|-------|-------|-------| | N | V | 1 | В | D | 1 | Z | С | - N: Signed flag, 1 = negative, 0 = positive - V: Overflow flag, 1 = true, 0 = false - B: BRK interrupt command, 1 = BRK, 0 = IRQB - D: Decimal mode, 1 = true, 0 = false - I: IRQB disable flag, 1 = disable, 0 = enable - Z: Zero flag, 1 = true, 0 = false - C: Carry flag, 1 = true, 0 = false ## 5.5 Program Counter(PC) The 16-bit program counter register provides the addresses, which step the micro-controller through sequential program instructions. Each time the micro-controller fetches an instruction from program memory, the lower byte of the program counter (PCL) is placed on the low-order 8 bits of the address bus and the higher byte of the program counter (PCH) is placed on the high-order 8 bits. The counter is incremented each time an instruction or data is fetched from program memory. ### 5.6 Stack Point(S) The stack pointer is an 8-bit register, which is used to control the addressing of the variable-length stack. The stack pointer is automatically incremented and decremented under control of the micro-controller to perform stack manipulations under direction of either the program or interrupts (/NMI or /IRQ). The stack allows simple implementation of nested subroutines and multiple level interrupts. The stack pointer is initialized by the user's firmware. 8/27 # 6 Memory Organization There are 144 bytes SRAM, located in address 0000H to 007FH and 1000H to 100FH, in the MG69M220. They could be used as either working RAM or stacks according to application programs. For the purposes above, the location 0000H to 007FH and 0100H to 017FH overlap. In other words, accessing any locations inside the range 0000H to 007FH is equivalent to access the corresponding ones in the range 0100 to 017FH. All special function registers, SFRs, are located at the region 00C0H to 00FFH. Such an arrangement could benefit from the faster access time of zero-page. There are 8K bytes program / data MTP ROM in MG65M220. The ROM address from E000H to FFFFH can store program and data. The address mapping of MG65M220 is shown as below # **Memory Map** MG 69 M220 0000H~007FH Zero Page SRAM 0080H~00BFH Share area **SFR** 00C0H~00FFH 0100H~017FH SRAM / Stack Area 0180H~01 FFH 1000 H~ 100FH **SRAM** E000H~FFFBH Program/ Table Interrupt Vector Area Figure 6-1 Memory Map # 6.1 SFR Mapping The address 00C0H to 00FFH are reserved for special function registers (SFR). The SFR is used to control or store the status of I/O, timers, system clock and other peripheral. All SFRs are not supported by bit-manipulation instructions. Table 6-1 SFR Table SFR (special function register): 00C0H~00FFH | Address | Content | Default | Address | Content | Default | |---------|-----------------|----------|---------|---------|----------| | | Content | Delault | | Content | Delault | | 00C0 | | | 00D0 | | | | 00C1 | | | 00D1 | | | | 00C2 | IRQ_EN / IRQ_ST | 0-00000- | 00D2 | P0 | XXXXXXXX | | 00C3 | IRQ_CLR | 0-00000- | 00D3 | P0dir | 0000 | | 00C4 | RESFlag | X-0X1-XX | 00D4 | P0plh | 11111111 | | 00C5 | RESOK | XXXX0 | 00D5 | P0opd | 0000 | | 00C6 | | | 00D6 | P1 | 00000 | | 00C7 | | | 00D7 | P1plh | 11111 | | 00C8 | TM0 | 11111111 | 00D8 | P2 | 00000000 | | 00C9 | | | 00D9 | P3 | 00000000 | | 00CA | TM0_CTL | 00000 | 00DA | HSOB | 10 | | 00CB | | | 00DB | | | | 00CC | DIV_SEL | 00 | 00DC | P4 | 00000000 | | 00CD | TM1 | 11111111 | 00DD | P5 | 0000 | | 00CE | | | 00DE | (10) | | | 00CF | TM1_CTL | 00000 | 00DF | | | | | | | 100 | | | |---------|---------|----------|---------|---------|----------| | Address | Content | Default | Address | Content | Default | | 00E0 | | | 00F0 | SCK_SEL | 0000 | | 00E1 | IAP_PR | XXXXXXXX | 00F1 | | | | 00E2 | | | 00F2 | | | | 00E3 | | | 00F3 | | | | 00E4 | | | 00F4 | | | | 00E5 | | 4 | 00F5 | | | | 00E6 | | | 00F6 | | | | 00E7 | | | 00F7 | | | | 00E8 | | | 00F8 | | | | 00E9 | | | 00F9 | CWPR | XXXXXXXX | | 00EA | | | 00FA | | | | 00EB | | | 00FB | | | | 00EC | 70 | | 00FC | PWR_CR | 000 | | 00ED | | | 00FD | | | | 00EE | 0,0 | | 00FE | | | | 00EF | | | 00FF | | | ### 6.2 Write Protect Function Register | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|------|-------|-------|-------|-------|-------|-------|-------|-------|---|-----------| | 00F9H | CWPR | PT7 | PT6 | PT5 | PT4 | PT3 | PT2 | PT1 | PT0 | - | $\sqrt{}$ | Condition Write Protect flag register (CWPR) is used to protect IRQ_CLR.7 (WDT), PWR_CR.1 (CKC0), PWR_CR.2 (CKC1) and SCK_SEL. If want to change IRQ_CLR.7 (WDT), PWR_CR.1 (CKC0), PWR_CR.2 (CKC1) or SCK_SEL, The CWPR musts write "78H". PT7~PT0: Write Protect Pattern. In MG69M220 write protect pattern is "78H". *Note:* - When CWPR is written by firmware, it would be automatically cleared by hardware after the "next write action" of firmware. - *Bit-manipulation instructions are not available on this register. #### 6.3 IAP Write Protect Register | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | ĺ | |---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|---| | 00E1H | IAP_PR | PR7 | PR6 | PR5 | PR4 | PR3 | PR2 | PR1 | PR0 | - | V | | PR7 ~ PR0: Write Protect Pattern. IAP-memory block would be written by firmware, when IAP_WP is written "46H" then "B9H". The IAP_WP will be automatically cleared by next uC write action or flash write time-out. - The flash write time-out period is obtained by the watch dog timer bit1. (WDT clock source is (Fosc/4096) /4 @ 4MHz or WDT clock source is (Fosc/512) /4 @ 32KHz) when clock source is 4M, the IAP time-out period is 2ms ~4ms) - Clear watch timer before the IAP function is used. #### Example: | sei | | | |-----|---------|--| | lda | #78H | | | sta | CWPR | ;;(F9h) | | lda | #80H | | | sta | IRQ_CLR | ;;(C3h) | | lda | #46H | | | sta | IAP_PR | ;;(E1h) | | lda | #B9H | | | sta | IAP_PR | ;;(E1h) | | lda | #\$40 | ;;The data will be written into flash. | | Sta | \$E000 | ;;IAP_AREA (E000h ~ FFFFh) | | cli | >>/ | | QP-7300-03D 11/27 # 7 Interrupt MG69M220 provides five kinds of interrupt sources. The flag IRQ_EN and IRQ_ST are used to control the interrupts. When flag IRQ_ST is set to '1' by hardware and the corresponding bits of flag IRQ_EN has been set by software, an interrupt is generated. When an interrupt occurs, all of the interrupts are inhibited until the CLI or STA IRQ_EN, # I instruction is invoked. Executing the SEI instruction can also disable the interrupts. Table 7-1 Interrupt Vector Table | Vector Address | Item | Flag | Properties | Memo | |----------------|---------|----------|------------|------------------------------| | | P1 IRQ | IRQ_ST.1 | Ext. | P1.0 ~ P1.4 interrupt vector | | FFFEH, FFFFH | P0 IRQ | IRQ_ST.2 | Ext. | P0.0 ~ P0.7 interrupt vector | | | TM0 IRQ | IRQ_ST.3 | Int. | TM0 underflow interrupt | | | TM1 IRQ | IRQ_ST.4 | Int. | TM1 underflow interrupt | | | DIV IRQ | IRQ_ST.5 | Int. | Divider carry out interrupt | | | RESET | None | Ext. | Initial reset | | FFFCH, FFFDH | WDT | IRQ_ST.7 | Int. | Watch dog timer reset | | | LVR | None | Int. | Low voltage reset | #### 7.1 Interrupt Register IRQ enable flag | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00C2H | IRQ_EN | PDBOR | - | DIVx | TM1 | TMO | P0 | P1 | | 1 | | Program can enable or disable the ability of triggering IRQ through this register. 0: Disable (default "0" at initialization) 1: Enable P0: Falling edge occurs at port 0 input mode P1: Falling edge occurs at port 1 TM0: Timer 0 underflow TM1: Timer 1 underflow DIVx: Divider selected interrupt frequency occurred PDBOR: Power down BOR function IRQ status flag | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00C2H | IRQ_ST | WDT | - | DIVx | TM1 | TM0 | P0 | P1 | - | | - | When IRQ occurs, program can read this register to know which source is triggering IRQ. If the interrupt triggering is enabled and the interrupt event is accepted, the corresponding IRQ status flag should be cleared by program after the interrupt vector is loaded into program counter. IRQ clear flag |
- 10 VII. V | | | | | | | | | | | | |-----------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | | 00C3H | IRQ CLR | WDT | - | DIVx | TM1 | TM0 | P0 | P1 | _ | - | ~ | Program can clear the interrupt event by writing '1' into the corresponding bit. The IRQ_CLR.7 (WDT) is protected by CWPR. QP-7300-03D 12/27 # 7.2 Interrupt System Figure 7-1 Interrupt System Diagram #### 8 Reset # 8.1 Low Voltage Reset (LVR) The MG69M220 provides low voltage reset circuit in order to monitor the supply voltage of the device. If the supply voltage of the device is within the range $0.9V \sim VLVR$, such as changing a battery, the LVR will automatically reset the device internally. The LVR includes the following specifications - 1. The low voltage (0.9V~VLVR) has to remain in its original state to exceed 1ms. If the low voltage state does not exceed 1ms, the LVR will ignore it and do not perform a reset function. - 2. In the LVR mode, the clock source (INT./EXT. OSC) continuous oscillating and the IO status becomes default value. 14/27 Reset status flag | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|---------|-------|-------|-------|--------|-------|-------|-------|-------|---|---| | 00C4H | RESFlag | BOR | - | IAR_F | EXTR_F | LVPOR | - | LVD1 | LVD0 | 1 | | BOR: Brown out reset occurs. 1: If the supply voltage of the device is within the range VDD ~ VDD-1.2V 0: This bit is set by hardware and cleared by writing '1'. IAR_F: Illegal address reset flag. 1: An illegal address reset occurs. 0: This bit is set by hardware and cleared by writing '1'. EXTR_F: External reset flag 1: An external reset occurs. 0: This bit is set by hardware and cleared by writing '1'. LVPOR: Low voltage reset and POR reset occur. 1: VDD is under 1.8V or power-on. 0: This bit is set by hardware and cleared by writing '1'. LVD1: Low voltage1 detected. 1:VDD is under 2.4V. 0:This bit is set by hardware and cleared by writing '1'. LVD0: Low voltage0 detected. 1:VDD is under 2.1V. 0:This bit is set by hardware and cleared by writing '1'. QP-7300-03D ### 8.2 Watchdog Timer (WDT) (The example is based on 32.768KHz and SCK_SEL.1 = 1) | Name | | | | Bit 8 | R | W | |------|--|--|--|----------|---|---| | WDT | | | | 1.9 (Hz) | • | - | The watchdog timer time-out period is obtained by the equation: (FDIV /512)/512 or (FDIV /4096)/512 select by SCK_SEL.1 (CKS1). Before watchdog timer time-out occurs, the program must clear the 9-bit WDT timer by writing 1 to IRQ_CLR.7. WDT overflow will cause system reset and set IRQ_CLR.7 to high. Figure 8-1 Watch Dog Diagram 15/27 #### 8.3 Reset OK | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---|---| | 00C5H | RESOK | RK7 | RK6 | RK5 | RK4 | - | - | - | IO_RES | - | | RESOK (Reset OK): If the device resets OK and works well, users **must** write #\$90 into this register. For example: Program_start: LDA #10010000b STA \$C5 IO_RES: IO reset selector. 0:IO status is reset by WDT, IA reset, LVR and POR, EXT_RESET (Default). 1:IO status is reset by LVR, EXT_RESET and POR. QP-7300-03D #### 9 Power Control #### 9.1 Power Control Register #### System clock selector (%The Clock Control Register is protected by CWPR.) | • | | • | | | | _ | • | | - | | • | |---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | | 00F0H | SCK_SEL | CKS7 | - | - | • | - | CKS2 | CKS1 | CKS0 | - | | CKS0: F_{CPU} clock source select. 0: F_{OSC}, 1: F_{X32} CKS1: Watchdog clock source select. 0: F_{DIV}/4096, 1: F_{DIV}/512 CKS2: De-bounce (awakened from stop mode) time selector. 0: F_{OSC}/16384, 1: F_{OSC}/256 CKS7: Select the input clock source of divider. 0: F_{OSC}, 1: F_{X32} Power saving control | | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | Ì | 00FCH | PWR_CR | - | - | - | - | - | CKC1 | CKC0 | HALT | 1 | V | CKC1 and CKC0 are protected by CWPR | CKC1 | CKC0 | System clock control | |------|------|-----------------------------------------------------------------| | 0 | 0 | F _{OSC} enable, F _{X32} enable (Dual mode) | | 0 | 1 | F _{OSC} enable, F _{X32} disable (Single mode) | | 1 | 0 | F _{OSC} disable, F _{X32} enable (Slow mode) | | 1 | 1 | F _{OSC} disable, F _{X32} disable (Stop mode) | Note: Dual mode and slow mode are inhibited when code option is selected to $F_{\chi 32}$ disable. HALT: F_{CPU} off-line control bit. 1: F_{CPU} off-line, 0: F_{CPU} on-line Program can switch the normal operation mode to the power-saving mode for saving power consumption through this register. There are three power saving modes in this system. Slow mode: $(PWR_CR.CKC1 = 1, PWR_CR.CKC0 = 0)$ The main uC clock (Fosc) stops oscillating. Only very low power is needed for uC to keep running. Stop mode: (PWR_CR.CKC1 = 1, PWR_CR.CKC0 = 1) Both system clocks stop oscillating. The uC can be awakened from stop mode by 4-ways: port 0 falling edge, port 1 falling edge, hardware reset, or power-on reset. When the stop mode is released, only the oscillator, which is providing the uC clock, will be enabled again. If uC clock source is F_{X32} , The Fosc and Fx32 clock are disabled (set the PWR_CR[2:1] = 11). The F_{X32} will be enabled and F_{OSC} still keep same status, when uC is woken up by port0 or port1. Halt mode: (PWR_CR.HALT = 1) The FCPU clock is in off-line status. The oscillator(s) still keep same status. The uC can be awakened from halt mode by 3-ways: the interrupt events, hardware reset, or power-on reset. 16/27 ### 10 Divider #### 10.1 Divider **DIV** interrupt selector | Ī | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---|--------------| | ĺ | 00CCH | DIV_SEL | - | - | - | - | - | - | DIVS1 | DIVS0 | - | \checkmark | The divider clock source comes from F_{X32} (sub-main clock) or F_{OSC} (main clock). Program can select divider interrupt frequency by DIV_SEL register. | DIVS1 | DIVS0 | DIV interrupt occurs status | | |-------|-------|-----------------------------|---| | 0 | 0 | F _{DIV} / 16384 | , | | 0 | 1 | F _{DIV} / 2048 | X | | 1 | 0 | F _{DIV} / 256 | | | 1 | 1 | F _{DIV} / 32 | | #### 11 Timer ### 11.1 Timer0 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---|-----------| | 00C8H | TM0 | T7 | T6 | T5 | T4 | Т3 | T2 | T1 | T0 | | $\sqrt{}$ | | 00CAH | TM0_CTL | STC | RL/S | - | - | - | TCS0 | TKI1 | TKI0 | | $\sqrt{}$ | Timer 0 is an 8-bit down-count counter. STC: Start/Stop counting. 1: start and pre-load the value to counter, 0: stop timer clock RL/S: Auto-reload disable/enable. 1: disable auto-reload, 0: enable auto-reload TCS0: select the input clock source of timer0. 0:Fosc, 1: Fx3 | TKI1 | TKI0 | Selected TM0 input frequency (F _{TM0_DIV}) | |------|------|------------------------------------------------------| | 0 | 0 | F _{TM0} / 1 | | 0 | 1 | F _{TMO} / 4 | | 1 | 0 | F _{TM0} / 16 | | 1 | 1 | F _{TM0} / 64 | $F_{\text{TM0_UV}},$ can be calculated with the equation: $F_{TM0_UV} = F_{TM0} / (TM0+1)$, where the F_{TM0} is the timer input frequency set by TKI1 and TKI0. For example: (if $F_{TM0} = 2.000MHz$, TKI1=TKI0=0) | TMO | Frequency | |-----|-----------| | 00H | Reserved | | 01H | 1.000MHz | | 02H | 667kHz | | | | | FFH | 7.84kHz | QP-7300-03D #### 11.2 Timer1 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00CDH | TM1 | T7 | T6 | T5 | T4 | Т3 | T2 | T1 | T0 | | | | 00CFH | TM1_CTL | STC | RL/S | - | - | - | TCS1 | TKI1 | TKI0 | | | Timer 1 is an 8-bit down-count counter. STC: Start/Stop counting. 1: start and pre-load the value to counter, 0: stop timer clock RL/S: Auto-reload disable/enable. 1: disable auto-reload, 0: enable auto-reload TCS1: select the input clock source of timer1. 0: F_{OSC}, 1: F_{X32} | TKI1 | TKI0 | Selected TM1 input frequency (F _{TM1_DIV}) | |------|------|------------------------------------------------------| | 0 | 0 | F _{TM1} / 1 | | 0 | 1 | F _{TM1} / 4 | | 1 | 0 | F _{TM1} / 16 | | 1 | 1 | F _{TM1} / 64 | F_{TM1 UV}, can be calculated with the equation: $F_{TM1_UV} = F_{TM1} / (TM1+1)$, where the F_{TM1} is the timer input frequency set by TKI1 and TKI0. For example: (if FTM1 = 2.000MHz,TKI1=TKI0=0) | TM1 | Frequency | |-----|-----------| | 00H | Reserved | | 01H | 1.000MHz | | 02H | 667kHz | | | | | FFH | 7.84kHz | QP-7300-03D # 12 Configurable I/O Ports #### 12.1 Port 0 #### Port 0 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00D2H | P0 | P07 | P06 | P05 | P04 | P03 | P02 | P01 | P00 | | - | Port 0 is combined with 4-bit input port and 4-bit I/O port. P0.7~P0.4 can be programmed as input or output individually. When P0.n (n= 4~7) is configured as an output pin, the P0.n pin would output the logic content of internal P0obuf.n (P0 output buffer). The default value of P0obuf is 0000----b. When the P0.n is configured as output mode, reading P0.n would always read logic '0'. When the P0.n is configured as input mode, reading P0.n would always read the logic value from pad. #### Port 0 Output Buffer | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00D2H | P0 | P07 | P06 | P05 | P04 | - | - | - | - | 1 | V | This register is used to buffer the output value of P0.7 ~ P0.4 in output mode and it is write-only. * Bit-manipulation instructions are not available on this register. **Port 0 Direction Register** | | | - 3 | | | | | | | | | | |---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|--------------| | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | | 00D3H | P0dir | DR7 | DR6 | DR5 | DR4 | - | 0 | - | - | - | \checkmark | P0_DR (Port 0 Direction) P0_DR.n = 0: P0.n is configured as an input pin. (Default) 1: P0.n is configured as an output pin. Bit-manipulation instructions are not available on this register. Port 0 Pull-high Control Register | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|--------------| | 00D4H | P0plh | PH7 | PH6 | PH5 | PH4 | PH3 | PH2 | PH1 | PH0 | - | \checkmark | ^{1:} Enable internal pull-high (default); 0: Disable internal pull-high PHn: Control bit is used to enable the pull-high of P0.n pin. Bit-manipulation instructions are not available on this register. **Port 0 Open-Drain Control Register** | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00D5H | P0opd | OD7 | OD6 | OD5 | OD4 | - | - | - | - | - | | 0: Disable open-drain output (CMOS output); 1: Enable open-drain output ODn: Control bit is used to enable the open-drain of P0.n pin. * Bit-manipulation instructions not available on this register. QP-7300-03D 20/27 #### 12.2 Port 1 #### Port 1 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|------|-------|-------|-------|-------|-------|-------|-------|-------|---|-----------| | 00D6H | P1 | - | - | - | P14 | P13 | P12 | P11 | P10 | | $\sqrt{}$ | Port1 is a 5-bit quasi-bi-directional open drain output with internal pull-high resistors. This register is used to buffer the output value of P1.0 ~ P1.4. Reading P1.n would always read the logic value from pad. **The pull-high** resistors will be temporarily disabled if the output value is low. * Bit-manipulation instructions are not available on this register. Port 1 Pull-high Control Register | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00D7H | P1plh | - | - | - | PH4 | PH3 | PH2 | PH1 | PH0 | 1 | 1 | ^{1:} Enable internal pull-high (Default) PHn: Control bit is used to enable the pull-high of P1.n pin. * Bit-manipulation instructions are not available on this register. #### 12.3 Port 2 #### Port 2 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|------|-------|-------|-------|-------|-------|-------|-------|-------|---|-----------| | 00D8H | P2 | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | • | $\sqrt{}$ | Port2 is an open drain output port with internal pull-high resistors. This register is used to buffer the output value of P2.0 ~ P2.7. The pull-high resistors will be temporarily disabled if the output value is low. * Bit-manipulation instructions are not available on this register. #### 12.4 Port 3 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---|-----------| | 00D9H | P3port | P37 | P36 | P35 | P34 | P33 | P32 | P31 | P30 | - | $\sqrt{}$ | Port3 is open drain output with internal pull-high resistors when segment/OD option select to I/O function. This register is used to buffer out value of P3.0 ~ P3.7. The pull-high resistors will be temporarily disabled if the output value is low. Bit-manipulation instructions are not available on this register. #### 12.5 Port 4 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---|-----------| | 00DCH | P4port | P47 | P46 | P45 | P44 | P43 | P42 | P41 | P40 | • | $\sqrt{}$ | Port4 is open drain output with internal pull-high resistors when segment/OD option select to I/O function. This register is used to buffer out value of P4.0 ~ P4.7. The pull-high resistors will be temporarily disabled if the output value is low. Bit-manipulation instructions are not available on this register. #### 12.6 Port 5 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 00DDH | P5port | - | - | - | - | P53 | P52 | P51 | P50 | - | | Port5 is open drain output(High Sink Current 16mA) with internal pull-high resistors when COM/OD option select to I/O function. This register is used to buffer out value of P5.0 ~ P5.3. The pull-high resistors will be temporarily disabled if the output value is low. * Bit-manipulation instructions are not available on this register. ^{0:} Disable internal pull-high ## 12.7 High sink output #### **HSO Buffer** | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R | W | |---------|------|-------|-------|-------|-------|-------|-------|-------|-------|---|--------------| | 00DAH | HSOB | HSO | - | - | - | - | - | - | PS0 | - | \checkmark | HSO pad is a high sink current output pin. The HSO PAD output from HSOB or Tone is selected by PS0. HSOB. 7 can set up 1/3 or 2/3 duty cycle by using instruction, writer "1", through HSO buffer to PAD output High, until writer "0", the output status will change to Low. #### Bit-manipulation instructions are not available on this register. PS0 (HSOB.0) can set the HSO pad output source as HSO buffer or tone generator. The HSO output waveform can be programmed to any duty cycle by software. If the tone path is selected (PS0=1), the duty cycle of the carrier output is fixed to 50%. The counter underflow frequency of timer0 can be calculated with the equation: $F_{TM0_UV} = F_{TM0} / (TM0reg+1)$. The F_{TM0} is Timer0 clock input. For example: $F_{TM0} = 455KHz$, TM0reg = 0BH $F_{TM0 UV} = F_{TM0} / (TM0reg+1) = 455K/(0BH+1) = 37.92KHz.$ # 13 Option Register | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | OR0 | | | | LOCK | Fm | WDT | | | Bit4: LOCK 0 (Enable): Dump code is locked. (Default) 1 (Disable): Dump code is not locked. Bit3: Fm 0 (Fm/2): FCPU clock / 2 1 (Fm): FCPU clock / 1 (Default) Bit2: WDT 0 (Disable): Disable watchdog timer function (default) 1 (Enable): Enable watchdog function Bit 7 ~ Bit 5: Reserved. Software must write "0" on these bits. Bit 1 ~ Bit 0: Reserved. Software must write "0" on these bits. # 14 Application Circuit Figure 14-1 Application Circuit - Key Pad Controller # 15 Electrical Characteristics # 15.1 Absolute Maximum Rating | PARAMETER | RATING | UNIT | |------------------------------------|--------------|------| | Supply Voltage to Ground Potential | -0.3 to +5.0 | V | | Applied Input / Output Voltage | -0.3 to +5.0 | V | | Power Dissipation | 60 | mW | | Ambient Operating Temperature | -10 to +50 | °C | | Storage Temperature | -55 to +150 | °C | Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device. #### 15.2 DC Characteristics (VDD-VSS = 3.0 V, FOSC = 4MHz, Ta = 25° C; unless otherwise specified) | PARAMETER | SYM. | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |---------------------------------------|-------------------|--------------------------------------------------------------------------|---------|------|---------|------| | Op. Voltage | V_{DD} | - | 1.8 | | 3.6 | V | | Op. Current 1 | I _{OP} | Dual mode, No load | | 1.8 | 5.6 | mA | | | | $F_{CPU} = 4MHz$ | | _ | _ | | | Halt Current | I _{STB2} | Slow mode, HALT, No load, $F_{CPU} = 32768Hz$, DIV _X INT off | - | 6 | 8 | μA | | Stop Current | I _{STB1} | STOP mode, No load | - | - | 1 | μA | | Input High Voltage | V _{IH} | - | 0.7 VDD | - | VDD | V | | Input Low Voltage | V _{IL} | | 0 | - | 0.3 VDD | V | | Port 0 Drive Current | I _{OH1} | VOH = 2.4V, VDD = 3.0V | 10 | - | - | mΑ | | Port 0 Sink Current | I _{OL1} | Vol = 0.4V, Vdd = 3.0V | 10 | - | - | mA | | HSO Drive Current | I _{OH2} | $V_{OH} = 2.4V, V_{DD} = 3.0V$ | 10 | - | - | mA | | HSO Sink Current | I _{OL2} | $V_{OL} = 1.0V, V_{DD} = 3.0V$ | 250 | - | - | mA | | P1.0 to P1.4 Sink Current | I _{OL3} | Vol = 0.4V, Vdd = 3.0V | 10 | - | - | mΑ | | P2 ~ P4 Sink Current | I _{OL4} | VOL = 0.4V, VDD = 3.0V | 8 | | | | | P5.0 to P5.3 Sink Current | I _{OL5} | Vol = 0.4V, Vdd = 3.0V | 10 | | | mA | | P0~5 Internal Pull-high Resistor | R _{PH1} | VIL = 0V | 25K | 50K | 75K | Ω | | /RES Pull-high Resistor | R _{RES} | VIL = 0V | - | 30K | - | Ω | | Low Voltage Detector for IAP Function | V_{LVD1} | VDD > 2.4V | - | 2.4 | - | V | | Low Voltage Detector for uC | V_{LVD0} | VDD > 2.1V | - | 2.1 | - | V | | Low Voltage Reset | V_{LVR} | - | - | 1.8 | - | V | #### 15.3 AC Characteristics | PARAMETER | SYM. | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |--------------------------------|------------------|-------------------------|------|-------|-------|--------------------| | Built-in CPU Op. Frequency | FCPU | RC, $VDD = 3.0V$ | 0.5 | 4 | 6 | MHz | | Frequency Deviation by | <u>Δf</u> | <u>f(3.6V) - f(2.6)</u> | - | 3 | 10 | % | | Voltage Drop for RC Oscillator | f | f(3.0V) | | | | | | POR Duration | Tpor | Fosc = 4 MHz | - | 4 | 1 | mS | | System Start-Up Time | T _{SST} | Power-up, reset | - | 16384 | - | 1/F _{CPU} | | System Wake-Up Time | T _{SWT} | Wake-up from STOP mode | 256 | - | 16384 | 1/F _{CPU} | # **16 Revision History** | Revision | Page | Descriptions | Date | |----------|------|------------------------------------------|------------| | V1.00 | | Initial Version | 2011/10/14 | | V1.01 | | Fix some errors | 2011/10/28 | | V1.02 | | Modify RAM description and block diagram | 2011/11/09 | | V1.03 | | Add P3~P2 SFR descriptions | 2011/12/30 | | V1.04 | | Fix some description errors | 2012/01/06 | | 1/4 05 | | Modify LVD and LVD voltages | 2042/05/45 | | V1.05 | | Modify halt mode current | 2012/05/15 | | \/4.00 | | Add LVD2 flag | 2042/02/24 | | V1.06 | | Modify halt mode current | 2012/02/24 | | V1.07 | | Modify application circuit | 2012/05/10 | | \/4.00 | | Modify LVD0 and LVD1 SPEC. voltage | 2042/07/04 | | V1.08 | | Remove LVD2 flag | 2012/07/04 | | V1.09 | | Add ICP programmer interface description | 2012/09/11 |